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Chebyshev Domain Truncation Is Inferior to 
Fourier Domain Truncation for Solving 
Problems on an Infinite Interval 
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"Domain truncation" is the simple strategy of solving problems on 
y E [ - o o ,  oo] by using a large but finite computational interval, [ - L , L ] .  
Since u(y) is not a periodic function, spectral methods have usually employed a 
basis of Chebyshev polynomials, Tn(y/L). In this note, we show that because 
u(_+ L) must be very, very small if domain truncation is to succeed, it is always 
more efficient to apply a Fourier expansion instead. Roughly speaking, it 
requires about 100 Chebyshev polynomials to achieve the same accuracy as 64 
Fourier terms. The Fourier expansion of a rapidly decaying but nonperiodic 
function on a large interval is also a dramatic illustration of the care that is 
necessary in applying asymptotic coefficient analysis. The behavior of the 
Fourier coefficients in the limit n --* ~ for fixed interval L is never relevant or 
significant in this application. 
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1. I N T R O D U C T I O N  

T h e  m e t h o d  of  " d o m a i n  t r u n c a t i o n "  for  so lv ing  different ial  e q u a t i o n s  on  an 

u n b o u n d e d  in t e rva l  has  been  d iscussed  by m a n y  a u t h o r s  i nc lud ing  G r o s c h  

and  O r s z a g  (1977) and  B o y d  (1982). If  the  so lu t ion  u ( y )  decays  e x p o n e n -  

t ial ly fast as l Yl ~ o% then  on ly  an  e x p o n e n t i a l l y  smal l  e r ro r  is m a d e  by 

t r u n c a t i n g  the  c o m p u t a t i o n a l  i n t e rva l  to  I - L ,  L ] .  Af te r  this t r u n c a t i o n  

has  been  made ,  one  m a y  t h e n  app ly  finite difference o r  spec t ra l  m e t h o d s  in 

the  s a m e  w a y  as for any  p r o b l e m  on  a b o u n d e d  interval .  
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There are two sources of error (Boyd, 1982): (1) the "domain" error 
caused by reducing the infinite interval to a bounded one 

Eo=maxlu(y)J for all lyl>>.L (1.1) 

and (2) a "series" error 

=N -- b/(y) 
E s = m a x  ,~0a"~n(Y) for all lyl ~<L (1.2) 

where the {~bn(y)} are the basis functions and N is the series truncation. In 
general, the most efficient procedure is to choose L as a function of N such 
that the domain error and series error are of the same magnitude. When L 
is too large (for a given N), the domain error will be tiny, but the series 
error will be huge because a small number of basis functions are trying 
(futilely) to approximate u(y) over a huge interval. When L is too small, 
the series error will be tiny, but the domain error relatively large. 

Because u(y) is not periodic, the normal choice of spectral basis 
functions has been Chebyshev polynomials (Grosch and Orszag, 1977; 
Boyd, 1982). As stressed by Gottlieb etal. (1984), when a nonperiodic 
function is expanded in a Fourier series, the coefficients decrease as 
algebraic rather than exponential functions of the degree n. The purpose of 
this note is to show that this fact, although true, is irrelevant for domain 
truncation. 

This conclusion is based on a blending of three key ideas. The first is 
that a function u(y) that decays sufficiently fast as ]Yl --* oe may always be 
decomposed into a periodic part P(y) and a nonperiodic part P(y). 
Because u(y) is very small at the edges of the periodicity interval 
y e  I - L ,  L ] - - i t  must be small if the domain error is to be small--the non- 
periodic part of u(y) is very small in comparison to the periodic part. In 
particular, if u(y) decays monotonically with ly] for ly[ > L ,  then 

P(y) <~ ]u(L)l ~< ED(L) (1.3) 

The second key idea is the "integration-by-parts" theorem, which 
shows that the smallest coefficient in the N-term Fourier series 
approximation of a nonperiodic function like P(y) is asymptotically 
O([P(L)-P(-L)] /N)- - that  is to say, is an order of magnitude smaller 
than the domain error, Eta(L), in view of .(1.3). This in turn implies that the 
lack of periodicity of u(y) is irrelevant insofar as domain truncation is 
concerned. 

The third key idea is to quantify the superiority of Fourier series over 
Chebyshev polynomials in this application by comparing the asymptotic 
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coefficients of P(y) with those of the Chebyshev series for u(y). It is 
difficult to state a rigorous result that covers all cases, but we offer a 
theorem that suggests that the ratio quoted in the abst ract - -N Fourier 
terms give roughly the same accuracy as (~/2) N Chebyshev polynomials--  
is a good rule of thumb. 

2. THE D E C O M P O S I T I O N  OF A F U N C T I O N  INTO ITS PERIODIC 
A N D  N O N P E R I O D I C  PARTS: THE M E T H O D  OF IMBRICATE 
SERIES 

Theorem 1. I f a  function u(y) decays as ly[ --* oo as fast a s  1/y 2, then 
for any chosen period 2L, 

u(y) = P(y) + P(y) (2.1) 

where 

P(y)= ~ u(y-2nL) 
r n  ~ - -  o o  

is periodic with period 2L and 

P(y)= - ~ u(y- 2mL) 
m =  o o  

m # O  

[-"imbrication of u(y)"]  (2.2) 

["nonperiodic part o f u ( y ) " ]  (2.3) 

Proof P(y) is periodic by construction; the restriction on the decay 
of u(y) guarantees that the sums converge. Figure 1 is a schematic of the 
decomposition. 

The periodic function P(y) is the sum of an infinite number of evenly 
spaced, overlapping copies of u(y). P(y) is said to be the "imbrication" of 
the "pattern function" u(y), and the sum (2.2) is said to be an "imbricate 
series" (Boyd, 1986). The theorem is true for any L, but is useful only when 
L is large, In this case, then on the interval y ~  r - L ,  L] ,  the periodic 
function P(y) is a very good approximation to the nonperiodic function 
u(y), and _P(y) is very tiny. If u(y) decays exponentially fast as lYl --* oo, 
then both IlP(y)II ~ and the error in approximating u(y) by P(y) decrease 
exponentially fast as L increases. 

The reason that this decomposition is useful to understand domain 
truncation-cure-Fourier series is that the Fourier coefficients of u(y) on 
y~  I - L ,  L]  are the sum of the coefficients of P(y) and P(y), which have 
very different behavior. Because P(y) is periodic, its coefficients will 
decrease exponentially fast with n. Because P(y) is not periodic, its coef- 
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Fig. l. Schematic showing how a function u(y) which decays as ]y[ --* co (top graph) may 
be decomposed into its periodic part (middle graph) and nonperiodic part (bottom). Note 
that the nonperiodic part of u(y) is extremely small over the whole interval, (y/L)~ [--1,  1 ]. 

ficients decrease only algebraically with n, typically as O(1/n) or O(1/n2). 
Asymptotically, the coefficients of u(y) will be dominated by the slowly 
converging coefficients of its nonperiodic part, and therefore decrease 
algebraically. 

In domain truncation, however, one is never interested in the 
asymptotic limit n ~ oo for fixed L. The reason is that the total error in 
approximating u(y) is constrained by the domain error, Ez). For a given L, 
it is not sensible to add hundreds or thousands of terms to the Fourier 
series, but only to keep enough terms to reduce the series error Es(N; L) to 
the magnitude of [u(_+L)[. If more accuracy is needed, one must increase 
the size of the truncated interval L to reduce the domain error ED(L) and 
then calculate a new Fourier series on the new interval. The relevant 
asymptotic limit is not n --, oo for fixed L but rather n and L simultaneously 
tending to infinity. 

In this double limit, it is necessary to split u(y) into two parts and 
calculate the large-n coefficients of each separately. In the next section, it is 
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shown that it is the periodic part P(y), not the tiny, nonperiodic function 
P(y), that determines the true asymptotic behavior of the Fourier coef- 
ficients of u(y) in this simultaneous limit. 

3. THE INTEGRATION-BY-PARTS AND GEOMETRIC 
C O N V E R G E N C E  T H E O R E M S  

Theorem 2 (Integration-by-Parts). If a nonperiodic but analytic 
function u(y) is expanded as a Fourier series on y e  I - L ,  L], i.e., 

u(y)=ao+ f ancos(nny/L)+ f b. sin(nny/L) (3.1) 
n~l n = l  

then asymptotically 

a~. .~[u ' (L)-u ' ( -L)]{(-1)~L/(n2n2)}+O(1/n4) ,  n ~  (3.2) 

b , ~  [ u ( L ) - u ( - L ) ] { ( - 1 ) ~ + ' / ( n n ) }  + O(1/n3), n ~ ~ (3.3) 

where u'(y) - du/dy. 

Proof. The proof is by repeated integration by parts, hence the name 
of the theorem. Details are given in Boyd (1989), but the theorem is 
classical. 

Since the boundary differences of u(y) and its nonperiodic part are 
identical, it follows that the theorem predicts identical asymptotic behavior 
for the coefficients of both functions as n ~ ~ .  However, because the boun- 
dary differences for P(y) are the same order of magnitude as max ]/5(y)l, 
its Fourier coefficients are closely approximated by the asymptotic limits 
given in the theorem even for rather small n. In contrast, u(y) contains a 
huge periodic part. The coefficients of u(y) will not approach the limiting 
values (3.2) or (3.3) until n is sufficiently large that the coefficients of the 
large function P(y) have decayed to smaller values than those of the small 
function P(y). 

The rate of decay of the Fourier coefficients of the periodic part of 
u(y) is given by the following. 

Theorem 3 (Geometric Convergence). Let u(y) be a periodic 
function whose singularities nearest the real axis are a pair of complex 
conjugate poles on the imaginary axis at 

y = +_iL6 (3.4) 

with residues -T-i(L6/2); then on the interval y ~ [ - - L , L ] ,  its Fourier 
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sine coefficients are asymptotically negligible in comparison to the cosine 
coefficients, which asymptotically are 

an ~ rife n~, n > 1 (3.5) 

The Chebyshev coefficients of a function with the same convergence- 
limiting singularities and residues, whether the function is periodic or not, 
are asymptotically 

C2n~2164/(64"4-62)]1/2(--1)ne-nP(61, n > l  (3.6) 

e P~) -= 262 + 1 - 2 ( 6  4 q- 62) 1/2 (3.7a) 

1 - 26, 6 ~ 1 (3.7b) 

and where the odd degree coefficients are asymptotically negligible in 
comparison to the even degree coefficients: 

u (y)=  i c , T , ( y / L )  (3.8) 
n=O 

Proof The proof is given in Boyd (1988b), but again, both parts of 
the theorem have been known for decades. 

The assumptions of the theorem seem rather restrictive--simple poles 
forming a complex conjugate pair on the imaginary axis. In reality, the 
asymptotic coefficient behavior described by (3.5) and (3.7) is generic. The 
assumptions were imposed merely to expose the heart of the theorem 
without a lot of irrelevant qualifiers. 

A Fourier series converges within the largest strip, bounded by a pair 
of straight lines parallel to the real axis and disposed symmetrically above 
and below the axis, which contains no singularities of u(y). It follows that 
if the poles are moved anywhere along the lines Im(y)=  _+6, the limit of 
the supremum of the coefficients will be unaltered. The sole effect will be to 
multiply the asymptotic coefficients by an n-dependent phase factor 
without changing the exponential decay of the amplitude. 

Similarly, a Chebyshev series converges within the largest singularity- 
free region bounded by an ellipse in the complex y plane with foci at 
y =  +_L. If the singularity is moved anywhere along the ellipse of 
convergence, the exp[ -np(6) ]  factor is not altered. 

Replacing the simple poles by second-order poles would merely 
multiply the asymptotic Fourier and Chebyshev coefficients by a factor 
of n, while making the singularities-simple logarithms would divide the 
asymptotic coefficients by n. The type of the convergence-limiting 
singularity merely multiplies the coefficients by an algebraic factor of n. 
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For large n, the behavior of the coefficients is always dominated by 
the exponential factor of n, which is determined solely by the location of the 
singularity. For this reason, the type of the singularity is irrelevant to the 
size of the region of convergence and it is also irrelevant to comparing 
the merits of Chebyshev and Fourier expansions. 

Comparing (3.5) with (3.7b), we see that both series converge 
geometrically, that is, each term is smaller than its predecessor by a factor 
of e x p ( - ~ 6 )  and (for small 6) exp(-26) ,  respectively. However, the 
Fourier series converges faster and achieves the same error with roughly 
(2/70 as many terms as the Chebyshev series. 

4. NUMERICAL EXAMPLES 

Figure 2 compares the Fourier coefficients for the periodic and non- 
periodic parts of two representative functions: 

u(y) - A(y; 6) - 62/(62 + y2/L2) (4.1) 

which we shall call the "Lorentzian" function, also known as the "witch of 
Agnesi," and 

u(y) =- sech([Tz/2] y/EL6]) (4.2) 
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Fig. 2. Graph of the base-10 logarithm of the absolute values of the Fourier coefficients a,  
for the periodic part (upper curve; solid) and nonperiodic part (lower curve; dashed) for (a) 
Lorentzian function, 6 = 1/5 and (b) the hyperbolic secant function, 6 = 1/5. The horizontal 
lines mark the boundary values of each function, u(L). Note that since both functions have 
poles at _+/6, the coefficients of their periodic parts asymptote to the same straight line. 
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Both functions are normalized so that u(0)= 1 and both have convergence- 
limiting singularities at y = +_i6L. 

On these log-linear graphs, the Fourier coefficients for the large, non- 
periodic parts of the Lorentzian and the sech both asymptote to straight 
lines in accord with the geometric convergence predicted by the theorem. 
The lower, dashed curves in each graph show that the coefficients for the 
nonperiodic parts flatten out and asymptote to horizontal lines from above, 
consistent with the O(1/n 2) decrease predicted by Theorem 2. The dashed 
curves also show that the coefficients of the nonperiodic part of u(y) for 
both cases are extremely small--orders of magnitude smaller--than those 
of the periodic part until a "cross-over" point for sufficiently large n. Only 
for n > 15 (Lorentzian) and n > 20 (sech) does O(1/n 2) correctly describe 
the decay rate of the coefficients of u(y). 

In applications to domain truncation, however, one must always 
remember the other source of error: the domain error ED. The solid 
horizontal lines in Fig. 2 mark E D for each case. It is foolish to keep terms 
in the Fourier series that are smaller than the domain error because the 
total error cannot be smaller than the domain error. If we are unhappy 
with the size of ED, the only rational recourse is to choose a larger domain 
size L and repeat the whole calculation. Consequently, everything below the 
horizontal lines in Fig. 2 is irrelevant to practical applications of domain 
truncation. 

The graphs show clearly that the "cross-over" point only occurs where 
both parts of the coefficients of u(y) are a hundred times smaller than the 
domain error. This is a vivid illustration of the fact that asymptotic for- 
mulas for Fourier coefficients must be applied asymptotically, i.e., only for 
large n. When u(y) is decomposed into its periodic and nonperiodic parts, 
Theorems 2 and 3, applied to the appropriate part, accurately describe the 
asymptotic behavior of each part even for n as small as 5. However, blindly 
applying the "integration-by-parts" theorem to the sum of the two parts, 
i.e., to u(y) itself, gives a prediction that is not even of the right order of 
magnitude until n is very large. Figure 3 shows the coefficients of the parts 
of the Lorentzian when 6 is four times smaller than in Fig. 2: in this case, 
the "cross-over" point is off the graph at around n = 95! 

5. LITTLE WHITE LIES 

The arguments given above, while fundamentally sound, have glossed 
over a couple of technical points that do not modify the conclusions, but 
do require comment, if only for the sake of mathematical completeness. 
First, in applying domain truncation, one is really interested in total error 
rather than the size of individual coefficients. In the worst case, which is a 
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Fig. 3. Identical to 2(a) except for 5 = 1/20. Lorentzian function. Solid curve: coefficients of 
the periodic part, P(y). Dashed curve: coefficients of the nonperiodic portion of u(y), 
Horizontal solid line: u(L), the boundary value of the function. 

function that is unsymmetric abou t  the origin, the coefficients decrease as 
O(u(L)-u(-L)/n) as predicted by Theorem 2. However, because of the 
"Gibbs phenomenon" (Gottlieb and Orszag, 1978), the maximum 
pointwise error is O.0895[u(L)-u(-L)], which is O(n) larger than the 
smallest retained coefficient. Unfortunately, this error is independent of n, 
and therefore cannot be made smaller even if thousands of terms are 
retained. 

Even in this worst case, however, this part of the series error, which is 
due to the lack of periodicity, is still less than a fifth of the domain error. It 
follows that even though u(y) is not periodic and its Fourier series displays 
the Gibbs phenomenon, the greatest source of error in approximating u(y) 
via doma in  truncation is not the lack of periodicity, but rather the 
magnitude of u(y) for lyl/> L. 

The other slippery point is that the asymptotic rate of convergence for 
Chebyshev series may be greater than of the corresponding Fourier series if 
the convergence-limiting singularity is sufficiently near the ends of the 
interval y e [ - L ,  L].  The reason is that because the Fourier convergence 
region is bounded by a strip, a singularity a distance 5 from the real axis is 
equally damaging to the Fourier series regardless of the real part of its 
location. However, the ellipse that bounds a Chebyshev expansion's 
domain of convergence curves close to and eventually cuts the real y axis at 
points outside the real interval [ - L ,  L].  In consequence, a singularity at 
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y =  L(1 + i6) will yield a Chebyshev series whose terms are decreasing as 
O(exp[-n2c~l/2]) for small 6 and large n, in contrast to the exp(-nrc6) 
convergence of the Fourier series. 

The rub is that the contribution of a pole of u(y) to the asymptotic 
coefficients of the function must always be weighted by its residue. If the 
pole is very near the end of the truncated interval [ - L ,  L],  then this 
residue will be very, very small. Singularities close to the center of the inter- 
val will dominate the Chebyshev and Fourier coefficients for moderate n 
even when they are smaller than the contributions of end-point singularities 
in the asymptotic limit n ~ ~ .  For poles and branch points, as for discon- 
tinuities created by a lack of periodicity, asymptotic contributions that are 
always smaller than the domain error ED are irrelevant to domain 
truncation. 

Thus, it is singularities close to the center of the interval where u(y) is 
large, not exponentially tiny, that matter. Because the ratio of Fourier-to- 
Chebyshev superiority varies with the location of the singularity, we must 
take the (n/2) ratio quoted in the abstract as a rule of thumb. However, 
since the ratio does not vary much until one is very close to the ends of the 
interval, the rule of thumb is very useful. 

6. S U M M A R Y  

Because the notion of always applying Chebyshev polynomials to non- 
periodic functions has become so firmly entrenched, we have tried to 
explain very carefully--perhaps for some readers, too carefully--why this 
principle fails when applied to domain truncation. However, the details of 
this patient, step-by-step presentation should not obscure the simplicity of 
the two key arguments. 

First, if domain truncation is applied to compute the solution to a 
differential equation to, let us say, six decimal places, then both u(L) 
and the error in chopping off the series after N terms are O(10-6). The 
integration-by-parts theorem shows that the "Fourier penalty" for applying 
a trigonometric series to u(y) is O(u[L]/N), which is O(10 -8) for a 
reasonable N. [-In narrow boundary layers of O(I/N) width near the end 
points, the "Fourier penalty" is larger because of the Gibbs phenomenon, 
but still small in comparison to u(L).] It is clearly foolish to worry that 
u(y) is not periodic when the "Fourier penalty" is at least two orders of 
magnitude smaller than both the "domain" error and the "series" error 
defined in the Introduction. 

Second, the Fourier pseudospectral grid has a nearest neighbor 
separation that is (re/2) smaller than the maximum spacing on the 
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Chebyshev grid for the same N. One can show, as is done through 
Theorem 3 above, that this translates into a factor of 1.57 advantage for 
Fourier series over Chebyshev--one can achieve the same accuracy with 
64% of the number of trigonometric functions as would be needed with 
Chebyshev polynomials. The wider the grid spacing, the poorer the 
accuracy--what could be simpler? The Chebyshev grid, which concentrates 
grid points near y =  ___L--precisely where u ( y ) ~ l - - i s  ludicrously 
inefficient. 

F. Oliveira-Pinto (1973) has given a dramatic proof by example of the 
superiority of Fourier series for the Lorentzian function. He shows that one 
may obtain more rapid convergence by combining the Fourier series with a 
change of coordinate that creates a higher density os points near the 
origin--the opposite of the Chebyshev grid, which is densest near the 
boundaries. His mapping actually worsens the effects of the lack of 
periodicity because the Lorentzian function falls off more steeply--and 
therefore has a larger difference, u ' ( L ) - u ' ( - L ) - - a f t e r  the change of 
coordinate. The residue at the poles of the Lorentzian is decreased, 
however, because the poles are moved farther from the real axis in the new 
coordinate, so the net effect is to improve the rate of convergence. 

As one who has sinned by using Chebyshev domain truncation him- 
self, the author must admit that mapping methods (Grosch and Orszag, 
1977; Boyd, 1982, 1987a, b) are usually superior to domain truncation if 
minimizing execution time is the primary goal. In that sense; the whole 
discussion of the article is irrelevant! 

However, domain truncation is still superior to Chebyshev-with- 
change-of-coordinate algorithms in the sense of being easier to program 
and to understand. In this respect, Chebyshev domain truncation must be 
doubly damned. If accuracy is the goal, it is inferior to Fourier domain 
truncation. If simplicity is the chief criterion, Chebyshev polynomials are 
still inferior because they are more complex and harder to program than 
trigonometric series. 

Because of its simplicity, domain truncation will undoubtably continue 
to be used in the real world, even if numerical analysts frown. It is hoped 
that this article will ensure that this simple approach to infinite intervals 
will be implemented simply--with Fourier series. 

The second usefulness of this note is that it gives a very explicit 
illustration of how asymptotic spectral coefficients may be the sum of 
different types of contributions with wildly different strengths and different 
rates of decay. For the Fourier series of a function that falls off rapidly 
towards the ends of the interval, one must use two different asymptotic 
approximations--a geometrically decreasing formula for moderate n and 
an algebraically decreasing asymptotic approximation when n is very large. 
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