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ABSTRACT

The few studies to date of circular confined Jets have dealt

with a jet source, the flow from which was uniform and irrotational,
and the radius of which was small compared to the mixing tube radius.
In this study, the effects of turbulence in the Jjet source and larger
ratios of Jjet source to mixing tube diameters, on the mixing process,
were examined both experimentally and by the application of turbulent
flow theories.

Previous work on turbulent, incompressible Jjets was critically
reviewed, A straightforward mathematical model for recirculation in
confined Jjets was developed without recourse to a detailed analysis of
the equations of motion. Based on several hypotheses concerning the
fundamental characteristics of the flow, a mathematical model for the
flow in the mixing field was established.

Velocity profiles and wall static pressures were measured at
various points downstream of turbulent jet sources having Reynolds
numbers between 10” and 10°. It was observed that, in the case of the
larger jet tube, the flow did not develop a self-preserving structure
before the jet expanded to the mixing tube wall. Recirculation was
observed in all flows having Craya-Curtet numbers below 0.78, and the
Jet tube Reynolds number was found to have little effect on recirculation
and other features of the downstream development of the flow, A negative
axial pressure gradient was observed near the jet entrance in agreement

with the result predicted on the basis of the mathematical model.
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It was concluded that turbulence in the jet source has an
important effect on the behavior of a jet near the source., For the
particular case of a source consisting of the efflux from a long cir-
cular conduit, the pressure falls and the structure of the turbulence
in the center portion of the flow is self-preserving for a distance of
from 2 to 5 jet tube radii from the source. The jet tube Reynolds
number probably has an important influence on the development of the
wall boundary layer although a detailed study of the flow near the
wall was not carried out. In spite of several significant differences
between the flow considered here and that of previous studies, the
concepts of R, Curtet regarding similarity and recirculation were found
to have a definite value in characterizing the general behavior of the

system.
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CHAPTER I
INTRODUCTION

The confined jet, considered in detail, is a very complex flow
involving free turbulent shear as well as a boundary layer and significant
pressure gradients. It is of practical interest in the theoretical analy-
sis of jet pump performence and jet flame behavior,

Considerable research has been conducted in the area of free
jets, and many of the principles established in the course of this work
have been applied with some success to the analysis of confined jets. The
main difference, hydrodynamically, between the free and confined jets is
that in the free jet it is usually assumed that the pressure everywhere
is the same and that axial momentum is conserved from one cross section
to another, whereas in the confined jet, the axial mass flux is constant
while the pressure and total momentum vary axially.

Research on confined jets to date has involved jet sources
with uniform velocity and very low turbulent intensity, and mixing tubes
which were much larger than the source nozzle, To study the effects of
deviations from these conditions on the flow behavior, an experimentol
and theoretical analysis of a somewhat different system were undertaken.
First the source consisted of the efflux from a long circular conduit.
Thus, for sufficiently high jet tube Reynolds numbers, the structure of
the flow in the source is that of the much studied and well documented
fully developed turbulent pipe flow., Furthermore, ratios of jet tube
to mixing tube diameter were 0.25 and 0.5, so that the confinement of

the flow was more severe than that in previous studies,
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In the following pages, previous research on round turbulent

Jets of incompressible fluid is reviewed, theoretical and experimental
analyses are described, and the important features of the flow are
discussed.

The object of this study was to learn something about the de-
tails of the flow in a confined circular jet. Of particular interest
were the effects of turbulence in the source and a relatively small ratio
of mixing tube to source diameters, on the applicability of the models de-
veloped for simpler jets by previous researchers.

In the following pages, previous research on round turbulent jets
of incompressible fluid is reviewed, theoretical and experimental analyses
are described, and the important features of the flow are discussed.

The validity of the application of principles of free jet flows
to the analysis of confined jets are examined. The integral analysis of
R. Curtet, and his criterion for the occurrence of recirculation are
discussed with regard to their general applicability.

The effect of turbulence in the source 1s discussed, and some
interesting features of the fully developed turbulent source are presentid.
The manner in which the severe confinement resulting from the small mixing
tube diameter influences the validity of the usual assumptions made in Jet

analyses 1s pointed out.



CHAPTER IT
ROUND TURBULENT JETS OF INCOMPRESSIBLE FLUID -- AN
ANALYSIS OF DEVELOPMENTS TO DATE
There is presented in this section an analysis of work to date
on turbulent jets of incompressible fluids. Free jets with and without
motion of the ambient fluid are discussed, as well as the more recent

studies of confined jets.

A, Fundamental Equations

The equations‘governing the turbulent mixing of incompressible
fluids are the Reynolds equations which are derived from the Navier-
Stokes equations by the use of time-averaging techniques. These are, in

cylindrical coordinates

dv o w?) op 2 A 2 2w
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For an axi-symmetric steady flow, we have:
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and the continuity equation is:
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(2.6)
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If the only body force (Fi) is gravitational, then we may combine it
with the pressure gradient to form the hydrodynamic pressure gradient

as follows:

Let P =7p+ pgr sin @ (2.7)
where P is the hydrodynamic pressure and ¢ is measured from the hori-
zontal., Using this, and assuming turbulent shear predominétes over

viscous shear:

2% 2&_ ._/_9P 2 . n° 1 2 ‘ /)
Uox tVSr TTeox T2 TR o (ruvr
(2.8)
v ) oP I ofFy? ! 2
W e AT ) 2
2% ar 2% r
(2.9)

The terms on the right which involve the velocity fluctuations are

frequently referred to as the "Reynolds stresses." Terms of the type

u'? are the normal Reynolds stresses.

B. Phenomenological Theories of Turbulent Momentum Transport

Boussinesq(25) suggested before 1900 than the Reynolds stresses
might be related to the mean velocity gradient in a manner similar to
that for laminar flows. He thus postulated a turbulent transport coeffi-

cient, € , commonly referred to as "eddy viscosity" such that:

/ —_— e
- wiv! = € > (2.10)
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Prandtl,(ug) on the basis of a simple mechanical model of turbulent

momentum transport suggested the use of a "mixing length," £ , such

that:
-, 2
! = o4 [aU
wv =4 2 /9 / (2.11)
or
2 U

€ = £ -
Later, Prandtl noted(ul) that, whereas his mixing length theory was
based on the notion that the turbulent momentum transpprt depended
exclusively on the local characteristics of the flow, a more realistic
model might be established by considering the overall nature of the

average flow, Opecifically, he suggested the relationship:

€ = K b (MM‘,X - umih) (2.12)

where b = width of the mixing region, and
k 1s a proportionality constant.
This is referred to as the Prandtl "exchange coefficient hypothesis."
Reichardt's "inductive theory of turbulence,"
only a generalization of some experimental results, will be discussed

later,

More recently, Hooper(27) has made use of some more fundamental

which is actually

concepts, including Kolmogaroff's idea of a critical eddy size, to derive

a harmonic expression for the variation of the mixing length. -His theory

fits Nikuradse's data for fully-developed pipe flow quite well,



C. Free Jet Theories

The free turbulent Jjet was first discussed by Tollmien in

1926.(5u) He empolyed Prandtl's mixing length theory, and showed that,

for an axially symmetrical jet, the axial velocity is inversely propor-

tional to the distance downstream, His development applies to the jet

from a point source, or some distance downstream from a finite jet.

Tollmien assumed that the pressure is constant throughout the

field of flow. Thus, the x-direction momentum is conserved:
oo
2

2TEe |un rdr = ff’l (M = constant)

o

Then he assumes
w = (x) £ (1) (‘L = r/%)

Thus:

CP:L(") fa('Z) Fdr = @M ( = constant)

o

or:

2\

i) 141

[~

o (%) ~

Thus, @(x) is proportional to 1/x, and:

“U = 7'2“ ‘F("L} A = constant

(2.13)

(2.14)



Now F(7n) is defined by:

n
F(n) = [f(n)n Jn
°
. _ _AF'(n) . s .
Noting that u = X7 , and employing the continuity equation, an
expression is obtained for the radial velocity component:
!
- AR AF
- % %" (2.15)

The Reynolds equation involving the axial velocity (Equation (2.8)) is
simplified by neglecting pressure variations and turbulent normal stresses.
Prandtl's mixing length expression (2.11) is used to relate the Reynolds
stress (- ETVT) to the mean flow and the mixing length is assumed pro-
portional to x:

L = cx (2.16)

The result is:

av 2 a2 2o 2 /3uU)\?
r 8Bt o o E et (2

(2.17)

Making use of expressions (2.14) and (2.15), an ordinary differential

equation in F(n) is obtained:
1y 2
/ 2 F
FF = c (}?’/ — "‘i) (2.18)

The constant ¢ can be eliminated by the transformation:

S — C i
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Since a series solution was to be sought, Tollmien found it convenient

to transform the dependent variable also:

dln F

yd =
d7n?

The final equation is:

!

2
2 = rs -2z -J)z (2.19)

One boundary condition is:
at n =0, v=0 or F(o) =o

It is also known that u must be finite at n = o , and that
U(o)x = Af(o) = constant.
Let A Dbe so defined that f(o) = 1.
A series solution is established for Z(n+) , but its convergence is
poor in the neighborhood of n+r for which Z(n+r) = 0., An alternate
series is developed for the solution in the region n+ > n+r . Using
both series, n+r is found to be 3.4 which is assumed to represent the
edge of the jet. From experimental data, Tollmien determined that:

c =0,0158
Then the rate of spread of the Jet is:

b = 0.21hx
The important result of this analysis is that all dimensionless profiles
of (%?) in an ideal free turbulent jet are similar with respect to the

variable (r/x) . Near x = o , however, the solution represents no real

)
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flow. By integrating volumetric flux around a closed surface including
the jet source, it can be shown that no fluid enters at the source.
Thus, all the material in the jet comes from the surrounding fluid., A
certain amount of momentum, as indicated by Equation (2.13) is added
to the system at the jet source, This, of course, is neither a realistic
physical boundary condition, nor a practical mathematical one., It may
be shown that the constant A 1is proportional to the square root of the
kinematic momentum flux, M, Abramovich(l) has discussed this point.

In an actual jet, of course, a finite source is employed, and
it has generally been observed that Tollmien's solution holds only at
distances from the jet greater than about 8 source diameters. Thus, if
the Jjet radius, as determined by experiments in the region of the developed
Jjet is extrapolated to zero, the virtual source of the equivalent ideal Jet
may be found. Then at some point a distance x from this virtual source,
if the velocity on the axis is found to be u, , then A can be computed
as  ugx ,

Howarth (40)

applied Taylor's vorticity transport theory to this
problem, and obtained an alternate differential equation, He was unable

to solve the equation using the mixing length relationship (Equation (2.16))
employed by Tollmien., He used some alternate expressions for the mixing
length, but failed to achieve satisfactory agreement with experimental
data.

Reichardt(u3) studied the developed turbulent jet experimen-

tally, and noted that the velocity profiles were nearly Gaussian. He

then sought a Reynolds stress relation which would produce such a solution
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when employed in the equations of motion, He hypothesized:

Z
W= - A6

(2.20)

When used in the Reynolds equation for a plane flow:

ou”

" = A® aj" (2.21)

The result is the same form as the heat conduction equation and is called
Reichardt's momentum transfer law, Hinze(QS) presents a critical dis-
cussion of Reichardt's work and concludes it is not of fundamental
importance,

Ggrtler(23) applied Prandtl's momentum exchange hypothesis to
the plane jet. We note from Equation (2.12) that for this relationship
€ 1s dependent not on r , but only on x ., Then the Reynolds equation
governing the development of the turbulent jet can be transformed into an
equation which is identical to that for a laminar mixing region.
Schlichting(u7) has discussed the application to round jets. The use
of the exchange coefficient gives better agreement with the experimental

(26)

results of Hinze and van der Hegge Zijnen, although they point out
that at the edge of the Jjet, experimental values were lower than those
predicted. They suggest that this is due to the fact that the exchange

coefficient should actually approach zero near the edge of the jet, rather

than remain constant.,
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The discussion thus far has concerned only the "developed'" jet.
This means that entrance effects due to the finite source are not con-
sidered, It is observed, however, that if the Jjet is a uniform non-
turbulent stream there is a region near the source wherein the flow is
quite different than that from a point source. There is, initially, a
core of fluid in the center of the jet in which the velocity is radially
and axially invariant. In the region of this "potential core" the
pressure is constant, as can be shown from Bernoulli's equation. This
core is dissipated in about 4 jet diameters, and there follows a transi-
tion region in which the flow develops a self-preserving structure.
Thus, it is observed that the flow some distance from the source is
independent of the nature of the source, This is strictly true, of
course, only for high jet Reynolds numbers for which the principle of
Reynolds number structural similarity applies. This principle has been
discussed in detail by Townsend.(SS) The general features of the Jet

with finite source are shown in Figure 1.

Region B ; Region C
' Developed Jet

Region
A

Transition

Region

Potential
Cbre
|

[
|
|
!
|
|
|
|
I
|
!
|
!
|
|
|
|
i
|
I

! |

| I

I I

|

Figure 1. Features of Jet Flow with Finite Source.
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Whereas the only parameter of the point source jet was the
momentum constant, M , the circular jet with finite source has two
parameters, a radius, R; , and a velocity, U; . Taking the axial
velocity component as an example of the dependent variables, the gen-

eral functional relationship may be written as:

U r %
o = f R, )Y R (2.22)

/

Kuethe(32) attempted to compute the flow in region A, He
employed the Prandtl mixing length theory with £ = cb where b is
the thickness of the mixing region. He then used a method of successive

approximations to compute the velocity profile, His first approximation

was:
w/U; = (1 - 6%/3)2 (2.23)
where:
r-a
° =5

A good deal of calculation, involving numerical evaluation of integrals
is involved in the method, but the results are in fair agreement with

experimental measurements, from which it was determined that c¢ = 0.07.
His theory predicted a potential core length which is in good agreement

with experimental observations:

X

53;£ = b, bk
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D. Free Jets with Ambient Velocity

A problem which received considerable attention during World
War II was that of a Jjet issuing into a fluid medium which was itself
in uniform motion relative to the jet source., Both the core region (A)
and the developed jet (C) were considered by Szablewski in Germany, and
Squire and Trouncer in England. An additional parameter, the velocity

of the ambient fluid, U, , appears now, so that:

A A
U/ — R, ' R, U, (2.24)

Szablewski(sl)Bg) made use of the Prandtl exchange coefficient
hypothesis, and assumed power law velocity profiles in regions A and B.
His solution involves a good deal of numerical evaluations, and is not of
great fundamental importance. He obtained fair agreement with experi-
mental results and determined values of k in (2.12) to be:

region A: k 0.0157

region B: k = 0.01
Squire and Trouncer<u9) noted that trigonometric functions
did a fair Jjob of fitting their experimental velocity profiles, and used
Prandtl's mixing length theory to relate the Reynolds stress to the mean
flow variables. In region A, they employed the following form of the.

velocity profile:

4 v b— F
o = > D—z-._l) | — Cos 7\'(“‘“‘)_‘1)
(2.25)
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The mixing length was assumed proportional to the width of the mixing
region:

£ = c(b-a) (2.26)
By comparison with experimental results, they found C = 0,071, in
agreement with Kuethe's result for the free jet in a medium at rest.

In region C, they made use of the profile:

uo— UZ
2

U = Ua + (I + CesS 'lY{—) (2.27)

The mixing length is £ =Cb ,

From experimental data, they found C = 0.082, They had some limited
success in applying the same analysis to region B, but found that ¢
varied with x from 0.071 at the end of region A, to 0.082 in the
developed jet.

Squire and Trouncer were also interested in the details of
the irrotational flow outside the Jjet, and computed the hypothetical sink
strength which would account for the inductive action of the jet. Due
to the discontinuous model for the flow at the end of the potential core
thgre is some peculiar behavior in the computed sink strengths., In
general, however, this would seem a valuable approach to the potential

flow field problem associated with the flow outside a free jet,

E. Confined Jets

If we confine the mixing field in a cylindrical tube, we

introduce & new parameter, R, , so that equation (2.24) becomes:

M 'f(_':‘ Z Vs Kz)
v, Ra v Rey U7 R, (2.28)
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In addition, however, we have introduced a solid boundary in the problem
so that the flow is no longer strictly a free turbulence shear flow,
Indeed, there will be a boundary layer at the mixing tube wall which
will eventually interact with the Jjet. If the boundary layer were to

be considered in an analysis of the problem, a Reynolds number would

be involved:

g 2 Y R U, x €
Uy T T\Re YR U YR, T e (2.29)

All theoretical analyses to date have neglected the boundary layer.
A basic mechanicael difference between the econfined and free
jets is that whereas momentum was conserved in the free jet, mass flux

is conserved in the confined jet:

Re
GW UF Jr- - e Q.t CCohs-ranT) (2,30)

(>

Also, even if the ambient flow is uniform and non-turbulent, as is
usually assumed, the jet will reach the wall at some point, and the
flow will no longer be a jet flow, but a complex shear flow.

We note that the ambient velocity, U , can change from its
initial value of U, as we move downstream. If, as fluid becomes
entrained in the Jjet, this ambient velocity is reduced to zero before
the jet reaches the wall, a back-flow develops to supply additional
fluid to the jet. Thus is formed an eddy of recirculation,

In a confined jet, the integrated momentum changes downstream,

In the core region, the pressure is constant, but thereafter, the pressure
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rises as the jet spreads. Thus, the confined jet is a simple type of
jet pump. An actual jet pump, of course, consists of a nozzle inside of

"and a

a larger duct which converges to a cylindrical "mixing tube,’
diffuser completes the device. It is this practical application which
has stimulated most of the research on confined Jjets.

Flﬁgel<l7) was the first to apply fluid mechanics theory to
the jet pump. He used Prandtl's exchange coefficient hypothesis (2.12),
in an integrated momentum equation, and assumed that the two streams
have uniform velocities and are separated by a vortex sheet in which
all the shear is concentrated. His work was enlightening with respect
to the mechanism by which jet pumps operate, but it is of little quan-
titative value.

(16)

Ferguson studied a two-dimensioral confined Jjet, and
attempted to predict the flow by assuming that the pressure is cdnstant
up to the point where the mixing layer reaches the wall. He used the
results of a two-dimensional analysis of Kuethe to predice the length
of this region, and employed some of the concepts of Flligel to compute
the subsequent flow. He found that the results of this simplified
analysis agreed fairly well with experimental results, but a variable
value for a parameter in his shear expression was required,

Mikhail(39) has made a more recent study of a circular con-
fined jet. He used the cosine velocity profile suggested by Squire and

Trouncer, and the Prandtl mixing length equation in integrated momentum

and continuity equations. He was unable to solve the resulting system
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of differential equations without the use of some extensive simplifying
assumptions, as he did not have a computer at his disposal,

Curtet, in France, has been studying confined jets for some
time, Along with Craya at Grenoble, he has developed a theory for the
developed jet region of a confined plane jeto<ll) He makes use of an
empirical velocity profile in an integrated form of Equation (2.8)
which then contains only derivatives with respect to the axial variable,
Then he notes from experimental data that all the coefficients of the
derivatives can be expressed as multiples of a universal function of
(y/x)a He computes an average value for this function over the flow
section, and thus obtains an ordinary differential equation. Finglly,
some results from experimental studies of the spread of free Jets are
used to evaluate the shear stress term. A Gaussian velocity profile
(Equation (2.31) below) gave good agreement with experimental results,
although & cosine distribution was later tried with satisfactory results,

The extension of the theory to a cylindrical jet has not been completed.,

2
“w - U - T
= e + . ,
w, — UV n = b (2.31)

Recirculation was also considered by Curtet, who assumed that
the reduction of the ambient velocity to zero in his computed results
indicated that an eddy of recirculation occurred at that point. In
spite of the fact that the flow must differ from that of the model on
which the theory is based, this procedure permits a fairly accurate pre-

diction of the occurence of an eddy.
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Goslein and O'Brien,(eu) Cunningham,(lo) and Folsom,(18,19)
have analyzed overall jet pump performance by means of overall energy
and momentum balances., Various "efficiencies" are defined in an attempt
to correlate overall ejector performance. Such an approach, however,
supplies no information as to the mechanism of the momentum exchange or
the rational design of a jet pump.

Because confined jets, and especially recirculation phenomena,
are of interest in connection with turbulent Jjet flames, flame research-
ers have sought some fundamental parameter which governs the general
behavior of confined jets. They are particularly interested in being
able to predict the onset of circulation and the rate of recirculation.
It is apparent from relation (2.28) that any such parameter must be a
function of (Uy/U;) and (Ry/Rq).

Thring and Newby(53) assumed that an enclosed jet grows at the
same constant rate as in a free jet until it reaches the wall. They were
interested in the mixing of two different fluids, air and fuel, and they
concluded that the proper similarity parameter which governs the behavior

of such a "cold flame model" is:

C, @ Re

("Q,-r(’?_CP?_ K,

For a single fluid system, this becomes, in terms of the groups of
(Rz /R/)

RS-

expression (2,28):
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Curtet, in the course of his theoretical studies of plane
confined jets, found that after integrating the equations of motion
across the tube, the parameters appearing in the equation were (Rg/Rl)
and & "momentum parameter," m . As generalized for a cylindrical Jet,

this parameter is:

R 2

- 7wR, 2

m = —=[((2 Y A
(2]

Curtet's measurements indicated that this is a constant of the flow, or
does not vary from one section to another. As will be demonstrated
below this is precisely true only when wall friction is neglected, the
flow external to the jet is non-turbulent and uniform, and there is na
radial pressure gradient. The initial value of the Curtet similitude

parameter is:

2
N Oy ,

m
0o = > (2.33)
( A F,L.z) 2 ;

Becker(S) has made a more general analysis of jet type flows,

[

and demonstrated the fundamental significance of the parameter m for
the particular kind of jet model considered by Curtet. Based on his
unified analysis of jet flows, Becker suggests a more useful modifica-

tion of the parameter m He calls the new parameter the Craya-Curtet

0 °*

number, and gives it the symbol Ci :

ﬁ_n—— (2.34)
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Becker's general treatment reveals that the Thring and Newby parameter

is the proper similarity parameter only for an ideal or point source jet.

F. Experimental Studies

In addition to the experimental studies already mentioned above,
which were carried out in conjunction with theoretical analyses, a number
of other laboratory studies of heat, mass and momentum transport, as well
as turbulence characteristics, in turbulent Jets have been reported.

Alexander, Baron and Comings studied turbulent transport in
jets at Illinois, and the final report of their work(e) contains a rather
extensive discussion of phenomenological mixing theories as well as
corrections necessary in the use of an impact tube to measure velocities
in turbulent flows. Baron and Alexander(3) have noted that since the
differential equation (Equation (2.21)) arising from the use of Reichardt's

hypothesis is linear in ue

, the principle of superposition may be
employed to compute velocities in flows involving parallel, interacting
Jets.,

21) and water Jjets with

Forstall studied air jets with Shapirof
Gaylord:(20> Turbulent Schmidt and Prandtl numbers were determined from
heat and mass transfer studies, and were found to differ little between
the two fluids. Corrsin(8) and Uberoi(9) studied a round turbulent jet
of heated air and used a hot wire system to determine velocity and tem-
perature profiles as well as certain parameters of the turbulence. They
found that the transport of heat occurred more rapidly than that of
(26)

momentum, Hinze and van der Hegge Zijnen suggested on the basis of
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their studies that the mechanism of turbulent heat transfer is different
from that for momentum transport.

Laurence, at NACA,(36) has completed an extensive hot wire
study of the intensity, scale, and spectrum of turbulence in a free gas
Jet. Rosler and Bankoff(uu) studied free air and water jets by means of
hot wire anemometers, A special technique was developed for making hot
wire measurements in a liquid. Their jet source was a long round tube,
not a converging nozzle, so that the initial profile was that for fully-
developed turbulent pipe flow. This was verified experimentally, but the
remainder of their measurements were made at distances from the jet efflux
of 10 or more Jjet tube diameters so that only the developed jet was studied.

(1%)

Donald and Singer employed a dye and chemical indicator
technique to study, visually, the flow in the ambient fluid as well as in
the mixing region of a submerged water jet. They were able to make photo-
graphic records of the core and mixing region geometries as well as stream-
lines outside the mixing region.

(60)

Viktorin was the first to study the confined jet experimen-
tally, by measuring velocities in a jet issuing into a large pipe. He was
unsuccessful in an attempt to predict his results by means of Flﬁgel's
theory.

Martin and Rice(38) studied the effect of nozzle cross-section
geometry on jet pump performance. Locher(37) applied dimensional analy-
sis to the scale-up of laboratory tests in the design of a very large Jjet
pump.

Becker(h’B) studied recirculation in confined jets by means of

oilfog-marked air. He found that recirculation eddies occur when the



-23-

Craya-Curtet number is less than 0.75. Curtet discovered,(lg) in his

studies of plane confined jets that for values of the parameter my
defined in Equation (2.32), somewhat less than the value for which &
steady recirculastion eddy occurred, the flow became periodic with an

eddy being alternately generated and swept away at the two confining

walls. The period of the oscillation was found to follow the relation-

ship:
A
i c (=) + ¢
—_— — |
QT Pe z
where T = period of oscillation

C1, Co are constants
Curtet and Ricou(l3) investigated the effects of turbulence
in the secondary flow on the mixing process and found that the mixing
process was greatly accelerated by fairly low turbulence intensities in

the stream.

G. General References

The book by Pai(uo) is hardly more than a sketchy abstraction
of the literature, and is currently out of print. Extensive biblio-
graphies on Jjets have been compiled by Forstall and Shapiro,(zl) and by
Krzywoblocki.(3l) The very recent treatise by'Abramovich(l) contains
many interesting discussions of jet flows, although the works of Curtet,

Squire and Trouncer and Szablewski are not mentioned,



CHAPTER IIT

RECIRCULATION IN CONFINED JETS

It is known that under certain circumstances a recirculation
eddy will exist in the mixing tube as a stable part of the flow. The
pattern of the flow in the neighborhood of such an eddy is shown in

Figure 2.

Figure 2. Eddy of Recirculation.

This phenomenon can be explained in several ways. Curtet
describes recirculation quite simply as the mechanism which supplies
fluid to be inducted into the thirsty mixing region after all the second-
ary flow has been swallowed up. He was interested in predicting when
recirculation will occur, and assumed that the reduction of the ambient

velocity to zero in his computed results indicated that an eddy of

-5l
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recirculation occurred at that point. For a plane, confined jet, he
computed(ll) that the criterion for the existence of an eddy of recircula-
tion in the mixing tube was:
my, > 0.91
Becker found, experimentally,(h) for a circular jet that the condition
was:
Cy < 0.75

Abramovich has a slightly more formal description of recircula-
tion, He says(l) that mixing in a confined field results in a pressure
rise, and that if this pressure rise is sufficiently high, it will retard
the ambient flow to zero, resulting in recirculation. In other words,
the positive pressure gradient saps the momentum from the ambient fluid,
and may reduce this momentum to zero if the pressure rises sufficiently
before the mixing region reaches the wall. This picture serves as a
guide for the formalization of the recirculation problem, and it will now
be demonstrated that the criterion for the occurrence of an eddy of recir-
culation may be derived from fundamental observations of confined Jet
flows without recourse to a detailed analysis of the equations of motion.

The model commonly employed in dealing with the developed jet
region of a confined jet is shown in Figure 3. The velocity in the mixing
region or Jjet is self preserving and its profile can be represented with
reasonable fidelity by empirical distributions such as the harmonic dis-
tribution (Equation (2.27)) of Squire and Trouncer, and the Gaussian
distribution (Equation (2.31)). These distributions are plotted for com-
parison in Figure 4, The velocity outside the mixing region is irrota-

tional and there is no radial pressure gradient. This simple model was

found by Curtet to represent the actual flow with surprising accuracy.
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Figure 4. Velocity Distribution Functions.
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The uniform velocity outside the jet is related to the pressure

through the Bernoulli equation:

v _ 1L 4P
Vgr = T € d*% (3.2)

Now as the jet spreads, the pressure rises, and, according to Bernoulli,
the velocity falls accordingly. If the pressure rises sufficiently so
as to reduce the velocity outside the jet, U , to zero before the Jet
expands to the wall (b = R2) then recirculation will occur. The con-
dition for the virtual occurrence of an eddy is that U =0 at the same
time that b =Rp . We wish to develop a quantitative criterion for
this condition in terms of the flow parameters (U,/U;) and (Ro/Ry) .

An overall momentum balance between the entrance to the mixing

tube and some point down stream which is labelled point '"e" is:

2 " & Rz _
(&-%)WRZ T, 2R dx = %‘amr - (‘/«}zm»w- (3.2)
1~ ° e ° o

The momentum flux at the entrance is simply:

Ra
2 2 A
e wanrdr = W€ UIZK'L+- Y (Rz_ —ﬁ, )]

o

(3.3)

Inserting this result in Equation (3.2), and dividing by n;JU12R12:
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(3.4)

The particular case to be considered here is that at point e :
U=0
b=R2

If a momentum factor, B , is defined as follows:
/
) (2 2 r.) _r_>
- A w5 |d
A AL'J Al, (3?z (3%1
—-— ____——-———"—{ -—

B = = / 2 (
4L r r 3.5)
[t i)  [[46r) ()]

then Equation (3.4) may be written as:

"e
p-p he 2, 2 . _ o\
A f_@_J(f_):ﬁ +(_‘_/_z) _[RE] L [
e u? ev” “\Ke <) WY R [T Y (3.6)

(7]
The velocity ratio in the last term can be represented in terms of the
initial conditions by means of the condition of constant volume flux at

every cross section:

- « 2 2\ _ 2 —
_Q‘t - U' R' s +7TU2_(B1"ﬁl) - 7TRL MC (3.7)
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Using this result in Equation (3.6):
’Le/Rz

_@i;;fl — 2% e —'-Ef)%+(ba 2./-' R, \? 9+ \2
ey, PU* (&)‘ D ) | ~Felmas (3.8)

o

Integrating Bernoulll's equation from the entrance to point e :

But virtual recirculation corresponds to U, =0 . Sor:

Pe—'Po e

/
; = 7 U:L (3.9)

The condition for eddy generation is that the pressure recovered by
redistribution of the velocity up to the point where the Jet reaches
the wall, as given by Equation (3.8), be greater than the pressure dif-

ference given above, This condition is:

’g/ka

an ey (R} . [ _ R e \E —%—-)l
‘,‘&,T'd 7—)+(E:)+(U—r)[, {E)]‘ﬁe(wfy‘) P 7 (3.10)

If wall friction is neglected, this inequality can be rearranged to give:

-
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The left hand member of the inequality is simply related to the Curtet

similitude parameter, m , so that the condition for eddy formation is:

mo + 2 > Be (3.12)

In terms of the Craya-Curtet number:

I
Cr < B— /o (3.13)

The results for the two distributions considered are:

1. Harmonic profile

u= 2 [1+cos (X))
2 Ro
Be= 1.95

(Ct)crit. = 0.83

2. Gaussian profile
_ ﬁ(r )2

u= ugC RE

Be= 1.72

(Cederse, =0.92
The presence of wall shear would tend to reduce the maximum pressure
recovered, and would thus decrease the critical value of Ci . A
velocity distribution with a greater momentum integral, i.e., higher

value of Pe> would also yield a lower value of (Ct) As has

crit.
already been pointed out, Becker found the value of 0.75 experimentally
for a circular gas Jjet.

Several important conclusions may be drawn from the above

developments. One is that the parameters m, or Cp are truly simili-

tude parameters only when wall friction, irrotationality in the ambient
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fluid, and radial pressure gradients are negligible. Another is that
these parameters serve as criteria for recirculation only when the velo-

city profiles are of similar form in the developed Jet region.



CHAPTER IV

DESCRIPTION OF CONFINED JET WITH TURBULENT SOURCE

A. TIntroduction

If we wish to study the effect of turbulence in the initial
jet, it is desirable that we know something about the structure of the
turbulence. One way of achieving a turbulent jet source with known
characteristics is to use the efflux from a long, smooth circular tube.
Now, for sufficient Reynolds number, we will obtain a turbulent stream
whose characteristics have been studied in detail. Although the prin-
ciple of Reynolds number similarity tells us that for high local Reynolds
numbers, the structure of the turbulence is not dependent on the Reynolds
number, the time average dynamic variables are affected by the Reynolds
number due to the role played by the fluid properties near the wall.
Thus, as compared to the confined jets already discussed, one new group

is added to the general relationship:

i,{f_ x Y R R %
w, Re v Koy ) ke ) 7 (4.1)

since the jet tube velocity is not uniform, but has a profile dependent

upon the jet tube Reynolds number., Thus, if:

R)
w2 mrdr
= 2 4,2

-32-
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then the Curtet similarity parameter as defined by (2.32) is:

2 2 2 Uaﬂ?— QL
ry 2 1, 17
RI (P['VLI U?.)-" 2 ZWZ ﬁ‘z (l{..3)

<Qt/r,T R, >

Thus, it would appear that the Reynolds number dependence is easily incor-

porated into the Curtet parameter. Actually, an additional amount of
energy enters the system in the form of turbulent energy in the Jjet tube
efflux. To account for this, Rosler and Bankoff(uu) define a modified
vairation of the definition of R which includes turbulent contributions
to the energy. They estimate, however, that for turbulent pipe flow, the
correction amounts to less than .05%.

Some features of the flow in a confined Jjet with turbulent
source are discussed below to establish a general picture of the mechanisms
involved, and to provide a basis for the quantitative analysis of the

system which is presented in the next chapter.

B. Wake Due to Jet Tube Wall

At the end of the jet tube there is a wake, due to the finite
thickness of the tube wall, and the no-slip condition on both the inside
and outside of the tube. This results in a minimum in the axial velocity
profile. The only theoretical treatment of the role played by the wake
in jet mixing is that of Chapman and Korst(7) which considers.only the

simplest case of the plane jet boundary with uniform pressure, None of
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increases as we move closer to the wall. Townsend(sé) suggests the

relation:

AU Us AN
~ = 2 -c)E A7) .

!

The terms (Uo/ﬁi) and the dimensionless wall shear stress, are functions
of the Reynolds number, A satisfactory agreement with experiment is

found for r/ry < 0.9 if:

/ 4“/ F 4&
Detailed studies of the turbulence characteristics of pipe flow
; (35) (46) e .
have been carried out of Laufer and Sanborn using hot-wire anemo-
meters,

It is necessary in the present study to know something about
what happens to the stream which leaves the jet tube with the well-known
characteristics described above. In his studies of turbulent boundary
layers, Townsend(57’58> has hypothesised the existence of the "equili-

"

brium layer. This hypothesis is based on considerations of the concept

of structural similarity and the relative importance of the terms in the

"turbulent energy balance."

This relationship, derivable from the Reynolds
equations, can be interpreted as a statement that the kinetic energy
associated with the velocity fluctuations is constantly being dissipated

or transformed into heat by viscous shear, and replenished by several

mechanisms.,
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One form of the turbulent energy balance is:

,9% 1 2 (L gz F _____P_SP'F'r)
“’V?*rar<z7v)’ ké;’”*w—' (h.7)

72 = ¢d2-+-v” ’ b ow

I' = dissipation + viscous transport
For a steady state, the amount of kinetic energy associated with the
velocity fluctuation in a small volume of fluid is constant. Townsend
suggests that when the rate of turbulent energy dissipation by conversion
to heat is nearly balanced by the rate of turbulent energy generation by
working against Reynolds stresses, the flow in that region is determined
almost solely by the distribution of shear stress within the region and
is independent of the conditions outside of it. 1In other words, when the
other terms in the turbulent energy equation, including the convection
terms, are very small compared to the generation and dissipation terms,
the flow in that region is essentially independent of the remainder of
the flow, and may be considered self-preserving. Laufer's experimental
results suggest an application of some of Townsend's ideas to the problem
at hand.

Laufer's measurements of the terms in the mechanical energy
balance (Equation (4.7)) are summarized in Figure 6. We will be interested
in the structure of the flow away from the wall, since when the wake has
disappeared, that portion of the jet near r = a will have already
changed in its structure and velocity profile due to rapid momentum

transport just after the jet entrance. We note that the outer portion

of the jet flow is characterized by large production and dissipation
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Figure 6. Turbulent Enerﬁy Balance for Pipe Flow
at Re = 5 x 10% (Laufer, NACA R 1174).

terms. We might expect, then, that in this region and in the region
internal to it, the structure of the trubulence does not change axially,
except by the action of momentum exchange at edge of the region. Now,
if the structure is nbt changing axially, then the Reynolds stress is

the same as it was in the pipe flow, and we can see from the Reynolds
equation that the velocity profile remains the same., Thus, corresponding
to the "potential core" of ordinary jets, we have an equilibrium turbulent

core which extends from the entrance to the point downstream were, by

means of shear, the core has been dissipated to the point where turbulent
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convection becomes a significant contribution to the turbulent energy.

D. Flow Outside the Equilibrium Core

Since the streamlines are initially parallel, the pressure at
the entrance is radially uniform. Furthermore, the pressure gradient
in the axial direction for the flow in the annular region surrounding
the mixing region is initially zero, The pressure on the axis falls,
however, as has been noted in the discussion of the equilibrium core.
Thus, a radial pressure gradient is developed which tends to push fluid
toward the axis. Fluid is induced into the mixing region, then, not
only by turbulent momentum transport, but by the radial pressure gradient,
The streamlines will be deflected toward the axis, and the pressure will
begin to fall at the wall.

Features of the hydrodynamic pressure behavior in a confined

Jet with turbulent source are shown in Figure 7.

0
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Figure 7. Pressure Gradients in Confined Jet with
Fully Developed Turbulent Source,
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E. Flow Downstream of the Equilibrium Core

When the equilibrium core has been dissipated to a certain
extent by shear at its outer edge, turbulent convection becomes a signi-
ficant term in the turbulent energy balance, so that the flow near the
axis is no longer an independent equilibrium flow. Because the stream-
lines in this region are parallel, however, they will tend to remain so
in the absence of a radially varying force field, It is true, of course,
that pressure and turbulent normal stresses will vary across this region,
but the radial gradients are probably not large enough to cause a rapid
divergence of the flow. Thus, there will still be a core of fluid in
which the velocity profile is nearly that of the flow at the entrance,
but whose turbulent structure is changing., This will be called the
"kinematic core."

In order to determine the general nature of the pressure behav-
ior associated with this kinematic core, Equation (2,8) will be employed.
If the turbulent normal stress is neglected, and expression (2,10) is
used, the radius may be set equal to zero to obtain the gradients on

the axis. The result is:
2 U

but, if dug/dx =0 ;

d P ! 2 9%)
_— _ — = (€F =
T ClF or ( (4.9)
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or:
d7, _e__a_(r 23‘—)+9°‘ D€
T = Oy ar U 2r /7 58 oF (4.10)
r=o
but
CL - o
I F= o
and, if € 1is nearly constant in the neighborhood of the axis
2
€ 2 3% 2 ¥
Foor \F oF = 2€ (377
r=o r=9
then:
dP c 2* U
T = 2 € or® (4.11)

Thus, the axial pressure must continue to fall in the kinematic core
region. Only when the velocity on the axis begins to fall, can the
pressure rise.

When the velocity at the axis begins to fall, and the pressure
begins to rise, the flow is a very complex one, as it no longer contains
a core of known and constant turbulent structure or velocity, and is
not self-preserving in the sense of Townsend's definition(55) of that

term, Experiments with finite Jjet sources, however, have indicated that
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the flow rapidly develops a self-preserving structure. In the confined
Jjet with potential core studied by Becker(5) as well as the free jet
with turbulent core studied by Rosler and Bankoff,(hu) this develop-
ment was found to be reasonably complete at 8 to 10 jet diameters down-
stream of the entrance, Becker(S) observed little effect of the jet
source Reynolds number on the developed flow for Jjet Reynolds numbers
greater than 30,000,

For the axial component of velocity, the similarity of the

flow may be represented as follows:

w(rx) — V(¥ - F
W, ()= V(%) 7‘:[,,(7&) (h.12)

Various researchers have reported that both the Gaussian distribution
(Equation (2.31)) and a harmonic distribution (Equation (2.25)) fit
observed velocity profiles reasonably well in the developed jet region.
When the Jjet spreads to the wall, or when the mixing region
meets the wall boundary layer, the flow is no longer a jet flow, but a
shear flow with boundary for which few simplifying assumptions can be

made. A long distance downstream, fully developed pipe flow will obtain.

F, The Boundary Layer

The only data available for the growth of a boundary layer on
the inside wall of a tube are those for flow in the hydrodynamic entry
region. Langhaar's theoretical treatm_ent(?’3> gives results for the

laminar case, which are in good agreement with Nikuradse's experimental
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data., Shapiro, Siegel and Kline(h8) applied boundary layer theory to pre-
dict the wall shear stress for such flows. For that situation, however,
there is a favorable pressure gradient, and separation does not occur. For
the problem under study here, there may be a severe adverse pressure
gradient, This has an important effect on both separation and transition-
to-turbulence in the boundary layer. All avaliable data concerning these
phenomena involve flows over flat plates. If the boundary layer thickness
is small compared to the radius of curvature of the surface, however, the
results are the same. Since, in the present situation, the behavior of
the flow near the entrance, where the boundary iayer is quite thin, is of
specific interest, a discussion of separation and transition in boundary
layers on flat plates is in order.

A falling pressure, like that in the core region, tends to
inhibit both separation of the boundary layer and transition to turbulence.
When the pressure begins to rise, however, this adverse pressure gradient
promotes both the transition and the separation. The criterion for separa-
tion of a laminar boundary layer, as discussed by Schichting(u7) is, for

a flat plate:

/"
U
—g’g’ < [/
Ul

Thus, for the boundary layer in a confined jet, separation will always

(4.13)

accompany the disappearance of the core, unless transition to turbulence
occurs first. This is because turbulent boundary layers are considerably

more stable than laminar ones, The transition to turbulence occurs when:
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/‘L :> g critical

The critical Reynolds number for flat plates depends on the level of
turbulence in the flow outside the boundary layer, the magnitude of the
pressure gradient and the boundary layer thickness. For no pressure
gradient:

(Reg)riy = 420
With an adverse pressure gradient, it can be considerably less., If the
boundary layer becomes turbulent withour separating, then it will pro-
ceed into the region of pressure rise, Uram(59> has reviewed research
on axisymmetric turbulent boundary layers in an adverse pressure gradi-
ent.

Becker(5) postulates that since the boundary layer development
is strongly influenced by the axial pressure gradient, it 1s characterized
by the Craya-Curtet number., It must be recalled, however, that Becker
considered jets with poential core, in which the initial pressure gradi-
ent is always nearly zero. In the case of the jet with fully developed
turbulent source, however, there is initially a negative pressure gradi-
ent whose magnitude depends primarily on the jet tube Reynolds number,
Based on the above observations, then, it seems probable that the jet
tube Reynolds number would have a strong effect on the boundary layer

development in such a flow.



CHAPTER V

MATHEMATICAL MODEL OF FLOW

A. Philosophy and Objectives

It was desired to establish a model for the flow which, if it
produced results in agreement with experimental data, could be used to
study certain features of the flow for many conditions other than those
for which experiments were carried out. It was intended that the analy-
sis serve as a means of studying the characteristics of the flow, rather
than just solve a particular boundary value problem. An integral analy-
sis based on the qualitative features of the flow presented in the
previous section seemed in order. Thus, the mathematical model would
provide a means of testing the validity of the hypotheses set forth.

Certain of the assumptions employed in previous confined jet
work, to simplify the problem for mathematical analysis, are not strictly
valid when there is an axial pressure gradient in the core region. These
assumptions héve been modified, and an approximate analysis has been
formulated which, it was hoped, would predict the major characteristics
of the flow, at least over a prescribed range of conditions. The follow-
ing analysis is based on a uniform flow external to the mixing region,
This is a reasonable approximation only when the uniform flow region is
relatively small, (R;/Rp large), and the axial pressure gradient small,
((Re); small).

If the turbulent normal stresses are small compared to the

hydrodynamic pressure, Equation (2.8) becomes:

-45-
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Equation (5.1) will be applied to each region of the flow to predict the
development of the pressure and velocity profiles in the axial direction.
It is assumed in each case that the boundary layer is very thin so that
its displacement thickness can be neglected in the continuity integral,
and its momentum thickness may be neglected in the momentum integral.
Figure 8 shows the system under consideration, and clarifies
the terminology. The equilibrium and kinematic core regions are consid-
ered separately, but following Squire and Trouncer, the analysis of the

developed jet will be extended to cover the transition region.

Reg., A —=f— B —p—oor 0 ——mme

Figure 8. Sketch of System Considered in Establishment of
Mathematical Model.
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B. Equilibrium Core Region

If the existence of an equilibrium core is hypothesised on the
basis of the arguments in the preceding section, then the velocity,
pressure and shear stress in the core are those for turbulent flow in a
smooth tube. For such a flow, the wall shear stress is simply related

to the pressure gradient:

- . R dP

/ = (5.2)
w
2 d7
Also, the shear stress is proportional to the radius:
T e
- R (5.3)
ﬁﬁ, l

The dimensionless pressure gradient is a unique function of the Reynolds

number:

dfe R
e = v

If the shear is predominantly turbulent, then the shear stress referred

to above is the Reynolds stress:

T o= -0« (5.5)

Of course, near the wall viscous shear becomes predominant, but we are

interested here only in those vestiges of the turbulent tube flow which
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may be present in the equilibrium core. Thus, by the time the wall wake
has dissipated, the core will already have diminished in size so that
the portion remaining is the turbulent core of the tube flow for which
Equation (5.5) is valid. Sanborn's measurements support this argument.

Then the Reynolds stress distribution in the core is given by:

&
x
¥

T

= (5.6)

For the present, let us consider the jet flow starting at some value of

X = X, where the wake has been dissipated, and a , the radius of the

o]
equilibrium core is less than 0.9. Under these circumstances, Townsend's
parabolic profile given be Equation (4.6) is a good representation of the

velocity. In terms of the dimensionless pressure gradient, this profile

is:

A U S oy AR
= - = —20g

. w, (5.7)

Outside the mixing region, a uniform flow with axial velocity = U will
be considered, For the mixing region, let us assume a polynomial in

(b-r)/(b-a) may be used to represent the velocity profile:
L (6-H) b )% b—r ]2
—_ = + 5 > -7

But at r =Db , we have

w = U == = o
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Then

o)

o 1, and

8, =0,

and Equation (5.8) becomes:

(2 3
s il b—F
T = |t 8 |34 ] + 5} =y (5.9)

The coefficients 8o and 63 which are functions of x , can be deter-
mined from the conditions at r = a , where u and (Jdu/ dr) are speci-

fied by Equation (5.7). They are:

!

Us
Jz(vc): 3:—-_1)—-5‘”?%(2 L-rq) (5.10)

’u/ ~n (61)2-

and

v .
5;(%) = 2 (5" _ Y ) t+ ‘5(—’%?)/}— QL (5.11)

“)
The ratio Uo/ﬁi is as shown in Figure 5.

In the core, the pressure is radially uniform. It will be
assumed that, for the purposes of this model, the radial pressure gradi-
ent is limited to the mixing region. Thus, the pressure outside the

mixing region will be equal to the wall pressure, Summarizing, we have:

P = Po o<r<a
P=Py b<r<Rk
P, < P <P, a<r<b
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Furthermore, it is apparent from the qualitative arguments summarized in
Figure 7, that, if P represents the excess pressure over that at the
entrance:

Py < Py <O
and

dPy,

= =0 at x =0

This can be formalized as shown below,.

J Rv sz
dx = 2(*) d % (5.12)

where \(x) 1is a monotonically increasing function of x with (o) = 0.
Lacking a basis for any more elaborate form, (x) will be assumed linear
in x :

A(x) = Bx (5.13)

For the uniform flow region, the flow is essentially irrotational so that:

v _ L dFf
Vix = T € gx

(5.14)

For a given value of B and (Re); , it may be seen that P,(x) ,

P,(x) and U(x) can be easily computed. The mean velocity distri-
bution is then specified by a and b . A system of ordinary differ-
ential equations will now be developed, the solution to which will be
the desired functions: a(x) and b(x) . The two required differential
equations will be obtained by integrating the continuity Equation (2.6),

and the simplified Reynolds Equation (5.1).
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The total axial mass flux must be constant. Thus:
R
wuawrdr = Qs (constant) (5.15)

o

The velocity is not a continuous function, however, so that the integral

must be divided into three parts before it can be evaluated

a b Rz
®
L = [urdr t furgr * fardr
2N
(o] @ b

The velocities in each integral are:

o<r<a u = u(r); Equation (5.7)
a<r<b u =u(r); Equation (5.9)
b<r<R w=U

2

In its derivative form Equation (5.15) is:

a )
49 d d ZJv
TZ S IR wFdF 'i‘J?( Z. P (5.16)
[~ ¢

Carrying out the indicated integrations we obtain an equation of the

form:
dq J dJv
P v byt B =0 (5.17)

Integrating Equation (5.1) between the limits a and b :

b b
____ A 1 2P - o
" /"J’" ‘f’ﬁ" FdF + ¢ ox Fd F = —ﬁ-{ruv )D//’ (5.18)
< < <
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the stress term on the right integrates directly to give:

I

- _ —~ —
B = () (o), o
: F=b F= b

But at r =Db , the stress disappears, and at r = a it is given by

Equation (5.6). Thus:

° —_— 2’ 42"23’
? I — /
= |57 (r = vi)dr = 7R (5.20)

a
It is positive because the core is tending to accelerate the neighbor-
ing fluid.
The third term on the left is the integral of the pressure
gradient. It may be represented in terms of a properly averaged gradi-

ent:

A ) (é_f’_) b"—a”
¢ [ rdr = e \iry,

Now the precise distribution of the pressure in the mixing region is not
known, but it is the purpose of the integral approach to avoid solving
the second Reynolds Equation (2.9) by making use of approximate models
for radial variations. To implement the integral method here, the sim-

plest average will be taken. Thus:

b z_
/P JF / (JPa . dP.\ b —%
e = e \U» d 7

a
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or, employing Equation (5.12):

b A
| p c/fz 2'*‘ 4
I 397&}- = (’ (HA) B (5.21)
a
Substituting Equations (5.20) and (5.21) in (5.18):
b
o1
ﬂ 5% Fd /r ———-/-o/ F
(bz— CZZ) Jd P 2 72 b
P e . ¢ .
+(1+ ) — = ’ (5.22)

dx ;z/g,

As is demonstrated in Appendix A, the two remaining integrals on the

left may be put into a simpler form. The resulting equation is:

b Z b
d o
15 [wErdr +(1/.1—U)f17 wrJp — U [urdF
2 o L3
+ (1+ h)-(i:.i.)-f_lfz. _ ez (5.23)
#C J 2 A,

The pressure gradient can be eliminated by means of Equation (5°4), and

the final equation, in general form, is:

de db R 4 ( ) ( 2)
de. 1+2) (b*-a
e, (%) A 91(76)” Z!E— - (5.24)

Equations (5.17), and (5.24) form the required system for the determin-
ation of a(x) and b(x) . The boundary conditions are:

at x = Xos a = a,

b = b,
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We recall that x, is some point downstream of the wall wake. Since
Townsend 's profile (Equation (5.7)) holds only for r/R; < 0.9, a,
was taeken as 0.9 with b, computed from the integrated continuity

equation,

C. The Kinematic Core

In this region, the velocity profile in the core is still repre-
sented by Equation (5.7), but the stress distribution is no longer repre-
sented by Equation (5.6). In fact, the turbulent structure of the core
is changing rapidly in this region, and it will be necessary to make
maximum use of intuition and previous experimental observations to estab-
lish a mathematical model. It is important to note that the disappearance
of the equilibrium structure in the core will cause it to dissipate more
rapidly due to convective communication with the high shear mixing region.
Thus, it is a very short region.

The general form of the velocity distribution will be assumed
the same as in the previous discussion. Thus, Equations (5.7) and (5.9)
are still valid. The core pressure is no longer given by Equation (5.L4),
however, and P, and U are no longer known indépendently. If Equations
(5.12) and (5.14) are still valid, there are now three dependent variables
a

, b, U which prescribe the mean flow.

The integration of the continuity equation then gives:

de db U
P (Ko RS = @ (5.25)
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In the momentum integral Equation (5;18), a relationship for the shear
stress term will be required. Employing Squire and Trouncer's mixing

length, Equation (2.26), we have:

_— 2 ou_ |oU 2lax =
o g
with
£ = c@-a)
or:

(5.26)

Equation (5.19) is still valid, and the right hand term of Equation

(5.18) 1is:
b
- [ (r v )dr Lo a)t [2L)
aF\ % =2c (b-9) SF | (5.27)
a r=g

The derivative (%%) is given by Equation (5.7). It is:

r=8
oM _ -2(523)]) r 7, (5.28)
2r — R 2 o0& F £ @
and:

2 —

(2&) _ 4 (53) yerm ®
'—

7 r=g R *
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The pressure integral is evaluated as before, and dPo/dx can be elimina-
ted by means of Equations (5.12) and (5.14). The momentum integral equa-

tion becomes:

2 N
— 4(:.3)%’«3@ cz(b—cc) (

K"f‘

!

Jda db JU
9,(#)5‘,; + 6, (%)I; t+ S (7‘)0,‘; 5.29)

There is no straightforward method of obtaining the required third equa-
tion. If the change in the nature of the core turbulence does not immedi-
ately influence the behavior of the flow at the outer edge of the mixing
region, however, then we might assume that the jet continues to spread at

the rate computed at the end of the equilibrium core region:

db db
—— = —_— =b' .O
dx <dx)end of core region © (5.30)

Now the system is complete and consists of Equations (5.25), (5.29) and

(5.30).

D. The Developed Jet

In this region, the core has disappeared and the velocity on
the axis falls. The jet region is characterized by the approach to
structural similarity, and it might be expected, following the arguments
of Prandtl and Hinze, that a reasonable form for the Reynolds stress

relation is the constant exchange coefficient law:

A\

Y (5.31)

|

-
-w'r' = kb (4,—U)

L
-
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For sinplicity, the mean axial velocity will be assumed to follow the
Squire and Trouncer harmonic relationship (Equation (2.27)).

If the radial pressure ghadient is small, the Reynolds equa-

tion (Equation (5.1)) is

% % _ dU kb (Me—U) 9 ) (5.32)
M’g;c +V9}‘ —UJ?‘ T 2b (r

From Equation (2.27)

ow 7 (.= V) (ﬁw)
———sin[—

== - - n (5.33)
and

3;‘;(?% :—’/sz.-u) M?-L-r‘-f- -/g—tcv Zr (5.34)
Then Equation (5.32) becomes

ALY Ny —rrp-v)” T omr . a (5.35)
EPAMETIRN T T“g*w% T |

A system of three ordinary differential equations will now be developed,
the solution to which will be ( b, U, u, )(x). One will be obtained by

integration of the continuity equati on resulting in:

A,

(5.36)
= @)

N

Jb
CP,(vt)J“; +C'b(7’47¢ + @, %)j
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The second will be obtained by setting r = o in Equation (5.35) to

give:
J, JU ¢
°d # d* — 2 F b T b
r= ©

Applying L'Hopitals' rule to the right hand term:

Ju )

0 U ’ A %o—-—(}

R —Uﬁj—— — —_’_V_’LL————-— (5.37)

d % dx  — L

The third equation will be obtained by integrating Equation (5.35) over
the interval from r =0 to b . Nothing that the shear stress dis-

appears at both limits, the integral equation is:

<
R
”"‘“*0’* * r Crdr —ui%zb—— =e

o
Employing again the development given in Appendix A, this equation may

be simplified to the following form:

b
d z
- v
JV¥ w(w-v) rdr — V—Zé_-*ji;; = O (5.38)

o

Then, the final equation is of the form:

b , JV d o
6, (% g TS+ 6, (N5 = o (5.39)

Equations (5.36), (5.37), and (5.39) make up the required system.,
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E. Numerical Analysis

In each of the regions considered, the problem has been reduced
to that of solving a system of two or three simultaneous, non-linear,
ordinary differential equations. Most numerical methods for the solution
of ordinary differential equations are based on truncated Taylor series
expansions. With boundary conditions of the type encountered here, the
Runge-Kutta methods are quite convenient, especially if a computer is
available, The most frequently encountered Runge-Kutta method is the
fourth order method, which employs the first five terms of the Taylor
series expansion, and involves an error of the order of (Ax)s, There is
some freedom in the choice of an averaging technique, and the most popu-
lar for use with computers is that due to Gill.

The Runge-Kutta-Gill subroutines generally available for use

with digital computers solve systems of the type:

d
-;7§L- = fﬂ (9/) ZL) -7 T 7t)
(5.40)
dY, — -
- ‘Fz(j’)yz) /74)
dx

The systems arising from the developments here are of the type:

ZFL (‘(j’) y& ) T 7‘) ji‘/ - F (’)C>

These must then be solved simultaneously for the individual derivatives,
A computer program to solve the resulting system was developed. The
algorithm was written in the "MAD" language for use in the IBM 7090 com-
puter at the University of Michigan Computing Center, and is given in

Appendix B,
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The dimensionless pressure gradient, <y , in the equilibrium
core was computed by means of the formula established by Blasius.<6)
21
y =0.079 (Re) &

(5.41)
3000 < Re < 100,000



CHAPTER VI

EXPERIMENTAL APPARATUS AND PROCEDURES

A. The System Studied

In order to gain new insight into the phenomenon of confined
jet mixing, velocity profiles and wall static pressures were measured
at various distances from the jet source, in a system which differed
somewhat from that employed in previous confined jet studies. Thus, the
entering jet was a fully-developed, turbulent pipe flow rather than a
uniform potential flow, and the ratio of mixing tube to jet diameters
was lower than in previous studies.

The specific purposes of the laboratory study were: to deter-
mine the detailed behavior of this new kind of jet, especially near its
entrance, to test the validity of the similarity criteria of Craya and
Curtet for a nonuniform jet source, and to verify the hypotheses set

forth above concerning the nature of the flow.

B. Description of Equipment

Figures 9 and 10 are a schematic diagram and a photograph,
respectively, of the experimental equipment which was located on the
third floor of the Fluids Engineering Building. The fluids were pumped
into the jet tube and secondary entrance section from a constant head
tank by means of two centrifugal pumps. The use of pumps, rather than
independent, elevated constant head systems permitted operation over a
wider range of conditions, and provided a critical test of the appli-
cability of previous knowledge about jet mixing where industrial fluid
handling equipment was used,

-61-
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Figure 10. Phovos
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Thin-waelled brass tubes were employed as Jjet sources, Although
several authors have formulated anelyses of turbulent flow development at
the entrance to round tubes, their analyses are based on an initislly
flat velocity profile., For such an initial condition, Latzko(3u) pre-
dicts that fully-developed flow will obtain at a distance from the
entrance of 1,25 rO(Re)%n For the maximum Reynolds number and tube
diamerer employed in this study, this value is less than 20. When, as
in the case here, the initial condition is more complex, or unknown, the
only course is to make the tube much longer than that suggested by
Latzko's result, Accordingly, the jet tubes used were more than 50 radii
in length,

The outer tube of the mixing chanber was 2 inches in diameter
and 80 inches in length so that the downstream exit would have little
effect on the mixing process. Two jet tubes were used; one with a 1"
diameter, and one with a %” diameter. The mixing tube and secondary
flow entrance chamber were clear plastic with %” walls. The secondary
flow entrance section was 4" I.D,, 2' long, and contained two, 3-inch
honeycomb sections, A piece of aluminum stock was machined to form a
convergent channel which became cylindrical where the 2-inch I.D. test
section began,

The primary (jet) and secondary flows were pumped through
rotameters from a 55-gallon drum equipped with a large inlet and runoff
duct so that a constant level could be maintained, The fluid leaving

the end of the test section could be drained or recycled to the reservoir,



-65-

The mixing tube was tapped on each side as shown in Figure 9
at various distances downstream from the jet entrance, On one side the
taps were fitted with brass fittings and rubber seals so that an impact
tube could be inserted for velocity measurements, On the opposite side
the taps were connected to a menifold system which permitted their use
both in supplying a reference pressure for the impact tube total head
measurements and also in measuring the difference in wall pressure
between any two taps.

A1l pressure differences were measured by means of one of two
Statham pressure transducers employing resistance-bridge strain-gauges.
The characteristics of these transducers are given in Table I. Direct
current excitation was employed and a Sanborn pre-amplifier, amplifier,
and recorder were used to amplify the millivolt output and supply a
visual record of it. A specially-built device provided for external cali-
bration and zeroing circuits and also a choice of two excitation voltages
from dry batteries. Figure 12 is a schematic diagram of the calibration
and zeroing circuits,

So that a continuous record might be obtained for the velocity
profiles, the impact tube was moved slowly across the mixing tube by means
of a motor-driven worm gear device, This was a specially-modified JKM
syringe drive unit equipped with a high-torque motor and an impact tube
carriage made from a hypodermic syringe. Figure 11 is a photo of the
impact tube carriage and drive unit.

The impact tube itself is identical to that used by Knudsen in

his study of velocity profiles in anuli.(29) The point of a number 19
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Figure 11. Photograph of Impact Tube Drive Unit.
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hypodermic needle was sawed off, and a small slot sawed in one side at
the end. Then the end was sealed with epoxy resin, leaving a rectangular

hole in the side of the tube.

TABLE I

TRANSDUCER CHARACTERISTICS

Serial Numbers 11141 11157

Model Number PMsTC  0.3-350 PMSTC T 0.7-350
Pressure Range 0.3 psi * 0.7 psi
Excitation 12 v 14 v

Calibration factor
microvolts/volt/psi T229 L4800

C. Velocity Profiles

The impact tube, mounted on its special carriage, was positioned
at the wall of the mixing tube, and an electric clutch turned on, engag-
ing the constant speed drive unit. The impact tube traversed the mixing
tube at the rate of 0.156 inches per minute. The symmetry of the pressure
records indicated that the hydraulic and electronic circuits of the pres-
sure measuring system were not introducing any significant lag between
the pressure sensing probe and the recording. The impact tube was con-
nected to the positive side of a strain gauge pressure transducer. The
reference side was attached through the protective pressure transmitter

and a manifold system to a tap in the mixing tube wall opposite that
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employed for the impact tube. The transducer output was fed to the

recorder, thus providing a continuous record of the pressure difference.

One such record is shown in Figure 13.

D, Wall Static Pressures

By means of the manifold-valve system, the pressure difference
between any two wall taps could be measured. A sample record of such a

measurement is shown in Figure 1k,

E. Data Analysis

In laminar flow measurements, a small correction factor is
commonly employed in the interpretation of pitot tube pressures. For
low velocities such as those involved in these studies, which were less
than 10 ft/sec, this correction has been shown(3> to be less than 0.1%.

In turbulent flows, however, additional uncertainties are en-
countered because impact tubes measure mean square values. Goldstein(zg)
and Fage(IS) have discussed this problem, and conclude that if the radial
velocity component is small, reasonable accuracy can be obtained by using
the wall static pressure as the reference pressure. This was the pro-
cedure followed in the measurements reported in this thesis, Baron et,al,(3
point out that there is no rational basis for correcting turbulent impact
tube measurements, as quantitative detailed knowledge of the turbulent
structure is generally unknown, Knudsen(29) reported that his tests
showed good accuracy could be obtained with an impact tube of the type

used here, by use of the simple formula:

w = fﬂAVE (6.1)
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The pressure difference corresponding to a given voltage output is:

AP=CE (6.2)
where C = transducer constant, psf/millivolt
E = transducer output, millivolts

There was no way of measuring the radial hydrodynamic pressure gradient,
so that in cases for which such gradients were significant, as was par-
ticularly true of the studies involving the small jet tube, an indeter-
minant error in the calculated velocities was inevitable, The maximum
errors due to radial pressure gradients would occur in the higher Reynolds
number flows from the %" jet tube, For those runs it has been estimated
that the error is in the range of 2-L4%.

Because of the limited sensitivity of the available amplifier
and recorder, and the superimposed fluctuations resulting from worn pump
impellers, accurate determinations of velocities in the region external
to the mixing region were not possible, Thus, boundary layer development
could not be followed, but average velocities in the ambient flow region
were estimated by computing the uniform velocity necessary to satisfy the
continuity equation. Data for the region wherein velocities were measured
were plotted on paper whose vertical grid spacing was proportional to the

square of the abscissa. Then, since

b dr — —ZL M,J(I’Z) (6.3)

the volumetric flow rate corresponding to this portion of the flow could

be computed from the area under this curve as obtained by means of a
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planimeter, Knowing the total flow rate, as determined from rotameters,
the average velocity in the remainder of the tube could be determined.
If the computed average was negative, then an eddy of recirculation was
known to have been present, The existence of such eddies was verified
visually by injecting dye into the jet tube stream.

Records of differences between wall static pressures were more
simply determined. Due to worn shafts and impellers in the centrifugal
feed pumps, however, the pressures fluctuated rapidly about their norminal
values. This produced fluctuations in the recordings of pressure differ-
ences as shown in Figure 14, To obtain the average value of the reading,
a planimeter was used to measure the area under a certain length of trace.
Equation (6.2) was employed to compute the pressure difference from the
average recorder reading.

The transducer constant, C , is computed from the relationship:
1
C= = (6.4
FEX J )

where F is a calibration factor supplied by the manufacturer, and Eyx
is the excitation voltage supplied to the transducer, A vacuum tube
voltmeter was used to determine the exact voltage output of the dry cells
employed, and a high resistance voltmeter was used to check on cell

stability. When cell voltages began to drop, new ones were installed.



CHAPTER VII

EXPERIMENTAL RESULTS

Conditions studied with the %vinch diameter jet tube are listed
in Table II, and the results are shown in Figures 15 through 23. Corre-
sponding information concerning studies made with the 1" jet tube is
given in Table III and Figures 24 through 30. Each figure contains the
complete data on velocity profiles and wall pressures for each experi-
mental condition., The dashed line on the velocity plot represents the
initial profile computed as follows:

0 r

(AN
IN

R, wuniversal velocity profile

Ry

VAN

r < R2 average secondary velocity

The velocity profiles are numbered as follows:

Number Distance from Jet Tube Exit,
Inches
1 1.5
2 3.0
3 5.0
L 10,0

In drawing the wall static pressure curves, maximum use was
made of intuition and indirect information, as the small number of experi-
mental measurements did not always provide a complete picture of the dis-
tribution, When recirculation occurred, for example, an inflection was
expected. Also, for large values of x , it was known that the slope

should be approaching its value for developed pipe flow.

_075_
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TABLE II

MEASUREMENTS WITH " DIAMETER JET TUBE

Recirculation
Figure (Re)q Cy Uo/Uy Observed
15 12,000 1.21 0.22
16 1.5k 0.34
17 18,000 0.251 -0- X
18 0.56 0.075 X
19 0.80 0.15
20 26,000 0.251 -0~ X
2l 0.67 0.10 X
22 0.88 0.16

23 29,000 0.66 0.09 X
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TABLE III

MEASUREMENTS WITH 1" DIAMETER JET TUBE

Recirculation
Figure (Re)q Cy U2/Ul Observed
2k 14,000 1.21 0.47
25 1.54 0.70
26 28,000 0.50 -0- X
27 0.71 0.12 X
28 0.88 0.2k
29 k2,000 0.50 -0- X
30 0.65 0.08 X
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CHAPTER VIII

DISCUSSION OF EXPERIMENTAL RESULTS

A. Introduction

Several general conclusions may be drawn from examination of
the experimental results. First, the length of the core divided by the
Jet tube radius varies considerably. Exact location of the point where
the velocity on the axis begins to fall is not possible as traverses
were made only at arbitrarily selected points, but it seems apparent
that the jet Reynolds number has an important effect on the length de-
fined above. This length will be referred to as the "core length'". The
dependency on jet Reynolds number is in contrast with the case of a jet
with potential core for which, XC/Rl is always about 8 regardless of
Jet Reynolds number.

It may also be noted that in the experiments involving the
smaller jet tube, some degree of similarity in the velocity profiles
exists a short distance downstream of the point at which the core dis-
appears. In Chapter III it was shown that such a similarity is a neces-
sary condition for the validity of the Curtet similarity principle. For
the larger jet tube, however, (Rg/Rl =2) the jet spreads to the wall
in such a short distance of the core disappearance that there is little
opportunity for the flow to develop any similarity. Thus, these flows
contain no region of developed jet flow of the type analyzed by Curtet.

After the jet reaches the wall, the positive pressure gradient
decreases as the velocity redistributes itself, gradually approaching

its fully developed tube flow configuration, until the loss in integrated
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velocity head nearly offsets the wall shear stress so that the pressure
levels out. Finally, the pressure gradient will approach its value for
pipe flow. For all of the experimental studies, the Reynolds number,
based on the mixing tube diameter and average velocity, was sufficient

for turbulent flow.

B. Maximum Pressure Recovery

A characteristic of the flow in a confined Jjet which is of
practical importance is the maximum pressure recovery obtained in the
mixing tube. It is of interest to compare this maximum pressure rise
with that predicted by an overall momentum balance. Consider the control

volume shown in Figure 31:

r—-—r————"—"~>~F~—~~~—— T T -~ T
— :
' :
_— |
U] — | l—u,
— |
|
U | I
2 —* | I
e -

Figure 31. Control Volume for Momentum Balance.

In a manner analagous to that of the derivation of Equation (3.8), the
overall momentum balance can be written as shown below if wall friction

is neglected and the nonuniformity of the initial jet profile is
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accounted for by the use of a momentum factor, Bl,

max P 2 I
:; zZ - - /3'(%)2-+(:%’)2 P(%)j/‘/’)a {:%’a. }5/-(’{47 *(%i:_)z 2 (8.1)

Streeter(5o) has computed £, as a function of the tube friction factor,

and his equation is:
By =1+ Ly (8.2)

Employing the Blasius Equation (5.41) to compute 7y(Re), we find that
for all of the conditions studied experimentally, B' does not differ
greatly from 1.02. Using this value, the maximum pressure recovery was
computed as a function of the velocity ratio for the two radius ratios
employed. The results are shown in Figures 32 and 33 along with the
values measured in the laboratory.

It may be noted that the maximum pressure rise corresponds to
fairly small values of Pp. This indicates that when the jet reaches the
wall, if Bo has a value of the order of 1.8 as computed in Chapter II,
then considerable additional pressure rise occurs after the mixing region
fills the tube. PFurthermore, nearly all of the available momentum is
converted to pressure head before the wall shear begins to dominate the

pressure development.

C. Recirculation

When Up =0, as was the case in the experiments whose results

are shown in Figures 17, 20, 26, and 29, the secondary flow is shut off
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entirely so that all the fluid inducted into the mixing region must
come from downstream. Thus, an eddy of recirculation stands at the
entrance to the mixing tube. The maximum pressure rise for a given
jet velocity occurs for this condition. If a small secondary flow is
supplied, the eddy moves downstream into the mixing tube as seen in
Figures 18, 20, 21, 23, 27, and 30. There is a dip in pressure cor-
responding to the rapid change in the velocity distribution associated
with the eddy.

In Chapter III, criteria for the occurrence of an eddy of
recirculation were discussed, and it was concluded that under certain
circumstances, the similitude parameter of Curtet governs recirculation
phenomena, in confined jets. Due to the increased radial pressure gradi-
ent near the source, however, and the absence of a developed jet region
for larger values of Rl/Rg, the system under study here deviates some-
what from the model upon which Curtet's developments were based. Never-
theless, the value of Ct, the Becker modification of the Curtet parame-
ter, was computed for each of the flows studied experimentally. In order
to illustrate the effect of Craya-Curtet number on recirculation over the
range of Reynolds numbers involved, Figure 3L was prepared. It may be
noted that a value of Ct of about 0.78 separates the recirculatory flows
from those in which no eddy was observed. This compares with the value
of 0.75 found by Becker(5> in his experiments with the more common con-
fined jet system.

Thus, even for the larger jet tube, in which case strictly
similar velocity profiles were not developed, the integrated momentum

did not vary sufficiently from one test to another to destroy the
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general validity of the recirculation analysis given in Chapter ITII.
A detailed experimental study aimed specifically at defining the con-
ditions for the existence of an eddy of recirculation would no doubt
indicate, however, that for larger ratios of jet tube to mixing tube

diameter, the single parameter criteria would not be exactly valid.



CHAPTER IX

CALCULATIONS BASED ON MATHEMATICAL MODEL

A. Flow Near the Source

It was pointed out in Chapter IV that the analysis presented
there of the flow in the initial regions of the jet was based on assump-
tions which are valid only for larger values of Rl/Rg. Since a com-
puter program was prepared to solve the system of differential equations
derived in that analysis, it was quite easy to obtain numerical results
for a large number of conditions. For the smaller jet tube (Rp/Ry = 4.0),
the computed results were not in quantitative agreement with experimental
results. For Rg/Rl = 2, however, the computed results for the core
region were in good agreement with experimental results.

The computed velocities at x/Rl = 3 for conditions correspond-
ing to the experimental results plotted in Figure 24 are shown in Figure
35. As pointéd out above the agreement with experiment is good in this
region prior to the decrease in the velocity on the axis. Since, in the
case of the larger jet tube, a self-preserving structure or developed Jet
flow was never attained, the developments of Section L4, Chapter V could
not be applied here.

In order to learn more about the behavior of the flow near the
source, the length of the region for which the velocity on the axis is
constant (the core length) was computed from the mathematical model for
a variety of Reynolds numbers and velocity ratios. The results are shown
in Figure 36. As might have been expected, the length of the core in-

creases with jet tube Reynolds number and velocity ratio. It is also of
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interest to note that the effect of the Reynolds number decreases

significantly at high values of this parameter.

B. The Developed Jet

In the case of the smaller Jjet tube, the data seemed to indi-
cate the possibility that the flow was self-preserving some distance
from the source. These results were compared with those computed by
means of the analysis of Section 4, Chapter V. For the conditions cor-
responding to the experimental results shown in Figure 16, the computed
velocities are given in Figure 37. The value of the exchange coeffi-
cient, k, in the turbulent shear law (Equation (2.12)) which best fit
the experimental data was 0.010. This is the same value obtained by
Szablewski(sl) for the transition region of a free jet with ambient
velocity. It would appear, then, that although there occurs, in the
case of the small Jet tube, an approximate similarity in the velocity
profiles downstream of the source, the turbulent structure is not the

same as that in a free jet, for which k has been found to be 0.0158.
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CHAPTER X

CONCLUSIONS

The confined circular jet with turbulent core has been studied
by measuring impact tube pressure profiles and wall pressures in a water
system. The characteristics of the flow near the jet entrance have been
examined in some detail by the application of knowledge of turbulent
structure of fully developed tube flow.

It was demonstrated mathematically that the pressure should
fall, at first linearly, near the jet entrance. The wall pressure data
seem to bear out this result, although hydrodynamic pressure measurement
within the jet were not possible. The concept of an "equilibrium core",
from which the linear pressure rise was predicted, also indicates that
the velocity profile near the axis should not change for a short distance
downstream of the entrance, and this result was verified experimentally.

The detailed mathematical analysis i1s more difficult than in
the case of jets with potential core as fewer simplifications of the
equations of motion are possible. Over a certain range of conditions,
however, an approximate integral theory has been formulated on the basis
of the concepts mentioned above. This theory permitted the calculation
of several important characteristics of the flow.

As in the case of the jet with potential core, the velocity on
the axis remains constant for some distance downstream of the entrance,
although this distance was somewhat shorter in the case of the turbulent
core, its specific value depending predominantly on the jet tube Reynolds

number. The effect of the jet Reynolds number on the overall behavior of
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the mixing flow was found to depend on several factors. For small ratios
of Jet tube to mixing tube diameters, the Jet is allowed to develop into
the kind of Jjet flow considered by previous workers. Under these cir-
cumstances, the usual assumption that the characteristics of the developed
portion of the jet are independent of the nature of the source 1s approxi=-
mately valid.

An exception to this independence 1in this case, however, is
found in the boundary layer development at the wall. Thus, the pressure
gradient in the first few diameters downstream of the entrance can have
an important effect on the growth of the wall boundary layer, and the
probability that it will separate or become turbulent. It was not possi-
ble to study the detailed development of the boundary layer with the
equipment constructed for the jet studies. It may be noted, however,
that in the .case of the potential core, the pressure gradient is inde=-
pendent of the jet Reynolds number, whereas it is strongly dependent cn
the latter in the case of the turbulent core.

For larger ratios of Jet tube to mixing tube diameters, the
mixing region reaches the wall before the flow has an opportunity to
develop fully, and there is little similarity to conventional confined
Jet flows.

It is demonstrated by a simple mathematical treatment, that
recirculation can be predicted very simply, if the assumptions made by
previous workers in establishing a model for the flow are valid. Under
these circumstances, the occurrence of recirculation is shown to be
uniquely dependent on the similitude parameter suggested by Curtet on

the basis of a detailed analysis of the equations of motion, and later
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derived by Becker from a more general development. The development of
the wall boundary layer, and the nonsimilarity of the reduced velocity
profiles in the mixing region, however, can destroy the uniqueness of
this correspondence. Thus, if the boundary layer remains thin, and the
jet is permitted to attain its fully developed configuration before re-
circulation begins, the Curtet criterion for recirculation is nearly an
exact one. The deviation of the flow from these restricted conditions,

of course, makes it a very complex problem in which the development of
the flow at any cross section depends on the history of the fluid as

well as on the local turbulence characteristics. Under these circum-
stances the principles of self-preservation and similarity of structure
are not operable. Nonetheless, it may be concluded that the Curtet simili-
tude analysis takes into account the most important features of the momen-
tum exchange, and can supply information of interest even in cases where
his model is not strictly valid.

In general, the jet with turbulent core is found to develop more
rapidly at first since the turbulent stresses and radial pressure gradient
are greater near the entrance. If the mixing tube diameter is sufficiently
large the jet develops into a flow similar to that found downstream of a
potential core.

The confined jet is of some interest in the design of Jjet pumps.
The jet pump consists of several components, however, which require indi-
vidual attention. These are: a nozzle, secondary or induced flow en=
trance chamber, a mixing tube, and a diffuser. The overall design of
such a device depends on an optimization of the complete assembly. Thus,

the coupling between the performance of the various components is of prime
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importance. For example, the mixing tube may be designed for a maximum
pressure recovery with a given nozzle and secondary entrance configura-
tion. The resulting velocity distribution at the exit of the mixing

tube, however, may be a poor one from the standpoint of diffuser perfor-
mance. A great deal of fundamental research on the detailed flow in all
the components will be necessary before a Jjet pump may be designed on a

rational basis.



CHAPTER XTI

SUGGESTIONS FOR FURTHER STUDIES

There are several interesting aspects of the flow in a circular
confined jet which should be studied in more detail. One is a possible
manifestation of the instability problem and resulting periodic flows
found by Curtet in his studies of plane Jjets. There are several possible
modes for such phenomena in circular Jets. The jet may sweep around the
mixing tube producing a spiral trail of vortices, or it might flip from
one side of the tube to the other.

Another important feature of confined jets is the development
of the wall boundary layer. This is the unique situation where an axially
symmetric internal boundary layer grows in a pressure gradient which may
be either positive or negative. The effect of pressure gradient, wall
roughness, and entrance shape on the boundary layer growth, separétion
and transition could be studied visually by means of dye addition in lig-
uids or by means of velocity measurements in larger systems.

A third area of practical interest is the mixing of two differ-
ent liquids. Both velocity and composition profiles would be necessary
for an analysis of the flow. Two distinct Reynolds numbers would be in-

volved.
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APPENDIX A

INTEGRATION OF CONVECTION
TERMS IN EQUATION (L4.1)

For convenience, let T = -u'v' p . Then Equation (L4.1)

may be written as follows:

ELAR T | A I T (1)
“or TVOoF =T %5 *rgr(}‘/f)

Integrating between two limits, rj] and rp which may be functions of

X:

kL k, r. r

e L 9p

wI= f EXY - -7Z + [2 7 L
/” a/?"f'vwfdr_ > HF 3;(,(,)4;.
h h 4 fA

(A-2)

The last term is obviously:

rZ

2 (T o T(h)~ k T(n) (a-3
57(’ r)J" = RTG)- kT )

! ¢
The integrals of the convection terms may be put into simpler form which
are analagous to the terms appearing in the boundary layer momentum inte-

gral equation.

First, from the continuity equation, an expression for v is:

l—
- - [ 2«
7,
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Inserting this expression for v 1in the second integral of Equation

(A-2), and integrating by parts:

r v b r r.
_[2% [ 3% _ 24 — (w2
ﬁr/’:’f bIF = [ 5p It [ﬁr h“-]
ho % ’ f

So, the second integral becomes:

1

r Fa f; Fo
2% — [u 2 i Fu(n)] o FLd
vy Fd ,%{7?‘ r (I) 5;_“/}-_.%(;3_) Z Fd F
K h

] o o)

The first integral may be transformed as follows:

h_ r
) 2
/ﬁlm = 3 20%%) Ly
Ix 2%
k g

A theorem related to Leibnitz' rule for integrals is:

2 (P A

AU (*1Y) d JY JJ,

e = — c/ L L

o A L o P e
9(+) J,

This rule may be applied to the integrals of the convection terms.
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Substituting the results into Equation (A-2):

r A
i’ 2 __SJ___ d
Jx [ HdE ot w ()9 [wrdr = (n) 3 [ardr

r o

ta

o

Fa

o
- —(;'/)2)_‘6 FF o+ -(-/:[r T(k) - h T(")] (A-6)
r

|

Finally, Equation (A-6) may be rewritten as follows:

o
y [ "
1% W Fdr f]}i(r,)’u(rz)]ﬁ/awr —a(r,_)ﬁ wHF
7 ° £
h,
— L ] 1 ~
- - r —J—_)()'JF + r ["1/("»)—-)’,7“("/)

h

(A=T7)



APPENDIX B

COMPUTER ALGORITHM

On the following pages are listed the parameters which must

be supplied for the computations, and the MAD statements of the program.
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Input Parameters for MAD Program

Symbol
AZ
Bz

WRAD

PGRAD
PRAD

CORAD

UEZ

cC

Parameter
initial value of a/Ry
initial value of b/Rl

maximum value of b/Rg for which calculations
will proceed

the constant B in Equation (4.13)
a/Rl for which equilibrium core begins to deteriorate

a/Rl for which core is to be assumed completely
dissipated

minimum value of U/W; for which calculations
will proceed

el
k

interval at which numerical solution will be com-
puted, Ax

The following parameters must be specified for each particular flow which

is to be analysed

U2

Rl

REL

INTVAL

Ups/Ty
R1/Rp
jet tube Reynolds number

frequency of print out
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MAD PROGRAM

$ COMPILE MAD,PRINT OBJECTsPUNCH OBJECTEXECUTE s DUMP

THIS PROGRAM COMPUTES THE AXIAL VELOCITY AND PRESSURE
FIELDS IN A CONFINED CIRCULAR JET WITH FULLY

DEVELOPED TURBULENT COREe THE RUNGE~KUTTA METHOD
IS USED TO SOLVE A SYSTEM OF ORDINALY DIFFERENTIAL

|0 DO

EQUATIONS NUMERICALLY.

Reee e PRELIMINARY DECLARATIONSe e

INTEGER I9JsI15J19K1sL19FLAGy CORE » COUNTy INTVAL

DIMENSION Y(5)sDF(5)sG(20sDIM)sF(209DIM)sE(3)sN(3),DIM(2)
2 sLP(8B)s LT(8)s R(25)s U(25)s Q(5)y LN(B)y VNI(50)y VO(50)

VECTOR VALUES DIM = 25 1y 3
INTERNAL FUNCTION PHIe(I19J19K1sL1l) = F(I1sJ1)/F(K1lsJ1)=

2 F(I1sL1)/F(K1sL1)
EQUIVALENCE (Y(1)9B)s (Y(2)sV)y (Y(3)sUC)

EXECUTE SETRKD«(5sY(1)sDF(1)sQsXsH)
PI = 3.14159

PLISQ = PI*P1

PI2 = 34/16e=-14/PISQ
PI3 = 0.25 - 1./PISQ
PI4 = 14/P1SQ = 1e/8s
PI8 ="0425-1./P1ISQ

Reee o READ DATA AND COMPUTE BASIC PARAMETERGeees

READ FORMAT BASTCy» AZ+yBZyWRADyPGRADSPRADICORADS
2 UEZy CCy» K9 H

VECTOR VALUES BASIC = STF10+4%5
PRINT FORMAT FIRSTP

READ

PRINT RESULTS AZyBZW»WRADH yUELWPGRADyPRADyCORAD Y CCHK
READ FORMAT DATA)» U2y Rly RELls INTVAL

VECTOR VALUES DATA = $2F10e4y E10e29110%3%
DR = 14/20,

CALCR

THROUGH CALCRy FOR T=0,41y leGe20
R(I) = I*DR

URAT = 06069 + 00I3S¥ELDG.(RET)
UZ = 14/URAT

QQ = RI¥R1*{1.-U2) + U2
FF = 00079/RE10P00025

BETA = Te + 4o¥FF
MCP = R1*R1¥(BETA-RI*#R1%(14=U2)%(14-U2)/2,.)/(QQ%*QQ)

CT ¥ [e/SURTe (MCPT
SFF = SQRT. (FF)

M = 5.3¥SFF/(RI*RI)
PRINT COMMENT $1RESULTS FORS

PRTNT RESULTS My MCP, UZ
PRINT FORMAT THESISs U2» 1e/R1y REls FFy URATy BETAy CT
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MAD PROGRAM CONTINUED

X = Qe

Y(1) = AZ¥*R1
Y(2) = BZ*R1
Y(3) = U2
Y(4) = Qo
Y(5) = Qo
LP(0) = 1.0
FLAG = 1
CORE =1
COUNT = 1

TRANSFER TO COMP

‘ReeeoeCOMPUTE FLOW IN CORE REGIONeese

RK

S = RKDEQ«(0)
WHENEVER S eEe 140

COMP

L =Y(2)-Y(1)
DELTA = X/R1%*PGRAD

THROUGH SETLs FOR I = 19191eGe8
LP(I) LP(I-1)%*L

SETL

LN(I) = -LP(I)/1
LT(I) = LP(I)*(Y(2)/1-L/(1+1))

DELU = UZ-Y(3)
C = (3e*¥DELU-MRY(L)*(Y(1)+2e%Y(2)))/LP(2)

D = 2% (M¥Y(1)¥Y(Z2)-DELUV/LP(3)
E(1) = (6e*¥DELU=2¥M¥/(2)%(24%Y(1)+Y(2)))/LP(3)

El2) = (Z¥M¥YTIT¥(Z4¥YTIT+Y(2) =86+ *DELUT/LP (3]
E(3) = =34/LP(2)

NTLY = =eTULI7C

N{2) = -E(2)/L

N{3) = 2.7LP13)

G(1ls1) = Q.

GlU2y1) = YT R 2 *CHLT (2T+2¥DFLT (3T TF+(3e¥LT(AT=44*LN(5173,)
2 RCHCH(3e*LT(6)=9e*LN(T) /4o )*D*D

WHENEVER Y(1) eLe PRAD¥K]
G(3s1) = LT(L)I*Y(3)+CH(LT(3)=LN(4))+D*(LT(4)=1e5%LN(5))+Y (2}

& Fl2KCHLNT3)+3¥DFLNTAT I FTLe=Y (21 *Y (2T ¥ (LN(ZT¥C+1 45 ¥D¥
3 LN(3))=(1e+DELTA)/DELTA*(Y(2)%Y(2)=Y(1)*Y(1))/be%*Y(3)

OTHERWISE
G(391) = LT(1)*Y(3)+C*(LT(3)=LN(&4))+D*(LT(4)=1e5%LN(5))+Y(2)

Z FIZeFCFUNTITF 3« OFCNTGITF Lo =Y ZIXY I 2T T ¥ (CLNTZT*¥CF <5 ¥D*
3 LN(3))

END OF CONDITIONAL
Gl4sl) = LT(3)%Y(3)+CH(LT(5)=LN(6)/2¢)+D*(LT(6) =04 T5*LN(T))+

2 Y(2) %0686 7T%C*LN(5)+D*%LN(8])
G(591) = Y(3)¥LT(4)+CH(LT(6)=0e4*LN(T)I+Y(2)*LN(6)/24) +

Z DFTCT{TT-0O«B*CNTBIF0I5FY(2ZT¥LR(TT]
G(192) = Y(1)*(DELU-M*Y(1)*Y(1)=LP(2)%(L*D+C))

Gl2y2) = YI3T¥L+YTZVXCHLP(Z)+(Y( 21 ¥D-0667*CI¥LP(3)~0s15%
2 D*LP(4)

GU3927 = U = YUIT*YI(IT72Z,
G(4y2) = LT(3)

G{5s2) ¥ LITTG)
G(692) = 0o
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" MAD PROGRAM CONTINUED

THROUGH SETFs FOR VALUES OF J = 1y 2
THROUGH SETFs FOR I=1s191eGe3

SETF FlIsJ) = GIIsaJ)+GAsJ)*E(I)+G(59J)RN(])
WHENEVER Y(1) eLe PRAD¥*R1

WHENEVER CORE «Es 1

CORE = 2
PRTNT COMMENT ® END OF EQUILIBRIUM CORE ATS
XR1 = X/R1

PRINT RESULTS XR1
END OF CONDITIONAL

LSQ = CC¥LP(2)
Gl691) = LSQ¥4Ho¥MAMEY (1)*Y(]1)*Y (1)

DFT3) = (GU(Bs1)/F (1911 +DF(2)¥PHIe(2929191))/PHIe(3919192)
DF(1) = =(F(292)%#DF(2)+F(3+2)%DF(3))/F(192)

DF(5) = -Y(3)*¥DF(3)

DF(4) = DF(5)/DELTA

OTHERWISE

Fl491) = FF/RI®(Y(1)*Y(1)*(1e=DELTA)+Y(2)%Y(2)+

2 TIeF+DELTAT-Ge ¥ DELTAXF (391177 (3)17%

F(492) = =FF*F(392)/(Y(3)%R]1)

DF{2) = PHIe(4919192)/PHT«T29191»2)
DF(1) = (F(492)=F(292)%DF(2))/F(142)

DFT4) = -FF/R1
DF(5) = DELTA*DF(4)

DF(3] = =DF(5]1/7Y(3]
END OF CONDITIONAL

WHENEVER X oLe 04000001
X = =(1le—=AZ)*R1/DF(1)

XZRAT = X/R1
Y(2) = R1+DF(2)*X

1(4) = DF(4)%X
Y(3) = SQRTe(U2¥U2=2e%Y(4))

TRANSFER TO PRINT
END OF CONDITIONAL

TRANSFER TO RK
END OF CONDITIONAL

WHENEVER XeGelUo K1
PRINT COMMENT $ X LIMIT EXCEEDED$

"OR” WHENEVER Y(2) «Ge WRAD
PRINT COMMENT $ MIXING REGION REACHES WALL ATS

PRINT RESULTS X
OR WHENEVER Y(1)eLeCORAD*R1

PRINT COMMENT $ END UF CURE ATY
PRINT RESULTS X

FLAG = 3
COUNT. = 1

TRANSFER TO PRINT
OTHERWISE

WHENREVER COUNT eEe INTVAL
COUNT = 1

TRANSFER TO PRINT
OTHERWISE

COUNT = COUNT+1
TRANSFER TO RK

"END OF CONDITTONAC
END OF CONDITIONAL
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MAD PROGRAM CONTINUED

FLAG = 2

PRINT

PRINT FORMAT VELHD1ls X/R1s Y(1)/R1ls Y(2)s Y(3)s Y(4)y Y(5)
THROUGH CALCUs FOR I=04s1y [eGo20

WHENEVER R(I) eLe Y(1)
UCI) = UZ-M*R(I)*R(I)

OR WHENEVER R(I) eGEe Y(1) eANDe R(I) slLe Y(2)

UCI) = (Y(3)+(Y(2)=R(I))*(Y(2)=R(I))*¥(C+D*(Y(2)=-R(I))))
OTHERWISE
Ull) = Y(3)

CALCU

END OF CONDITIONAL
PRINT FORMAT VELOCs R(I)y U(I)

WHENEVER FLAG +Ee 2
TRANSFER TO READ

OR WHENEVER FLAG +Ee 1
TRANSFER T0O RK

END OF CONDITIONAL

Reee e COMPUTE FLOW IN DEVELOPED JETesee

V = Y(3)
uc = UZ

DELU = UC-V
B = SQRT« ((QQ-V)/(2*PI3%#DELU))

RK2

Y(4) = 0e0%(Y(4)+Y(3))
S = RKDEQ.(0)

‘WHENEVER SeEele0
DELU = uC-v

F{2,1) = V
F(3y1) -UC

F(4s1) K*PISQ*DELU*DELU/B
F(1s2) 2. ¥B* (UCHUCHPI2-V*V/16e + UCKVX*PI4)

F(292) B*B* (PI4%¥UC-5,%V/8,)
F(3s2) B*B* (24 %PI2*%UC + Pl4*y)

F{4y2) Q.
F(1s3) 20¥DELU*PIB*B

F{2+3) Ue> = Plo*B*}
F(343) PI8%B*B

DF(2) = (FU4s1)*¥PHRI e (3939192) /F(3s1)FF (4921 /F{192))/
2 (PHIe(2929193)+F (291 )%PHIe(3939192)/F(391))

DF(1) = (F(492)-FU29s2)¥DF(21+F (392 F(F (291 *DF (2)=F (4917107
2 F(351))/F(1y2)

DF(3) = (Fl4yTT-FUZsTT¥DF(2) ) /F(3s1]
DF(4) = =V%DF(2)

TRANSFER TO RK2
END OF CONDITIONAL

WHENEVER X ¢Ge 40,
PRINT COMMENT $1MAXIMUM X REACHEDS

FLAG = 2
OR WHENEVER V oLEe U2*UEZ

PRINT COMMENT $1EDDY OF RECIRCULATION BEGINSS
FLAG = 2

OR WHENEVER B «G. WRAD
PRINT COMMENT $1MIXING REGION HAS REACHED WALLS

FLAG =72
END OF CONDITIONAL
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MAD PROGRAM CONTINUED

WHENEVER COUNT oEe INTVAL eORe FLAG oEe 2

COUNT = 1
PRINT FORMAT VELHD2s X/R1s Y(1)s Y(2)s Y(3)y Y(4)

THROUGH PRINTUs FOR I=0s1y leGe20
WHENEVER R(I) oLe Y(1)

UTT) "= V+0.,5¥DELU* (14 *COS« (PI®*R(11/8B1)
OTHERWISE
utry = v

END OF CONDITIONAL

PRINTU

PRINT FORMAT VELOCs R(I)s U(I)
OTHERWISE

COUNT "=~ COUNT +1
END OF CONDITIONAL

WHENEVER FLAG «#Ee 2» TRANSFER TO READ
TRANSFER TO RK2

VECTOR VALUES FIRSTP = $1HI///S15955HJs Me DEALY = CONFINED C
2IRCULAR JET WITH TURBULENT CORE//S10969HRESULTS OF NUMERICAL

3APPROXTMATTON "TO SOLUTION OF EQUATTIONS OF MOTION//7/7%%
VECTOR VALUES THESIS = $1H1///520941HCONFINED CIRCULAR JET WI

2TH TURBULENT CORE ///3515s5THNUMERTICAL APPROXIMATION OF 1
3NTEGRATED EQUATIONS OF MOTION/////S15924HVELOCITY RATIOs U2/U

41 = S69F10e4//515922HRADIUS RATIOs R2/R1 = S8sF10e4/7/515927THJ
S5ET TUBE REYNOLDS NUMBER = S3,E10e3//515926HFANNING FRICTION- F

6ACTOR = 544FT0«4775T5,25HRATIO OF AVERAGE 10 AXIAL/SIB,2ZHJET
7 TUBE VELOCITIES = S54F10e4//515930HMOMENTUM CORRECTION FACTO

8R = F10e4//515925HCRAYA-CURTET PARAMETER = S$55F10+4%%
VECTOR VALUES VELHD1 = $1H1/////515510HAT X/R1 = F10e4//520s

2 THA/RI = F1044/52097HB/R2 = F10+47/520520HU(OUTSIDE JETI/UL =
3 F1044/520531HDIMENSIONLESS AXIAL PRESSURE = F10e4/520930HDIM

4ENSTONLESS WALL PRESSURE = FI044/7/77515923HTHE VELOCITY PROFT
S5LE 15///52394HR/R29521 s4HU/UL /%%

VECTOR VALUES VELHD2 = $1H1/////S15510HAT X/R1 = F10+47/520
2 THB/R2 = F1044/520920HU(OUTSIDE JET)/Ul = F10e64/520913HU(AX]I

3S)/UT = FI0e47/ 5209 25HDIMEN
4SIONLESS PRESSURE = F1044////S15923HTHE VELOCITY PROFILE I1S//

5/523s4HR/RZ2ySZ1»4HU7UL/ %%
VETTOR VALUES VELOC = $5203sF10e49S159F10e4%$

END OF PROGRAM




APPENDIX C

SAMPLE COMPUTER OUTPUT

The computer output for the calculations of flows correspond-
ing to the experimental conditions of Figures 16 and 24 is shown in

this appendix.
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CONFINED CIRCULAR JET WITH TURBULENT CORE

NUMERICAL APPRUXIMATION OF INTEGRATED EQUATIONS OF MUTION

VELOCITY RATIO, U2/U1 = <3400
RADIUS RATIO, R2/R1 = 4.0000
JET TUBE REYNOLDS NUMBER = <120E 05
FANNING FRICTIUN FACTOR = L0075
RATIO OF AVERAGE TU AXIAL

JET TUBE VELOCITIES = .8121
MOMENTUM CORRECTION FACTOR = 1.0302

CRAYA-CURTET PARAMETER = 1.5125




-122-

AT X/R1 = 1120
A/R1 = «9000
B/R2 = «2516
U(CGUTSIDE JCT)/UlLl = « 3425
DIMENSIONLESS AXIAL PRESSURE = -.0008
DIMENSIONLESS WALL PRESSURE = 0000

THE VELOCITY PROFILE IS

R/R2 u/sul
.0000 1.2314
0500 T.2130
.1000 1.1577
L1500 1.0656
.2000 L9367
<2500 <3450
3000 <3425
3500 23425
. 4000 .3425
4500 3425
5000 <3425
.5500 3425
.6000 | <3425
6500 T3475
.7000 <3425
<7500 3425
8000 | <3425
.8500 .3425
.9000 | <3425
9500 T3%75

1.0000 «3425
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AT X/RL = <1520
A/RT = <8657
B/R2 = 2522
U(OUTSTDE JETI/UL = . 3425

DIMENSIONLESS AXIAL PRESSURE =

-00011

DIMENSIONLESS WALL PRESSURE =

-.0000

- THE VELOCITY PROFILE IS

R/R2 u/ul
000U 1.2314
. 0500 1.2130
.1000 1.1577
.1500 1.0656
.2000 93067
.2500 .3479
«3000 « 3425
.3500 <3425
4000 «3425
.4500 <3425
.5000 «3425
+5500 <3425
<6000 <3425
.6500 <3425
. 7000 « 3425
. 7500 <3425
.8000 «3425
.8500 <3425
9000 «3425
<9500 . 3425

1.0000 «3425

END OF EQUILIBRIUM CORE AT

T XR1 =
END OF CORE AT

«572043

«308011
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AT X/R1 = 1.2320
A/R1l = -.0254
B/R2 = «2635
U(OUTSIDE JET)/ULl = «3534
DIMENSIONLESS AXIAL PRESSURE = -.0204
DIMENSTONLESS WALL PRESSURE = -.0038

THE VELOCITY PROFILE IS

R/R2 U/ul
.0000 1.2302
.0500 1.1356
1000 «9333
1500 <6913
«2000 4775
«2500 «3599
«3000 «3534
-+ 3500 «3534
«4000 «3534
<4500 «3534
«5000 . «3534
«5500 «3534
6000 «3534
«6500 «3534
« 7000 «3534
. 7500 «3534
8000 «3534
8500 «3534
«9000 «3534
«9500 3534

1.0000 ‘ «3534
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AT X/R1 = 5.2320

B/R2 = «3791
U(OUTSIDE JET)/Ul = «3503

U(AXIS) /Ul = 1.0753
DIMENSIONLESS PRESSURE = -.0110

JHE VELOCITY PROFILE IS

R/R2 u/ul
-0000 1.0753
0500 1.0446
«1000 .9578
<1500 «8295
«2000 «6815
2500 « 5387
«3000 <4254
«3500 «3608
«4000 «3503
«4500 «3503
«5000 «3503
«5500 «3503
«6000 «3503
«6500 «3503
« 7000 «3503
« 1500 «3503
«8000 «3503
«8500 «3503
«9000 «3503
«9500 «3503

1.0000 «3503
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AT X/R1l = 9.2320

B/R2 = <4213
U(OUTSIDE JET)/UL = 3477

U(AXIS) /Ul = 9665
DIMENSIONLESS PRESSURE = -.0101

THE VELOCITY PROFILE IS

R/R2 U701
0000 ~.9665
0500 <9458
- 1000 8865
1500 L7966
2000 .6680
2500 .5753
3000 <4135
3500 <3963
<4000 23539
<4500 .3477
<5000 <3477
5500 <3477
<6000 <3477
«6500 <3477
<7000 ' T YN
.7500 3477
8000 S3477

.8500 | <3477
29000 3577
<9500 3477

1.0000 o341
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AT X/R1 = 19.2320

B/R2 = «5327
U(OUTSIDE JET)/Ul = » 3428

U(AXISI1701 = <7986
DIMENSIUNLESS PRESSURE = -.008¢4

THE VELOCITY PROFILL IS

R/R2 u/ul
.0000 . 1986
« 0500 .+ 7887
.1000 . 1601
«1500 7151
.2000 «6576
»2500 5926
.3000 .5258
«3500 4628
L4000 - 4091
» 4500 «3694
.5000 «3470
«5500 «3428
.6000 <3428
« 6500 «3428

L7000 <3428
« 7500 «3428
.8000 +3428
+ 8500 « 3428
. 9000 <3428
9500 3428

1.0000 . 3428
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AT X/R1 = 29,2320

B/RZ = <6221
U(OUTSIDE JLT)I/UL = «3395

U(AXIS)/ULl = « 1024
DIMENSTONLESS PRESSURE = -.0073

THE VELOCITY PROFILE IS

R/R2 U/Ul1
. 0000 ' L7024
0500 <6967
. 10G0 L6798
. 1500 6528
L2000 .6175
. 2500 5760
. 3000 L5311
« 3500 <4855
<4000 4402
<4500 <4038
.5000 . 3729
o <5500 3514
. 6000 5 3406
«6500 3395
. 7000 . 3395
7500 . 3395
.800U . 3395
8500 ~ «3395
.9000 «3395
L9500 «3395

1.0000 " e 3395
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AT X/R1 = 39.2320

B/R2 = .7000
U(OUTSIDE JET)/UL = .3371

U(AXIS)/ULl = «6399
__DIMENSIONLESS PRESSURE = -«0065

THE VELOCITY PROFILE IS

R/R2 u/ul
.0000 | .6399
.0500 6361
.1000 . 6249
«1500 «6069
.2000 .5829
«2500 «5542
.3000 e5222
«3500 -4885
.4000 <4548
<4500 4228
.5000 <3941
.5500 «3702
.6000 .3521
.6500 « 3409
.7000 «3371
« 7500 «3371
.8000 .3371
.8500 .3371
.9000 .3371
.9500 «3371

1.0000 3371
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AT X/R1 = 59.2320

B/R2 = «8316
U(OUTSIDE JET)/Ul = e 3341

U{AXIS)/Ul = «5634
DIMENSIONLESS PReSSURE = -.0055

THE VELOCITY PROFILE IS

R/R2 u/ul
.0000 <5634
.0500 . 5614
1000 . 5554
1500 5455
.2000 5322
<2500 «5160
.3000 <4973
<3500 4770
L4000 <4556
4500 e 4340
.5000 4129
«5500 «3931
.6000 .3752
<6500 <3600
L7000 <3480
. 7500 «3395
.8000 <3349
. 8500 «3341
.9000 « 3341
9500 .3341

T.0000 ' T .3341
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AT X/R1 = = T79.2310
' TTBRIR2 =TT L9416 R
U(OUTSIDE JET)/UL = ©3323
U(AXIS) /01 = <5163
___ DIMENSIONLESS PRESSURE = _  =.0049
THE VELOCITY PROFILE IS
R/R2 u/ul
. 0000 .5183
0500 «5170
.1000 .5131
L .1500 45069
.2000 .4983
.2500 <4877
<3000 4154
<3500 4617
<4000 Z44170
«4500 _ .4316
.5000 4161
L .5500 4009
<6000 .3863
<6500 3128
- . 7000 <3608 T
. 7500 « 3505
.8000 « 3424 o
.8500 « 3365
.9000 .3331 o
«9500 3323
- 1.0000 «3323

MIXING REGION HAS REACHED WALL
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CONFINED CIRCULAR JET WITH TURBULENT CORE

NUMERICAL APPROXIMATION OF INTEGRATED EQUATIONS OF MOTION

VELOCITY RATIO, U2/UL = <4700
RADIUS RATIO, R2/RI = 2.0000
JET TUBE REYNOLDS NUMBER = «144E 05
FANNING FRICTION FACTOR = 0072

RATIO OF AVERAGE TO AXIAL
,JET TUBE VELOCITIES = «8145

1.0288

MOMENTUM CURRECTION FACTOR

CRAYA-CURTLT PARAMETER = 1.2088




-133_

AT X/R1 = 4973
A/RL = <9000
B/R2 = 45058
U(OUTSIDE JETI/UL = YA
DIMENSIONLESS AXIAL PRESSURE = -.0036
DIMENSIONLESS WALL PRESSURE = .0000

—THE VELOCITY PROFILE 13

~ R/R2 u/sul

. «0000 1.2278
<0500 1.2233
+1000 B 1.2098
.1500 1.1873
.2000 1.1558 .
<2500 ~ 1.1153
«3000 1.0658
<3500 1.0072
4000 «9397
.4500 .8632
.5000 , <4837
.5500 4116
.6000 4776
. 6500 A i (3
. 7000 4776
. 7500 4776
.8000 W46
.8500 4116
.9000 4776
<9500 41776

1.0000 4776
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AT X/R1 = 5173
A/RL = .8961 o
B/R2 = 25061
U(OUTSIDE JET)/UT = <4716

DIMENSIONLESS AXIAL PRESSURE

DIMENSIONLESS WALL PRESSURE = -.0000
THE VELOCITY PROFILE IS
R/R2 U/ul
.0000 1.2278
.0500 1.2233
1000 1.2098
.1500 1.1873
«2000 1.1558
.2500 1.1153
« 3000 1.0658
.3500 [.0072
<4000 9397
.4500 . 5622
« 5000 4886
«5500 ATI6
6000 4176
.6500 <4116
« 7000 4776
. 1500 L4li6
.8000 4716
.8500 4116
<9000 4776
<9500 L4110
1.0000 4176
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AT X/R1 = 1.4973
A/RL = 6973
B/R2 = L5171
U(OUTSIDE JET)/UL = <4813
DIMENSIONLESS AXIAL PRESSURL = -.0108
DIMENSTONLESS WALL PRESSUREC = =.0018

THE VELOCITY PROFILE 15

R/R2 . u/ul
.0000 - 1.2278
.0500 : 1.2233
.1006 1.2098
. 1500 1.1873
. 2000 , - 1.1558
.2500 ) 1.1153
.3000 1.0658
<3500 1.0072
.4000 6606
.4500 . 6455
«5000 4945
.5500 L4813
. 6000 e4813
. 6500 <4813
.7000 4813
. 7500 L4813
.8000 . 4813
.8500 L4813
<9000 <4813
29500 L4813

1.0000 <4813

END OF EQUILIBRIUM CORE AT

XR1 = " 2.39734%
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AT X/R1 = 2.4973
A/R1 = L4723
B/R2 = <5266
U(QUTSIDE JETI/UL = 4896
DIMENSIONLESS AXIAL PRESSURE = - U187
DIMENSIUNLESS WALL PRESSUKRE = -.0058

THE VELOCITY PROFILE IS

R/R2 u/ul
.0000 1.2278
.0500 ‘ 1.2233
.1000 1.2098
.1500 1.1873
.2000 1.1558
L2500 I.1125
+3000 1.0154
~3500 oy £
<4000 .7210
<4500 <5866
.5000 .5027
.5500 L4896
. 6000 . 4896
.6500 4896
.7000 L4896
L7500 <4896
.8000 . 4896
.8500 .4896
.9000 <4896
29500 ‘ T%896

1.0000 <4896
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AT X/R1 = 3.4973
A/R1 = <1615
B/R2 = «5357
U(OUTSIDE JET)/UL = «5080
DIMENSIONLESS AXIAL PRESSURE = -.0310
" DIMENSIONLESS WALL PRESSUREL = -.0150

THE VELOCITY PROFILE IS

R/R2 u/Ul
0000 1.2278
<0500 1.2233
.1000 1.2072
.1500 1.1573
.2000 1.0767
2500 .9756
+3000 «8641
<3500 <7576
<4000 «6512
<4500 <5701
.5000 «5197
<5500 -5030
<6000 .5080
L6500 <5080
.7000 <5080
<7500 .5080
.8000 .5080
.8500 <5080
+9000 .5080

—. 9500 ~5080

1.0000 +5080

END OF CORE AT

X = 1.938671
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AT X/R1 = 3.8773
A/R1 = <0045
B/R2 = .5392
U(OUTSIDE JETI/UL = <5159
DIMENSIONLESS AXIAL PRESSURE = -.0354
DIMENSIONLESS WALL PRESSURE = =.0190

THE VELOCITY PROFILE IS

R/R2 u/ul
0000 1.2278
.0500 1.2116
1000 1.1650
«1500 1.0951
2000 1.0086
«2500 9124
«3000 «8133
« 3500 . (184
<4000 «6344
«4500 «5682
+ 5000 « 5267
« 5500 «5159
«6000 «5159
«+6500 «5159
« 7000 «5159
« 7500 «5159
+8000 «5159
«8500 «5159
«9000 «5159
«9500 ) «5159

1.0000 «5159
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only once

Symbol

NOMENCLATURE

Symbols for constants and those defined in the text and used

are not listed here.

Meaning

radius of equilibrium or kinematic core region
radius of outer limit of mixing region

proportionality factor in Prandtl mixing length expression
(Equation (2.16))

exchange coefficient (Equation (2.12))
Prandtl mixing length

Curtet parameter of similitude (defined in Equation (2.32))
initial value of m

kinematic momentum flux

pressure

hydrodynamic pressure

volumetric flow rate - source
volumetric flow rate - secondary flow
total flow rate in mixing tube

radius of source

radius of mixing tube

radial coordinate

time

velocity in axial direction

-143-



-1hk-
value of u at r =a
average velocity over cross section
velocity on axis
Jet source velocity
secondary flow velocity at x =0
velocity outside the Jet
velocity on axis at source
radial velocity
velocity in angular direction
axial coordinate, measured from source
length of core

coordinate normal to direction of main flow

Jjet tube Reynolds number

Craya-Curtet number (defined in Equation (2.3L4))

momentum factor for turbulent pipe flow

momentum factor in mixing tube (defined in Equation (2.39))
dimensionless pressure gradient (defined in Equation (4.4))
turbulent viscosity coefficient

r/x

ratio of pressure gradients (Equation (4.12))

viscosity

density

shear stress

angular independent variable

IGA

i

T

9015 02844



