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Scaling Properties of Diffusion-Limited 
Reactions on Fractal and Euclidean Geometries 

Katja Lindenberg, 1 Wen-Shyan Sheu, 1,2 and Raoul Kopelman 3 

We review our scaling results for the diffusion-limited reactions A + A ~ 0 and 
A + B ~ 0 on Euclidean and fractal geometries. These scaling results embody 
the anomalies that are observed in these reactions in low dimensions; we collect 
these observations under a single phenomenological umbrella. Although we are 
not able to fix all the exponents in our scaling expressions from first principles, 
we establish bounds that bracket the observed numerical results. 
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1. I N T R O D U C T I O N  

The kinetic laws that describe diffusion-controlled annihilation reactions of 
the form A + A  ~ 0  and A+  B ~ 0  in low dimensions differ from the 
"classical" mean field forms and are frequently called "anomalous." The 
so-called anomalous behavior arises from the fact that diffusion in low 
dimensions is not an effective mixing mechanism; consequently, the spatial 
distributions of reactants differ from the thoroughly mixed ones that are 
implicit in the classical rate laws. 

It is useful to begin by describing what we mean by "thoroughly 
mixed." In the single-species case A + A--, 0, thorough mixing implies a 
distribution of nearest-neighbor distances of the Hertz form. (1~ This dis- 
tribution includes small nearest-neighbor distances with a high probability; 
as nearby reactants annihilate one another, an effective mixing mechanism 
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replenishes them very quickly. For  the A +  B-- ,0  reaction, thorough 
mixing implies not only a Hertz distribution of nearest neighbor 
distances at all times, but also a spatial distribution of A's and B's that 
is totally random. In the A + A  ~ 0  reaction, anomalous behavior is 
observed when the distribution of A's deviates from the Hertz form. (~) In 
the A + B--, 0 reaction, anomalies arise when, in addition to deviations 
from the Hertz distribution, nearby unequal pairs are depleted and not 
replenished, leading to the formation of aggregates of like particles (2 4) 
(for a review, see, e.g,, ref. 2). 

The precise way in which the anomalous kinetic laws deviate from the 
classical behavior, and the critical dimension above which the behavior is 
classical, depend sensitively on the detailed conditions at hand. (1 11) These 
include the nature of the reaction (e.g., A + A ~ 0 or A + B ~ 0), the initial 
spatial distribution of reactants, the absence or presence of reactant sources 
and their spatial and temporal statistics, and whether the system is finite or 
infinite. The approaches that have been used to arrive at these results 
include extensive numerical simulations (~2 16) and a number of theoretical 
methods. (2-H'17) The latter include a variety of truncated particle-distribu- 
tion hierarchies, (2'7"8'17'~8) a small number of exact results, (1~ reaction- 
diffusion equation models (which can be viewed as special cases of the 
hierarchy approaches), (6i and scaling arguments. 19'~1'2~ Although reaction- 
diffusion models have been extremely useful for the analysis of these reac- 
tions on Euclidean geometries, the fact that a simple second-order diffusion 
equation is not appropriate to describe transport on fractal structures (2~) 
has limited the applicability of these models. In fact, few theoretical 
attempts (even at the phenomenological level) have been made to deal with 
even these simple reactions on fractals. (8'9"2~ 

Scaling arguments have proven extremely useful toward understanding 
the kinetic behavior in the anomalous regime. (5'9'H'2~ Although scaling 
arguments do not replace first-principles approaches and only yield 
unequivocal results in situations where various exponents are known 
from other theories, they do offer a simple way of categorizing and 
parametrizing the problem. This allows one to express the "unknown" 
features in terms of a few parameters (typically, exponents) that must either 
be fixed through other theories or otherwise conjectured. 

We have developed scaling descriptions for the diffusion-limited 
reactions A + A -~ 0 and A + B --* 0 on Euclidean and fractal lattices. ~176 
An important consequence of our approach is an indication that the 
anomalous kinetic laws may at least in some cases depend not only on the 
spectral dimension, but also on other system dimensions, including the 
fractal dimension. In this paper we present our scaling formulas and 
suggest possible extensions of the applicability of our arguments to situa- 
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tions that had not previously been included under this single umbrella. 
Since at least some of the exponents that we need as input in our equations 
have only been determined for systems of spectral dimension d, smaller 
than 2, we restrict our remarks to this case. 

The paper is organized as follows: In Section2 we present a 
generalized form of our previous scaling relations that allows us to broaden 
their range of applicability. Section 3 then deals with the exponents that 
describe a variety of specific applications. For some of these cases, the 
kinetic laws have been obtained by other methods and we compare our 
results with them; in others, numerical simulations exist for comparison, 
while in yet other cases our results constitute a possible description of 
behavior that has not yet been checked by other procedures. In Section 4, 
we comment on effects of correlated initial conditions and of the effects of 
sources. Section 5 is a brief summary of our conclusions. Some observa- 
tions about the relation between our work and the recent results of Leyvraz 
and Redner (11'23) are presented in the Appendix. 

2. S C A L I N G  R E L A T I O N S  

We begin by restricting our analysis to irreversible reactions in the 
absence of sources except for the initial reactants, with equal initial concen- 
trations of reactants. Our aim is to determine the exponent c~ in the decay 
law 

p ~ t  ~ (2.1) 

where p is the global density of each reactant [our restriction to equal 
initial reactant concentrations leads to the form (2.1) rather than an 
exponential form]. For  this purpose we introduce four quantities that we 
relate to one another and ultimately to the density and/or time in order to 
determine the desired exponent. (9'2~ The distinction between the reactions 
A + A -~ 0 and A + B --* 0 will be made as needed. 

The first quantity that we introduce is the reaction rate R; the second 
is T, the average time that it takes a particle to reach a nearest neighbor; 
the third is N, the number of nearest pairs in the system, regardless of par- 
ticle identity. In these definitions we ignore differences between the average 
nearest-neighbor distances between particles of the same species and 
between particles of different species (see the Appendix for some comments 
on the effects of "depletion zones" that may introduce such differen- 
ces(ll'23)). The fourth quantity, which we call Z, is a measure of the fraction 
of the particles that are "isolated" and that can therefore n o t  react with any 
nearest neighbor (because the nearest neighbors are all of the wrong type). 
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Thus, Z -1 is proportional to the probability that a particle has an 
"unobstructed" nearest neighbor with which it can react, and N/)~ is the 
number of nearest-neighbor pairs that can react. In the A + A--* 0 case 
there are no isolated particles, since all nearest neighbors can react with 
one another, and hence Z -- 1, but in the A + B ~ 0 reaction, deviations of 
Z from unity reflect the presence of aggregates of like particles. These four 
quantities are connected via the relation (9'2~ 

1 1 
R ~  N x - x -  (2.2) 

z g 

Thus, the rate of reaction is determined by the number of nearest-neighbor 
pairs, by the average rate at which a particle reaches a nearest neighbor, 
and is reduced if these nearest neighbors can in fact not all react with one 
another. 

Next we relate each of these quantities to density and/or time. The 
time dependence of the reaction rate is clearly 

R _ _ _ ~ t - ~  1 (2.3) 

Since the number of nearest  neighbors of each particle is of O(1) ~ (e.g., in 
a perfect lattice it would be of the order of the coordination number of the 
lattice), the number of nearest-neighbor pairs in the system is simply 
proportional to the number of particles, i.e., 

U ~ p (2.4) 

To find the density dependence of the time z, we argue as follows: We 
introduce St, the distinct number of sites visited by a walker in a time 
interval t. The distinct number of sites visited by a particle until it reaches 
its nearest neighbor in a compact random walk is of the order of the 
inverse of the particle density: 

s ~ ~ p  -1 (2.5) 

On the other hand, the time that it takes a walker to visit this number of 
sites depends on the spectral dimension ds and can be found from the 
well-known relation between the distinct number of sites visited and the 
elapsed time t. For  ds ~< 2 (compact walk), the relation is (24) 

S t ~ t as~2 (2.6) 

If we set the elapsed time equal to the average time z that it takes a particle 
to reach a nearest neighbor and combine (2.6) with (2.5), we obtain 

z ~ p 2/ds (2.7) 
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Finally, we consider the factor X. As stated above, this factor is unity 
in the A + A ~ 0 case. For A + B--* 0, however, Z is in general different 
from unity when the species segregate into aggregates of like particles. To 
specify the form of Z, we introduce a length A as a measure of the average 
linear size of an aggregate of like particles. The number of like particles in 
an aggregate is then of order Ad:; where df is the fractal dimension of the 
system. The fraction Z of this number that is isolated (in the sense that all 
its nearest neighbors are particles of the same species) in general depends 
on the size of the aggregate. The detailed dependence on the size is 
determined by the nature of the system and by the configurations of the 
aggregates. We embody this dependence in the expression 

) ~ A  ~ (2.8) 

where 7 is an exponent that is as yet unspecified. In particular, the 
dependence of 7 on the various system dimensions (fractal, spectral, 
chemical, etc.) is in general unknown. Thus, this is the exponent that 
parametrizes our scaling expressions. To complete the relationships 
between density and time, we specify the way in which the linear size A of 
an aggregate grows with time. For ds< 2 the exploration of a random 
walker is compact, i.e., the random walker covers essentially every site of 
a volume before leaving that volume; hence the linear size of an aggregate 
at time t is the same as the distance a random walker has explored in 
time t. From Eq. (2.6) we then have 

S ~ A ds~ t d'/2 (2.9) 
so that 

A ~ [ ds/2dJ (2.10) 

We now combine Eqs. (2.3), (2.4), (2.7), (2.8), and (2.10) to obtain for 
the exponent c~ the expression (2~ 

This is our general result. In the next section we specialize the exponent 
by choosing particular forms for 7 appropriate to different specific situa- 
tions. 

3. S P E C I F I C  C A S E S  

Equation (2.11) is a general scaling result that must be specialized to 
particular situations through specific choices of the exponent 7- We begin 
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by considering the simplest situation, namely, the case A + A ~ 0. Here 
)~ =- 1 and hence 

so that 

? = 0  (3.1) 

= d j 2  (3.2) 

This exponent, which depends only on the spectral dimension, is well 
known from other treatments of the problem/5'25) The critical dimension 
for anomalous behavior is ds = 2; for spectral dimensions lower than this 
critical dimension, the decay of the concentration of reactant is slower than 
the classical prediction. This in turn reflects the deviation of the nearest- 
neighbor distance distribution from the Hertz form.~1'16) The same behavior 
would obviously be observed in the A-B system if in addition to the A B 
annihilation one would permit A-A and B-B annihilations to occur. 

The next situation we consider is that of the A + B ~ 0 reaction on 
Euclidean geometries with random initial conditions, i.e., the reactants are 
randomly deposited on the Euclidean system at time t = 0 .  For  these 
geometries the various dimensions are all equal, i.e., ds = dy = d. An initial 
random distribution implies that the initial density of each species is not 
uniform. Instead, there are local fluctuations such that one species is locally 
in excess of the other. As the reaction proceeds, the local "majority" species 
eliminates the "minority species"; as a consequence, aggregates of like 
particles are formed and grow in size with time/2 4) Reactions then only 
occur on the surfaces of these like-particle aggregates. If the interaggregate 
"reaction surfaces" are smooth, (9'23) then the ratio of inactive particles (i.e., 
those in the interior of the aggregates) to active ones (i.e., those on the 
surfaces of the aggregates) is roughly the volume-to-surface ratio 

Z "~ A a / A d - 1  = A (3.3) 

whence 

7 = 1 (3.4) 

For  the exponent ~ in (2.1) we then obtain the standard result also found 
using a number of other methods, (1-8'17) 

o: = d /  4 (3.5) 

The critical Euclidean dimension for anomalous behavior is thus d = 4. We 
refer the reader to the Appendix for a discussion of an alternative analysis 
of this problem in Euclidean systems that  has recently appeared in the 
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literature, and which takes into account the formation of "depletion zones" 
between aggregates in which the densities are lower than in the interior of 
the aggregates. (11"16'23'26~ 

The two cases considered above reproduce well-known results. Con- 
sider now a situation which is less clear: tha t  of the A + B ~ 0 reaction on 
fractal geometries. A number of conjectures and simulation results for such 
systems are beginning to appear in the literature, (s'9'~2'2~ but the 
behaviords not yet well understood. In particular, consider a random initial 
distribution of A and B particles. It has been conjectured (see, e.g., ref. 12 
and references therein) that the result (3.5) can be extended to fractal 
geometries if one replaces the Euclidean dimension d with the spectral 
dimension 

:~=ds/4 (3.6) 

According to this conjecture, the exponent e is independent of the fractal 
dimension. There are several reasons given for this conjecture, none of 
which appears firmly compelling. The analytic reasoning for this assump- 
tion tends to make use of diffusion arguments and scaling arguments that 
are certainly appropriate for Euclidean geometries, but whose applicability 
to fractal geometries is less certain. Numerical simulations produce results 
that might be consistent with this conjecture, but that may equally well 
arise in a different way (cf. below). 

Instead of the direct extension (3.6), we envision several possible s i tua -  
tions, depending on the nature of the fractal and of the aggregates. One 
situation might occur on random fractals in which the like-particle 
aggregates are again surrounded by smooth surfaces, a situation resembling 
that of the Euclidean geometries. If the particles on these surfaces can react 
with surface particles of neighboring aggregates, i.e., if they can reach one 
another in time ~, then the ratio g is again the volume-to-surface ratio (but 
now involving the fractal dimension), 

so that again 

Z ~ Aai/A aI 1 = A (3.7) 

7=1 (3.8) 

However, instead of Eq. (3.6) we now obtain 

c~=~  1 -  (3.9) 

The exponent e thus depends on both the spectral and the fractal dimen- 
sions, and reduces to (3.5) or (3.6) only for Euclidean geometries. 
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A second situation arises if the aggregates are not as smooth as they 
would be in a Euclidean geometry, but instead are fairly irregular and 
interpenetrating. The fraction of sites that is isolated may now be smaller 
than before, and might in general grow with A according to a power which 
is smaller than unity: 

~< 1 (3.10) 

The exponent e in this case would be larger than (3.9). 
An extreme situation may occur for finitely-ramified fractals. In such 

fractals, aggregates of any size may actually have only a few points of con- 
tact with other aggregates, i.e., it may be possible to "cut" an aggregate 
(even a macroscopic one) out of the system by severing only a few connec- 
tions. An example of a fractal in which the reaction surfaces that separate 
aggregates of different particles lie at such special nodes is a Sierpinski 
gasket in which a single aggregate of like particles occupies an entire 
triangular lobe. (13) If this is the case, then essentially all the particles in the 
aggregate are unable to participate in the reaction, and the relative number 
of inactive to active particles is proportional to the volume of the 
aggregate: 

so that 

Then 

Z ~ Aal/A~ = AdS (3.11) 

7 = @  (3.12) 

~ = ~ -  

On the other hand, even on such fractals the reaction surfaces that separate 
aggregates may not be limited to these special nodes, and the reaction sur- 
faces may then depend on the size of the aggregate. In this case, the ratio 
of inactive to active particles is smaller than (3.10) and the exponent 7 is 
smaller than d F. A reasonable assumption might be that the reaction sur- 
faces in this latter case behave as they do on a random fractal or on a 
Euclidean geometry, so that Eqs. (3.8) and (3.9) describe the situation. In 
fact, due to the hierarchical nature of some regular fractals such as 
Sierpinski gaskets one can imagine that the behavior of the reaction 
surfaces might oscillate between these two limiting behaviors (in effect 
causing the exponent e itself to be time-dependent) as the aggregates grow 
to occupy entire lobes of ever lower generations. The exponent ~ might 
then oscillate within the region defined by the limits 
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Recent numerical simulations of Argyrakis and Kopelman on two- 
and three-dimensional critical percolation clusters (15'16~ yield a constant 
exponent :~ overseveral  decades of time that lies within the bounds given 
by (3.14); the observed exponent in both cases is c~=0.36, while (3.14) 
gives 0.22 ~< c~ ~< 0.43 in two dimensions and 0.22 ~< ~ ~< 0.49 in three dimen- 
sions. With ds=4/3,  Eq. (3.6) gives d, /4=0.33.  Whether these results 
confirm one or the other theory is still a matter of discussion. 

Recent simulations of Zumofen et al. ~12~ show for several multidimen- 
sional Sierpinski gaskets for times between 102 and 105 in units of steps 
that the exponent c~ oscillates within the bounds given by (3.14). A number 
of additional features of their oscillatory results are noteworthy and are 
consistent with our description. The reported oscillations drive the value of 

below the "traditional value" (3.6), a behavior entirely consistent with our 
bounds. Our results also suggest a reason for the observed increase in the 
amplitudes of the oscillations with increasing spectral dimension: this 
amplitude may reflect the increasing difference between the upper and 
lower bounds in (3.14). Finally, our interpretation of the oscillations is con- 
sistent with the observation that the number of oscillations is smaller than 
the number of generations of the Sierpinski gasket, as expected within a 
finite simulation time. We note that the traditional exponent d,/4 is within 
the range included in (3.14) and that the "average" exponent may in fact 
be close to this value. 

4. C O R R E L A T E D  IN IT IAL C O N D I T I O N S  A N D  S O U R C E S  

In this section we briefly reiterate for the sake of completeness some 
relevant results that we obtained earlier concerning the effects of correlated 
initial conditions, (27/a situation for which no one has ventured a conjecture 
as to the behavior of the reaction rate in fractal systems. We also comment 
on the effects of external sources and the nature of the steady state that is 
achieved in this case. (27) 

Consider an initial distribution of reactants that is correlated (rather 
than random) in the sense that initially A-B pairs are constrained to lie 
within a finite average distance of each other. In previous work we dealt 
with this problem in Euclidean geometries on the basis of a reaction-diffu- 
sion model, (27~ and we found an exponent c~ that is actually larger than the 
corresponding exponent c~ = d/2 for the A + A --, 0 reaction [cf. Eq. (3.2)]: 

c~ = (d+  2)/2 (4.1) 

This result seems puzzling at first glance; one might expect the A + A ~ 0 
exponent to be larger than the A + B - ,  0 exponent regardless of initial 
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condition, since in the former all nearest neighbors can react, while in the 
latter they cannot. However, this simple argument does not take the 
actual spatial distribution of reactants into account; our scaling formulas 
can be used to clarify the situation. The analysis in this case is made more 
transparent if we reexpress the behavior of the ratio Z of inactive to active 
particles in terms of time, using Eqs. (2.8) and (2.10). For Euclidean 
geometries we have 

Z ~ F/2 (4.2) 

Imagine, for example, the following extreme situation in one dimension: 
A-B pairs of particles are placed at random exactly a distance c lattice sites 
apart, with B always to the right of A. Initially the largest aggregates that 
are possible on the line are of size c. As time increases and the reaction 
proceeds, the particles at the ends of the aggregates react, and the number 
of particles per aggregate necessarily decreases. To reflect this shrinkage, 
the exponent in (4.2) must be negative, i.e., 7 < 0, since the ratio of inactive 
to active particles decreases. It is difficult a priori  to predict the value of the 
exponent from scaling arguments (although it should be possible in the 
example constructed above), but the result (4.1) is recovered if 

7 = ( d -  2 ) /d  (4.3) 

Notice that this result predicts a shrinkage in one dimension, but not in 
two, where the exponent e reduces to the "classical" value c~ = 1, as does 
that of the A + A ~ 0 reaction. Thus, as time proceeds and the aggregates 
shrink, more  reaction surfaces are created relative to the number of isolated 
particles and hence the rate of the reaction increases relative to that of the 
A +A- -*0  reaction (where there are no isolated particles) and to that of 
the A + B--* 0 reaction with random initial conditions (where the reaction 
surfaces relative to the number of isolated particles decrease as the 
aggregates grow in size). 

It is interesting to speculate on the behavior of the corresponding 
exponents in fractal systems. This behavior has not been conjectured by 
any theory that we are aware of, and neither are we prepared to do so at 
this time. 

In the presence of sources we have previously considered the balance 
between the continual input of reactants at rate Q and the chemical reac- 
tions, a balance which may lead to a steady state. ~ Of interest here are the 
steady-state density Ps~ as a function of the rate Q, and the underlying 
spatial patterns of reactants. In the steady state the expressions (2.2) with 
(2.4), (2.5), (2.7), and (2.8) are still valid, but  now one must relate all the 
quantities to the (steady-state) density rather than time. In the A + A--* 0 
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case the exponent 7 in (2.8) is, as before, unity. The relations of the other 
quantities to the density are still given by (2.4) and (2.5), and R ~ p  ~§ 

Thus, with the balance Q = R ~ N / r  we obtain the well-known result for 
d, ~< 2, (8'28~ 

Q ~ p~sl + 2/< (4.4) 

In our earlier work (9~ we observed the fact that this result is "the same" as 
embodied in Eq. (3.2) with the replacement t - ~ - ~  P,s, and interpreted this 
to perhaps imply that the spatial distributions of reactants in the two cases 
is essentially the same.(ZS) This equality is not self-evident, since the random 
sources themselves do not reflect this spatial distribution. 

In the A + B ~ 0 case it is more difficult to establish an expression for 
the steady-state density, because now the exponent ~ in (2.8) is no longer 
unity and one must therefore specify the density dependence of the linear 
size A of an aggregate. We argue (9) that for high steady-state densities 
(which can be achieved if the initial density and/or the injection rate are 
"sufficiently high" and which probably describes essentially all simulations 
that have been carried out to date) the injection/reaction balance is essen- 
tially a local phenomenon that involves little diffusion. The steady-state 
balance is then between the local excess of one species over the other 
(proportional to x/-Q) due to the random injection process and the time 
that it takes each of these particles to reach a nearest neighbor: 

1 
, ,/-Q~ c x - (4.5) 

"c 

where c is a coefficient independent of the steady-state density. This then 
yields 

Q ~ o 4/dS (4.6) 
i "  s s  

in agreement with other findings, both theoretical and numerical. (8'29) 
These arguments do not extend to the case of a tow steady-state density, 
where diffusion plays an important role in the steady state. In this case one 
might expect a dependence of the steady-state density on the fractal 
(and/or perhaps other) dimensions in addition to the spectral dimension. 

We note that the dependence (4.6) is not "the same" as contained in 
(2.11), i.e., one cannot be obtained from the other by the simple replace- 
ment of t ~ by p,~. We interpret this to indicate that the spatial patterns 
in the two cases are different. It is possible that this simple replacement 
may in fact lead to the appropriate result at low densities, i.e., that perhaps 
for low steady-state densities 

Q = p,~+ 1 ~ p ~ s  + (ds/2)[1 -- y(ds/2df)]  (4.7) 
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4. CONCLUSIONS 

We have revisited our scaling formulation of the problem of diffusion- 
limited reactions in low-dimensional systems. In particular, we have 
discussed the anomalous kinetics of A + A ~ 0 and of A + B ~ 0 reactions 
and have recovered all known results from our formulation. We have also 
presented conjectures as to the behavior of the reaction rates of these, 
processes on fractal geometries in situations where first-principles theories 
do not yet exist. Our principal result is that the rate of the A + B ~ 0 
reaction in general depends not only on the spectral dimension, but also on 
the fractal (and perhaps other) dimensions that characterize the fractal. It 
is difficult to conclude with finality from numerical results whether our 
viewpoint is the right one, or whether the theories that lead to a reaction 
rate that depends only on the spectral dimension are in fact correct. Our 
results lead to bounds that bracket those of the alternative theories. A 
definitive conclusion must probably await the calculation of measures that 
distinguish these approaches more definitively. On the other hand, we find 
our conceptual reasoning more persuasive at this point. 

APPENDIX.  RESULTS OF L E Y V R A Z A N D  REDNER FOR 
EUCLIDEAN GEOMETRIES 

In a recent publication, Leyvraz and Redner (11) introduced a scaling 
formulation of the A + B - - , 0  reaction in one- and two-dimensional 
Euclidean geometries that takes into account the decrease of the reactant 
density as one approaches the surface of an aggregate relative to the den- 
sity in its interior, and the related existence of "depletion zones" separating 
aggregates of unlike particles (a generalization to higher Euclidean dimen- 
sions has been suggested by Leyvraz(23)). They parametrize the charac- 
teristics of the depletion zone (e.g., the density at the boundaries of an 
aggregate) and fix the parameter so that the known result (3.5) is 
recovered. It is useful to reproduce their key results so that we can compare 
our results with theirs and so that me may consider their extension to 
fractal geometries. We slightly modify their symbols to avoid confusion 
with notation that we have introduced, and we also drop some subscripts 
in the interest of simplification. 

Leyvraz and Redner consider the properties of single-species 
aggregates or domains, and introduce the number n of boundary particles 
per domain. They count a single layer of particles as comprising the 
boundary. The scaling of n goes as 

n ~ (A1) 
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where l is the average distance between A A nearest-neighbor pairs on the 
boundary. The t 1/2in the numerator is the scaling of the linear size of a 
segregated domain (which is assumed to have smooth boundaries), a 
scaling appropriate to compact random walks (d~<2). The distance 
between A-B nearest-neighbor pairs on neighboring aggregates is also 
assumed to bel. The concentration PAB of boundary particles is the 
number of boundary particles per unit volume: 

number of domains n n 

PAB ~ n • volume -- volume of a domain t a/-5 

~ t  1/2l-(a 1) (A2) 

The distance l grows with time in an undetermined way, expressed as 

l ~  t; (A3) 

where ~ is an exponent that they seek to determine. The corresponding 
distance between like particles in the interior of an aggregate grows as 
t I/4, a consequence of the assumption that the distance is proportional to 
p - 1 / a  and that the density in turn is related to time via Eq. (3.5). 

The reaction rate according to Leyvraz and Redner is given by 

PAB (A4) 
R~l - -  7- 

whose denominator is the time required to cover the distance l. Combining 
these results gives for the reaction rate 

R ~  t -1 /2 l  - (a+ 1) (A5) 

With the scaling (A3) one has 

R u t  1/2-;(a+1) (A6) 

The value of ~ can be fixed with the knowledge that for Euclidean 
geometries with d~< 4 the rate of the reaction is R ~ t -  1 el4. 

d 1 
1 + z = z +  ~(d+ 1) (A7) 

e4 z 

In one dimension one obtains ~ = 3/8 and in two dimensions ~ = 1/3. In 
three dimensions these arguments must be modified because the random 
walk is not compact. Leyvraz (23) concludes that in three dimensions 

= 1/4, i.e., there is no depletion zone. He also shows via numerical simula- 
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tions that the boundaries of the aggregates are smooth. Their various 
numerical simulations indicate that their scaling results appear consistent 
with those of the simulations. 

By construction, it follows that our scaling and that of Leyvraz and 
Redner give the same results for the exponent ~ in (2.1). If we (perhaps 
artificially) evaluate the various quantities of the LeyvrabRedner  theory 
from our expressions, we find that we have fewer "boundary particles per 
unit volume" than they do, but that our particles have to cover a shorter 
distance to react. These two factors precisely compensate in the calculation 
of the reaction rate. 

It is interesting to speculate on extensions of the Leyvraz-Redner 
approach to fraetal geometries. One possible generalization (in the spirit of 
our own generalization of our procedure, for which they cannot be blamed) 
might be argued as follows. In place of Eq. (A1) we might now write 

r l ~ ( t d " / ~ 3 d j l  (A8) 

where the t-scaling is the linear distance covered by a random walker in 
time t, i.e., it is the usual generalization of the t 1/2 in a Euclidean geometry. 
The expression (A2) might be generalized to 

n n t - -  ds/2df 

PAB (tds/Z+)dS - tas/2 l(JS 1) (A9) 

The expression for the reaction rate might then be generalized to 

PAB t - - d s / 2 d f l - - d f +  1 - -  2df/ds (A10) 
R l 2df/ds 

from which follows the exponent 

<+ ( a = 2 d  f ~ d s - 1  1 (Al l )  

The assumption that the dependence of l on t for 1 ~< ds ~< 2 is bounded by 
the dependence found by Leyvraz and Redner for one- and two-dimen- 
sional Euclidean geometries leads to bounds for ~ that are too large in the 
sense that they do not include the observed exponents. Thus, for example, 
for a two-dimensional percolation cluster one finds 0.61 ~ a ~< 0.75, whereas 
simulation results are somewhere around a = 0.36. If I is interpreted as the 
chemical distance, (3~ which grows more rapidly with t, the resulting 
exponent a is even larger. The observed value a =0.36 is obtained with 

= 0.27, indicative of a slight depletion effect. 
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