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The error in Chebyshev or Fourier interpolation is the product of a rapidly 
varying factor with a slowly varying modulation. This modulation is the 
"envelope" of the error. Because this slow modulation controls the amplitude of 
the error, it is crucial to understand this "error envelope." In this article, we show 
that the envelope varies strongly with x, but its variations can be predicted from 
the convergence-limiting singularities of the interpolated function f(x).  In turn, 
this knowledge can be translated into a simple spectral correction algorithm 
for wringing more accuracy out of the same pseudospectral calculation of the 
solution to a differential equation. 

KEY WORDS: Interpolation error; Fourier method; Chebyshev method; 
pseudospectral method. 

1. I N T R O D U C T I O N  

The N-point interpolant of a function f(x) is defined to be that polynomial 
of degree ( N - 1 )  that agrees with f(x) at N interpolation points. This 
implies that the interpolation error Er(x; N) is zero at each of the N 
interpolation points. If we divide the error by a rapidly oscillating factor 
(defined more precisely below) which vanishes at these same N points, we 
obtain the slowly varying "error envelope" which is our main theme. 

Figure 1 illustrates the exact interpolation error and its envelope for a 
typical function. 

To illustrate the phenomenology of the error envelope, we shall con- 
centrate on trigonometric cosine interpolation, choosing the interpolation 

1 Department of Atmospheric, Oceanic & Space Science, Laboratory for Scientific Computa- 
tion, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109. 

311 

854/5/4-4 0885-7474/90/1200-0311506.00/0 �9 1990 Plenum Publishing Corporation 



312 Boyd 

points to be the roots of cos(Nx). Because the Chebyshev polynomials are 
related to the cosines via the familiar identity 

Tn(cos x) -- cos(nx) (1.1) 

it follows that every example is simultaneously a Fourier interpolant and 
also the interpolant of f (arccosx)  by an ordinary polynomial. The 
Chebyshev interpolation points are the roots of Tu(y), which form the 
so-called "roots" or "Gauss-Chebyshev" grid. 

For both trigonometric and polynomial interpolation, there is a 
second canonical grid: the so-called "Gauss-Lobatto" or "extrema-and-end 
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Fig. 1. Solid curve: the interpolation error Er(x; N= 12) for the model function 2(x, p = 0.5), 
which is defined by (2.24). Dashed curve: the envelope of the interpolation error O (and its 
reflection with respect to the x axis). 
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points" grid. This alternative set of points is especially popular for solving 
differential equations with Dirichlet boundary conditions. However, the 
two canonical interpolation grids are so closely related that it would be 
foolish and redundant to quote every theorem twice. Instead, we shall limit 
ourselves to the "roots" grid because it is the simpler. 

We begin with a few essential definitions which the spectral maven 
should read at near-light speed. The N-point interpolant of f (x)  is 

N - - I  

INf(x)----- ao/2 + ~ aj cos(ix) (1.2) 
j = l  

where the coefficients {aj} are determined by the N interpolation 
conditions ( 1.3 ) 

tuf(X,) = f (x , )  (1.3) 

where 

x, = ( 2 i -  1) ~r/(2N) ,--, cos(Nx,) = 0 (1.4) 

The N-term projection of f(x), also known as the N-term truncation 
of the series for f(x), is defined by 

N--1 

PNf(x)-~o/2+ ~ cgcos(jx ) (1.5) 
j = l  

where the {c9} are the exact special coefficients defined by 

C~j -- (2/7r) f (x)  Cos(jx) dx (1.6) 

The interpolation error Ex(x; N) and the truncation error Er(x;  N) are 
then defined by 

E,(x; N) =- If(x) -/uf(X)[ 

ET(x; N) - If(x) - PNf(X)[ 

Definition 1. 
p(x; N) in the factorization of the interpolation error: 

EI(x; N) = cos(Nx) p(x; N) 

i.e., 

p(x; N) =- El(x; N)/cos(Nx) 

(1.7a) 

(1.7b) 

The envelope of the interpolation error is the function 

(1.8) 

(1.9) 



314 Boyd 

By its very definition, the interpolation error Er(x; N) is zero at the 
roots of cos(Nx), so the ratio E1/cos(Nx) is always nonsingular except at 
singularities of f(x). 

The cos(Nx) factor in (1.8) implies that the interpolation error will 
oscillate very rapidly. The information content of these oscillations is nil, 
however, because all the troughs and crests of cos(Nx) are identical. The 
magnitude and spatial uniformity of the error are controlled entirely by the 
envelope. It follows that it is only common sense to focus upon the 
envelope instead of El(X; N). 

We will pursue a fourfold strategy to analyze the envelope. In the next 
section, we prove exact theorems that relate the spectral coefficients of the 
interpolation and truncation errors to those of f(x). We also derive closed- 
form errors for two simple model functions, ~.(x; p) and/~(x; p). 

Section 3 develops the simple but very accurate "Neglect-of-Triple- 
Aliasing" or "NTA" approximation. Under very general circumstances 
(and additional approximations), the envelope is proportional to some 
linear combination of the functions 2(x; p) and /4x ;  p). 

Section4 shows that the coefficients of the interpolation theory are 
"paired" in the sense that each coefficient has a twin of different degree but 
approximately the same magnitude. Section 5 illustrates the exact and 
approximate error envelopes for a variety of model functions: functions 
with poles, functions with logarithms, functions with nonanalytic but 
infinitely differentiable singularities. These representative cases give good 
insight into the possibilities. Lest this "model function" approach be taken 
too far, we offer a counterexample of a function with a fractal distribution 
of poles whose numerical behavior is not well understood. 

The next topic is to use method-of-multiple-scales ideas to extend 
error envelope concepts to the pseudospectral solution of differential 
equations. The error in the solution to a differential equation usually does 
not vanish at the interpolation points. Nevertheless, we show that the error 
is approximately proportional to the residual of the differential equation. 
This in turn provides two rewards. The first is that one can estimate the 
error in the solution u(x) by substituting the approximate numerical solu- 
tion into the differential equation; the error is approximately this residual 
divided by N 2 (for a second-order equation). 

The second reward is that one can correct the N-point pseudospectral 
solution to refine the answer to compute more than N coefficients without 
solving a matrix system of dimension greater than N (Sec. 7). This spectral 
correction algorithm, which gives an asymptotic series here, can be 
modified to give the convergent iterations described in Boyd (1991). 
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2. EXACT THEOREMS 

Although our special interest is in Fourier cosine interpolation, which 
is equivalent under the change of variable x=cos (y )  to Chebyshev 
interpolation, it is necessary for completeness to prove some theorems for 
sine interpolation, too. If the function g(x) is antisymmetric about the 
origin, that is, g(x)= - g ( - x )  for all x, then g(x) can be represented as a 
sine series: 

g(x) = ~ /3j sin(jx) (2.1) 
j = l  

The N-term projections and interpolants are written 

N 

Pug(x)-  ~ ~i sin(ix) (2.2) 
j = l  

N 

INg(x) = ~ bjsin(jx) (2.3) 
j --1 

Note that the sine sums have the range (1,..., N) versus the (0,..., N - 1 )  
range for their cosine counterparts. The corresponding truncation and 
interpolation errors and the envelope of the interpolation error are still 
defined by (1.7) and (1.9). However, we shall denote the sine error envelope 
by a(x; N) (versus p(x; N) for the cosine error envelope). 

Note that we lose no generality by considering only cosine and sine 
interpolation. An arbitrary, nonsymmetric function u(x) can always be 
decomposed into parts that are symmetric and antisymmetric about x = 0 
by writing 

u(x)=f(x)+ g(x) (2.4) 

where 

f(x) =- [u(x) + u( - x ) ] / 2  (symmetric, cosine part) (2.5a) 

g(x) = [u(x) - u ( - x ) ] / 2  (antisymmetric, sine part) (2.5b) 

Thus, by evaluating the original function u(x) at the roots of cos(Nx) on 
the interval [ - ~ ,  ~], we can compute the values of f(x) and g(x) on 
the interval [0, ~]. The problem of general Fourier interpolation on 
x ~ [ - ~ , T c ]  is split into two smaller problems on the half-interval, 
x~ [-0, ~]: cosine interpolation for f(x) and sine interpolation for the 
antisymmetric component g(x). 
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The following theorem is extremely important in characterizing the 
error envelope, as we shall see below. 

Theorem 1" High Degree Coefficients of the Truncation and Interpola- 
tion Errors. Let f(x)  have the exact spectral series 

f(x)  = ~o/2 + ~ aj cos(jx) (2.6) 
j = l  

Let the spectral coefficients of the truncation error and interpolation error 
be denoted by 

(v) cos(jx) (2.7) ET(X; N)= ~ e i 
j = N  

Ez(x; N) = e(o'~/2 + ~ e) '~ cos(jx) (2.8) 
j = l  

Then 

(i) e!:~) = ~j, j>~N (2.9) J 

(ii) ~(i) _ c~i, j i> N (2.10) ~ j  - -  

Equations (2.9) and (2.10) are also true for sine interpolation except 
that the lower index is j = N + 1 instead of j = N, consistent with the fact 
that sinE(N+ 1)x] is the first term omitted from (2.2) and (2.3). 

The low-degree coefficients of the truncation and interpolation errors 
are given by Theorem 5 in Sec. 4. 

Proof. The projection and the interpolant of f (x)  are both 
trigonometric polynomials of degree at most ( N - 1 ) .  It follows that 
subtracting these polynomials from f (x)  to give Ev(x; N) and Ei(x; N) 
cannot alter or modify the high-degree coefficients of f(x), which 
are passed on without modification to the differences, E~.(x;N)= 
If(x)- Puf(X)l and Ei(x; N)=-I f (x)-  INf(X)], as expressed by (2.9) and 
(2.10). 0 

Theorem 2a: Fourier Coefficients of the Error Envelope (Cosine). Let 
the interpolation error envelope, p(x; N)= If(x)--INf(x)l/cos(Nx), have 
the Fourier series 

p(x; N) - po/2 + ~ pj cos(jx) (2.11 ) 
j = l  
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Then these Fourier coefficients are related those of f(x),  the function being 
interpolated, by the difference equation 

pj+pj+2N=20~j+X, j = 0 ,  1,... (2.12) 

This difference equation has the exact infinite series solution 

p j=2  ~ ( - 1  m) ctj+(2m+l)u, j=0,1,. . .  (2.13) 
m : 0  

Proof The first step is to substitute the series (2.11) into the 
definition of Et(x; N) as the product of cos(Nx) with p(x; N): 

Ez(x; N) = (po/2) cos(Nx) + ~ pj cos(jx) cos(Nx) (2.14) 
j = 1  

Applying the standard trigonometric identity for the product of two cosines 
gives 

Ei(x; N ) =  (po/2) cos(Nx) + ~ pj{cos[(N+j)x] + cos[tN-j[x}/2 
j= l  (2.15) 

o o  

El(X; N) = (po/2) cos(Nx) + ~ Pk- N cos(kx)/2 
k = N + l  

N 1 

+ (1/2) ~ PN-~ cos(kx) + (1/2) ~ PN+~ cos(kx) (2.16) 
k=0 k~l  

The second step is to collect terms in (2.16) that are proportional to 
cos(kx), which gives 

e2~l = (1/2)(Plk-xr +ilk+N), k=0 ,  1, 2 .... (2.17) 

This relation will be important in discussing the "coefficient pairing" in the 
interpolation error (Sec. 6). 

The third step is to prove (2.12). We recall that Theorem 1 states that 
the high-degree coefficients of the error are identical with those of f(x), 
restrict (2.17) to k>~N, and then substitute j = k - N .  

The fourth and final step is to prove that the infinite series (2.13) 
satisfies the difference equation (2.12). If we substitute the series into (2.12), 
we find 

1 m ~ (2.18) flj-l-pj+2N=2 ( - - )  ~j+(2,n+l)N + 2  (--1)mO~j+(2m+3)N 
m ~ O  m ~ O  
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If we separate the m = 0 term in the first sum and then pair the (k + !)st 
term in the first sum with the kth term in the second sum, we obtain 

pj+pj+2N=20:j+N+2 ~ (--1)m(--l+l)~xj+(2m+3)N (2.19) 
m=O 

=2~j+ N (2.12bis) 

Theorem 2b: Fourier Sine Coefficients of the Error Envelope. Let the 
interpolation error envelope, a(x; N ) -  [ g ( x ) -  IN g(x)]/COS(NX), have the 
Fourier series 

a(x; N) =- ~ aj sin(jx) (2.20) 
j = l  

Then the Fourier coefficients are related to those of g(x) by the difference 
equation 

aj+aj+2N=2flj+N, j =  1, 2,... (2.21) 

This difference equation has the exact solution 

a j = 2  ~ (--1)mflj+(2m+l)N, j = l ,  2 .... (2.22) 
m = 0  

[Equations (2.21) and (2.22) are identical with their counterparts for 
cosine interpolation except that the lower limit is j = 1 instead of j = 0.] 

Proof The proof is identical to its cosine counterpart, so we omit 
details except to note for future reference that the relationship between the 
error coefficients and envelope coefficients is, for sine interpolation, 

e ( i ) _  1[~ ..a- - gt~,~ x .  ak+N), k>~(N+ 1) 

- • k = N (2.23) e (N/) - -  2 2N 

e ( 1 ) _  l ( t  r k --2',Uk+N--aN--k)' k =  1,..., N -  1 [~ 

The last exact results we shall present are for two crucial model 
functions. The symmetric model is 

2(x; p) = 1 + 2 ~ / / cos ( jx )  ("Lorentzian") (2.24a) 
j = l  

= - 2  log(p) ~ 1/[log2(p)+ ( x - D r m )  2] (2.24b) 
m =  --co 

= (1 - p2)/[(1 + p2) _ 2p cos(x)] (2.24c) 
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The first series representation shows that the coefficients of 2(x; p) are 
powers of a constant p < 1, i.e., are the terms of a geometric series. We 
shall see in the next section that the simple form of the coefficients of 
2(x; p) gives this function a special role in the theory of Chebyshev 
interpolation. 

The partial fraction expansion, also known as the "imbricate" series 
representation, shows that 34x; p) has simple poles along the lines Ira(x) = 
_+log(p). As shown in more detail in Boyd (1989a) and many other 
sources, the spectral coefficients are always the signature of the function 
being expanded. We will develop this theme through many examples in 
Sec. 5. 

The antisymmetric model is 

~(x; p) = 2 ~ pJ sin(ix) ("Serpentine") (2.25a) 
j=l  

= 2 ~ ( x -  2rcm)/[logZ(p) + ( x -  27cm) 2] (2.25b) 
m= --cx3 

= 2p sin(x)/[(1 + p2) _ 2p cos(x)] (2.25c) 

This function is merely 2(x; p) multiplied by sin(x) and a constant. 
These model functions are periodic generalizations ("imbrications") of 

the classical functions known as the "witch of Agnesi" and "Newton's 
serpentine" (Rucker, 1987). The witch of Agnesi has also become known as 
the Lorentzian function because Lorentz showed that this function is a 
good model for certain spectral lines. Strictly, we should refer to 2(x; p) 
and ~(x; p) as the "periodic Lorentzian" and "periodic serpentine," but we 
shall usually omit the adjective "periodic." 

Figure 2 illustrates 2(x; p) and #(x; p) for a particular value of the 
parameter p. Figure 3 is a pair of contour plots that show how these 
functions vary with both x and p. In particular, note that 2(x; p) has a 
single peak, symmetric about x = 0, which becomes taller and narrower as 
p increases. In the limit p --, 1, 2(x; p) tends to a delta function. Similarly, 
kt(x;p) has a shorter, wider peak and a matching trough. For small 
positive p, #(x; p) is the sine function. As p increases, the crest and trough 
become narrower, taller, and move closer to the origin. 

Theorem 3: Exact Interpolation and Truncation Errors for the Model 
Functions 2(x; p) and kt(x; p). For the functions defined by (2.24) and 
(2.25), the interpolation errors are--without approximation-- 

A(X; p): El(X; N) = [2pN/(1 + p2U)] Cos(Nx) 3.(x; p) (2.26a) 

#(x; p): E~(x; N) = [2pN/(1 + p2N)] Cos(Nx)/i(x; p) (2.26b) 
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Fig. 2. Solid curve: )~(x; p = 0.7). Dashed  curve: #(x; p = 0.7). 
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The corresponding exact truncation errors are 

~(x; p): 

Er(x; N)=  [2pU/(1 --p2)]{cos(Nx)--p c o s [ ( N -  1)x]} 2(x; p) (2.27a) 

~(x; p): 

Er(x; N) = -2pN+ l{p sin(Nx) - s in[(N+ 1 )x] }/[(1 + p2) _ 2p cos(x)] 

(2.27b) 

(a) 

/t XCx, pl A 

k J  10r ~ v - 

Fig. 3. (a) Contour  plot of the periodic Lorentzian function 2(x; p) for p e [0, 0.8]. The 
peak becomes infinitely tall and narrow as p--+ 1, so the plot is restricted to p~<0.8. In the 
limit p ~ 0, 2(x; 0) tends to a constant. (b) Contour  plot of the periodic serpentine function 
p(x; p)  for p E [0, 0.8]. The peak and trough become infinitely tall and narrow as p--+ 1, so 
as in Fig. 3a, the range of p is restricted to p ~ 0.8. In the limit p --, 0, p(x;  p)  is proportional 
to sin(x). 
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[-Equations (2.27a) and (2.27b) were proved in Elliott (1965), through a 
contour integral representation.] 

Proof If we substitute ej = 2p j into Theorem 2, Eq. (2.13), we find 
that the coefficients of the interpolation error envelope are 

pj=2(2p N) ~ (--1)mp j+zNm (2.28) 
m = O  

=2p/(2p ~v) ~ (--1)m(pZU) m (2.29) 
m = O  

= 2pJ[2pU/(1 + p2U)] (2.30) 
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where we identified the infinite sum in (2.29) as the geometric series for 
1/(1 + p2N). It follows that, except for the x-independent factor shown in 
square brackets in (2.30), the Fourier coefficients of the envelope are 
identical with those of 2(x; p). Multiplying this envelope by cos(Nx) gives 
(2.26a). The proof of (2.26b) is so similar that we omit details. 

Gradshteyn and Ryzhik (1965) give the partial sums of the series for 
2(x; p) and #(x; p) through the first N terms as their identities 1.353.1 and 
1.353.2. Subtracting these analytic expressions from 2(x; p) and ~t(x; p) 
then gives formulas for the sums from N to o% i.e., for the truncation 
errors, (2.27). 

Figure 4 compares the exact truncation error for ;t(x;p) with the 
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Fig. 4. A comparison of the truncation error Er(x;  N =  12) for 2(x, p = 0.5) (solid) with the 
envelope p(x; N) of the interpolation error and the reflection of p (dashed). 
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interpolation error for the same function. One striking feature is that the 
maximum truncation error is smaller than the maximum interpolation error 
by almost a factor of 2. We shall see in Sec. 4 that this factor of 2 is an 
upper bound on max IEIl/max lEvi for fixed N. The second striking feature 
is that the truncation error is more uniform than the interpolation error so 
that the interpolant is actually more accurate than the truncation of the 
spectral series near x = +re. 

These theorems are also somewhat disappointing. The error for 
Lagrangian interpolation is the product of two factors: one that depends 
only on the function f (x)  that is being interpolated, and the other, which 
depends on the choice of interpolation points. The trigonometric (and 
Chebyshev polynomial) grids make this second factor as uniform as 
possible with respect to x. 

Unfortunately, the f(x)-dependent factor is anything but uniform. The 
error in interpolating 2(x; p) and #(x; p) is directly proportional to 2(x; p) 
and #(x; p) themselves, respectively. Because these functions are more and 
more sharply peaked as p--, 1, the interpolation error is more and more 
concentrated in the vicinity of the origin, too. The Fourier or Chebyshev 
error is highly nonuniform when f (x)  has poles or branch points near the 
interpolation interval. 

3. THE NEGLECT-OF-TRIPLE ALIASING (NTA) 
A P P R O X I M A T I O N  

Theorem 4: Neglect-of-Triple-Aliasing (NTA) Approximation. Let pj 
denote the coefficients of the "envelope" of the interpolation error. Let c~j 
be the coefficients of the function f (x)  that is being interpolated. Then the 
approximation 

pj=20;j+N+O(o;j+3N), j = 0 ,  1 .... ["NTA"approximation]  (3.1) 

is accurate to within the absolute error indicated. 
This approximation and theorem apply to an antisymmetric function 

without modification except for the purely notational substitutions ej--*/3j 
and pj ~ ~j. 

If f (x)  is periodic and has no singularities for real x (Fourier case), or 
has no singularities on x e  [ - 1 ,  1] (Chebyshev applications), then the 
error in (3.1) is roughly the square of the error in the interpolant itself, i.e., 
O(E~,). 

Proof. The proof is accomplished by truncation of the infinite series 
(2.13) after the leading term. 
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This approximat ion  is dubbed "Neglect-of-Triple-Aliasing" because all 
the error  terms have degrees greater than 3 N .  The singly aliased terms 
are those with j e  [N, 2 N - 1 ] ,  while the "doubly  aliased" have j e  [2N, 
3 N -  1 ]. Table I illustrates the accuracy of  the NTA. 

To unders tand the smallness of the error in this approximation,  we 
need to review the qualitative theory of spectral expansions. 

If the convergence of the series for a function f (x)  is limited by 
complex singularities (Fourier  expansions) or  singularities outside the real 
interval x ~  [ - 1 ,  1] [applications of (3.1) to Chebyshev series], then the 
series will convergence geometrically, that  is, 

lajl <~ [ ] pJ (3.2) 

where p is a constant  smaller than than unity and j is sufficiently large. The 
empty brackets stand for a factor that varies algebraically with j - - m u c h  
more slowly than p J, which is an exponential function of j .  {Note that p J =  
e x p [ j l o g ( p ) ] } .  This algebraic factor depends upon the type of the 
singularity (simple pole, logarithm, cube root, etc.). In contrast,  the 
constant  p depends solely upon the location of the singularity; in the 
Fourier  case, p is the logari thm of the imaginary part  of the location of the 
singularity that  is nearest the real x axis (Boyd, 1989a). 

These elementary facts have two impor tant  implications. The first is 
that  the model  functions 2(x; p) and #(x; p)  are representative of a very 

Table I. Illustration of the Error in the Neglect-of-Triple-Aliasing (NTA) 
Approximation for 2(x; p) for Various p and a Fixed Number of Iterpolation Points a 

Max(El) Max (NTA) 
P Max(2) Max(El ) Max(El) Max (NTA) 

0.6 7.3E-5 1.3E-9 2.9E-4 3.8E--13 
0.65 3.6E-4 3.3E- 8 1.7E- 3 5.6E- 11 
0.7 1,6E-3 6.4E-7 9.0E-3 5.8E-9 
0.75 6.3E - 3 1.0E - 5 0.044 4.5E - 7 
0.8 0.023 1.3E - 4 0.208 2.8E - 5 
0.85 0.077 1.5E- 3 0.95 1.4E- 3 
0.9 0.240 0.015 4.56 0.067 
0.95 0.635 0.129 24.8 3.18 

a The second column lists the maximum of the interpolation error E1 divided by the maximum 
of 2(x; p) for a given p. The third column is the relative error in the NTA approximation: 
the maximum error in this approximation divided by the maximum in the interpolation 
error. Columns four and five give the absolute errors in the 20-point cosine interpolation and 
in the NTA approximation. 
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wide class of functions. We shall develop this theme in later sections by 
looking at many examples to show that their interpolation and truncation 
errors closely resemble those for 2(x; p) and/~(x; p). 

The second implication is the final proposition of the theorem: that the 
error is roughly the square of that of the interpolant. If the coefficients are 
decreasing roughly as p J, then the interpolation and truncation errors will 
both be O(p N) a s  shown explicitly for 2(x; p) and /~(x; p) in Theorem 3. 
Then, the errors in the NTA approximation will be O(p 3N) or smaller. For 
example, if N is large enough so that the interpolant agrees with f (x )  to 
three decimal places, the spectral coefficients in the error envelope will be 
misrepresented by the NTA approximation only in the ninth decimal place, 
a relative error of O(10-6). For )v(x; p) and/~(x; p), the NTA approxima- 
tion is equivalent to replacing the factors of 1/(1 + pZ~V) by 1 in Theorem 3. 

Since our principal concern is to minimize E t and Er,  and the error- 
of-the-error is secondary, the NTA approximation is blessed with more 
than adequate accuracy. Despite its simplicity, however, it is not simple 
enough. In the following sections, we develop other, simpler but less 
accurate approximations, which shall give deeper insights into the error in 
Fourier and Chebyshev interpolation. 

4. NEGLECT-OF-DOUBLE-ALIASING: THE COEFFICIENT 
PAIRING OF THE SPECTRAL COEFFICIENTS OF THE 
INTERPOLATION ERROR 

The following two theorems are a little out of place since they give 
exact results, and all the other exact formulas are collected in Sec. 2. We 
have postponed Theorems 5 and 6 until now because they are essential 
lemmas in the proof of the "coefficient-pairing" theorem below. The 
method of proof also helps to understand how the truncation and 
interpolation errors are related, which is a major theme of this section. 

Theorem 5: Aliasing Relations. Let the points of the interpolation 
grid be given by 

xi = 7z (2i - 1)/(2N), i = 1 ..... X (4.1) 

We introduce the following notation: an equals sign with a "G" above it 
will denote an equality that is true only on the interpolation grid, and not 
for other values of x. Then we have 

cos(kx + 2Nmx) ~ ( -  1)m cos(kx), k, m integers 

("Aliasing Relation") (4.2) 

sin(kx + 2Nmx) ~ ( - 1)m sin(kx), k, m integers 
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Table II illustrates the aliasing relations for N = 5. 

Proof The first step is to observe that by an elementary trigo- 
nometric identity 

cos[(k + 2Nm)x] = cos(kx) cos(2Nmx) + sin(kx) sin(2Nmx) (4.3) 

However, on the interpolation grid (4.1), 

cos(2Nxi)=(--1) m and sin(2Nmxi)=O, i=l,. . . ,N (4.4) 

Subsituting (4.4) into (4.3) gives the first part of (4.2). The proof of the 
second part is similar. [? 

Theorem 6: Exact Low Degree Fourier Coefficients for the Interpolation 
Error. Let f (x)  be a symmetric function whose exact Fourier coefficients 
are {~j}. Let g(x) be a function such that g(x)= - g ( - x )  for all x and let 
its Fourier sine coefficient be {/~j}. The low-degree coefficients of the error 
in interpolating these functions at the roots of cos(Nx) are 

Table  II.  

(a) Aliasing for Cosine Interpolation at the Roots of Cos(Nx) for N =  5 a 

1 

-cos(10x) 

cos(20x) 

-cos(30x) 

cos(x) cos(2x) cos(3x) cos(4x) 0 Unaliased 
-cos(9x) -cos(8x) -cos(Tx) -cos(6x) -cos(5x) Singlyaliased 
- c o s ( l l x )  -cos(12x) -cos(13x) -cos(14x) - -  Doublyaliased 

cos(19x) cos(18x) cos(17x) cos(16x) cos(15x) Triply aliased 
cos(21x) cos(22x) cos(23x) cos(24x) - -  

-cos(29x) -cos(28x) -cos(27x) -cos(26x) -cos(25x) 
--cos(31x) --cos(32x) --cos(33x) --cos(34x) - -  

cos(39x) cos(38x) cos(37x) cos(36x) cos(35x) 

(b) AIiasing for Sine Interpolation at the Roots of cos(Nx) for N =  5 ~ 

0 sin(x) sin(2x) sin(3x) sin(4x) sin(5x) 
- -  sin(9x) sin(8x) sin(7x) sin(6x) - -  

sin(10x) - s in ( l l x )  -sin(12x) -sin(13x) -sin(14x) - -  
- -  -sin(19x) -sin(18x) -sin(17x) -sin(16x) -sin(15x) 

sin(20x) sin(21x) sin(22x) sin(23x) sin(24x) - -  
- -  sin(29x) sin(28x) sin(27x) sin(26x) sin(25x) 

-sin(30x) -sin(31x) -sin(32x) -sin(33x) -sin(34x) - -  
- -  -sin(39x) -sin(38x) -sin(37x) -sin(36x) -sin(35x) 

Unaliased 
Singly aliased 
Doubly aliased 
Triply aliased 

"All expressions in a given column are identical when evaluated at the roots of cos(5x). 

S~,4 5'4-5 
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e k =  
m ~ l  

C k = 
rn= l 

e N "~ 
m = l  

(--l)m+l(O:2Nm k - t - O ~ 2 N m + k ) ,  k = 0,..., N -  1 (cosine) (4.5) 

(--l)m(fl2Nm k--fl2Nm+k), / c = l  ..... N - 1  (sine) 

( - - l ) m + l f l 2 N m + N  ( s ine )  

(4.6) 

The low-degree coefficients for Ev(x; N) are identically zero. 

This theorem is complementary to Theorem 1 (Sec. 2), which showed 
that all the higher Fourier coefficients for both the interpolation and 
truncation errors are identical with the corresponding coefficients of the 
functions being interpolated. 

Proof The interpolation error can be expressed in terms of the 
truncation error as 

El(X; N) -- ET(x; N) - INET(X; N) (4.7) 

To justify (4.7), note that the expression on the right-hand side of (4.7) 
meets two requirements. First, the difference between a function and its 
interpolant always vanishes at the interpolation points, as Ez must. Second, 
the high-degree coefficients of E I and E r match, as required by Theorem 1, 
because only a low-degree polynomial, INEr, is subtracted from Er.  

The prescription for constructing the interpolating polynomial INEr in 
(4.7) is simple. For any function f (x)  we wish to interpolate, modify its 
Fourier series by replacing the trigonometric function of each term by its 
alias via (4.4), then add all the aliases together to obtain INf. (For the 
Fourier terms of low degree, i.e., m<,N, the alias is the trigonometric 
function itself so that the alias replacement does nothing.) Each 
trigonometric term has an infinite number of aliases, but because of the 
factor of 2N in the argument of cos(kx + 2mNx) and the restriction of m 
to positive and negative integers (and zero), each cosine function has a 
unique alias within the set {1, cos(x),..., c o s F ( N - 1 ) x ]  } and similarly each 
sine has a unique alias within the span of {sin(x),..., sin(Nx)}. The 
interpolant is the sum of these low-degree aliases. Applying this interpola- 
tion procedure to (4.7) after obtaining the Fourier series of ET(x; N) from 
Theorem 1 then proves Theorem 6. 

In the next theorem, we turn from exact formulas to approximations. 

Theorem 7: Neglect-of-Double-Aliasing (Coefficient-Pairing) Approx- 
imation. If the spectral coefficients of a symmetric function f (x)  are 
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denoted {ej} while those of the cosine interpolation error EI(x ;N) are 
denoted {es}, then 

e o ~ 2e2,v{ 1 + O~4N/O~2N . . . .  } (cosine) (4.8a) 

ej,,~ e2u_j{l + C~2N+j~2N_j . . . .  }, j =  1 ..... N-- 1 (4.8b) 

which is equivalent to 

N 

Et=~176 + Z ~N+j{c~ x] +cos[ (N- j )x]}  + O(~2~v+1 ) 
j =  i (4 .9)  

The special case eo = 2~2N is actually not an exception to the general 
rule, (4.8b). By convention this term is halved in evaluating the sum as 
explicit in (2.8), so the net contribution of eo to the interpolation error does 
indeed approximately equal that of e2N. 

Similarly, for sine interpolation 

e j~  --e2,v_ i, j =  1,..., N -  1 (4.10) 
N- 1 (sine) 

E,(x; N) ~ ~ fiN+ k{sin[(N+ k)x] - s i n [ ( N -  k)x] (4.11) 
k = l  

Proof Neglect of all terms of degree greater than 2N in Theorem 6 
(which gives the coefficients for k < N) combined with Theorem 1 (which 
specifies the coefficients for k > N). We refer to this as "Neglect-of-Double- 
Aliasing" because the only surviving terms in (4.8)-(4.11) are the unaliased 
and singly aliased terms, i.e., those of degree less than N and less than 2N, 
respectively. 

An equivalent and simpler argument is to truncate the series for the 
envelope to its first N terms. Invoking Theorem 4, (3.1), to make the 
substitution Ps-~ 2c~u+s and then applying the identity 

2 cos(Nx) cos(jx) = cos[(N+j)x] + cos[(N-j)x] ,  j<~ N (4.12) 

gives (4.9). For sine interpolation, we similarly expand EI(X;N)= 
cos(Nx) ~(x; N) using the identity 

2 cos(Nx) sin(jx) = sin[(N+j)x] - s in[(N-j)x] ,  j ~  N -  1 (4.13) 

For a geometrically converging series, the error in the interpolation 
error is O(p N) while the relative error in Theorem 7 is of the same order. 
Thus, this theorem is a very safe and accurate approximation. 

Collectively, Theorems 6 and 7 emphasize the notion that in some 
sense, the interpolation error is double the truncation error. "In some 
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sense" means that each high-degree Fourier  coefficient ( N <  m ~< 2N) of the 
function being interpolated, f ( x ) ,  appears once in the t runcat ion error 
E r ( x ;  N) while it appears twice in the interpolation e r ro r - -once  as itself 
and once as its alias. Note  that the first term in the square brackets in (4.9) 
appears in both  E r  and Et,  while the second, also weighted by eN+j, 
appears only in the interpolation error. 

Al though (4.9) is only approximate,  it does allow a very simple and 
visual interpretation of the difference between the interpolation and 
truncat ion errors. Figure 5 compares  the first 2N  coefficients of both errors. 

ET 

0 1 2 3 4 5 6 7 8  0 1 2 3 4 5 6 7 8  
n n 

Fig. fi. Schematic of lnla,I versus n for the Chebyshev (or Fourier cosine) coefficients of the 
truncation error (left panel) and interpolation error (right side) for a typical analytic function 
f(x). (The logarithms have been scaled by subtracting In lagl so that the smallest coefficient 
shown is represented by the shortest bar.) 
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On the semilogarithmic graph, the bars that represent the coefficients of the 
interpolation error can be bounded by an isosceles triangle. The coefficients 
of the truncation error can be bounded by the right half of this same 
triangle. Each coefficient in the interpolation error is paired with its alias 
[except for that of eos(Nx)] .  

Because of the interference effects between different Fourier terms at 
different values of x, the pointwise values of E x and ET need not be in 
simple constant ratio, as illustrated by Fig. 4, but the maximum of JEtl is 
no more than double the maximum absolute value of the truncation error. 

Table III is a numerical illustration of "coefficient pairing." For a 
geometrically converging series in which each term is proportional to p J, 
Theorem 7 can be more precisely expressed as 

e j ~ e 2 x _ j [ l + p 2 J + O ( p 2 N ) ] ,  j =  1,..., N - -  1 (4.14) 
as illustrated in this table. 

Table IlL An Illustration of Coefficient Pairing in the Interpolation Error a 

j ~ ezN j 2N--j  ~--e2u j ~2N+) 
e20 = 0.00159585 

19 0.0011170925 0.0011170917 21 0.0000000007 0.0000000015 
18 0.0007819658 0.0007819642 22 0.0000000016 0.0000000021 
17 0.0005473776 0.0005473749 23 0.0000000026 0.0000000030 
16 0.0003831665 0.0003831625 24 0.0000000040 0.0000000042 
15 0.0002682196 0.0002682137 25 0.0000000059 0.0000000060 
14 0.0001877581 0.0001877497 26 0.0000000085 0.0000000086 
13 0.0001314370 0.0001314247 27 0.0000000123 0.0000000123 
12 0.0000920149 0.0000919973 28 0.0000000176 0.0000000176 
11 0.0000644233 0.0000643981 29 0.0000000251 0.0000000252 
10 0.0000451146 0.0000450787 30 0.0000000359 0,0000000360 
9 0.0000316064 0.0000315551 31 0.0000000514 0.0000000514 
8 0.0000221619 0.0000220886 32 0.0000000734 0.0000000734 
7 0.0000155668 0.0000154620 33 0.0000001049 0.0000001049 
6 0.0000109732 0.0000108234 34 0.0000001498 0.0000001498 
5 0.0000077904 0.0000075764 35 0.0000002140 0.0000002140 
4 0.0000056092 0.0000053035 36 0.0000003057 0.0000003057 
3 0.0000041492 0.0000037124 37 0.0000004368 0.0000004368 
2 0.0000032226 0.0000025987 38 0.0000006239 0.0000006239 
1 0.0000027104 0.0000018191 39 0.0000008914 0.0000008914 
0 0.0000025467 0.0000012734 40 0.0000012734 0.0000012734 

The second and third columns are the coefficients of the error in the 20-point cosine 
interpolation of 2(x; p = 0.7). (The unpaired coefficient of cos(Nx) is listed on top of these 
two columns.) The first and fourth columns give the degrees of the coefficients. The fifth 
column is the difference between the paired coefficients. The sixth column is the prediction 
for this difference from Theorem VI: 

C j  ~ e 2 N _ j  "*y 0~2N + j  - -  ~ 4 N - - j  AV " " " �9 
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5. TAYLOR SERIES FOR THE L O G A R I T H M  OF THE 
COEFFICIENTS:  THE EFFECTIVE L O R E N T Z I A N  
A P P R O X I M A T I O N  

The "effective Lorentzian" approximation has an error which is 
usually O(1/N). This is much poorer than the earlier neglect-of-higher- 
aliasing approximations, which have an error which is an exponential 
function of N. Nevertheless, the effective Lorentzian is the most useful 
of the approximations we will discuss. Its success is an illustration of 
C. S. Yih's Law of Inverse Usefulness: The more useful an approximation, 
the larger its error. 

Theorem 8: Effective Lorentzian Approximation. If the logarithm of 
the Fourier coefficient is sufficiently smooth, then by Taylor expansion of 
the logarithm (and the Neglect-of-Triple Aliasing approximation), we have 

p j  ,~ 2~NeJa' (N)/a(N)[  ] + O( j2 ) ' [  (5.1) 

~, 2~N(Pelf) j (5.2) 

where the {aj} are the coefficients of f ()x), the function being interpolated, 
the {p j} are the coefficients of the envelope of the interpolation error, the 
prime denotes differentiation, and 

Pelf =- e~:'(N)/a(N) (5.3) 

The reason for defining Pert is that (5.2) asserts that the coefficients of the 
envelope of the interpolation error are approximately those of the 
Lorentzian function 

p(x; N, f )  ~ C~N2(X; Pelf) (5.4) 

The theorem applies to sine interpolation without modification except 
for the replacement of the symmetric Lorentzian 2 by the antisymmetric 
serpentine #(x; p). 

Proof Taylor expansion gives 

log(aN+j) = 1og(~v) +j(dc~/dj)/~(N) + O(j2), j ~ N (5.5) 

Substituting this into the identity 

O~ N + j = elOg(~v+s) ~ elog(~u) e jc~'( N)/c~( N) _.[_ O ( j  2) 

and inserting (5.6) into Theorem 4 gives (5.1). 

(5.6) 



Interpolation Error 333 

The "effective Lorentzian" approximation has severe limitations. In 
particular, it cannot be applied if the Fourier coefficients are rapidly 
oscillating with respect to degree. (Note that a generalization of Theorem 8 
that does apply to oscillating Fourier coefficients is defined in the next 
section.) Nevertheless, the effective Lorentzian approximation does 
encourage us to generalize our range of model functions. 

Define 

2k(x; p) --= 2 ~ jkpj  cos(jx) (5.7a) 
j - t  

#k(X; p)  -= 2 ~ jkpj  sin(jx) (5.7b) 
j = l  

Since 

ct'(N)/c~(N) = - log(p)  + k iN  (5.8a) 

- log(p)  + O(I/N)  (5.8b) 

Paf = P for these functions and the effective Lorentzian approximation is 

El(x; p, 2k) ~ 2Nkp s Cos(Nx) 2(x; p) (5.9a) 

E,(x; p, #k) ~ 2Nkp u cos(Nx)/~(x; p) (5.9b) 

For positive integer k, the functions 2k and #k are the kth derivatives 
of either 2(x; p) or #(x; p). Thus, they have poles of (k+ 1)st order in the 
complex plane, that is, 

2~(x; p ) ~  (const) /[x-- i log(p)]  ~+1 , I x -  ilog(p)l ~ 1 (5.10) 

Equation (5.9) shows that the order of the poles affects the interpolation 
error through a power of N. The exponential factor of N in (5.9), however, 
is p U = e x p [ - N l o g ( p ) J ,  which depends only upon the location of the 
poles. Similarly, the shape of the error envelope is not affected by the order 
of the singularity, only by its location. 

In Sec. 7, we shall return to these generalized model functions with 
graphs and a theorem expressing the exact interpolation error. 

As noted earlier, the effective Lorentzian approximation is not 
applicable to all classes of functions; it fails whenever the series coefficients 
oscillate rapidly (with an exception explained in the next section). This 
approximation does apply whenever the Fourier or Chebyshev coefficients 
are of the form 

c~,, ~ dn% - snT (5.11) 
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for some constants d, k, s, and r. When r = 1, these coefficients converge 
geometrically and are those of the model function 2k. 

In Sec. 7, we shall describe important model functions for other values 
of the "exponential index of convergence" r. 

One limitation of all the cases described so far is that the poles and 
branch points are limited to the imaginary x axis so that the series 
coefficients decay monotonically. In the next section, we show that shifting 
the singularities parallel to the real axis does not qualitatively alter the 
interpolation error. 

6. PHASE SHIFTING AND THE INTERPOLATION ERROR 

Theorem 9: Interpolation Error for the Phase-Shifted Lorentzians. Let 
p;~ and p~ denote the envelopes of the interpolation error for the phase- 
shifted Lorentzian functions, ,~(x + ~b; p) and /2(x + ~b; p), respectively, 
where the phase shift ~b is real. Then these error envelopes in the "Neglect- 
of-Triple-Aliasing" approximation are given by 

p~(X; p, N) ~- 2pN N) cos(N~b) -sin(N0) 2(x+~b;p) (6.1) 
p~,(x; p, sin(N~b) cos(N~b) /~(x + ~b; p) 

within a relative error of O(pZN). 
The 2 x 2  matrix in (6.1) is the matrix that describes the transforma- 

tion of Cartesian coordinates under rotation through an angle by (-ARC) 
radians. 

Proof By using the definitions of 2 and kl and elementary 
trigonometric identities, we obtain 

2(x + ~b; p, N) = 1 + 2 ~, pJ cos(j~b) cos(jx) 
j = l  

- 2 ~ pJ sin(j~b) sin(jx) (6.2) 
j = l  

/~(x + ~b; p, N) = 2 ~ pJ sin(j~b) cos(jx) 
j = l  

+2  ~ /r162 (6.3) 
j = l  

Note that these coefficients oscillate with degree j ;  Theorem 9 extends the 
effective Lorentzian approximation to (some) functions with oscillating 
Fourier coefficients. 
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The triple aliasing approximation implies that the interpolation error 
envelope is 

p(x; N, 2(x + ~; p)) ~ 4 ~ pN+j cos[ (N+ j)~b] cos(jx) 
j = l  

- 4  ~ pN+Jsin[(W+j)q~] sin(ix) (6.4) 
j = l  

j = l  

- sin(Nr ~ p/sin(j~b) cos(ix) 
j - -1  

- sin(N~b)2 ~ pY cos(j~b) sin(jx) 
j --1 

- cos(N~b)2 ~ pJ sin(j~b) sin(jx)} (6.5) 
j = l  

Collecting terms and applying (6.2) and (6.3) gives the first line of the 
theorem. The error estimate for ~t(x + r p) is similar. 

If the shift ~b is a multiple of the grid spacing, h = reiN, then nothing 
is altered except that ;t(x)~2(x+~) both for the function being 
approximated and for the envelope of the interpolation error. (This could 
have been predicted in advance because, for trigonometric interpolation, all 
grid points are equivalent.) If the shift is a half-integral multiple of h, then 
p is proportional to /~(x + ~b;/))--but ~t(x+ ~b; p) is also sharply concen- 
treated near x = -~b. (Intermediate ~b give an envelope that is a hybrid of 
these two cases.) 

It follows that the degree of nonuniformity in x is only mildly affected 
by the shift. The shape of the error envelope is controlled primarily by the 
imaginary part of the position of those poles and branch points that are 
closest to the real x axis. The real part of the location of the singularity 
merely shifts the maximum of the error envelope without much affecting its 
shape or magnitude. "Without much" means that a phase shift in f(x) can 
convert the shape of the envelope from a Lorentzian to a serpentine or vice 
versa, but the envelope is always a maximum near the pole or the branch 
point. 

It is intriguing that the matrix in (6.1) has the form of a rotation 
matrix. The interpolation error for the Lorentzian function is always 
proportional to a linear combination of these two functions. The phase 
shift ~b merely alters the proportion. Because the determinant of the 
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rotation matrix is unity, i.e., the matrix multiplication is a pure rotation 
without amplification, the norm of the interpolation error is not 
significantly changed by a phase shift. 

7. EXAMPLES OF THE "EFFECTIVE L O R E N T Z I A N "  
APPROXIMATION 

7.1. "Supergeometric Convergence": Riemann Theta Function 

The Lorentzian functions have "geometric" convergence, i.e., 
coefficients proportional to pJ for some p such that [Pl < 1, because these 
functions have complex singularities that are not at infinity. Entire 
functions, which have no singularities except at infinity, have a "super- 
geometric" rate of convergence in the language of Boyd (1989). It is 
remarkable that the error in interpolating such functions is still 
approximately proportional to the Lorentzian or serpentine functions. 

As an example, consider the theta function 03, which is important in 
theories of diffusion, elliptic functions, and solitary waves: 

03(X/2; q) = I + 2  ~ qnZcos(nx) (7.1) 
n = l  

The rate of convergence is extraordinarily fast: the nth coefficient is 
proportional to the n2-power of a constant q versus the nth power of a 
constant for a geometrically convergent Fourier series. Indeed, the theta 
series converges unusually fast even for an entire function: the usual situa- 
tion is coefficients of O[exp(-qnlogn)]  for entire functions (Boyd, 
1989a). 

Nevertheless, the effective Lorentzian approximation still applies, 
predicting the error envelope 

N 2 p(x; q, N) ~ 2q )~(x; Pelf) (7.2) 

where 

P eff =-" q2N (7.3) 

Figure 6 compares the shape of the theta function with the exact error 
envelope and the approximate envelope given by (7.2). There are two 
striking conclusions. 

The first is that the "effective Lorentzian" approximation is very 
accurate. The coefficients of the theta function decrease smoothly, 
monotonically, and very rapidly so that the Taylor expansion (5.8) is 
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Fig. 6. Solid curve: 03(x /2  ) with  the coefficients an = 2q ~2 with q = 0.98, Dashed  curve: exact 
envelope of the in te rpo la t ion  error.  D o t t e d  curve: a p p r o x i m a t i o n  to the envelope which is 

p ropor t iona l  to 2(x, Pelf) where Per = q2N The two error  curves have been divided by a N whilc 
(t 3 has  been divided by 5 so tha t  one may  compare  shapes  on the same curve. N =  20. 
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accurate until the coefficients of the theta function have become negligibly 
small. 

The second interesting feature of the graph is that the theta function 
is much narrower than the Lorentzian. The error is peaked about the 
maximum of the function that is being interpolated, but the interpolation 
of the entire function has smoothed the error in the sense that the error is 
much more uniform in x than is the theta function itself. 

We shall limit ourselves to a theta function that has its maximum at 
x = 0 because as shown for Lorentzian functions in the previous section, 
shifting the function that is being interpolated shifts the error envelope 
without significantly altering its magnitude. 

7.2. "Subgeometric Convergence": Infinitely Differentiable 
at the Branch Point 

A function whose Fourier coefficients are decreasing as O [ e x p ( -  qf]  
for some constants q and r is said to have "subgeometric convergence" if 
r < 1. (The most common case, r = 1, is "geometric convergence," while 
r > 1 is "supergeometric convergence.") The significance of subgeometric 
convergence is that the Fourier functions cos(jx) blow up proportional to 
cosh[ j  Im(x)]  away from the real x axis. When r < 1, this fast growth of 
the basis functions with j for any x off the real axis cannot be overcome 
by the exponential decrease of the coefficients. The result is that the Fourier 
series converges exponentially fast for real x, but diverges everywhere off the 
real x axis. 

Subgeometric convergence implies (Boyd, 1989a) that f ( x )  must be 
nonanalytic for some real x: if the only singularities were off the real x axis 
with the closest ones at I ra (x)=  +a, then the Fourier series would 
converge within the strip IIm(x)] < a. However, if the Fourier coefficients 
decrease exponentially fast with n, even if subgeometrically, then the 
series--and f ( x ) - - c a n  be differentiated an arbitrary number of times for 
real x without series divergence or infinities. In mathematical jargon, a 
function with subgeometric convergence is "C ~'' (i.e., infinitely differen- 
tiable) but not "C a'' (analytic for all real x). 

A typical example is defined by 

SG(x) - 1 + 2 ~ e-Y2/3 cos(jx) (7.4) 
j--1 

No simple closed form representation is known, but one can show that 
SG(x) is nonanalytic at the origin: Its power series about the origin 
diverges factorially. 
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In the "effective Lorentzian" approximation, the error is 

El(x; N) ~ 2e -N2/3 cos(Nx) 2(x; Pelf) (7.5) 

perf(N) =- e-(2/3)N-~ 3 (7.6) 

Figure 7 shows that the periodic Lorentzian (7.5) approximates the inter- 
polation error to within 4 % of the maximum of the error. 

It is striking that in contrast to the theta function, which was more 
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X 
Fig. 7. (a) Long dashed curve: the function SG(x) whose coefficients are an = 2 exp(-n2/3),  
divided by its maximum,  SG(0) = 2.93. Short dashed curve: exact error envelope p(x; N= 50), 
also scaled by its max imum value of 2 .93E-5 .  The envelope as given by the effective 
Lorentzian approximation is not  shown because it is indistinguishable from the exact envelope 
only in a very narrow zone around x = 0. Solid curve: the difference between the exact inter- 
polation error envelope and the effective Lorentzian approximation to it. The same curve is 
repeated as Fig. 7b. 
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Fig. 7. Continued 

sharply peaked than the interpolation error, the opposite is true here. The 
singularity at x = 0 creates an interpolation error that is more concentrated 
at the origin than SG(x) itself. The parameter p~r~(N)--* 1 as N--* o% 
implying that the interpolation error becomes more and more sharply 
peaked as the number of grid points increases. This is hardly surprising: the 
singularity at x = 0  is controlling the slow, subgeometric rate of 
convergence of the Fourier coefficients. This singularity also controls the 
rate of convergence of the interpolation error. 

7.3. Geomerically Converging Functions: Poles and Branch Points 

Figure 8 illustrates the exact and "effective Lorenztian" interpolation 
error envelopes for the function 

22 =- 2 ~ j2pj cos(jx) (7.7) 
j =  1 
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which is a special case of the class of model functions defined by (5.7). The 
error in the "effective Lorentzian" approximation is 

E1(x; p, N) ~ 2N2p N cos(Nx) 2(x; p) (7.8) 

where, as for all geometrically converging series, Pelf= p. 
This model function has third-order poles at x = +i log(p)  versus the 

first-order poles of 2(x; p) at the same location, so )~2(x; p) is more sharply 
peaked about the origin than the Lorentzian. Figure 8 shows that the same 
is true of the interpolation error: (7.8) errs by predicting an error envelope 
which is a bit too small and too flat. 

2O 

15 

I0  

o% 

I I I I I I - 5  
0 0.5 1.0 1.5 2.0 2.5 5.0 

X 
Fig. 8. Solid curve: 22(x; p = 0.8) multiplied by 0.053 (so that its maximum is identical with 
the maximum in the interpolation error.) Long dashes: envelope of the exact interpolation 
error, El(x; N)/cos(Nx), for N =  32. Dotted curve: envelope of the interpolation error as 
predicted by the effective Lorentzian approximation, (7.8). Short dashes: the error in the 
effective Lorentzian approximation. 
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Although the "effective Lorentzian" approximation is not bad, we can 
eliminate most of the error-in-the-error by adding the leading term in the 
exact analytical formula for the error envelope which is given by the 
following: 

Theorem 10: Interpolation Error for Generalized Model Functions in 
the Negleet-of-Triple-Aliasing (NTA) Approximation. For the model 
functions defined by 

)~k(x; p) - 2 ~ jkpj cos(jx) (5.7a') 
j - - 1  

#k(x; p) ~- 2 ~ jkpj sin(jx) (5.7b') 

the interpolation error in the NTA approximation (but without additional 
approximations) is given by 

2k: Ei(x; N) ~ 2N*p u cos(Nx) {2(x; p) 

+ ~ IF(k+ 1)/r(m+ 1)r(k-m+ 1)](l/N) m ,L,(x; P)I 
r n = l  ) 

(7.9) 

Ei(x; p) ~ 2Nkp N+ a cos(Nx) {#(x; p) #k: 

+ ~ [F(k + 1)/ f(m + 1) r ( k  - m  + J )](I/N)" #,.(x; p) 
m = l  

(7.10) 

Proof. The proof is accomplished using the binomial theorem 
combined with the NTA approximation, Theorem 4. 

When k is a positive integer, the binomial series terminates after the 
kth term. Thus, in the Neglect-of-Triple-Aliasing approximation, the 
interpolation error for 2z(x; p) is 

E,(x; p) = 2N2p N cos(Nx)[2(x; p) + (2/N) 21(x; p) + (1/N 2) 22(x; p)] 

(v.11) 

Figure 9 shows that most of the error in the "effective Lorentzian" 
approximation is removed by adding the correction proportional to 
~.~(x; p). 
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where 

Our second example of geometric convergence is 

A 3/2 = _ ~ e x p { - f l [ a 2 + ( x - 2 7 c m ) ~ ]  I/2} 
m =  o o  

= (a/rc) Ka(fla ) + ~ ~j cos(jx) 
j = l  

c~j =- 2fi(a/~) Kl(a[fl  2 +j2]  1/2)/(fi2 +j2)1/2 

2pJ/j 3/2 for j >> 1, fl = (2re~a) 1/2 

(7.12) 

(7.13) 

(7.14) 

(7.15) 

where a=log(1/p). This function is not one of the models described by 
Theorem 10. However, when fl is chosen as in (7.15), the Fourier 
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Fig. 9. Dashed curve: minus the error of the effective Lorentzian approximation to the inter- 
polation error for 22(x; p = 0.8) (shown as the short-dashed curve in Fig. 8). Solid curve: the 
error-in-the-interpolation-error when E x is approximated by a weighted sum of 2(x; p)  and 
)~(x; p), (7.1l). This correction term reduces the max imum error by a factor of 8. 
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coefficients of A_3/2(x;p) are asymptotic to those of •_3/2(x;p). The 
gravest singularities for both functions are square root branch points at 
x =  +ia. 

Because only the high-degree Fourier coefficients enter the error 
estimates, we can still apply the effective Lorentzian approximation to 
A_3/2(x; p) as illustrated in Fig. 10. 

7.4. Fractals  and Functions with Natura l  Boundaries 

The examples above are unrepresentative in one respect: each has only 
a single pair of singularities with complex conjugate locations. Fortunately, 
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Fig. 10. Solid curve: 0.000771 A3/z(x; p=0.8) .  (The numerical factor is chosen so that the 
maximum of the rescaled function is equal to the maximum in the interpolation error.) 
Dashed curve: exact envelope of the interpolation error for N = 2 7  points. Dotted curve: 
effective Lorentzian approximation to the envelope of the interpolation error. Negative solid 
curve: error of the effective Lorentzian approximation; the maximum error is about 31% of 
the maximum in E~. 
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this restriction can be removed by simply superimposing models with 
branch points at different places. 

However, when the function has a continuous distribution of 
singularities, forming a so-called "natural barrier" in the complex plane 
beyond which the function cannot be analytically continued, then the 
function's spectral series is qualitatively different from the earlier models. 

First, consider the function 

co(x; p) = ~ (1/3) j sech(3Ja) cos(3ix) 
j = 0  

(7.16) 

Since the coefficient of cos(kx) is bounded by pk where p = exp(a), this 
series has geometric convergence, and can be bounded term-by-term by the 
terms of 2(x; p). This in turn implies that the Fourier series converges 
exponentially fast not only for real x, but also for complex x such that 
Jim(x)[ < a. 

Along the lines that bound the strip of convergence, co(x; p) is not 
singular at a single isolated pole or branch point. Instead, 

Re {co(x +ia; p)= ~ (1/3)Jcos(3Jx)}=_-2(x) (7.17) 
j = 0  

where we have used Re[cos(x + ika)] = cos(x) cosh(ka). Equation (7.17) is 
Weierstrass's famous example of a function Z(x), which is everywhere 
continuous but nowhere differentiable (Voss, 1988). Thus, co(x;p) is 
singular everywhere along the lines Im(x)= __.a. These lines are "natural 
boundaries" for the function. It is not possible to analytically continue the 
function--to even define it--beyond these walls of singularity. 

Later research has shown that this function Z(x) is a fractal; as the 
length of the curve is measured with smaller and smaller line segments, the 
arclength grows faster than the reciprocal of the length of the segments so 
that the curve has a fractional dimension. Nevertheless, the Fourier series 
of S(x) converges geometrically as shown explicitly in (7.17). 

On the real axis, co(x; p) is a rather bland and harmless-looking 
function: its fractal jaggedness is evident only along the lines Ira(x)= +a. 
Clearly, exponential convergence and a smooth graph on the real axis do 
not preclude hidden depths of fractal complexity. 

The fact that co(x; p) is singular everywhere on the lines that bound 
the strip of Fourier convergence implies that the interpolation error for 
(7.16) will not exhibit strong peaks, but will instead be distributed more or 
less uniformly over the whole interval like the function itself as shown in 
Fig. l 1. 
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The function ~o(x;p) is a contrived example. However, Takaoka 
(1989) has shown that the solitary wave of a fifth-degree, generalized 
Korteweg-deVries equation is an analytic function with natural bound- 
aries. The natural boundaries are not straight lines like those of Ira(x), 
but rather are fractal curves which vaguely resemble the letter "v" in the 
complex x plane. Because the apex of each "v" is a finite distance from the 
real axis, spectral series for the soliton and for its spatially periodic 
analogue ("cnoidal wave") converge exponentially fast (Boyd, 1986). 

An even more important example (perhaps!) is hydrodynamic 
turbulence. Frisch et al. (1978) and Frisch and Morf (1981) conjecture that 
the singularities for turbulent flow may form a fractal set in the complex 
time plane. 
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Fig. 11. The Weierstrass-like example, co(x; p). (a) co(x; p = 0.8). 
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Fig. 11. Continued. (b) interpolation error, Ei(x; N= 32). 

Clearly, functions with natural boundaries are a genuine part of the 
scientific bestiary. So, too, are functions dominated by a single singularity; 
even within the narrow realm of solitary waves, the soliton of the ordinary 
Korteweg-deVries equation has simple second-order poles on the 
imaginary axis and no other singularities. Its periodic generalization can be 
approximated by the model function .~2(x;p) described earlier. For 
nonlinear problems, it is difficult to distinguish between these two 
extremes--the simplicity of simple poles and the complexity of fractal 
natural boundaries. The ordinary Korteweg deVries equation and its fifth 
degree generalization differ only by the replacement of a third derivative by 
a fifth derivative. 

Nevertheless, our models have at least illustrated the range of 
possibilities. 
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8. THE ERROR IN PSEUDOSPECTRAL SOLUTIONS TO 
DIFFERENTIAL EQUATIONS 

To illustrate the key ideas, consider the model 

uxx+q(x)u=f(x)  (8.1) 

where subscript x denotes differentiation with respect to x and where we 
assume boundary conditions that u(x) should be periodic with period 2m 
For  simplicity, we also assume that q(x), f(x),  and u(x) are all symmetric 
about the origin so that the solution is a Fourier cosine series (as opposed 
to a general Fourier series). 
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In the pseudospectral method, we write 

N--1 

UN(X)= ~ ajcos(jx) (8.2) 
j = 0  

Substituting this into (8.1) defines the "residual" function 

R(x; N) =- f(x) - [ b l N ,  xx Av q(x) blN(X) ] (8.3) 

The residual function would be identically equal to zero if UN(X ) w e r e  the 
exact solution, but this is too much to hope for except in special cases. 
Instead, we choose the spectral coefficients {aj} so that the residual 
function is as small as possible in some sense. In the pseudospectral 
algorithm, "as small as possible" means that the residual function is forced 
to be the interpolant of zero. The N unknown spectral coefficients {aj} are 
then determined by the requirement that R(x; N) should vanish at the N 
interpolation points. 
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This implies that all the earlier analysis about the envelope of the 
interpolation error is immediately and directly applicable to the 
pseudospectral residual function, R(x; N). Since the function being inter- 
polated is f (x)  - O, it follows that all of R(x; N) is the interpolation error, 
E~(x; N). Thus, the residual has the same qualitative form as all the other 
examples of E~(x; N): a slowly varying "envelope" p(x; N) multiplying the 
rapidly oscillating factor cos(Nx). 

Unfortunately, the residual is of only secondary interest because what 
we really want to know is: What is the error EN(X) in the pseudospectral 
approximation to the differential equation? If we define 

EN(X) ~ u(x) -- uN(x) (pseudospectral error) (8.4) 

then subtracting (8.3) from (8.1) shows that 

EN, xx + q(X)EN = R(x; N) (8.5) 

This result is true for any linear differential equation: The pseudospectral 
error satisfies the differential equation with the substitution f (x)  --* R(x; N). 

To approximately solve (8.5), define 

EN(X ) ~ ~ ~j CON(iX) (8.6) 
j 0 

R(x; N) =- ~ rj cos(jx) (8.7) 
j -O  

Then for the special case q(x)= -1,  one finds by matching coefficients of 
cos(ix) that 

ej= -r j (1  +j2)  [q(x) =- - 1 ]  (8.8) 

If the forcing function f (x)  has an exponentially convergent Fourier 
series, then the "coefficient-pairing" approximation will apply to the 
residual R(x; N). This implies that r~ v is the largest of the residual 
coefficients; the magnitude of the coefficients will decrease exponentially 
fast as the degree increases towards infinity or decreases toward zero. 

The high-degree coefficients of the pseudospectral error will behave 
similarly to those of the residual since the factor of 1/(1 + j2)  will simply 
make the Fourier terms in EN(N ) decrease faster as j ~  Go. However, for 
the low-degree coefficients, there will be competition: The r~ will increase 
with j until the maximum at j=N,  whereas the factor of 1/(1 +j2)  will 
decrease with j. In other words, the error coefficients for j < N will be the 
product of a factor that increases with j (the residual coefficient rj) and a 
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factor that decreases with j [1/(1 +j2)].  Thus, eo will be larger than e~ 
unless r~ is more than double the magnitude of r0. 

When the magnitudes of the residual coefficients are graphed on a 
logarithmic scale, the graph will resemble an upside-down "v" with the 
apex of the "v" at j = N. The graph for the error coefficients will be similar 
except for two differences. First, the apex of the "v" will be lower by O(N2). 
Second, there will (sometimes) be a little upward curl for small degree j. 

Figure 12a confirms these expectations. The lower panel, Fig. 12b, 
illustrates how the error coefficients vary with N: the little curl on the left 
is smallest when N is large, but becomes more pronounced as the number 
of interpolation points decreases. 

To show that these qualitative conclusions are not sensitive to the 
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Fig. 12. (a) A comparison of the absolute value of the coefficients of the differential equation 
residual, R(x; N), with those of EN(x; N) for N =  36 and the differential equation (8.9) with 
p=0.6. (b) The absolute values of the spectral coefficients of the error, EN(x), for three 
different values of N: top (N= 12, middle (N=24),  bottom (N= 36). 
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Figure 12. Continued 

precise form of the differential equation, Fig. 12 illustrates 
spectral solution to the variable coefficient equation, 

uxx + [ - 1 + 2(x; p)2/10] u = )o(x; p) 

the pseudo- 

(8.9) 

The high-degree coefficients of the error will be dominated by the second 
derivative, which is O(j2), as long as q(x) is O(1) even when this function 
varies with x. The reason is that 

E 1 + q(x) cos(jx) = I-- j2  + q(x)] cos(jx) 

~--j2cos(jx)+O(1) if j~> maxlq[ (8.10) 

Thus, we can ignore variable q(x) in the same way that we approximated 
| / ( j2  + 1) by 1/j  2 in (8.8). It is generic that the error coefficients ej will be 
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roughly proportional to rjj 2 except for the low-degree coefficients 
[ J -  O(1)3. 

This close relationship between the coefficients of the e r r o r  EN(X ) and 
the residual function R(x; N) has several consequences, First, the goal of all 
reasonable methods for solving differential equations is to minimize the 
residual. It follows that one of the best strategies for checking a calculation 
is to evaluate the residual and verify that it is small. The analysis of this 
section shows, however, that the magnitude of the residual is a very 
pessimistic strategy for estimating the error in UN(X). The reason is 
expressed by the following theorem. 

Theorem 11: Relative Magnitude of the Residual and Error. In the 
limit N ~  m for fixed q(x) and f(x),  the error in solving uxx + q(x)u = f ( x )  
via the pseudospectral method with N interpolation points and a Fourier 
cosine basis is related to the residual function via 

m a x  IEN(X)I ~ (1/N 2) max jR(x; N)l 
al l  x al l  x 

(8.11) 

In this same limit, the largest coefficients in both the error and residual 
are those of degree N. These are individually proportional with a propor- 
tionality constant of N2: 

gj~ - r j N  2, j ~ N  (8.12) 

Proof We have already explained why the dominant coefficients in 
both the error and residual are those with j g N  as illustrated in Fig. 12. 
Equation(8.8) then immediately implies (8.12). The approximation 
j2~N2, which is implicit in (8.12), is obviously restricted to the 
neighborhood of j=N.  As shown in Fig. 12, however, both rj and ej 
decrease exponentially fast as I j -N l  increases so (8.12) fails only for 
coefficients that are too small to contribute sufficiently to the maximum of 
the residual or error. Therefore, the residual as a whole is (approximately) 
a factor of N 2 larger than the error, justfying the first half of the theorem. 

Theorem 11 implies that if max[R(x; N)],vO(1) when N=30, for 
example, max[Ex(x; N)] will be only O(1/900). Thus, it is necessary to 
solve the differential equation to very high accuracy in order to make the 
residual small. A solution may have less than 1% error and yet still have 
a large, O(1) residual. 

Notwithstanding this caveat, evaluating the residual--perhaps by 
finite differences with a tiny grid spacing to bypass programming errors in 
the spectral computation of derivatives--is still highly recommended as a 
check. The point is simply that this is a very conservative check; a large 
residual does not necessarily imply an inaccurate solution. 
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The second consequence of the phenomenology of the error is the 
perturbative, error correction scheme, which is the theme of the next 
section. 

9. THE METHOD OF MULTIPLE SCALES 

The rapid spatial variations of the residual function, which is propor- 
tional to cos(Nx), suggests that we can approximately solve the differential 
equation satisfied by the e r r o r  EN(X), (8.5),  by applying the method of 
multiple scales. The "fast" variable is 

X =  N x  (9.1) 

while the "slow" variable is x. Rewriting (8.1) and the residual R ( x )  in 
terms of the "fast" and "slow" variables gives 

NZEN, x x  + q ( x ) E u  = cos(X) p(x;  N)  (9.2) 

Neglecting all but the lowest-order terms in N 2 gives the approximate 
solution 

E (~ = - R ( x ) / N  2 (9.3) 

This is a restatement of Theorem 11: the error is approximately equal to 
the residual divided by N 2, where N is the number of interpolation points 
used to generate the pseudospectral solution. 

We can iterate by substituting the kth-order approximation into (9.2) 
and evaluating the residual: 

R(k)(x; N)  = R ( x )  - E ~  ) - q ( x ) E  (k) (9.4) 

The refined approximation is 

E (~ + 1)(x; N) -- --R(k)(x; N ) / N  2 + E(k)(x; N) (9.5) 

The pseudospectral implementation of (9.4) is to evaluate E (k~ and E(~ ) on 
a grid with more than N points--we use 2N grid points in Fig. 13--take 
the Fourier transform to compute the corresponding spectral coefficients, 
and then differentiate the Fourier series to evaluate the derivatives in (9.4). 
Another fast cosine transform gives the Fourier coefficients of R (k), and 
then (9.5) trivially gives the corresponding coefficients of E (k+ 1) 

Figure 13 shows the success--and failure--of this multiple scales itera- 
tion for a representative case. The low-wave-number components of the 
residual do not vary on the "fast" scale, so it is not surprising that the 
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UN(X) + E ~3). Dotted curve: errors in seventh-order iteration. 

i t e ra t ion  fails for this pa r t  of the spectrum. The cons tant  in EN(X; N) 
should  be the same order  of magn i tude  as the cons tan t  in R(x; N), but  
ins tead (9.4) divides all wave numbers  by the huge factor  N 2. Conse-  
quently,  the low-wave-number  componen t s  of the N-po in t  pseudospec t ra l  
so lu t ion  are a /most  unaffected by the t iny i terat ive correc t ions  to them. 

The  middle  par t  of the spectrum,  i.e., those componen t s  in EN(x ) that  
are p r o p o r t i o n a l  to c o s ( & ) ,  where j ~ N ,  are rap id ly  reduced by the 
i terat ion.  The only a p p r o x i m a t i o n  in process ing the j = N c o m p o n e n t  is the 
neglect of q(x)exCOS(NX ) relat ive to the second der ivat ive term, 
--NZex COS(NX). As a result,  the errors  in the Fou r i e r  componen t s  of E (k) 
show a cusp with the m i n i m u m  at j = N. 

854/5/4-7 
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For the neighboring components, there is an additional implicit 
approximation 

[cos(jx)]xx~ -N2 cos(jx), j ~  N (9.6) 

instead of _ j2  cos(jx), which is the correct value. Even so, the error in the 
middle part of the spectrum is rapidly reduced. In consequence, when E (k) 
is added to uu(x), the maximum pointwise ("L~")  error decreases rapidly 
as k increases to moderate values. 

Unfortunately, the error grows for the high-wave-number part of the 
spectrum because (9.6) is a terrible (and unstable) approximation for large 
j. The result is that the error in the iteration behaves like that for an 
asymptotic series: It first decreases with k, levels off, and then increases as 
k ~ oo as shown in Table IV. 

This high-wave-number divergence can be fixed by modifying (9.5) so 
that the j t h  wave number is divided by j2 instead of N 2. We have not used 
this fix because (9.5) is conceptually simpler and the fix does not solve 
a more fundamental problem: The low-wave-number components of the 
error and residual violate the fundamental assumption of varying on the 
"fast" scale. There is no way to compute the low-wave-number components 
of the error from those of the residual without performing additional 
matrix solves. Such convergent-but-matrix-solving iterations are the theme 
of the companion paper, Boyd (1991), so we shall not discuss them here. 

Table IV. Error Reduction in the Multiple 
Scales Series ~ 

Multiple scales order L~ Error x 109) 

Pseudospectral 1.29 
0 0.0936 
1 0.0344 
2 0.00852 
3 0.00554 
4 0.00228 
5 O.O024O 
6 0.00176 
7 0.00234 

a The first entry is the error in the 36-point 
pseudospectral solution; the second row (zeroth 
order) is the result of correcting the pseudospectral 
solution by subtracting E(~ and similarly for 
higher orders. 
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It is nevertheless remarkable that at the cost of only a few Fourier 
transforms, we can remove the spectral peak of the error in the N-point 
pseudospectral solution and lower it to the much smaller magnitude of the 
error in the lowest few wave numbers. The success of the iteration, even the 
limited success of an asymptotic rather than a convergent approximation, 
confirms the validity of the multiple scales concept. To a good approxima- 
tion when N is sufficiently large, the error in the solution to a differential 
equation has the envelope-times-cos(Nx) structure of interpolation errors. 

10. CHEBYSHEV POLYNOMIALS 

To apply the concepts discussed above for interpolation to Chebyshev 
polynomials, the only changes are that there are no changes. The reason is 
that a Chebyshev series is merely a cosine series in disguise as expressed by 
the identity 

Tn(cos]-t]) =- cos(nt) (10.1) 

for all n. 
Under this change of variable 

x = cos(t) (10.2) 

the singularity type is unaltered except at the end points, x = +1. Thus, the 
model function 2(t; p), which is a model of a function with simple poles in 
the complex plane, is transformed by the mapping into the function 
2(arccos(x); p), which still has a complex conjugate pair of simple poles on 
the imaginary axis. 

The error for Chebyshev interpolation is a slowly varying factor 
p(x; N) muliplied by a rapidly oscillating factor; the only modification is 
that the "fast" factor is TN(X). This oscillates between 1 and - 1  just like 
cos(Nx), but TN(X) varies more rapidly near the end points x =  +1 than 
near the middle, whereas its Fourier counterpart, cos(Nx), oscillates with 
uniform frequency for all x. 

The change of variable (10.2) maps lines parallel to the real t axis into 
ellipses with foci at _+ 1 in the complex x plane. We noted earlier that in 
the Fourier case, shifting a singularity along a line parallel to the real axis 
has no significant efect on the rate of Fourier convergence; such shifts 
induce oscillations in the Fourier coefficients, but not in the rate at which 
the coefficients a, decrease as n ~ 0o. For Chebyshev series, the equivalent 
statement is that the rate at which coefficients decrease is independent of 
location along a particular ellipse, but does depend on the size of the 
ellipse. 
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Thus, for interpolation, the differences between the Fourier and 
Chebyshev cases are mostly matters of notation and interpretation. The 
concept of the envelope of the interpolation error is unchanged. 

The Fourier versus Chebyshev differences are considerably greater for 
differential equations, i.e., the theme of the preceding section. The reason is 
boundary conditions. When the cosines are the basis, the boundary condi- 
tion is periodicity, which is automatically satisfied by each basis function. 
When Chebyshev polynomials are used, the usual boundary conditions are 
Dirichlet conditions such as 

u ( - 1 ) = u ( 1 ) = 0  (10.3) 

We must either add rows to the pseudospectral matrix to explicitly impose 
these conditions, or modify the basis set. 

Nevertheless, much of the analysis of the Fourier pseudospectral 
method can be extended to the Chebyshev case if we adopt basis modifica- 
tion by writing 

uN(x)=_(1-x 2) ~ ajTj(x) (10.4) 
j=0  

SO that the approximate solution exactly satisfies the homogeneous bound- 
ary conditions (10.3). EWe can generalize to inhomogeneous boundary 
conditions by writing u(x) = v(x) + B(x), where B(x) satisfies the boundary 
conditions, and then using (10.4) to compute an approximation to v(x).] 
The advantage of choosing this form is that most of the Fourier multiple 
scales analysis carries over to the Chebyshev pseudospectral method, too. 

First, note that the pseudospectral method chooses the approximate 
spectral coefficients so that the residual of the differential equation is the 
interpolant of zero. This implies that the Chebyshev residual must have the 
form 

R(x; N) = p(x; N) TN(X) (10.5) 

where p(x; N) is the envelope. The "coefficient-pairing" approximation of 
Sec. 4 applies without modification; thus the residual can be written 

N 

R(x;N)'~ruTu(x)+ ~ rN+k[TN+k(x)+ TN--x(X)] (10.6) 

This implies that the Chebyshev coefficients of R(x; N) will have the upside 
down "v" shape of the Fourier coefficients of the residual: rj will be 
strongly peaked at j = N. 
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The complication is that whereas the second derivative of cos(jx) is 
proportional to cos(jx), the second derivative of a Chebyshev polynomial 
is messy. However, by using (10.1) and (10.2), it is easy to show that 

[(1 -- x 2) Tj]xx = _j2 cos(jt) - 3j cos(t) sin(jt)/sin(t) - 2 cos(jt) (10.7) 

_j2 cos(jt)[1 + O(1/j)] (10.8) 

which, using sin2(t)= (1 -x2) ,  is equivalent to 

[(1 - x2) Tj]xx --~ -jZTi(x)[1 + O(1/j)] (10.9) 

It follows from (10.9) that the rest of the multiple scales analysis 
applies just as for Fourier series. If the differential equation is 

Uxx + q(x)u = f ( x )  (10.10) 

then the e r r o r  RN(X ) satisfies precisely the same equation as its Fourier 
counterpart: 

EN, xx + q(X)EN = R(x; N) (8.5') 

Because the pseudospectral solution satisfies the boundary conditions 
exactly, the error at the boundaries is zero for all N. It follows that we can 
write 

EN(X)=--(1--x 2) ~ ejTj(x) (10.11) 
j=0 

Then one finds that the approximation (8.12) also holds: 

ej,,~ - r j N  2, j,,~ N (10.12) 

which in turn implies that 

EN(x ) ~ -R (x ) /N  2 as N ~  ~ (10.13) 

which is a restatement of (9.3). 
We omit a detailed (and boring) repetition of the rest of Secs. 8 and 

9 because it should be clear that the Chebyshev and Fourier analysis is 
very similar. In Boyd (1991), we extend the present analysis by deriving a 
convergent iteration based on the Chebyshev multiple scales analysis. 

11. SUMMARY 

In this work, we have derived explicit expressions for the interpolation 
error and also the error in pseudospectral solutions to differential 
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Table V, A Summary of Results 

(a) Basic definitions 

f ( x )  ~ function being interpolated -=_ ~o/2 + ~ ~j cos(jx) 
2 - t  

p(x; N) ==- envelope of interpolation error =-_ f(x_.___~) = Po/2 + ~ & cos(jx) 
cos(Nx) J= 

oe co 

Er(x; N) =- truncation error ==- f (x) - P Nf  - ~ e~ r~ cos(jx) -~ ~ a s cos(/x) 
)=~v j-N 

E,(x; N) =-interpolation error =- f ( x )  - Ix f =  Z e~ t~ cos(ix) + e(0~)/2 
. / - 1  

(b) Theorems 

1. eJr)=eyl=ej,  j > N  [EXACT] 

c~ 

2. ps = Z (--1)mai+(2m+t)'V' j = 0 ,  1 .... [EXACT] 
m = 0  

co 

3. If f ( x )  = 2(x; p) ~ 1 + 2 ~ pJ cos(jx), then the errors are [EXACT]: 
j = l  

E~= \ l  +p2N] COS(NX)2(x; p) and E r =  \ l - p Z J  

IX3 

If f ( x )  =/~(x; p ) -  2 ~ pJ sin(ix) then the errors are [EXACT] 
j=l 

E l =  ~ c o s ( x ) # ( x ; p )  Er  = 2PS+l{psin(Nx)-sin([N+l]x)}(l+S)-2pcos(x) 

4, NTA ("neg~ect-ogtriple-aliasing") approximation: 

pj=20~j ,Nq-O(o~j+3N) ,  j = O ,  1, ... 

5. Aliasing relations. Let the interpolation grid be 

x~-  7~2i -  1 )/(2N), i = 1, 2, K, N 

Then, letting the symbol ~ denote an equality that holds only at the points of the interpola- 
tion grid (and not for intermediate x), we have 

cos(kx+ 2Nmx) a= (_l)mcos(kx)  [k, mintegers] sin(kx+ 2Nmx) a= (_l)msin(kx)  

6. Low degree coefficients for E l 

zo 

~ m + l ( ~  -t-(X2Um+lc}, k = 0 ,  1 ..... N - I  [EXACT] e~ '~= Z ( - 1 ,  ~ , m  
m 1 

Table continued 
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Table V (Continued) 

7. Coefficient pairing (neglect-of-double-aliasing) approximation: 
N 

EI(x; N) = o~ N cos(Nx) + ~ ~N+j {cos[(N+ j ) x ]  + c o s [ ( X - j ) x ]  } + O(~:au+ 1) 
j - -1  

8. "Effective Lorentzian" approximation: 

p(x; N) ~ o: N ;o(x; Pro), where Peff ~ e~'(U)/:~(N) 

where the prime denotes the derivative of a(j) with respect to degree. The error is 
O ( e 9[~'(  2r ] ). 

9. Interpolation error for phase-shifted lorentzians. Let Px and p~ denote the envelope of 
the N-point interpolation error to the Lorentzian functions 2(x+~b;p) and #(x+~b;p) 
(defined in Theorem III]. In the NTA approximation, these are given with a relative error of 
O(p 2N) by 

px(x; p, N) cos(N~b) -sin(N%) 2(x+ ~; p) 
p~(x; p, N) = 2pN sin(N~b) cos(N~b) g(x + ~b; p) 

10. Interpolation error for the models ik(x; p) in the NTA approximation. Let the model 
functions be defined by 

2~(x; p)~-2 ~ jkpJcos(jx) 
j - - I  

Then we have 

El(x; N) ~ 2Nkp N cos(Nx) .~.(x; p) + ~ F(m + 1 ) F(k - m + 1 )N '~ 2m(X; p) 
t -  m ~ l  

where the series terminates at m = k if k is a positive integer. 

11. Relative magnitude of the differential equation residual and error. The error EN in the 
N-point collocation solution to a second-order differential equation is related to the residual 
function R as 

1 
m a x J E u l ~ s m a x l R ( x ; N ) f  as N--, ce 

equations.  For  simplicity, most  theorems are given in terms of Four ier  
series, but  as explained in Sec. 10, a lmost  all results apply with only trivial 
modificat ions to Chebyshev polynomials.  In  both cases, the in terpola t ion 
error takes the form of a rapidly varying factor, cos(Nx) or T N ( x ) ,  

mult ip lying a slowly varying factor or "envelope." 

Table  V is a summary  of theorems. Both exact and  approximate  

expressions for the error are given because the approximate  formulas are 
simpler and  easier to interpret  (at the expense of accuracy). 
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One striking conclusion is that for simple functions, i.e., those with a 
single dominant pair of complex conjugate singularities or a single peak, 
the Fourier/Chebyshev error is anything but uniform. Instead, the error 
envelope is sharply peaked about the point where f(x) is peaked or which 
is nearest the poles or branch points. 

Typically, the envelope can be approximated by a linear combination 
of the "Lorentzian" function 2(x + ~b; p) and the "serpentine" #(x + ~b; p) 
defined in Theorem 3 and illustrated in Figs. 2 and 3. The phase shift con- 
stant ~b shifts the peaks of the Lorentzian and serpentine so that 2(x + ~b;p) 
and #(x + ~b; p) are centered on the singularities of f(x) [or the crests and 
troughs of f(x) if it is an entire function]. The parameter p, which 
measures how sharply the error is peaked, depends on the type and 
strength of the singularities of f(x) and the distance of these poles or 
branch points from the expansion interval. 

Another striking conclusion is that the error in solving a second-order 
differential equation using the pseudospectral method with N collocation 
points is typically smaller than the residual R(x; N) by a factor of O(N2). 
[O(N 4) for a fourth-order equation.] [-We have to hide behind the weasel 
word "typically" because if one of the low-degree basis functions is close to 
being a zero-eigenvalue eigenmode of the differential equation, then the 
error could be dominated by that single component, invalidating (10.13).] 
Excluding this rare exception, checking a numerical solution by evaluating 
the residual is a very conservative check: R(x) may be O(1) even when the 
error EN~ O(1/N 2) ~ 1. 

Nevertheless, checking via R(x) is still a very valuable verification 
tool. Section 9 shows merely that this tool must be used carefully. 
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