
Discrete Event Dynamic Systems: Theory and Applications 3, (1993): 71-100
�9 1993 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Recursive Computation of Limited Lookahead
Supervisory Controls for Discrete Event Systems*

SHENG-LUEN CHUNG AND STI~PHANE LAFORTUNE
Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, M148109-2122

FENG LIN
Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI 48202

Received March 31, 1992; Revised November 23, 1992

Abstract. We continue the study of limited lookahead policies in supervisory control of discrete event systems
undertaken in a previous paper. On-line control of discrete event systems using limited lookahead policies requires,
after the execution of each event, the calculation of the supremal controllable sublanguage of a given language
with respect to another larger language. These two languages are finite and represented by their tree generators,
where one tree is a subtree of the other. These trees change dynamically from step to step, where one step is
the execution of one event by the system. We show in this paper how to perform this calculation in a recursive
manner, in the sense that the calculation for a new pair of trees can make use of the calculation for the preceding
pair, thus substantially reducing the amount of computation that has to be done on-line. In order to make such
a recursive procedure possible from step to step, we show how the calculation for a single step (i.e., for a given
pair of trees) can itself be performed recursively by means of a backward dynamic programming algorithm on
the vertices of the larger tree. These two nested recursive procedures are also extended to the limited lookahead
version of the "supervisory control problem with tolerance."

Key Words: supervisory control, limited lookahead policies, dynamic programming

1. Introduction

In a recent paper [Chung et al. 1992a], we in t roduced a superv isory control scheme for

discrete event systems based on " l imi ted lookahead control p o l i c i e s " Instead o f attempting

to calculate off- l ine the comple te control policy for the entire set o f possible behaviors of

the discrete event system under control , the strategy with l imited lookahead pol icies (LLPs)

is to calculate on- l ine the next control act ion on the basis of an N-step ahead project ion

o f the behavior o f the system (represented as an N-level tree). This p rocedure is repeated

after the execut ion of each event. This approach is motivated by the fact that i f the discrete

event system is complex and has a large number o f states, or i f it is t ime-varying, then

it may be diff icul t i f not impossible to bui ld the automaton models of the system and of

the legal behavior that are necessary for the calculat ion o f the comple te control policy.

In essence, the computational complexity is broken from one off-line problem into the repeti-

t ive solution of s imilar but smal ler p rob lems on-line. The precise formulat ion and the op-

t imali ty proper t ies of this " L L P s c h e m e " can be found in Chung et al. [1992a].

*Research supported in part by the National Science Foundation under grants ECS-9057967 and ECS-9008947.
The first two authors also acknowledge support from GE and DEC.

72 S.-L. CHUNG, S. LAFORTUNE AND E LIN

In this paper, we continue our study of the LLP scheme and focus our attention on the
on-line calculation of the control actions. In the case of the standard supervisory control
problem, namely that of maintaining the behavior of the system inside the legal language
with minimally restrictive controls (cf. Ramadge and Wonham [1987] and Wonham and
Ramadge [1987]), the LLP scheme requires, after the execution of each event, the calcula-
tion of the supremal controllable sublanguage of a given (not necessarily closed) language
with respect to another larger closed language. These two languages are finite and repre-
sented by their tree generators, where one tree is a subtree of the other. These trees change
dynamically from step to step, where one step is the execution of one event by the system.
The main contribution of this paper is to show how to perform this calculation in a recur-
sive manner, in the sense that the calculation for a new pair of trees can make use of the
calculation for the preceding pair, thus substantially reducing the amount of computation
that has to be done on-line.

In order to make such a recursive procedure possible from step to step, we show how
the calculation for a single step (i.e., for a given pair of trees) can itself be performed
recursively by means of a backward dynamic programming algorithm on the vertices of
the larger tree. For this purpose, we first "reformulate" in Section 2 the problem of finding
the supremal controllable sublanguage as an optimal control problem with a 0/ao cost struc-
ture. The purpose of this reformulation is to associate the supremal controllable sublanguage
with the least-restrictive optimal policies that solve the optimal control problem. We then
show in Section 3 how standard dynamic programming techniques can be applied to recur-
sively calculate least-restrictive optimal policies when the languages of interest are finite
and represented by their tree generators. The special feature of this dynamic programming
problem is that the cost function must account for the fact that the languages of interest
need not be closed. We also prove in Section 3 several properties of the dynamic program-
ming solution that constitute the basis of the recursive (step-to-step) procedure that we pro-
pose in Section 4 for the calculation of the control actions in the LLP scheme. These two
nested recursive procedures are also extended in Section 4 to include the limited lookahead
version of the "supervisory control problem with tolerance" of Lafortune and Lin [1991],
where the calculation of the control action at each step involves additional operations.

2. Optimal Control Formulation of the Supremal Controllable Sublanguage

We first formulate the problem of finding the supremal controllable sublanguage of a given
language as an optimal control problem with a 0/oo cost structure. In this context, we will
show that the closed-loop behavior supervised by the least-restrictive optimal policies that
solve the optimal control problem corresponds to the supremal controllable sublanguage.
Kumar and Garg [1991] also investigated the issue of formulating a class of supervisory
control problems as optimal control problems; they considered constraints that are repre-
sented by closed languages and solved these problems using network flow techniques. In
contrast, our formulation does not require the constraint to be represented by a closed lan-
guage. Furthermore, we use dynamic programming to solve the associated optimal control
problems, as described in Section 3. (The more general issue of optimally controlling a
discrete event system under a cost structure not restricted to 0/oo has been addressed in

RECURSIVE COMPUTATION OF LIMITED LOOKAHEAD SUPERVISORY CONTROLS 73

several references, among them Passino and Antsaklis [1989], Brave and Heymann [1990],
and Sengupta and Lafortune [1992].)

Given the closed language L(P) __q ~* generated by a discrete event process P with event
set E, define a control policy g as

g: L(P) ~ 2 ~ (1)

such that (Vs (L(P))g(s) c_ ~L(e)(s), where ~,t(e)(s) = {tr E ~,: str E L(P)} is the active
set of L(P) at s. Let g be the set of all control policies for L(P). The resultant language
when P is controlled by g is denoted as L(P, g) and is defined as follows:

the empty trace e E L(P, g),

(Vs E L(P, g))sa E L(P, g) r tr E g(s).

Let Lm(P) c L(P) be the language marked by P and consider the language L c Lm(P)
representing the "legal" behavior; i.e., L is the language whose supremal controllable sub-
language we wish to calculate. The supremal controllable operation, which is denoted by
the superscript 1", is with respect to L(P) and to Eu c ~, the set of uncontrollable events.
As usual, we define

Lm(P, g) := L(P, g) f~ Lm(P).

Observe that we do not require that Lm(P) = L(P).
The control cost associated with policy g and with respect to L is

J(g) = Z c(s, g(s)),
sEL(P, g)

where

c (s , g (s)) = ~ 0
if s ~ L(P) - s A E, tq Et(p)(s) ~ g(s)

A (s E ([, -- L) ~ g(s) ~0),
otherwise.

We define

J* := inf J(g).
gE~

DEFINITION 2.1. (i) A control policy g is optimal if J(g) = 0.
(ii) A control policy g is least-restrictive optimal if

J(g) = 0 and (u E g)J(g') = 0 ~ L(P, g') c L(P, g).

74 S.-L. CHUNG, S. LAFORTUNE AND E LIN

Therefore, all least-restrictive optimal policies generate the same language. We show
in this section that L t is the language generated by least-restrictive optimal policies (cf.
Corollary 2.2). We also show that L t ~ 0 is a sufficient condition to guarantee the exis-
tence of a least-restrictive optimal policy (cf. Theorem 2.1).

Before introducing the necessary assumptions about L and L,n(P), we first recall the defi-
nition of livelock-free languages from Lafortune and Lin [1991].

DEFINITION 2.2. A language L c r~* is said to be livelock-free if

(u fi /~)(3n fi IN)(Vt E r.*)ltl _> n A st E [- = (3u ~ r,*)(s <_ u < s t A u ~ L),

where IN is the set of natural numbers, It[is the length of t, and s _ u denotes that s
is a prefix of u.

If a language L is regular, then it will be livelock-free if and only if each directed cycle
in the directed graph representation of any finite-state generator of L touches at least one
marked state.

ASSUMPTION 2.1. (i) L = /~ n L,n(P), and (ii) Lm(P) is livelock-free.

The following result will be used in subsequent proofs.

LEMMA 2.1. Let L(P, g) ~ f,. Then L(P, g) n (L - L) = L(P, g) - L,,,(P, g).

Proof.

L(P, g) O ([, - L) = L(P, g) N f_, O L c

= L(P, g) O [, O (s O Lm(P)) c

= L(P, g) n /, n [(L) c U Lm(P) c]

= L(P, g) n L n L,n(P) C [by f~ n (L)C = 0]

= L(P, g) O Lm(P) C [by hypothesis L(P, g) c_ s

[by L = /~ O L,n(P)]

= L(P, g) - Lm(P) = L(P, g) - (L(P, g) n Lm(P))

= L(P, g) - Lm(P , g).
Q.E.D.

The next lemma shows that a control policy g is optimal if and only if the associated
closed-loop behavior (i) does not violate the legal constraint L(P, g) c L, (ii) is controllable
(i.e., g does not disable uncontrollable events), and (iii) is nonblocking.

RECURSIVE COMPUTATION OF LIMITED LOOKAHEAD SUPERVISORY CONTROLS 75

LEMMA 2.2.

(~ L(P, s) -- s ^
J(g) = 0 ~, ~ L(P, g)t L(P, g) A

Proof. From the definition of J(g),

J(g) = 0 ~* (u ~ L(P, g))c(s, g(s)) = 0

~ s ~ L(P) - f, A
r (u ~ L(P, g)) ~ ~u (7 fft(p)(s) C_ g(s) A

~._(s ~ (L - L) ~ g(s) r 0).

We now prove each direction of the lemma.
(=)

(u ~ L(P, g))s ~ L(P) - { A Zu [7 r~L(e) c g(s) A (s E (s -- L) = g(s) r 0) (2)

implies

(i) L(P, g) c [~ (immediately),
(ii) L(P, g) = L(P, g)r (by definition of controllability),
(iii) L(P, g) = Lm(P , g), as shown below.

1. L,,(P, g) c_ L(P, g) by definition.
2. L(P, g) c Lm(P, g) by a proof by contradiction.

Otherwise, suppose (3s E r.*)s ~ L(P, g) and s ~ Lm(P, g). We now show by induc-
tion on n that

(Yn fi IN)(3t fi r~*)(Itl = n A {s}{t} c_ L(P, g) - Lm(P , g)). (3)

Induction base. Take n = 0. Because s E L(P, g) A s ~ Lm(P, g) = s ~ L(P, g) -
Lm(P , g). Thus we have that

(3t ~ c*)(It l = 0 A { s } { t } _c L(P, g) - Zm(P, g)).

Induction hypothesis. Assume that for n = k, we have

(3t fi r~*)(Itl = k A { s } { t } ___ L(P, g) - Lm(P, g)).

Induction step. We must show that for n = k + 1

(3t fi ~*)(Itl = k + 1 A { s l { t } c_ L(P, g) - Zm(e, g)).

76 S.-L. CHUNG, S. LAFORTUNE AND E LIN

By the induction hypothesis,

(3t = a l e 2 . . . a k E H*){s}{t} c_ L(P, g) - Lm(P, g).

By (i), L(P, g) c_ {, c_ Lm(P) ' so s ' := scq a2 . . . ok E Lm(P). Also, s ' E L(P, g) -
Lm(P,_g) = s ' E L(P, g) - Lm(P, g). Then, by Lemma 2.1, s ' E L(P, g) CI (L - L). Since
s ' E L - L, g(s ') # 0 by Equation (2). As such, (3ak+l E L-')s'ak+l E L(P, g). On the
other hand, s ' f~ Lm(P, g) ~ s ' ak+l r Lm(P, g). Therefore, s 'ak+l = solo2 . . �9 okak+l E
L(P, g) - Lm(P, g), which, together with the induction hypothesis, implies that

(3t E x*)(ltl = k + 1 A {s}{t} G L(P, g) - Lm(P, g)).

This completes the proof of Equation (3). Meanwhile, L(P, g) - Lm(P , g) c_ L(P, g) -
Lm(P, g) = L(P, g) - Lm(P). Therefore, using (3), we have

(Vn E IN)(st E ~*)(Itl = n A {s}{t} c L(P, g) - Lm(P)).

Thus, by (i),

(~s E Lm(P))(Vn E lN)(3t E Z*)([tl - n A st E Lm(P) A (VU E ~*)s <-- u <-- st = u ~ Lm(P)).

This contradicts the assumption that Lm(P) is livelock-free and completes the proof of (iii).
(=) Clearly,

L(P, g) ~ [, = (Vs E L(P, g))s ~ L(P) - s

and

L(P, g) = L(P, g)* = (u E L(P, g))Hu 17 HL(p)(s) c_ g(s).

Also

L(P, g) ~ s A L(P, g) = Lm(P, g) = [(u E L(P, g))s E s - L = g(s) ~ 0].

Otherwise,

[(qs E L(P, g))s E [, - L ~ g(s) # 0]

(3s E L(P, g) (7 (s - L))g(s) = 0

= (3s E L(P, g) - L,n(P, g))g(s) = 0 (by Lemma 2.1)

= {s}H* f') L(P, g) = {s} A s r Lm(P, g)

= {s}~]* N Lm(P, g) = {s}H* (7 L(P, g) 17 Lm(P) = 0

= s f~ Lm(P, g).

But s E L(P, g) implies L,n(P, g) C L(P, g), which leads to a contradiction. Q.E.D.

RECURSIVE COMPUTATION OF LIMITED LOOKAHEAD SUPERVISORY CONTROLS 77

The next example shows why the livelock-free condition in Assumption 2.1(ii) is neces-
sary for Lemma 2.2.

EXAMPLE 2.1. Let

Lm(P) = e + a(bc)*d + a(bc)*de,

L(P) = Lm(P),

L = c + a(bc)*d,

= {a, b, c, d, e},

r~ u = {e}.

Consider the following control policy g:

{a} i f s = e,
| {b} i f s = a(bc)*,

g(s) = ~ {c} i f s = a(bc)*b,
~ { e } i f s = a (b c) * d ,

i f s = a(bc)*de.

Then L(P, g) = a(bc)* ~ Lm(P, g) = {e}. However, J(g) = Es~L(e,g)c(s, g(s)) = O.

The following corollary of Lemma 2.2 will be used in the proof of Theorem 2.1.

COROLLARY 2.1. Let 9 C M = M t _ L and M 17 Lm(P) = A/. Then there exists a g
such that J(g) = 0 and L(P, g) = !~1.

Proof There exists a g such that L(P, g) = hT/since 0 C /~/ c L(P). But

L(P, g) = ~,I ~ f~,

L(P, g) = l(l = (~I) ~ = L(P, g)r

L(P, g) 17 Lm(P) = l~l N Lm(P) = ~1 = L(P, g).

Therefore, by Lemma 2.2, J(g) = 0. Q.E.D.

Given a policy g ~ g , define its restricted version gR, also in g , by

ge(s) : = ~ g (s) if s ~ L(P, g),

otherwise.

78 S.-L. CHUNG, S. LAFORTUNE AND E LIN

Also define the disjunction of two policies gl, g2 E ~ by

gl~2(s) : = glR(S) u g2R(s).

We present two results about the disjunction of two policies.

LE~MA 2.3. (i) L(P, gR) = L(P, g).
(ii) L(P, glvz) = L(P, gl) tO L(P, g2).

Proof (i) (D) I f otherwise, then

so E L(P, g) A s ~ L(P, gR) A so ~ L(P, gR) = S ~ L(P, g) A g(s) ~ gR(s),

which leads to a contradiction.
(_) Following the definition, (vs ~ L(P))gR(s) c g(s) = L(P, gn) c_ L(P, g).
(ii) (_~) Follows from (i) and the definition of gw2.
(_) By contradiction,

SO ~ L(P, glv2)) A s (L(P, gl) tO L(P, g2) A so f~ L(P, gl) I,./ L(P, g2)

= a ~ g~(s) A o r gn(s) (because of the use of gR)

= O ~ glv2(S)

which contradicts so ~ L(P, gw2). Q.E.D.

LEMMA 2.4. If J(gl) = 0 and J(g2) = 0, then J(glv2) = 0.

Proof By contradiction, let J(glvz) = oo. Then

(3Sk ~ L(P, glv2))C(Sk, glv2(Sk)) = oo.

Assume that k denotes the length of s and take the smallest k satisfying the above condition.
Recall that

L(P, glv2) = L(P, gl) t.J L(P, g2)-

Without loss of generality, let sk E L(P, gl) , which implies that glR(Sk) = gl(sk), and con-
sider the three cases for which c(s k, gw2(sk)) = oo.

1. If s k r /~, then J(gl) = oo.
2. If r.u f3 ~L(e)(Sk) ~ gln(Sk) to g2n(Sk), then r. u f) EL(p)(Sk) fs gln(Sk) = gl(s~) and

we have that J(gl) = oo.
3. If blocking occurs at sk, i.e., sk (s - L A (gln(sk) tO gR(sk)) = O, then we have

sk ~ L - L A gl(Sk) = 0. Hence J(gl) = oo.

In all cases, we have the desired contradiction. Q.E.D.

RECURSIVE COMPUTATION OF LIMITED LOOKAHEAD SUPERVISORY CONTROLS 79

Define

U {gR: j (g) = 0} if this set is not empty,
g :=

L,_ undefined otherwise.

It follows that if g* is defined, then g* is a least-restrictive optimal policy, since J(g*) = 0
by Lemma 2.4 and since

(vg ' ~ g)J (~ ') = o ~ g,R c_ ~*

= L(P, g') = L(P, g'R) ___ L(P, g*).

We are now ready to state the main result of this section.

TrIEOlUSM 2.1. (i) If g* is defined, then L(P, g*) = L ~.
(ii) If L * # 0, then g* is defined.

Proof. (i) Assume that g* is defined. We prove that L(P, g*) = L ~.
(___) By Lemma 2.4, J(g*) = 0. By Lemma 2.2,

L(P, g*) ~ [, A L(P, g*) = L(P, g*)* A L(P, g*) = Lm(P, g*)

L(P, g*) n Lm(e) ~ [, n Lm(P) = L A
= L(P, g*) = L(P, g*)~ A

L(P, g*) = L(P, g*) O Lm(P).

Note that

(L(P, g*) n Lm(P)) t = L(P, g*) N Lm(P).

This is because

[L(P, g*) n Lm(P)]~, u n L(P) = L(P, g*)~u N L(P)

c_ L(P, g*) (by definition of controllability)

= L(P, g*) n Lm(P).

Therefore,

L(P, g*) n Lm(P) ~ L* A L(P, g*) = L(P, g*) n Lm(P)

L(P, g*) ~ Lf.

80 S.-L. CHUNG, S. LAFORTUNE AND E LIN

(D) Let g be the control policy synthesizing ~-T; that is, L(P, g) = ~-T. By Lemma 2.2
and Assumption 2.1(i), J(g) = 0. By definition of g*, for all s ~ L(P, g), g(s) ~ g*(s).
Therefore

L(P, g) = L ~ ~ L(P, g*).

(ii) Because 0 C L * = (L*) * c L and ~ n Lm(P) = U , by Corollary 2.1, there exists
a g such that J(g) = 0. Therefore, g* is defined. Q.E.D.

We conclude this section with the following result.

COROLLARY 2.2. Let g be a least-restrictive optimal policy in g. Then L(P, g) = U . More-
over, if Lm(P) = L(P), then Lm(P, g) = L ~.

Proof The first statement follows from the definition of least-restrictive optimal policies.
The second statement is true because when Lm(P) = L(P), Assumption 2.1(i) implies that
L ~ = L ~ n Lm(P) by Proposition 6.1(2) in Wonham and Ramadge [1988]. Q.E.D.

3. Solution by Finite Horizon Dynamic Programming

3.1. Calculation o f a Least-Restrictive Optimal Policy

In this section, we develop a finite horizon dynamic programming solution of the optimal
control problem of the previous section for the case when L(P) is finite. This solution will
be applicable to the case of supervisory control with limited lookahead policies. Tsitsiklis
[1989] also discussed dynamic programming solutions of supervisory control problems for
the class of closed legal languages L. Our approach is different because it is geared to
limited lookahead policies and it does not require L to be closed.

If L(P) is a finite language, then we can represent it with a finite generator P whose
directed graph representation is a tree, i.e.,

P = (X, ~, Xo, 6, Xm)

and the transition function 6 satisfies the condition

6(Sl, X0) = 6(S2, X0) ~ S 1 = S 2.

In this case, we can rename each state by its (unique) associated trace, i.e.,

(Vs E L(P))6(s, Xo) = x ~ x := s.

We now introduce the following new assumption, which is stronger than Assumption 2.1.

RECURSIVE COMPUTATION OF LIMITED LOOKAHEAD SUPERVISORY CONTROLS 81

ASSUMPTION 3.1. (i) L(P) is finite and is represented by P, a finite tree generator.
(ii) Lm(P) = L c L(P).

Using the above renaming of the state space, we define the two subsets

Xillegal : L(P) - [,,

Xtransien t = /] - t .

Also, by Assumption 3.1(ii), X m = L. Observe that

X = Xinegal Q] Xtransien t 0 gin,

where 0 denotes disjoint union.
Using the notation of this section, the incremental cost function c of the preceding section

is rewritten as

(0oo if (g(x) D Eu N EL(e)(x)) A (X E X m [,J Xtransien t)
c(x, g(x)) = A (x E Xtransien t ~ g(x) ~ O) (4)

otherwise.

Define the i th layer states as

X(i) := {sl6(s, x0)! A]s I = i},

where 6(s, Xo)! denotes that 6(s, Xo) is defined. Also, for a given control policy g E g,
define recursively the functions

VX N E X(N)

YxkEX(k), 0 _< k _< N - 1

Vg(xu):= { : i f x E L ,

otherwise,

Vg(Xk) := C(Xk, g(xk)) + ~] Vg(Xkff),
~Eg(xk)

where N is the length of the longest trace in L(P). We also need to define the subtree gen-
erator P/x and its associated control policy g/x: ~* ~ 2 ~ as

P/x := (- (X ,
E ,x , 6, Xm)

l _ undefined

i f x E X,

otherwise,

(g/x)(t) := (g(xt)

(,_ undefined

if xt E L(P),

otherwise.

82 S.-L. CHUNG, S. LAFORTUNE AND E LIN

The next three results serve to establish, in the usual manner (see, e.g., Kurnar and Varaiya
[1986], Chap. 6), the main dynamic programming result (Theorem 3.1) at the end of this
section.

LEMMA 3.1.

YxkEX(k) ,0 _< k < N, Vg(Xk) = Z c(xJ, g(xkt)).
t~L(P/x k, g/x k)

Proof We proceed by induction on k.
1. Induction base. Take k = N. Then

~_a C(XNt, g(xNt)) = C(XN, g(XN))
tEL(P/x N, g/x N)

if xN E Xm

otherwise,

i fxN~ L

otherwise,

[by definition of cx, g(x))],

(by Assumption 3.1),

But xj-la ~ X(j) and thus by the induction hypothesis,

Vg(xj_O = c(xj_,, g(xj_,)) + Z vg(xJ -1~).
afg(x j - 1)

By definition,

Vg(xj-1) = Z c(xj-lt, g(xj-lt)).
tEL(P/xj _ 1, g/xj_ 1)

= V g (X N) .

2. Induction hypothesis. Assume that for all k, j _< k < N, we have

Vg(xk) = Z c(xkt, g(xkt)).
tfiL(P/x k, g/x k)

3. Induction step. We must show that

RECURSIVE COMPUTATION OF LIMITED LOOKAHEAD SUPERVISORY CONTROLS 83

Vg(xj-1) = C(Xj-1, g(xj-1)) + ~ [~]
aEg(xj- 1) t~L(P/Xj-la, g/xj-lO)

= Z c(xj-lt' g(xj-lt))"
t~r(P/xj_ 1, g/x s- 1)

c(xj_lat, g(xj_ lat)) 1

Observe that Vg(xo) = J(g).

LEblMA 3.2. Let W : X ~ {0, oo} be such that

W(xu) <- c(xu, O) VXu ~ XN,

W(xD < C(Xk, y) + ~_~ W(xka)
aE3"

W/ c_ ~L(e)(X~), Yxk E Xk, O < k <_ N - 1.

Q.E.D.

(5)

(6)

Then, Vg ~ ~ and Vxk ~ L(P, g), W(xk) < Vg(x~). In particular, W(xo) <- J*.

Proof. We proceed by induction on k.
1. Induction base. Take k = N. Then, for all g ~ g and all XN ~ XN,

Vg(xN) = c(xN, 9) >_ W(xN).

2. Induction hypothesis. Assume that W(xk) < Vg(xk) u ~ g, Yx k E I,) k~ j X k.
3. Induction step. We must show that W(xj_l) < Vg(Xj_l) Yg E 9, VXj_l ~ Xj_I. But

W(Xj -1) ~ C(Xj -1' g(xj -1)) "~ Z W(Xj-I(T)

c(xj -1' g(xj -1)) "~ Z Vg(xj -1~) (by the induction hypothesis)

= Vg(xj_O.
Q.E.D.

For all xN E X(N) and all x~-i ~ X(N - i), 1 <_ i < N, define recursively the "value"
or "(optimal) cost-to-go" function V: X ~ {0, oo} by

V(xN) = c(xN, ~ , (7)

~ ~L(p)(XN_i) if (V"y r ~L(p)(XN_i))C(XN_i, "y) "[-Z V(XN-iO) = co
gdp(XN_i) = a~y (8)

U {y ___ EL(p)(XN_i): c(xN-i, "y) + ~_a V(xN-ia) = 0} otherwise,
a~3'

V(XN_i) = C(XN_i, g~p(XN_i)) "b Z V(XN-ia)" (9)

~gdp(Xu-i)

84 S.-L. CHUNG, S. LAFORTUNE AND E LIN

LEMMA 3.3. The function V defined in (7)-(9) satisfies (5) and (6).

Proof Take i = 0. Then since r,L(p)(XN) = O for all XN ~ XN, 3" c_ r,L(~)(XN) implies that
3' = O. Thus

V(XN) = C(XN, 0) = C(XN, 3"),

and (5) is satisfied.
Take 1 __ i _< N. Then for all XN-i E X(N - i), by (9),

V(XN-i) = C(XN-i' gdp(XN-i)) + E V(XN-iff)"
oEgdp(XN-i)

1. If V(xu-i) = 0, then

V(xN-i) <- c(xN_i, 3") + ~ V(xN_~a) v3" c_ ~L(~)(xu-~).
oE~[

2. Otherwise, if V(xu_i) = ~ , then by (8) and (9),

(V3" ~ ~L(p)(XN_i))C(XN_i, 3") - [-E V(Xu-i' 3") : Oo

tr~,y

= V(XN-i) <~ C(XN-i' 3") "~-E V(XN-ir
aE'y

Therefore (6) is satisfied.

V3" C: ~L(p)(XN_i).

Q.E.D.

We now state the main dynamic programming result for calculating a least-restrictive
optimal policy.

THEOREM 3.1. I f gap satisfies (8) and if V(xo) = 0 in (9), then (i) gap is a least-restrictive
optimal policy and (ii) L(P, gap) = ~-i and Lm(P, gap) = L*"

Proof (i) We first need to show that gap is optimal; i.e.,

J(gap) = E c(t, gap(t)) = O.
tEL(P, gdp)

By (7)-(9),

V(x) = Vg@(x) = V(xo) = vg@(xo) = J(g*~p) (by Lemma 3.1)

~ J(g~p) = 0 [since V(xo) = 0].

Therefore, gap is optimal.

RECURSIVE COMPUTATION OF LIMITED LOOKAHEAD SUPERVISORY CONTROLS 85

*R * If J(g) = 0, then we claim that gg(x) c_ gap(X) YX E L(P). Otherwise, le tx E L(P, gap)
fl L(P, g) be the shortest trace such that

*R gR(x) ~= gdp (x).

Without loss of generality, let g(x) = gap(x) tO {u}. Then

J(g) = 0 = Vg(x) = 0 ~ c(x, g(x)) = O.

By Lemma 3.3, V(x) defined by (7) and (9) satisfies inequalities (5) and (6) in the statement
of Lemma 3.2. Therefore, since xtr E L(P, g), V(xtr) < Vg(xa) by Lemma 3.2. Thus,

c(x, g(x)) + ~a V(xtr') = c(x, g(x)) + ~_a V(xtr') + V(xtr)
o '~g(x) , * o Egdp(X)

<_ 0 + 0 + Vg(xa)

= 0 + 0 + 0 = 0

(from the optimality of gap)

[because J(g) = 0 ~ Vg(xa) = 0].

But this implies that g(x) c_ gap(X) by (8), which leads to a contradiction. Thus the above
claim is true and it follows that L(P, g) c_ L(P, gap); i.e., gap is a least-restrictive optimal
policy.

(ii) The fact that L(P, gap) = L'r follows from Corollary 2.2. Moreover, even if Lm(P) ~
L(P), Lm(P, gap) = U because it is easily verified that L t = L-f Cl L. Q.E.D.

The following example illustrates the recursive algorithm (7)-(9).

EXAMPLE 3.1. Let

L(P) = e + abc(e + d + e),

L = e + abc(e + d),

= { a , b , c , d , e } ,

= {b , e } .

P is depicted in Figure 1. By (7)-(9), we have

V(5) = O, gap(4) = {d, e},

11(6) = oo, 1I(4) = ~ ,

Consequently, L(P, gdp)= {e} = ~7.

gdp(3) = {c}, gap(2)= {b}, gap (l)= O,

V(3) = ~ , V(2) = r V(1) = 0.

86 S.-L. CHUNG, S. LAFORTUNE AND E LIN

Figure 1. Example 3.1.

a b

1 2 3

6

3.2. Properties of the Solution

In this section, we prove special properties of the dynamic programming recursive algorithm
(7)-(9) developed above for the solution of the supremal controllable sublanguage problem.
These properties will be used in Section 4 in the context of the recursive computation of
limited lookahead supervisory controls.

The first result concerns Equation (9) and demonstrates that the optimal cost-to-go from
a given state, given by the cost-to-go function V, can be determined solely from the optimal
costs-to-go from the children of that state, without explicit reference to the associated con-
trol action at that state, i.e., to Equation (8).

THEOREM 3.2.

~ X (: X m ~.) Xtransien t A
V(x) = 0 r ~ (~au ~ ~'u 0 r~Up)(x))V(xau) = 00 ^

(x ~ Xt~a~ont = Oa ~ ~L<e)(x))V(xa) = 0).

Proof
(~)

V(x) = o ~ c(x, grip(x)) + ~ V(xo) = 0
~gap(x)

c(x , gdp(X)) = 0 A V(xtr) ~- 0
~Eg~p(x)

.~ (x fi Xtransient ~ gjp(x) r O) A

" I Z. v(xo) = o,
~.~ o(: gdp(X)

RECURSIVE COMPUTATION OF LIMITED LOOKAHEAD SUPERVISORY CONTROLS 87

~X E X m 1,3 Xtransien t A

~_~ V(xo) = 0 ^
aE ~ (1 r~L(p)(X)

(X E /transient = gdp(x) ~ 0 A Z
aEgdp(X)

V(xa) = o),

{ ~X E X m [,J Xtransien t A
(:~au E r,u M ~L~e)(x))V(xau) = co ^

~(X E Xtransien t = (3o" E ~L(p)(X))V(xff) = 0).

(~) We prove by contradiction.

1. If -, [x E X m U Xtransient], then x E Xillegal ~ C(X, gdp(X)) = CO = V(x) = co.
2. If -1 [(~lau E F,u rl EL(e)(x))V(xau) = co], then (3a u E Eu N ~L(p)(x))V(xau) = oo.

(a) If ~,,eg* (x)V(xa) = co, then V(x) = co.
(b) If Eoe ~-Ptx V(xa) = 0, then (3a u E F-,u f) EL(p)(X))au ~ gdp(X). Therefore, c(x, gdp(X)) g,u,.)

= co and V(x) = oo.

3. If -1 [x E XtransiCnt = (3a E EL(p)(x))V(xa) = 0], then

X E Xtransien t A (Vo" E ~L(p)(X))V(xff) : co.

(a) If ~,,~ * x V(xa) = co, then V(x) = co.
gdp() , ,

(b) If r~o~gjp(x)V(xa) = O, then gap(X) 1"3 r~L(p)(X) = O. Therefore, c(x, gap(X)) = co and
V(x) -- co. Q.E.D.

The second result uses Theorems 3.1 and 3.2 to relate gap with the nonemptiness of f t .

THEOREM 3.3. The following three statements are equivalent.
(i) L * ;~ 0.
(ii) V(xo) = O.
(iii) gap is a least-restrictive optimal policy.

Proo f (i) = (ii)

L t # 0 ~ g* is defined [by Theorem 2.1(ii)]

J(g*) = ~_a. c(x, g*(x)) = 0
�9 xEL(P, g)

(by definition of g*)

J(g*) = Z c(x, g*(x)) = 0
xE ~L

[by Theorem 2.1(i)]

= V g (x0) = 0 (by Lemma 3.1).

88 S.-L. CHUNG, S. LAFORTUNE AND E LIN

But by Lemmas 3.3 and 3.2

V(xo) <- vg*(xo) ~ V(xo) = O.

(ii) = (iii) Follows by Theorem 3.1(i).
(iii) = (i) By Corollary 2.2, (iii) implies that L(P, g~p) = L-:. But, by definition, L(P,

gap) D_ {e}. Therefore, f f # O. This completes the proof. Q.E.D.

This result complements Theorem 3.1 in that as long as L ~ # 0, we do not have to dis-
tinguish between g* and gap. Therefore, we will use g* to denote gap hereafter.

The third result shows how to reconstruct the least-restrictive optimal policy g* from
the cost-to-go function V.

THEOREM 3.4. If V(x) = 0, then g*(x) = {tr E r~L(l,)(X): V(xa) = 0}.

Proof
(c_)

V(x) = 0 = c(x, g*(x)) + ~ V(xo) = 0 [by (9)1
~rEg*(x)

= 5-], V (x ~ r) = 0
aC.g*(x)

= g*(x) =_ {~ ~ ~ue~(x)lv(xo) = 0}.

(2) Prove by contradiction. Let z r g*(x), but z E {tr ~ EL(e)(x): V(xa) = 0}. Let
g(x) = g*(x) LJ {z}. First,

V(x) = 0 = c(x, g*(x)) = 0

(g*(x) ~]~u ['] XL(p)(X)) /k (X E X m U Xtransien t

/k (X E Xtransien t ~ g*(x) ~t~ 0) [by defini t ion of c(x, g(x))]

= c(x, g(x)) = 0 (because g(x) D_ g*(x)).

Then

c(x, g(x)) + ~ V(x~') = c(x, g(x)) + ~ V(xo) + V(xz)
o'Eg(x) ~Eg*(x)

= 0 + 0 + 0 = 0 .

But, by (8), g(x) c_ g*(x), which leads to a contradiction. Q.E.D.

RECURSIVE COMPUTATION OF LIMITED LOOKAHEAD SUPERVISORY CONTROLS 89

Let V(X(k)) = 0 denote that for all x E X(k), V(x) = 0. The next result shows that it
may not be necessary to perform the dynamic programming recursion (7)-(9) all the way
back to the root x0 of the tree.

THEOREM 3.5. I f V(X(k)) = 0, then V(X(j)) = O, 0 <_ j < k.

Proof It suffices to prove that

V(X(j)) = 0 ~ V (X (j - 1)) = 0, 0 < j__< k.

V(X(j)) = 0 = Yx E X(j) , x E Xm 13 Xtransien t [by definition of c(x, g(x))]

= Yx E X (j - 1), x E X,n ~ Xtransient ($o" E /~, = s E /~). (10)

Also, because V(X(j)) = 0, both of the following are true for all x E X (j - 1):

(*lau E Eu N F,L(p)(x))V(xa ~) = 0% (11)

x E Xtransient = (3a E F~L(p)(x))V(xcr) = 0. (12)

Therefore, by Theorem 3.2 (10)-(12) together imply that V(X(j - 1)) = 0. Q.E.D.

More conclusions regarding potential computational savings can be drawn for the tree
structure under consideration. The theorem below shows the relation between the calcula-
tion in a tree and that in another tree with similar structure. We will comment on the impli-
cations of this result in Section 4.

THEOREM 3.6. Let L(P O, L1, L(P2), and L2 be four languages over the same alphabet ~,
with uncontrollable events set Eu c Z. Assume that L(P1) and L(P2) are closed and that
L(Pi) and L i satisfy Assumption 3.1 for i = 1, 2, respectively. Let function V i be defined
according to (7)-(9) with L(Pi) and Li for i = 1, 2, respectively. Take xl E X1 and x2 E X z.
I f

1. ~/. ,(p,)(X1) = ~L(pz)(X2).
2. (Va E r~L(po(xO)Vl(xla) = (or -->, --<, respectively) V2(x2tr).
3. xl and x2 belong to the same category (marked, transient, or illegal) in their respective

state spaces,

then

Vl(xl) = (or _>, _<, respectively) V2(x2).

Proof Follows from (7)-(9) and the definition of c in (4). Q.E.D.

90 S.-L. CHUNG, S. LAFORTUNE AND E LIN

4. Recursive Computation of Controls in LLP Scheme

4.1. Control Architecture

Consider a discrete event system G, generator of the closed language L(G) and the marked
language Lm(G), that is to be controlled by means of LLPs, according to the on-line
scheme presented in Chung et al. [1992a] and depicted in Figure 2. In the following, we
assume some familiarity on the part of the reader with the results in Chung et al. [1992a]
(especially Section 2). For convenience, we recall some notation that we will be using.

Remark 4.1. The postlanguage of language K _c y* after trace s E ~* is the language

K/s := {t ~ E*: st ~ K}.

The truncation of K ~ Y* to the positive integer N is the language

KIN :-- {t ~g: Itl -< U}.

Let K c L(G)/s IN. Then (K) */slN denotes the supremal controllable sublanguage of K with
respect to L(G)/s IN and r. u. Similarly, K s/sIN denotes the infimal closed controllable super-
language of K with respect to L(G)/s IN and r. .

The overall on-line operation of an LLP supervisor is divided into a start-up phase and
successive updating phases. In all cases, in order to determine the control action ~/N(s)
at the current trace s ~ L(G), the supervisor has to first generate the N-step lookahead

control action event generated _t y~s)

O" -

Control
specifications

1
LLP supervisor

T
Knowledge base

about G

I-
Figure 2. Limited lookahead supervisory control.

RECURSIVE COMPUTATION OF LIMITED LOOKAHEAD SUPERVISORY CONTROLS 91

window, L(G)/s IN, which is represented as an N-level tree, then classify all the traces in
the window according to their legality properties, and finally perform the calculation of
the control action 3,U(s). The control action depends on the particular control problem
under consideration and on the attitude adopted regarding the uncertainty on the behavior
of the system beyond N steps. In the next two sections, we consider (i) the "standard" super-
visory control problem (cf. Ramadge and Wonham [1987]) with either a conservative or
an optimistic attitude, which is the problem studied in Chung et al. [1992a], and (ii) the
supervisory control problem with tolerance (cf. Lafortune and Lin [1991]).

During the start-up phase, all the required calculations must be performed from scratch.
In contrast, during the successive updating phases, many of the previous calculations can
be reutilized from one step to the next; the only necessary additional calculations are those
that reflect the new information gained with the one-step transition (event a in Figure 2)
of the system.

In this connection, in order to distinguish successive windows, we use a superscript t = Is l
(subscript in the case of g*) to index all the relevant notation and the computational results
of the current window rooted at trace s. In what follows we let s = s'ca Then s' denotes
the previous trace before the execution of ot E "gU(s'), where Is[= t and [s'[= t - 1.
In particular, concerning the dynamic programming algorithm presented in Section 3, the
cost-to-go function V is now defined as

V': X t --" {0, oo},

where the states in X t are labeled by the unique suffix of s that they correspond to.
Therefore, x E X t is the same state as coc ~ X t-1. Also, in the following Xo = e where
x , (0) = {x0}.

4.2. LLP Algorithm for the Standard Supervisory Control Problem

We now present an implementation of the LLP scheme of Chung et al. [1992a] for the
standard supervisory control problem (cf. Ramadge and Wonham [1987]). In general, con-
trol policies of LLP supervisors are defined as

,~N: L(G) ~ 2 ~u{~}. (13)

The desired legal behavior for the closed-loop system L(G, ~[N) is the language K where
K c_ Lm(G), K ~ O, and K = K f) Lm(G). For the limited lookahead version of the stan-
dard supervisory control problem, the control action "yU(s) at trace s ~ L(G) is defined as

~[N(S) :~-~ ~ [1 k.J ~u ('~ ~L(G)(S), (14)

where

92 S.-L. CHUNG, S. LAFORTUNE AND E LIN

conservative:
L = Lm(P) = "~

I

[,_ optimistic:

L(P) = L(G)/s IN,

K/SIN -- (K/SIN -- K/SIN-l) = K/SIN-l,
(15)

K/SIN tA (K/SIN -- K/SIN-,),

1" = supremal controllable sublanguage operation with respect to L(P) and 2u-

This definition of q/N(s) is from ChunK et al. [1992a], with the notation adapted to fit the
problem addressed in Section 3, with uncontrolled behavior L(P), desired behavior L --
Lm(P), and supremal controllable sublanguage operation in terms of L(P) and Zu.

At any given window, we are only interested in the control action ~/N(s) at the root s,
and not in the complete control policy for the whole tree L(P). According to Theorem
3.3, L ~ ;~ 0 if and only if Vt(xo) = 0. This in turn implies by Theorem 3.1 and by the
definitions (1), (8), and (14) of g, g*, and "yN(s), respectively, that

~ g;(xo) 0 {e}
~N(s) = L ~ -5 zs

if Vt(xo) = O,

otherwise (i.e., Vt(xo) = oo).

(Readers familiar with Chung et al. [1992a] will note that if Vt(xo) = oo, then we have
a "run-time error" at trace s since L ~ = 0.)

The problem at hand is thus reduced to the calculation of Vt(xo) and g~(xo) using the
approach and results of Section 3. Theorems 3.2 and 3.4 show that in deriving gT, instead
of computing simultaneously for all the states in the window both the cost-to-go and the
control action, we can compute independently the costs-to-go. Consequently, the efficiency
of the algorithm relies on how these costs-to-go in the window are computed. In this regard,
observe the fact that, as the system advances from one step to the next, the two succeeding
pairs of L and L(P) are similar in structure. Hence, we now focus on the issue of how to
utilize the costs-to-go calculated from the previous step in calculating those at the current
step. In particular, in addition to Theorem 3.5, Theorem 3.6 suggests another termination
criterion. That is, during the dynamic programming recursion, if up to a certain level of the
tree, for each state in this level, the newly calculated cost-to-go is identical to that calculated
at the previous step, then so is the case for all states in the following backward levels.

Furthermore, the following result shows that given a fixed attitude, the cost-to-go associated
with a trace is monotonic as the window moves forward.

THEOREM 4.1. Let x ~ Xt(j) , j ~ {0 , N - 1}.
(1) If the attitude is conservative, then Vt(x) <_ Vt-l(ax).
(2) I f the attitude is optimistic, then Vt(x) >_ vt- l (ax) .

Proof. We only prove (1). The other statement is proved similarly.
Let us prove by induction on j that for all j ~ {0 N - 1}

(vx ~ X ' (N - 1 - j))V ' (x) <_ Vt-l(~x). (16)

RECURSIVE COMPUTATION OF LIMITED LOOKAHEAD SUPERVISORY CONTROLS 93

F o r j = 0, since (u fi X t (N - 1))v t - l (o tx) = oo, Vt(x) ~ vt- l (12x) . Assume that (16) is
true for j _< k. Then for x E X t (N - 1 - k - 1), conditions 1, 2 and 3 of Theorem 3.6
hold. Therefore, by Theorem 3.6,

V t (x) ~ V t - 1 ((ZX).

This completes the proof of (1). Q.E.D.

COROLLARY 4.1. Let x E X t (j) , j ~ {0, . . . , N - 1}.
(1) I f the attitude is conservative, then Vt- l (o tx) = 0 = Vt(x) = O.
(2) I f the attitude is optimistic, then vt-i(ctr) = co = Vt(x) = co.

This result shows that if the conservative (or optimistic, respectively) attitude is adopted,
once the cost-to-go from a trace becomes 0 (or co, respectively), the cost will remain at
that value irrespective of the possible changes in the costs-to-go of the contimmtions of
the trace.

In implementing the dynamic programming algorithm of Section 3.1, we can use the
aforementioned results to minimize the number of new calculations required to determine
the control action as the system advances one step in time. The following algorithm illus-
trates how this can be done.

LLP ALGORITHM 1.

(1) Initial condition: For all x ~ X t (N) , assign Vt(x) according to (15):

1. I f the conservative attitude is adopted, assign Vt(x) = co.
2. I f the optimistic attitude is adopted, assign Vt(x) = co i fx ~ Xillegal and assign Vt(x) = 0

otherwise.

(2) Proceed recursively backwards over all x ~ X t (j) , initially from j = N - 1.

1. At the j t h level, compute Vt(x) for all x in X t (j) : First, by Corollary 4.1:
(a) I f the attitude is conservative a n d vt-l(txA;) = 0, then Vt(x) = 0.
(b) I f the attitude is optimistic and V t - l (a x) = co, then Vt(x) = oo.

Otherwise, by Theorem 3.2:

if x ~ Xtm tO X(ransien t A

(~Ou ~ r..u N S, u e) (x)) V t (x a u) = co ^

(X ~ X:ransien t ~ (30" ~ ~L(p) (X))Vt (x0") = 0) ,

otherwise

2. Terminate the recursion whenj = 0 or when one of the following two termination criteria
is satisfied. ,
(a) TCI : By Theorem 3.5, if Vt(St(j)) = 0, then let Vt(Xt (k)) = 0 for 0 _< k < j .
(b) TC2: By Theorem 3.6, if Vt(x) = V t - l (t zx) for all x ~ X t (j) , then Vt(x) = vt-l(czx)

j -1 t for all x ~ I,.Jk=oX (x).

94 S.-L. CHUNG, S. LAFORTUNE AND E LIN

(3) If Vt(xo) = 0, return g~(x0), the least-restrictive optimal control at the current trace
s according to (cf. Theorem 3.4)

gt(Xo) = {17 E ~L(p)(XO): Wt(xo~7) = 0} .

Otherwise, return "run-time error."

EXAMPLE 4.1. Consider the system G shown in Figure 3. Assume that ot i is controllable,
and/~i is uncontrollable, i = 1, 2. The legal behavior K is generated by the generator in
Figure 4. Because the longest uncontrollable subtrace in L(G) has length 2, according to
Theorem 5.1 of Chung et al. [1992a] it is sufficient to construct "Yoaptm (i.e., a LLP super-
visor with window size N = 3 and optimistic attitude) in order to get L(G, 73ptm) = K r.

In the start-up phase, depicted in Figure 5a, termination criterion TC1 is satisfied at the
third layer. The control action is "y3(e) = {e, oq, ~2}. Suppose that the system executes
event oq. In the next successive updating phase, depicted in Figure 5b, TC1 and TC2 are
satisfied at the first layer. The control action is ~3(o~1) --- {6, ~1, or2}-

Figure 3. Example 4.1: G.

ct I

~2 Ih

131

~2

17'2 cx2

1 ~ / / 1~1

Figure 4. Example 4.l: Generator of K = K.

i t

CXl

RECURSIVE COMPUTATION OF LIMITED LOOKAHEAD SUPERVISORY CONTROLS 95

TC1

0

o1>/~

13 0

TC1,2

oo

O ~ -2 0

o /

o -----~176

(a) 0~)

Figure 5. Example 4.1: LLP Algorithm 1: (a) slarl-up phase; (b) successive updating phase.

4.3. LLP Algorithm for Supervisory Control Problem with Tolerance

In applying LLPs to supervisory control problems with tolerance [Lafortune and Lin 1991],
one possible policy (cf. Chung et al. [1992a]) is

"yN(s) := fN(s)l 1 U ~u CI ~L(G)(S), (17)

where

f/V(s) := [B1/sIN_ 1 17 (B2/SIN_I)X/~Izv]SlslN, (18)

where B 1 c Lm(G) and Bz c L(G) denote the desirable and tolerable behaviors, respec-
tively. Such a policy guarantees that L(G, ,yN) never goes beyond the tolerable behavior
B 2. In the supervisory control problems considered in Lafortune and Lin [1991], the lan-
guage B1 and B 2 are assumed to satisfy certain assumptions. For the purpose of the analysis
in this section, the only assumption required is that B 2 = B2.

We now construct a recursive scheme for the calculation of limited lookahead supervisory
controls when the LLP control policy is defined by (17).

Let

B(s) := BJstN-1 N (B2/slN_S/~t~'. (19)

96 S.-L. CHUNG, S. LAFORTUNE AND E LIN

Then because L; - * = L~ u N L(G) (see Lafortune and Chen [1990], Lin and Wonham
[19881),

~N(s) = B(s)E~ fq L(G)/SIN]I U ~u CI ~2L(G)(S)

= B(s) ll U ~ N ~L~o>(s). (20)

Now the problem boils down to finding a recursive computation scheme for B(s)]1, that is

B1/SIN_ 1 ("1 (B~/SIN_I)t/slNIa.

(n2/s IN_a) */sIN can be derived by using the LLP Algorithm 1 of Section 4.2, with the con-
servative attitude and with the constraint K being replaced by B2. What remains to be
tackled with are the set intersection operation and the one-step truncation of the prefix
closure.

In order to avoid unnecessary computations and to reutilize previous computational results,
we can take advantage of the following two facts. First, observe that

(va E EL(G)(S))a ~ B(s) I1 ~* (3t ~ ~*)at ~ B1/SIN_ 1 rl (B2/SIN_I)*/slN.

This fact implies that in order to derive B(s) [1 it is not necessary to enumerate alt traces
recognized by Bt/s IN-1 fq (B2/s IN-l) ~/slu. Rather, for every cr E ~Z~G)(S), we can conclude
that a ~ "yN(s) if there exists a trace at ~ B1/s IN-1 fq (B2/s IN-l) */sIN. As such, we may as
well use the depth-first search method in the subtree to find the first trace in [B1/s IN-1
n (B2/s IN-1)*/S~N]/a. In this connection, the second fact, Theorem 4.2 relates searching
results derived at successive steps as the system proceeds in time.

TrIEOREM 4.2. Given B(s) defined in (19),

(vo ~ ~) B(s)/a c_ B(sa).

Proof By Theorem A.l(ii) in Chung et al. [1992a],

(vs ~ ~*)K~/s c (K/s) t/~.

Therefore, by taking s = o, K -- B2/s IN-t, 1" ------ $/S IN, and o ~ E, we have

[(B2/SIN_I)~/sIN]/O ~ [(B2/SIN_I)/O] ('f/s]N)/a = (B2/sCrlN_Z)~/S~

= (B2/s~r IN_2) x/s~ c (B2/so IN_l) ~/s'rlN.

Hence, for all a E E,

B(s)/a := [B1/SIN-X fq (B2/S]N-1)~/SIN]/ff

= (B1/SIN_I)/o f'l [(n2/slN_l)~/slN]/a
(by Lemma A.2 in Chung et al. [1992a])

RECURSIVE COMPUTATION OF LIMITED LOOKAHEAD SUPERVISORY CONTROLS 97

Ba/saIN_I (~ (B2/SaIN_I) */solN

=: B(so).

This completes the proof. Q.E.D.

Theorem 4.2 implies that if, at s, a continuation path t, with length longer than one,
has been verified to lead to a marked trace in BJs IN-1 ('1 (B2/s IN_l) */~IN, then as the sys-
tem advances one step transition by a to so, the remaining continuation path t/a should
also lead to a marked trace in B1/sa IN-1 ('1 (B2/sa IN_l) t/s~lN, thUS sparing the need for an-
other search. In this regard, we need to introduce the notation FBl(s) for s ~ L(G) to
remember whether or not the searched trace s is recognized in BJs IN-1 (1 (B2/s IN_l) ~/~IN.
Initially, FBa(s) = blank for all s E L(G).

In addition to the above two facts, note that according to (17), uncontrollable events in
the active set are eventually included in the control action 7N(s). As a result, in order
to compute "yN(s), it is necessary to perform the depth-first search described above only
for the controllable events in the active set.

In solving the control action defined by (20), the following algorithm illustrates how
to incorporate the aforementioned ideas to minimize the required computation.

LLP ALGORITHM 2.

(1) Regarding (B2/s [N_I) */SIN:

1. Apply LLP Algorithm 1 in Section 4.2 with K =-- B2, and the conservative attitude to
obtain Vt: X t ~ {0, oo}.

2. a. I f Vt(xo) = oo [i.e., (B2/s IN_OX/slN = 0 by Theorem 3.3], then

3,N(s) = ~/~6~(s) Cl ~u

and exit.
b. Otherwise, (B2/s IN_l) S/sIN is obtained by the reachable traces spanned by nodes with

zero cost Vt(') from the node x 0.

(2) For all a ~ F,L(G)(S) (1 Zc satisfying Vt(xo a) = 0 and FBI(Sa) = blank:

1. Do depth-first search over (B1/s iN-1 f3 (B2/s]N_l)r The goal is to find the first
trace p such that Vt(xoop) = 0, (vt < p)Vt(xoat) = 0, and sop ~ B 1.

2. I f the goal is found, return the path-to-goal p. Then, for all nodes x along the path-to-
goal set FBl(SX) = green. Otherwise, leave the searched subtrees as blank.

(3) Finally, in deciding the control action "yN(s):

1. I f the depth-first search fails in step (2) and none of the next-step events is marked as
green, then

"YN(S) = ~L(G)(S) ('] ~u"

98 S.-L. CHUNG, S. LAFORTUNE AND F. LIN

2. Otherwise, the control action at the current trace s is obtained by

"yN(s) = {a E ~L(~)(S): FBI(Sa) = green} U ~L(G)(S) f') Eu.

EXAMPLE 4.2. Consider the system G shown in Figure 6. Assume that c~ i is controllable
and/3 i is uncontrollable, i = 1, 2. The desired behavior B 1 is generated by the generator
in Figure 7. The tolerable behavior B 2 is the same as the legal behavior K in Example 4.1.
(This is the same data as Example 2.3 in Lafortune and Lin [1991].)

To illustrate the LLP Algorithm 2, we choose the window size N = 3. In the start-up
phase, depicted in Figure 8a, termination criterion TC1 is satisfied at the first layer. Both
depth-first searches are successful at the first layer (we use double lines to indicate the
"greening" effect). Accordingly, the control action is "y3(e) = {e, cq, cr Suppose that the
system executes event oq. In the next successive updating phase, depicted in Figure 8b,
termination criterion TC2 is satisfied at the second layer. No controllable event in the active
set of al is eligible for the depth-first search. The uncontrollable event/31 is "greened"
according to step (3). Then, the control action is -ya(oq) = {e, /31}.

5. C o n c l u s i o n

We have presented in Section 4 recursive algorithms for the on-line computation of limited
lookahead supervisory controls, in the context of the standard supervisory control problem
(i.e., maintain the closed-loop behavior inside the legal language) and of the supervisory
control problem with tolerance. These algorithms are based on an optimal control reformu-
lation of the problem of finding the supremal controllable sublanguage of a given language
(Section 2), a reformulation that then allows us to solve that problem using a recursive
algorithm based on dynamic programming (Section 3). Overall, the algorithms for com-
puting limited lookahead controls consist of two nested recursions. The (worst-case) com-
plexity of these algorithms is linear in the cardinality of the state space X t at each step.
(For further discussion on computational complexity issues regarding the LLP scheme,
the reader is referred to Chung et al. [1992a], Sections 6 and 7.)

Figure 6. Example 4.2: G.

ot 1

Ih

RECURSIVE COMPUTATION OF LIMITED LOOKAHEAD SUPERVISORY CONTROLS 99

l
1 ~1 t~ l

Figure Z Example 4.2: Generator of B1.

TEl

o o

0 ~ o

(a)

C-

TC2

l I 31) ~

O O O O

, j :

- . O 0

oo ~1

(b)

Figure 8. Example 4.2: LLP Algorithm 2: (a) start-up phase; (b) successive updating phase.

Although the main purpose of Sections 2 and 3 is to support the development of the
algorithms in Section 4, these sections are also of independent interest since they comple-
ment or extend related work in the literature, in particular regarding the treatment of non-
closed legal languages and the special properties that result from the assumption of finite
languages (el. Section 3.2).

The results in Section 4 show that limited lookahead control policies are amenable to
a large amount of recursiveness as the lookahead window moves (or "rolls") from step to
step. This recursiveness is not only present in the calculation of the control policy (14)
which involves a supremal controllable sublanguage operation, but also in the calculation

100 S.-L. CHUNG, S. LAFORTUNE AND E LIN

of the control policy (17) which involves an inf imal control lable super language operat ion

together wi th an intersection.

Fur ther results relat ive to the efficient implementa t ion of the L L P supervisory control

scheme can be found in Chung et al. [1992b].

Acknowledgment

The authors wish to thank the reviewers for their comments and suggestions.

References

Brave, Y., and Heymann, M. 1990. On optimal attraction of discrete-event processes, Center for Intelligent Systems
Report 9010, Technion, Haifa, Israel.

Chung, S.L., Lafortune, S., and Lin, F. 1992a. Limited lookahead policies in supervisory control of discrete
event systems. 1EEE Trans. Automat. Control, 37(12):1921-1935.

Chung, S.L., Lafortune, S., and Lin, F. 1992b. Supervisory control using variable lookahead policies, Technical
Report CGR-92-9, College of Engineering Control Group Reports, University of Michigan.

Kumar, P.R., and Varaiya, P. 1986. Stochastic Systems. Estimation, Identification, and Adaptive Control. Prentice-
Hall: Englewood Cliffs, NJ.

Kumar, R., and Garg, V. 1991. Optimal control of discrete event dynamical systems using network flow techniques,
Preprint, Department of Electrical and Computer Engineering, University of Texas, Austin.

Lafortune, S., and Chen, E. 1990. The infimal closed controllable superlanguage and its application in super-
visory control. IEEE Trans. Automat. Control 35(4): 398-405.

Lafortune, S., and Lin, E 1991. On tolerable and desirable behaviors in supervisory control of discrete event
systems. Discrete Event Dynamic Systems 1(1): 61-92.

Lin, F., and Wonham, W.M. 1988. On observability of discrete-event systems. Information Sci. 44: 173-198.
Passino, K.M., and Antsaklis, P.J. 1989. On the optimal control of discrete event systems. Proc. 28th IEEE Conf.

Decision and Control, pp. 2713-2718, Tampa, FL.
Ramadge, EJ., and Wonham, W.M. 1987. Supervisory control of a class of discrete event processes. SIAM J.

Control Optim. 25(1): 206-230.
Sengupta, R., and Lafortune, S. 1992. A graph-theoretic optimal control problem for terminating discrete event

processes. Discrete Event Dynamic Systems 2(2): 139-172.
Tsitsiklis, J.N. 1989. On the control of discrete-event dynamical systems. Math. Control Signals Systems 2: 95-107.
Wonham, W.M., and Ramadge, EJ. 1987. On the supremal controllable sublanguage of a given language. SIAM

J. Control Optim. 25(3): 637-659.
Wonham, W.M., and Ramadge, P.J. 1988. Modular supervisory control of discrete-event systems. Math. Control

Signals Systems 1(1): 13-30.

