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I. INTRODUCTION

The motion of solid bodies in rotating, inviscid and imcom-
pressible fluids was studied by Taylor,(8:9:10;11112:15) Proudman(lh)
and Grace,(2:5:u)5) who published several papers during the period
1915-26, Since then many other reseafchers have made contributions
to this field. In contrast, comparatively little work in this field
has taken the effects of viscosity into account, It seems desirable,
therefore, to investigate the motion of solid bodies in a rotating
viscous fluid. A logical beginning to such an investigation is a study
of the motion of a symmetrical body, such as a sphere, at low Reynolds
numbers, Proudman(lu) and Taylor(8:lo’ll> predicted by theory and later
Taylor(lg) confirmed by experiment that the slow motion of a sphere
along the axis of a rotating inviscid fluid is two dimensional. That
1s, the velocity components are independent of the coordinate z meas-
ured along the axis of rotation. Just what effect does viscosity have
on this motion? From a different point of view, what effect will rota-
tion have on the terminal velocity of a sphere in the Stokes range?
These questions have motivated this study,

The present work explores two types of motion of a sphere
encountered in a rotating viscous liquid when the Reymnolds number, based
on the translational velocity parallel to the axis of rotation, is less
than unity. These are (1) the slow steady rise of a sphere along the
axis of a uniformly rotating viscous fluid, and (2) the spiraling motion
of a sphere of greater density than that of the fluid, away from the

axis of a uniformly rotating viscous fluid,

-1-
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It has been found that viscosity acts to destroy the two-
dimensionality predicted by Taylor and Proudman for weak steady motion
of an inviscid fluid under rotation, and that the effect of rotation is
to reduce the speed of fall or rise of the sphere in the Stokes range.
Specific results are presented in Chapter V., It is hoped that the
systematic experimental results obtained will provide an initial step
toward solving certain problems encountered in industry, such as the
separation of solid foreign materials from a viscous liquid by means
of rotation, or the separation of wood fibers in a viscous suspension

from dirt particles by the same means.



IT. THE GOVERNING EQUATIONS FOR MOTION ALONG THE AXIS

A, The Differential System

The problem considered heré is the motion of a sphere along
the axis of an infinitely long cylinder which is filled with a viscous
liquid and rotating about its axis., It is convenient to use a cartesian
reference frame which rotates at the same angular speed w as the
cylinder and which has its origin at the center of the sphere., The
coordinates with respect to this frame are denoted by x, y, z, with
the z-axis coinciding with the axis of the cylinder. The coordinates
with respect to the inertial frame of reference with origin at the center

of the sphere are denoted by X, Y, and Z, as shown in Figure 1.

Figure 1. Reference Frames
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The components of the velocity of the fluid relative to the rotating
frame are denoted by wu, v, and w, At a time that the coordinates
X, ¥, and z. momentarily coincide with X, Y, and Z, the velocity

components in the inertial frame of reference are

U =u-aoy, (1)

V =7V +ox (2)
and

W=, (3)

For a flow which is independent of time, the choice of the origin of
time at which the rotating axis coincide with the inertial axis is
immaterial,

The differential system for the fluid medium to be satis-
fied between the boundaries are the Navier-Stokes equations along
with the continuity equation. Substitution of (1), (2), and (3)

into these equations gives(6)

Du 1 dp 2
E—va-w2x=-——a—+FX+vV u, (L)
]ﬂ+2mu-w2y=-;—ap+F + vVl (5)
Dt : poy ¥ g

De 1B, p 4yu2y (6)
Dt = " p oz 2 )



where
D 3, 2 -
ST TR P S P
2 2 2
ST oS-
dx2  Jy?  dz2
Fy, Fy’ and F_ are the body forces 'per unit mass in the
X, 'y, and z directions respectively,
v = kinematic viscosity of the fluid,
and
p = mass density of the fluid.

%E now represents the change with respect to time relative to the
rotating reference frame when x, y, and z are constant,

The size and density of the sphere and the viscosity and den-
sity of the liquid may all be chosen such that the translational velocity
(Ww) of the sphere along the z-axis will be small. It is assumed here
that the Reynolds number based on W, and the sphere diameter, d, is
less than unity, Hence u, v, and w are small compared with v/d for
all values of . Further, we consider here only the motion after terminal
velocity of the sphere has been reached. The experiments show that the
sphere reaches a terminal velocity rapidly. The unsteady flow problem may
now be looked upon as a steady-flow problem by considering the center of

the sphere as fixed, with a uniform velocity equal and opposite to W,

superposed on the rotating liquid and cylinder., With these assumptions,
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one can neglect the substantial derivatives of the velocity components

in Equations (4), (5), and (6). The only body force present in this

treatment is that due to gravity. Therefore, if

pd_=p-ps)

in which P is the hydrostatic part of the pressure and if

Pd _ 0 (x2 + y2), 8)

P-4
o2

the differential system (4) through (7) reduces to

—va=-a—P+vV2u, (9)

ox
2wy = - E+vv2v, (10)

oy
0=-L,yv2, (11)

dz

and

.a_u.{-_al’..;..aﬂ:'o, (7)

ox Jy 0z

This linear system of partial differential equations along with the
appropriate boundary conditions constitute the boundary value problem
which governs the flow of fluid between the boundaries of the sphere
and the cylinder. Once u, v, w and P are determined, the pressure
and shear drag on the sphere surface may be obtained by integration,
It is not always possible to decide whether the velocities

(7)

associated with a particular type of flow will or will not be small;
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therefore, should the results of the problem formulated here not conform
with the experimental results given in Chapter 5, the assumption of slow
motion is invalid,
Cross differentiation and addition of (9), (10) and (11) along

with the use of (7) gives

V2P =20 ( v _ Y =o2wt (12)

ox  Jy

where { represents the component of the vorticity vector in the
z-direction, Cross differentiation and subtraction of (9) and (10) along

with the use of (7) gives

vv2§=-2w@. (13)
oz

The combination of (11), (12) and (13) gives the following equation to

be solved

2

ywevey e

) ng
—5 =0 (14)
dz

w + Lo

B, Effect of the Coriolis Terms

It is worthwhile here to point out the similarities of the
present problem for the special case of a cylinder with infinite radius
to the classical problem solved by Stokes for the slow motion of a sphere
in a non-rotating infinite fluid. However, this problem should not be
labeled '"Strokes flow in a rotating fluid" until the assumed slow motion

is verified with the experimental results herein. If the Coriolis
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acceleration components, -2wv and 2wu, are neglected in equations
(9) and (10), the system reduces to a set of equations quite similar to
those of Stokes with the only differences being that p in the Stokes
problem is now replaced by P and the velocity components here are
relative velocities whereas they represent absolute values in the Stokes
problem, Integration of the resulting pressure and shear stresses over
the surface of the sphere gives results identical to Stokes' for the
pressure drag and shear drag. Thus it is the effect of the Coriolis
acceleration that leads to a drag on the sphere greater than the Stokes

drag.

C. Boundary Conditions

On the wall of the cylinder containing the fluid, the no-slip

condition requires that

for Yx° + 32 =D/2 and all z, (15)

uw=v=0and w = Wb

in which D 1is the diameter of the cylinder, and W, 1is the velocity
superposed on the liquid and the cylinder and is equal in magnitude to
the terminal velocity of the sphere.

The boundary conditions far away from the sphere are

u=v=0,w=W and p, = l/2(b2 o(x2 + 7°)

+ o and Vx® + y° <D/2 .,

(16)

H
(e}
=
N
1]
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There still remains to specify the boundary conditions on the
sphere surface. The angular rotation of the sphere is governed by
Euler's equation of motion for a rigid body. Euler's equation shows
that the angular acceleration of the sphere must be zero for the torque
on the sphere to be zero. Thus, the sphere rotates at a constant
angular velocity. It has been verified experimentally by the writer
that for W, in the Stokes range (W, < 0.0352 ft/sec for the experiments
herein) the sphere rotates at the same angular velocity as the cylinder,
This was accomplished by means of a Strobotac light, The light was first
synchronized on two reference marks 180 degrees apart on the rotating
cylinder then checked for synchronization on two reference marks 180
degrees apart on the sphere., This was done for angular speeds from

60 to 400 rpm. Thus, the boundary conditions at the sphere surface are
w=v=w=0 for Vx4 y2 + 28 = /2 =a , (17)

where a and d are the sphere radius and diameter respectively.
However, this is true only for very low values of WD , and at any rate
one should not have to rely upon this experimental fact in the mathemati-
cal formulation of the problem., The speed of rotation of the sphere is

determined by the condition that the torque on it should be zero.



III. DIMENSIONAL ANALYSIS

A, Motion Along the Axis

The dependent variable and the variable to be measured experi-

mentally is the terminal velocity of the sphere along the axis of

rotation, i.e., W, . The functional equation is
W, = £(d, D, w, 7p = 7gs M pz) , (18)

where 7y represents specific weight, p the viscosity and the subscripts
£ and s refer to liquid and sphere respectively. The other variables
have the same meaning as in the previous chapter. The diameters of the
sphere and cylinder represent the geometry, 1 is proportional to
the driving force on the sphere, u represents the viscous force, °,

is included because of the Coriolis acceleration of the fluid particles
and @ is an independent variable which determines the magnitude of this
acceleration,

Equation (18) can now be reduced by arranging the seven perti-
nent variables into four non-dimensional ratios (n - terms) according to
the Buckingham x - theorem, There are several sets of = - terms in
which the variables in Equation (18) may be arranged but it is desired
here to have W/ and w appear in the first power in only one =n - term

each so that the data can be advantageously presented. Using d,

yﬁ -7 and yp as repeating variables gives
Ww 9 W U
. =—(—— ), n =% (——), n,=d/D and
17 a2 yg-ys 2 Gy g /
3
(7£—7s) d
T, = —"" _E, (19)

b Py v

-10-
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for the four x - terms., Equation (18) now reduces to

(rp - 7)) T W n Yo -7 3
Wy = g2 L5 f[ a/p, - ( ), (28 & } , (20)
o d 72_75 pﬂ ve

Equation (20) furnishes the guide for experimentation, For a particular

sphere, cylinder and liquid, =, and 1), are constant if the temperature

3

is held constant, “g can be controlled by controlling the angular speed
of the cylinder and 1, can then be measured., The results can then be

presented in two-dimensional plots as shown in Figure 2,

B. Motion Out From the Axis

The dependent variable chosen for this motion is the distance
(L) measured along the axis of rotation that the sphere moves while at
the same time moving a radial distance of D/EO The sphere is heavier
than the liquid for this type of motion and the motion is initiated by
releasing the sphere at the axis of rotation on the free surface. It is

assumed that the path of motion of the sphere will lie on the surface of

1}

a cone whose axis is the axis of rotation and whose cone angle is B

o cor-L 2 I/D . The angle between the cone and the horizontal is ©

TAN"L 2 L/D . The scheme is shown in Figure 3,

The functional equation is

L=15(a,D, 7, -7, @ 1, p,, 0,) - (21)

The density of the sphere is included in this motion because the sphere

also undergoes acceleration.
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Here again the functional equation is reduced by means of the

Buckingham 5 - theorem, Using d, Ye =7y and p as repeating vari-
ables, the non-dimensional ratios become
2L g T2, 7028 | an [77 )02 (22)
d PPl d Vg -y 1D | _lﬁ_ -7 |
Y P : 1)
For more meaningful ratios, L/d is changed to 2L/D (D/2 is also a

pertinent length) and the ratio of the last two x - terms is used in

place of the last one in (22), i.e., ps/pﬂ . We now define
* ¥ _0 By ¥ x_(ys - 7y) &
. =2L/D, n. == ), x. =d/D, n, = /8 " 74} & | and
1 /52 d(7s“7z’3 /91,_ ") V2)
2
% _ps (23)
- T
Yy

which are the pertinent dimensionless parameters for experimental purposes.
Equation (21) now reduces to

_D ® B a (75 - Vz) dB Ps | )
L—gf{a(ys_nhﬁy—i—————gga—— o (24)

Note that for a particular sphere, a particular cylinder and a particular
liquid, ﬁ; P ﬂﬁ and n; are constants if the temperature is held con-
stant, n; can be controlled by controlling the angular speed of the
cylinder and ni can be observed experimentally, The results can then

be shown graphically as in Figure 4.



IV, EXPERIMENTAL EQUIPMENT AND PROCEDURE

A, Apparatus

The apparatus consists mainly of a clear plastic cylinder 30
inches long with a 5-inch inside diameter filled with castor oil and
mounted on an adjustable-speed turn-table as shown in Figure 5., The
turn-table is driven by a Servo-Tek adjustable speed drive., This drive
consists mainly of a 3/h horsepower series motor which is supplied a
controlled current by means of a thyrotron rectifier and feedback
arrangement, Changes in load of as much as 50% or a change in supply
voltage of %10 volts results in a speed change of less than 1/2 of l%
of the rated speed of the motor.*

The speed of rotation is determined by use of an electronic
counter, produced by the Hewlett Packard Company, and a magnetic trans-
ducer., The transducer is mounted close to a steel gear which turns
with the cylinder. The gear teeth actuate the transducer which in turn

supplies the electronic counter with an input signal.

B, Selection of Fluid and Spheres

Castor oil was found to be the most desirable for these experi-
ments because its viscosity is high and its change of viscosity with
temperature is relatively large in comparison with other common oils and
liquids, The high change in viscosity_with temperature made it easier

to vary the viscosity. Also, its chemical and physical characteristics

* Servo-Tek Adjustable-Speed Drives, catalog 11058.

-15-
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do not change appreciably with age if it is kept under normal indoor
storage conditions. The variation of the physical properties with
temperature for the U.S.P. grade castor oil used is shown in Appendix
A, Figure 18.%

For observation of motion along the axis, it was necessary
to use spheres which are slightly less dense than the castor oil so
that they would remain on the axis and the motion along the axis would
be small enough for the Reynblds number to be less than unity., Poly-
ethylene spheres (S.G. = 0.91 to 0.925) were found satisfactory for
this purpose.

For observation of motion out from the axis, it was necessary
to use spheres slightly more dense than the castor oil. Nylon spheres
(8.G. = 1.14) were found satisfactory for this experiment and yielded
a Reynolds number based on the translational velocity parallel to the

axis of rotation of less than unity.

C. Method For Observing Motion Along the Axis

Since the polyethylene spheres were less dense than the castor
0il, they rose along the axis of rotation. The sphere was first pushed
to the bottom center of the cylinder with a piano-wire rod., The cylinder
of liquid was then set into rotation at the desired speed and a few
seconds were allowed for the castor oil to attain solid body rotation.

The piano-wire rod was then pulled out setting the sphere free to move

* This information was kindly supplied to the writer by the manufacturer,
The Baker Castor 0il Company.
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along the axis. By the time the sphere reached the test section, the
disturbance created by the piano-wire rod had decayed and the sphere
moved at essentially the terminal speed. The test section was one half
foot long and was located in the ceﬁtral portion of the cylinder in
order to minimize end effects. Since the motion was very slow, the
time for the sphere to travel one half foot along the axis was easily
measured with a stop-watch. Data could also be taken directly above
and below the main test section to verify that the sphere was not
accelerating.

Starting the cylinder from rest to the desired speed of
rotation created shear stresses in the liquid until it reached a solid
body rotation. Shear stresses were again created while bringing the
liquid back to rest after the data were taken for a particular value
of ®w . These shear stresses created small amounts of heat which
affected the viscosity to some degree. Consequently, it was desirable
to measure the viscosity between each data point taken. This was done
when the liquid was quiescent by checking the rise velocity WO of
the same sphere being used for the experiment and by using the well

known Stokes relation for an infinite fluid

g - %) (25)

18 W,

along with the Francis equation(l) for wall effect correction

Wo 1-4d/D b ,
W = { 1 - 0.475 d/D} , (4/D <0.9) . (26)
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The non-dimensional ratios involving viscosity are then

Wy { 1 -d/D }4 , (27

" T18W |1 - 0.475 a/p
od 1 -4/D L
T2 T 18w, {1 - 0.475 d/D} ’ (28)
and
2 8 |
L (18W,) {1 - 0.475 d/D} ., (29)
dg (1- 18) 1-4/p
7

D, Method for Observing Motion Out from the Axis

The motion of the nylon spheres was composed of a downward,
radial and rotational component since the density of the spheres used
for this experiment was greater than that of the liquid. A sphere was
released on the axis of rotation at the free surface after the cylinder
of liquid was in solid-body rotation at the desired speed. A mark was
placed on the cylinder wall where the sphere was released and also where
it first touched the cylinder. The distance between these marks was
the distance L shown in Figure 3., A scale was also placed along fhe
bottom of the cylinder for the purpose of measuring radial distances
less than D/2 since for small rotations the sphere traversed the entire
length of the cylinder before it traveled a radial distance of D/2°

The length L could then be determined by extrapolation,



V. RESULTS

A, Motion Along the Axis

Figures 6 through 13 represent the data in the form suggested
in Figure 2(a), for eight spheres ranging in size from 1/4 inch to 1-1/8
inch in diameter. Figures 6(a) through 13(a) show the corresponding
data in Figures 6 through 13 plotted to a log-log scale. The range of
o for each sphere is from O to L, The data for each sphere are shown
in a plot of Ty Versus 1y for three constant values of T, . ),
was varied by varying the temperature of the castor oil.

Figure 14 represents the data in the form suggested in Figure

2(b), for eight values of xn, when nu/d3 was held approximately

3
constant. The relations given in the Appendix (page 50) for 1y, and py ,

with a quadratic approximation for the data given for p in the Appendix

(Figure 18), give

1, _ (3.739 - 2.289 x 102 T)(1.911 - 7.113 x 107k T)

- = b

a3 (160,494 x 1070 T - 308.609 x 1072 T + 15,602,183 x 1077)°

(30)
(68°F < T < 86°F),

where T represents the temperature in degrees Fahrenheit. Equation (30)
shows that “M/d3 is a function of temperature only. The oil temperature,
which depended upon the ambient temperature of the laboratory at the time

of a test, variéd from a minimum of 70.25°F for gn, = 0.125 to a maximum

3

of 71.5°F for the values of =x, of 0.225, 0.200 and 0,100, with the

3

average temperature for the eight values of ﬂ3 being T71.3°F, Hence

-20=-
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nh/d3 was held approximately constant, as stated earlier. The value of
), for each separate run shown in Figure 14 may be found on the corres-
ponding curve in Figures 6 through 13 which represent the same data.

WD was determined by‘measuring the time for the sphere to
travel one half foot along the axis of rotation. This was done for two
adjacent test sections in order to verify that the sphere was not
accelerating and also as an experimental check. For the seven spheres
ranging in size from_3/8 to 9/8 inch diameter, the difference in measured
time for the two adjacent test sections was less than 2.5% of the total
time for all tests. For the 1/4 inch diameter sphere this difference was
less than 8,5%.

There are three curves for each sphere for a total of twenty
four runs represented in Figures 6 through 13. In thirteen of these runs
the viscosity (based on Wo ) decrease from beginning of the run to the
end was less than 5%, less than 10% in eight of the runs and less than
15% in three of the runs. This change in viscosity was due to small
amounts of heat created by the shear stresses during the periods of start-
ing and stopping the rotation of the fluid. An average viscosity was used
for each run to calculate ﬂu, ™), was also calculated by use of the data
in the Appendix (Figure 18) and the mean measured temperature for the run,
For twenty two runs, the difference was less than 5% and less than 7.5%
for the two additional runs.

The maximum Reynolds number based on W, , was less than 0.1

for the 3/8 and 1/4 inch diameter spheres and less than 0.7 for all the

larger spheres.
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The run for d=5/8 inch and T=75°F was chosen at random for

a repeatability check. The data acquired from both runs lie on the same

curve as shown in Figure 9.

B, Motion Out from the Axis

Figure 15 is a plot in the form suggested in Figure L4 of ni
versus né for four values of ﬂ§ with nz/d3 and n; held approxi-

mately constant. The diameters of the four spheres are 1/2, 3/8, 1/k
and 3/16 inch,

Figure 16 represents the data for two spheres with the same
diameter (3/8 inch) but with different densities. The lighter sphere
is nylon (S.G. = 1.14) and the heavier one is a hollow metal sphere with
a specific gravity of 2.84. In this case n§ and ﬂﬁ/ys - 7y 1is con-
stant for two different values of ﬂg .

Figure 17 shows the data in Figure 15 and 16 plotted to a log-

log scale.
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VI. DISCUSSION OF RESULTS

A, Motion Along the Axis

The plots of the data shown in Figures 6 through 1l verify
Equation (20) which was derived by dimensional analysis, The log-log
plots shown in Figures 6(a) through 13(a) suggests that for higher

values of o) the data is of the form
1 = Clrg)® (31)

where C an n depend upon 3 and n) .

For the special case of a cylinder With:infinite radius,
Equation (20) holds if 3 = d/D is deleted. To discuss this special
case, we look at Figure 6 which represents the data with the smallest
amount of wall effect assuming that the wall effect is a function of
geometry only (;9 = 0.895 here for Stokes Flow). The velocity is only

00

slightly decreased by rotation for w <1 . This is as expected since
the Coriolis acceleration is very small and the problem is little
different from th¢ Stokes problem, Taylor<15> found that a spheré
traveling slowly along the axis of a rotéting inviscid fluid will push
a cylindrical column of fluid along in front and behind it of the same
diameter as the sphere. The data here show that the velocity decreases
from the Stokes velocity, as  is increased, more rapidly as the
rotating 1liquid becomes less viscous. This suggests that as the visco-
sity of the liquid is decreased the amount of liquid affected or moved

along with the sphere is increased with the limiting case being a cylin-

drical column as first found by Taylor. The writer

~43-
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performed an experiment with a slowly moving sphere (WS%OGOM ft/sec.,
®A150 rpm.) in rotating water and, with the use of potassium perman-
ganate as a dye, observed the column of fluid that the sphere pushed
along. The Reynolds number for this experiment was approximately 300.

A similar experiment with castor oil is difficult. The writer, however,
by injecting a mixture of castor oil and linseed oil, which had been
dyed black, along the axis of rotation, did observe that some fluid near
the sphere was pushed along with the sphere but the results were incon-

clusive as to the amount and shape of this fluid.

B. Motion Out from the Axis

The data represented in Figure 15 indicates that as ﬂ; decreases
beyond a certain value 6 1is almost 90 degrees. ILet the value of the
angular velocity associated with the nz at which the angle @ appears
to approach 90 degrees represent a critical value of angular rotation
(mcl) below which the motion of a given sphere in a given liquid will
for all practical purposes remain stable along the axis of rotation. The
data here indiqates that ®ug increases as the sphere size increases,

The method of taking data for this experiment becomes inherently
less accurate as Ki approaches zero, Very little data were obtained for
ni <1l. Also, the values of L > 28 inches were found by extrapolation,

Let the angular velocity at which the angle © approaches 45

degrees (L=2.5 inches) be arbitrarily defined as the upper critical value

(w.,). The four runs shown in Figure 15 represents data for four sizes
c2
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of nylon spheres in castor oil. The average temperature, density and
viscosity for the four runs is T4°F, 1.86 slugs/ft3 and 0.0154% 1b sec/ftg.

The approximate values of W, and oo in rad/sec are

@y X 3

} for d = 3/16 inch,
Wap A 13
®uq ~ 3.7

for 4 = 1/b inch,
® .5 ~ 20
(32)
®,q ~ 3.8
, for d = 3/8 inch,
Weo ~ 23
and

®.q A

} for d = 1/2 inch,
® .5 A

The data plotted in Figure 16 are for two 3/8-inch diameter
spheres of different density. One was a hollow metal sphere (s.a. =‘2°8h)
and the other was nylon (S.G. = 1.14). The effect of increasing the den-
sity of a sphere while keeping its size constant is to decrease ®.q and.
increase oo The approximate values of w.; and ch for the metal

sphere are

W,y X 1.2
} for d = 3/8 inch, (33)
Wop N 34

and the values for the nylon sphere are given in (35).
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The log-log plots in Figure 17 of all the data taken suggests

that the data is of the form
*
n, =A ()", (34)

where n depends on n; (n = 3.898 for the nylon spheres and n = 2,22k

*

3

for the hollow metal sphere) and A depends on =« and “Z .
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VII, CONCLUSIONS

The following conclusions can be drawn for motion along the

2)

%)

If the sphere is less dense than the liquid and is re-
leased on the axis of rotation, the free motion will
remain along the axis of rotation,

The sphere rotates at very much the same angular

velocity as the cylinder,

The velocity of the sphere in a liquid with constant
temperature decreases from the Stokes velocity as the
angular rotation is increased, Specific results are

given in Figures 6 through 1k,

The rate of decrease of velocity, as the angular rota-
tion is increased, increases as the viscosity of the
liquid medium is decreased. Thus, the effect of viscosity
is to decrease the amount of fluid affected or moved along
with the sphere.

From the equations of motion, it is concluded that it is
the effect of the Coriolis acceleration that leads to a
terminal velocity less than the Stokes velocity for the
sphere provided that the assumed slow motion is valid.

The velocity of the sphere along the axis is given by

2 5
_d5(y-ys) @ u d 24-7sy &2

The function is given graphically in Figures 6 through 1k,

=b47-
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The following conclusions can be drawn for the motion out

from the axis:

1) There exists a critical value of angular rotation (w,q)
below which the motion of a given sphere in a given
liquid will remain stable, for the length of the column
used at least, along the axis of rotation. The data
indicate that the value of w, increases as the sphere
size is increased.

2) The value of angular velocity (w,,) at which the angle
@ approaches the arbitrarily chosen value of n/h in-
creases as the size of sphere is increased.

3) The effect of increasing the density of a sphere while
keeping its size constant is to decrease .7 and in-
crease W, -

L) The angle © is given by

Lty & zs=yy & ps »‘
Ten 6 = 520, 5 (5755 520 55 (24)
The data herein suggests that Equation (24) is of the form
. (PSs
G(57)
& yseys &3 o2’
Tan 6 = B(E, 2220 Ly oty (34)

D’ oL v 'd‘ys=vd

Specific results are given in Figures 15, 16, and 17.



VIII. SUGGESTIONS FOR FUTURE WORK

Future work should be devoted to obtaining a solution to the
differential system for motion along the axis; first, for the special
case of an infinite fluid and secondly, for the case of a finite cylin-
der. Once the solution for an infinite medium is accomplished, an ex-
perimental wall effect can be obtained by use of the experimental data
herein. The experimental results in this thesis can also be used to
guide the theoretical solution for the case of a finite cylinder. Once
this is accomplished, a theoretical wall effect can be derived and com-
pared to the experimental wall effect.

The experimental work should next be carried out for a sphere
at intermediate and high Reynolds numbers. Then, the experiments could
include other shapes of bodies of revolution, such as the ellipsoid and
cylinder, for all three ranges of Reynolds numbers.

Tt would also be interesting to extend the experiments of

motion out from the axis to higher Reynolds numbers and to other shapes.
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APPENDIX

TABLE OF EQUATIONS OF THE PHYSICAL PROPERTIES OF
CASTOR OIL AS A FUNCTION OF TEMPERATURE

The coefficient of expansion of castor oil in terms of density

is 0.00066.
o =0.9849 - 3.667 107* T gn/erd
o =1.9107 - 7.113 107 T slug/st,
y = 61.U875 - 2.2801 1072 T 1b/ft0 ,
where T = °F.
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