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The noncriticality of the free surface of liquid 4He near the h point and the 
finite-size scaling postulate are combined to show that the surface tension can 
have two singularities, one due to rounding and another due to shifting. The 
rounding singularity can be reduced, via a further scaling assumption, to that 
previously suggested by Sobvanin and Hohenberg. Results from calculations 
based on continuous symmetry models and experiments on topologically 
2D 4He films are used to argue that the shift singularity is Itl 1 =, which is 
consistent with the leading singularity observed by Magerlein and Sanders. 

1. INTRODUCTION 

The essential role that the continuous symmetry of the order  parameter  
plays in determining the nature of critical phenomena in systems with 
restricted geometries (see, e.g., Ref. 1) is firmly established. For example, a 
two-dimensional Ising model with no continuous symmetry displays a 
critical point below which spontaneous magnetization (long-range order) 
exists; whereas a two-dimensional planar (xy) model with continuous 
symmetry exhibits a critical point, but with no spontaneous magnetization at 
any nonzero temperature.  2 Since the continuous symmetry of the two- 
component  (n = 2) vector order parameter  of the planar model is equivalent 
to that of the complex order  parameter  of superfluid 4He, it is customary to 
identify superfluid 4He as a physical realization of the planar model. 
Although this identification has been successful in the bulk, only recently has 
there been support from experiments 3 on superfluid 4He films for analogous 
identification in restricted geometries. 

The phase transition of the two-dimensional planar model 2 can be 
attributed to topological excitations, bound vortex-ant ivortex pairs, 
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threading the system normal to the plane of the system. Consequently, the 
topology of the 4He films is expected to play an important role in the nature 
of critical phenomena. In particular, superfluid 4He films adsorbed on a 
substrate with a complicated three-dimensional topology, e.g., porous 
Vycor glass, show a critical behavior similar to the bulk, 4 whereas 4He films 
adsorbed on a fiat substrate with two-dimensional topology display a 
distinctive two-dimensional critical behavior. 3'* To distinguish between 
these two classes of film critical behavior, we introduce a topological 
dimension by calling the former 3 D f i h n s  and the latter 2 D f i l m s .  It is the 2D 
film that displays the universal jump in the superfluid density 3 predicted by 
the two-dimensional planar model. 2 

In the light of these successes in 2D film and bulk critical phenomena in 
superfluid 4He, we consider in this paper a case that can be interpreted as 
lying in between the 2D film and bulk: the liquid-gas interface of 4He near 
the h point. Precision measurements by Magerlein and Sanders 5'- of the 
surface (interfacial) tension o- of the 4He liquid-gas interface at tempera- 
tures T near the A point at Tc yield a critical behavior in disagreement with 
present theories. 7'8 To be specific, let the leading singularity of o- be Itl", 
where t = ( T  - T,:)/Tc and/x is the surface tension exponent. The theoretical 
prediction 7'8 is/z = 2 - c ~ - u  ~ 1.35, where a is the specific heat exponent 
and u is the correlation length exponent. To obtain this result, Sobyanin 7 
uses a Ginzburg-Landau-Pitaevskii  model with specific surface boundary 
conditions, and Hohenberg 8 uses a simple scaling argument in which a 
surface length is identified with the bulk correlation length of the critical 
liquid phase. The experimental data 5 are not consistent with this prediction 
and imply a stronger singularity with/.t ~ 1 - a  ~ 1.0. 

Thermodynamically the A point is a critical end point located at the 
juncture of the A line with the liquid-gas coexistence curve. Near the 3. 
point, the liquid-gas interface is clearly noncritical (the interfacial thickness 
does not become arbitrarily large) since the gas phase is noncritical. Widom 9 
has investigated phenomenologically the noncritical interface near a critical 
end point, but only for systems characterized by one scalar (n = 1) order 
parameter. The theoretical prediction 9 is that tr should have positive slope 
near the critical end point, & r / d T  > 0. The experimental data 5 show the 
opposite, d t y / d T  < O. 

It is clear that at the present time neither the leading noncritical 
behavior (do-~tiT) nor the leading critical behavior (!t] ~') of tr near Tc is 
understood. The purpose of this paper is to discuss only the critical behavior 
of or, exploiting the noncriticality of the liquid-gas interface and finite-size 
scaling as well as the continuous order-parameter  symmetry and the 

*In Ref. 3 the helium is adsorbed on a Mylar film substrate, in Ref. 4, on porous Vycor glass. 
+Previous and less precise measurements of ~r near the lambda point include Refs. 6. 
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topological dimensions of films. In this regard, it is important  to distinguish 
between the unsubstantiated singularity 7"8 /x = 2 - a - p  for a noncritical 
l iquid-gas interface of a vector (n = 2) system with continuous symmetry  and 
the identical but verified singularity ~~ for a critical l iquid-gas interface of a 
scalar (n = l) system with no continuous symmetry.  

In Section 2, the noncrificality of the liquid-gas interface near  Tc is used 
to show that the singular surface tension {~ is a surface correction to the bulk 
free  energy. The finite-size .scaling postulate of Fisher 1 is then employed to 
show that el- can have two singularities, one due to rounding and another  due 
to shifting. In other words, finite-size effects can determine 6-. The rounding 
singularity is reduced in Section 3, via a further scaling assumption, to that 
suggested previously by Sobyanin 7 and Hohenberg.  8 Results f rom cal- 
culations based on models with continuous symmetry  and from experiments  
on 2D films of superfiuid 4He are utilized to argue that the shift singularity 
might be It]'-", which dominates  the rounding singularity and is consistent 
with the leading singularity observed by Magerlein and Sanders. 5 A brief 
discussion follows in Section 4. 

2. S U R F A C E  T E N S I O N  O F  A F R E E  S U R F A C E  

The interface of interest is one between a noncritical gas phase and a 
critical liquid phase, which we can call the free surface of the liquid. Consider 
the critical liquid phase to have cross-sectional area A and length L with 
identical free surfaces on the two ends but periodic boundary  conditions on 
the sides. Let  A --> ~ to obtain a 2D film (o0 x o0 x L) in contact at the two 
free surfaces with the noncritical gas phase. The length L is then allowed to 
grow large, resulting in a thick 2D film with two free surfaces. 

Since the  A point is far f rom the liquid-gas critical point, the total free 

energy per  unit volume F ( ] ,  L) of a thick, 2D film is asymptotically (L --> co) 
decomposable  into a bulk contribution F~(T)  and two surface contributions 
o-(T): 

F ( T ,  L )  = F,~(T)  + ( 2 / L ) o - ( T )  +.  �9 �9 (1) 

w h e r e  higher order terms which go to zero faster than 1 / L  as L- ->~  are 
omitted. The surface tension o ' (T) ,  with dimensions energy/area ,  is assumed 
to be finite as A -> o0, and the bulk free energy per  unit volume F ~ ( T )  is finite 
as A--> o0 and L--> ~ .  The expansion (1) is obviously not valid near  the 
l iquid-gas critical point, where the interfacial thickness becomes arbitrarily 
large, and in this sense (1) takes into account the noncriticality of the free 
surface. 

The  (bulk) liquid phase has a critical point at To. Near  T,. we can separate  
thermodynamic  quantities into a regular (noncritical) contribution and a 
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singular (critical) contribution. The same decomposit ion as in (1) is expected 
to be valid for the singular contribution: 

P( t ,  L )  = f o~;(t) + ( 2 / L  )5 ( t )  + .  �9 �9 (2) 

where t = ( T -  Tc)/T,: and the tilde indicates the singular part.  To leading 
order,  the noncritical gas phase is eliminated in (2). More importantly,  the 
singular surface tension can be considered as the surface correction to the 
bulk free energy density. 

Having reduced 5 to a surface correction to the bulk, we employ the 
basic scaling postulate I for the singular free energy density of a thick, 2D 
film in the form 

F( t ,  L )  = P.~(i)O(lli! '/~ (3) 

where ; = [ 'T-- Tc( l ) ] /Tc  = t + to(l) is the shifted tempera ture  deviation, and 
tc (l) = b l  ~ is the shift f rom T,~ in Tc (l) of a thick (l ~ ~ ) ,  2D film. Here  O is a 
dimensionless scaling function and the dimensionless l = L / a  is the thick- 
ness L in terms of a microscopic spacing a. Equat ion (3) summarizes the two 
finite-size effects: in a thick film the critical point is shifted to Tc (1) with shift 
exponent  A and rounded with rounding exponent  0. The scaling postulate (3) 
has been verified by detailed calculations on the spherical model  lj and on 
the ideal Bose gas, 12"13 by the renormalizat ion-group method,  14 and by 
specific heat measurements  on superfluid 4He films.15'* 

Let  us specialize (3) to surface corrections to the bulk. 1 To recover the 
bulk, O ( ~ )  must be set equal to one. To obtain surface corrections to the 
bulk, O ( Z )  must have an asymptotic (Z  -~ o0) expansion 

O ( Z ) =  l + c Z - '  + .  �9 �9 (4) 

It  follows f rom Eqs. (2)-(4) that the singular surface tension can have two 
contributions: 

5( t )  = 5s(t) + 5r(t) 

= a b l  I F ~ ( t )  ac]tl F~,(t) (5) 

where f ' >  = df f '~( t ) /d t .  The first term 5~ is due to shifting, and the second 
term 5~ is due to rounding. Note that, depending on the value of A, the shift 
singularity 5~ may not exist or may be weakly size-dependent,  whereas the 
rounding singularity 5, always exists and is size-independent.  

Equation (5) shows that, even though L is large, finite-size effects can 
detei 'mine the singularities in 5. The underlying assumption can be traced 
back to Eq. (1) and to the noncriticality of the free surface, viz., that the 
structure of the free surface can be neglected. This assumption is certainly 

�9 In Ref. 15 the helium is confined in Nuclepore filters. 
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wrong near  the liquid-gas critical point, where the interface becomes 
arbitrarily thick, but is reasonable far f rom the liquid-gas critical point, as at 
the A point T,. There  is, however,  a reservation. At Tc the density profile is 
asymmetr ic  9 and may approach the density of the critical liquid phase as a 
power  law rather  than an exponential.  If the power- law density profile is 
verified, the above analysis may have to be modified. 

3. SHIFT A N D  R O U N D I N G  SINGULARITIES 

To obtain an explicit form of r w e  write ff~ in its standard form 

Fo~(t) = A~t2-~(1 + D ~ t  x + .  �9 .), t > 0  (6) 

where a similar expression holds for t < 0, and x is the confluent exponent.  It 
follows from (5) and (6) that the rounding singularity has the form 

~,(t) = ~r0t 2 . . . . .  ~ / ~  t > 0  (7) 

where the coefficient is given by ~r0 = a c A ~ .  The rounding exponent  1/0  is 
defined in (3) as a thermodynamiq crossover exponent  and is not expected 
to be strongly affected by the topological connectiveness of the film. In other 
words, it is probably  safe to take 0 f rom measurements  15 on 3D 4He films, 
which gives 1/0  = 0.54 and a leading rounding singularity It[ 1"48. If we make 
the further  scaling assumption that rounding occurs when the bulk cor- 
relation length ~: = scot-~ is comparable  to L, then we get the bulk value 
0 = 1 /u  and a leading rounding singularity It[ 2 '~-~, which is the same as that 
suggested by Sobyanin 7 and Hohenberg.  8 If the usual value of v is assumed 
(u = 0.67), then the leading rounding singularity is ]t] 135, which is stronger 
than It[ x48 but still inconsistent with the leading singularity observed by 
Magerlein and Sanders. 5 

To obtain an explicit form of c~,, we need in addition to (6) a particular 
value of the shift exponent  A. The shifted To(1) can be identified with the 
onset of superfluidity of a thick, 2D film, which is given for small l by the 
two-dimensional  planar model.  2 Therefore ,  as ment ioned in the intro- 
duction, the continuous symmetry  of the n = 2 order  pa ramete r  and the 2D 
topology of the thick film are expected to play important  roles in the critical 
behavior,  in particular in determining T~ (l) and A. In lieu of a calculation of A 
in a thick, 2D, p lanar -model  film or a measurement  of A in a thick, 
experimental ly verified 2D, 4He film, we turn to other  calculations and 
experiments  that satisfy the selection rules of continuous symmetry  and 2D 
topology. 

Theoretically,  the prob lem is not with the 2D topology but with the 
nature of the continuous symmetry  as parametr ized  by n. A relevant 
calculation was made  by Doniach, ~6 who calculated Tr  for a thick, 2D, 
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la rge-n  film and ext rapola ted  to n = 2. The  result  was A = 1. Series expan-  

sion calculat ions  on a 2D Heisenberg  (n = 3) film 17' * yielded A = 1.1, which 
is not  inconsis tent  with A = 1 for n = 2. (It is unc lear  how these results can 
be ha rmon ized  with the zero t rans i t ion  t empe r a t u r e  of two-d imens iona l  
systems with n > 2 . )  Fisher  1 has emphas ized  that  in the presence  of a 
constra int ,  such as cons tan t  density,  3. = 1. If A ~ l ,  then  A < 0, i.e., the shift 
is asymptot ical ly  larger than the rounding .  Both of these points ,  3. = 1 and  
3. < 0, are cor robora ted  by detai led calculat ions on the (n = co) spherical 
m o d e l l l  and  ideal  Bose gas. ~2 Admi t t ed ly ,  none  of the est imates  appears  to 

be compell ing.  
Exper imenta l ly ,  the p rob lem is not  with the con t inuous  symmet ry  

(superfluid 4He is always n = 2), but  with the 2D topology.  The  specific heat  
m e a s u r e m e n t s  of mul t i layer  4He by Bretz 2~ have been  analyzed by Doni -  
ach, 16 who found  ag reemen t  with A = 1. The  result  3. = 1 is, however ,  in 

m a r k e d  d i sag reement  with the A ~ -3 /2  bulk behav ior  found  in o ther  
measurements - :  on superfluid 4He in restr icted geometr ies .  [The bulk  result  
3. = 1 / u ~ 3 /2  can be o b t a i n e d  by insist ing that  the shifted Tc (l) occurs when  
the bulk  corre la t ion  length ~: = ~:0t " is comparab le  to the thickness L.] We  
can a t t r ibute  this difference to a change in topological  d imens ion ,  viz., f rom 
the 2D film on a flat subst ra te  3'2~ to the 3D film on a porous  med ium.  4'21 It is 
cer ta inly  possible that  par t  of a SHe film is 2D and  part  is 3D or that  the 
topological  d imens ion  is be tween  2 and  3, e i ther  of which would  blur  the 
above  dis t inct ion be tween  2D and  3D films. 

To  summar ize ,  the select ion rules of con t inuous  symmet ry  and  2D 
topology have suggested the possibil i ty 3. ~ 1, based on theoret ical  esti- 
mates  1a'17 on con t inuous  symmet ry  models  of 2D films and  exper imenta l  
m e a s u r e m e n t s  2~ on superfluid 4He films, p re sumab ly  2D, absorbed  on a flat 

substrate .  
Accep t ing  the suggested 2D, n = 2 result  3. = 1, we find that the shift 

s ingular i ty  has the form 

c~(t) = ~-~ot 1 ' ~ ( l + D s ~ t x +  ' '  "), t > 0  (8) 

where  the coefficients are given by ~ r ~ o = a b ( 2 - a ) A ~  and  D . ~ . =  
D ~ ( 2  - a + x ) / (2  - a) .  Note  that  ~ is s i z e - i ndependen t  only if 3. = 1 exactly. 
However ,  3. need  not  be exactly uni ty  in order  for o~ to exist. (If L ~ 1 cm, 
a ~ 1 ~ ,  then an exponen t  3. = 1.06 would  decrease  the shift con t r ibu t ion  
relat ive to that  for A = 1 by a factor  of l ~-x ~ 0.3.) Of course,  in such a case, 
c~ would be weakly s i ze -dependen t .  

Compar ing  (8) with (7), we see that  for an acceptable  range of 0 (e.g., 
0 .54<~1/0~<0.67)  the shift s ingular i ty  (8) domina tes  the round ing  
�9 Measurements of the electrical resistivity of Ni films, see Rcf. 18, yield A = 1.0l :e 0.10, which 

is consistent with A ~ I or with the suggestion in Ref. 19 that A = ] + ft. 
"l'In Ref. 20 the hclium is adsorbed on an exfoliated graphite substrate. 
:i:See, e.g., Ref. 21, where A = 1.5-4 is found for helium in porous filters. 



Critical Behavior of the Free Surface of Liquid 41-1e Near the h Point 635  

singularity (7). Fur thermore,  /z = 1 - a  from (8) is consistent with the 
leading singularity found experimental ly by Magerlein and Sanders. ~ 

4. D I S C U S S I O N  

The main result is that the singular surface tension c~ can have two 
singularities at Tc, one due to rounding and another  due to shifting, that are 
distinctive of finite-size scaling. The argument  that the shift singularity ~ is 
given by i t ] ' - ' * ,  which dominates  the confluent rounding singularity It[ 2 . . . . .  , 
is tentative and is based on the suggestion A ~ 1. 

Direct  evidence for or against A ~ it awaits measurements  of the onset 
tempera tures  in experimental ly verified 2D films 3 of sup~rfluid 4He. An 
experimental  signature of a 2D film is excess dissipation only in the 
immediate  vicinity of Tc (l). In other words, the measurement  of T,, (l) needs 
to be accompanied by a measurement  of the presence or absence of excess 
dissipation near  T,:(l). Such a measurement  of A would clarify the ro]e of 
topology on the film critical behavior.  Alternatively, measurement  of the 
size dependence  of c7 can be; used to obtain some information about  A. For 
example,  if the leading singularity of ~ is found to be It] 1-~ and independent  
of l, then one could conclude that A = 1. If the leading singularity of ~ is 
weak ly / - independen t ,  then A = 1 and can be so determined.  In either case 
the thickness L must be precisely measured.  

In the meant ime,  it is instructive to compare  the precision measure-  
ments of o- by Magerlein and  Sanders 5 with the precision measurements  of 
the density p by Van Degrift.  22 In both cases there is a leading it[ 1-" 
singularity at Tc and, upon closer scrutiny, an additional feature near  but not 
at To. In cr the point of max imum curvature is seen to occur slightly ( - m K )  
below Tc, whereas in p the maximum itself occurs slightly ( ~ m K )  above To. 
The point here is that this additional feature near Tr in o-, as is the case in p,22 
is not to be considered as a critical phenomenon ,  5 but is to be attributed to 
the interplay between the regular contributions to ~r and the confluent 
singular contributions ~. In other  words, the only critical phenomenon  in cr 
occurs at T~ and other features involve the nonsingular part  of cr. 

The remaining feature in cr that is not qualitatively understood is the 
nonsingular feature of a negative slope, dcr/dT < 0, in direct contradiction 
to the positive slope predicted by a one scalar o rder -paramete r  model.9 The 
complicated two-order -pa ramete r  models  may provide the essential clue. 
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