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The catenary form of loss function is considered in the framework of Bayesian 
decision theory. The mathematical tractability of this form seems to be 
unrecognized; it contains quadratic loss as a limiting case. For various 
probability distributions expressions are given for posterior analysis, and 
limiting properties are investigated. 
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1. I N T R O D U C T I O N  

In  the Bayesian approach  to statistics (1-4) linear and quadratic ,loss functions 
have been widely discussed and their engineering applications well treated 
(5-8). In  addition, a limited literature characterizing broad classes o f  loss 
functions has also appeared (9-m. The purpose o f  this note is to give results 
on a specific one-parameter  family o f  loss functions. 

In  this note a quanti ty thought  o f  as a r andom variable will be denoted 
by a capital letter, the lower case fo rm of  the letter being reserved for  a 
realization or  fixed value o f  that  r a n d o m  variable. 

Let  W denote the unknown (scalar) parameter  o f  interest and F(.) the 
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cumulative distribution function for W (this may be a prior or a posterior 
distribution, depending on the context). It is assumed that the moment 
generating function of W, 

M(t) =-- f-~<~<~o e~  dF(w) (1) 

exists in some interval containing 0, say --o~ < t < t3 (~, 13 > 0). Leibniz's 
rule for differentiation under the integral sign (extended to Stieltjes integrals) 
applies in the same interval (Ref. 12, p. 240); hence, for r -~ 0, 1,... the r th 
derivative of M(t), M(")(t), exists and is given by 

Mm(t)  = f_ w~e ~ dF(w) (--c~ < t < fi) (2) 
co<w<oo 

In particular, for r = 0, 1 .... the r th moment of W, /~', exists and equals 
M(~)(0). The r th (r  = 0, 1,...) central moment of  W, Ew{(W --/xl')~}, will be 
denoted b y / ~ .  The alternative notation/~ and e 2 will be used for /x  1' and 
/x2, respectively. 

It will be more convenient to work with the moment generating function 
of  W - / x :  

N(t) = e-"~M(t) (3) 

Of course the derivatives of N(t), like those of M(t), exist for --~ < t < ft. 
The loss function to be considered is 

L(w, d) ~ [cosh a(w -- d)] -- 1 (4) 

where a is a specified positive constant. Notice that the function of 
x, (cosh ax) -- 1, is nonnegative (vanishing only at x = 0), strictly increasing 
in I x I, symmetric about x ~ 0, and strictly convex. 

In the usual Bayesian decision-theoretic framework let p denote the 
Bayes risk, 

p --= inf Ew{L(W, d)} (5) 
d 

and d a value of d (if it exists) which attains this infimum; d is called a Bayes 
estimator of w. 

2. POSTERIOR ANALYSIS  

Taking the usual differentiation approach for minimization and using (2) 
for r = 1, 2, it follows that for a < min(~,/3) the Bayes estimator J for the 
loss function (4) is unique and 

d = / x  -5 (1/2a) ln[N(a)/N(--a)], p = [N(a)N(--a)]l/~ -- 1 (6) 
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In the case where the distribution of  W is symmetric about the mean, 
N(a) = N ( - - a )  and (6) simplifies to 

d = ~ ,  p = N(a) --  1 (7) 

The first of  these results, simply that d = / z ,  is in agreement with the result in 
Ref. 9 for a convex, symmetric loss function and a distribution symmetric 
about  its mean. 

These expressions are now evaluated for various distributions of  W which 
are commonly utilized as prior distributions. In what follows f ( . )  denotes a 
probability density function and p(.) a probability mass function. 

2.1. Norma l  

f ( w )  = (h/2zr) 1/2 exp[--  �89 --/*)21, 

- - o o < w < o o  ( - - o o < / z <  vo, 

J ----- p,, p = exp(�89 -1) --  1 

h > 0 )  

2.2. Uni form 

f ( w )  = �89 -1, 

d = t~, 

tz --  O < w < tz 4- O 

p = (1/aO)(sinh a O ) -  1 

( - -  oo < / x  < oo, 0 > 0 )  

2.3. Gamma 

f (w) = [h*/JY(r)lw"-ae-~% 

Then for a < A 

d = (r/2a) In[(A + a)/(;~ -- a)], 

w > 0  (,~ > 0, r > 0 )  

p = A'(h ~ - - a 2 ) - ~ / ~  - t 

2.4. Beta (First Kind) 

f ( w )  = [1/B(p,  q)]w~-10  - -  w)q% 0 < w < 1 (p > 0, q > 0) 

a ~ = (1/2a) ln[~(p,  p 4- q; a ) /~ (p ,  p 4- q; --a)]  

p = [ ~ ( p , p  4- q; a)~(p ,  p 4 -  q; --a)]l/"2 -- 1 

Here we use the notation 2( . ,  .; .) to designate the degenerate hypergeo- 
metric function (Ref. 13, p. 1058). 



t92 

2.5. B inomia l  

p(w)  

( O < p <  1, 

2.6. 
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w = 0, l , . . . ,n  

q ~ l - - p ,  n =  1,2,...) 

d = (n/Za) ln[(pe" + q) / (pe  -~ @ q)] 

p = [1 + 4pq s inh2(a /2)]n /2-  1 

Negative Binomia l  

p(w)  = (r + w -  1) 
w prqW, 

(0 < p  < 1, q = l - - p ,  

Then for  a < ln(1/q) 

w = 0, 1 .... 

r =  1, 2,...) 

d = (r /2a)ln[(1 - qe-a)/(1 - -  qe~)] 

p = [p2/(1 --  qe-a)(1 - -  qea)] ~/2 - -  1 

2.7. Poisson 

p(w)  = A~e-~/w!, 

d = (A/a) sinh a, 

w = 0, 1,... ( A > 0 )  

p = exp[A(cosh a - -  1)] - -  1 

3. A S Y M P T O T I C  P R O P E R T I E S  

Here it is shown that  asymptotically as a ~ 0, the loss funct ion (4) 
"behaves like" the quadratic loss function 

Lx(w , d)  = �89 - -  d)  2 (8) 

In  what  follows the symbols ~-~ and O will have their usual meaning. Denote  
the Bayes est imator and Bayes risk associated with L 1 by d 1 and p l ,  respec- 
tively. I t  is well known that  

d 1 = / ~  and Pl = �89 a2cr2 (9) 

Referring to (6), it follows by l 'H6spital 's  rule [the conditions for  which 
are satisfied because o f  (2)] that  

g - ~  dl as a ~ 0 0 0 )  
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Referring to (A.9), (A. 10), and (A. 12), it may be asserted by Taylor's theorem 
that for any ~1 between 0 and y and any a such that 0 ~ ] a I ~< ~1 there is 
some 0 between 0 and a such that 

p(a) = �89 -k (1/4!) a4p(4)(O) (0 ~ I a [ ~ y~ < ~) ( t l )  

Here 0 is a function of a and of the datum x. Regarding p(4)(O) as a function 
of  a for given x, it follows from (A.12) and (A.10) that p(~)(O) is bounded on 
0 ~ [ a I ~ Yz and tends to/z 4 as a --+ 0, Therefore 

p = �89 + O(a 4) and (p - -  Pl)/[�89 + Pl)] ~ ~a~Fa/tz2 (12) 

It is of interest to note that stemming from the inequality 1 -k lx2 ~< cosh 
x ~ 1 -k �89 ~ + (1/24) x 3 sinh x (which is true for all x), 

0 ~ �89 p --_~_ Plpl) ~ ~ a  f ~<w<~ (w - -  ~)~ sinh a(w - -  tz) dF(w) ~ e(a) 
(13) 

E(a) may be expressed in terms of N(.): 

~(a) :-  (a/24tz2)[N(a)(a) --  U(3)(--a)] (14) 

This expression may be used to calculate expressions for e(a), for example, 
when W has a normal distribution with mean tz and variance cr 2 ~ 1/h, 

e(a) = ~-~a2(3 + a~cr2), 2 exp(�89 2) 

Differentiation of (14) establishes that e(a) is an increasing function of  a 
and an expansion of  E(a) by Taylor's theorem establishes that 

E(a) ~ �89 as a ~ 0 (15) 

Notice that this is the same as the asymptotic form of(p --  pO/[�89 § Pl)] and 
so, denoting this relative difference by ~7, it is natural to be curious about the 
asymptotic behavior of (e -- ~)/[�89 + ~7)]- A Taylor expansion approach 
establishes that as a ~ 0 

(e -- ~/)/[�89 + ~7)1 ~'~ (1/15)a2/x7z(2/% + 5/x3~) (16) 

A P P E N D I X .  T H E  D E R I V A T I V E S  O F  p 

This topic is of interest for a Taylor expansion of p and it is presented 
here to avoid a digression in the body of the article. The definitions and results 
up to and including Eq. (7) are assumed. Let 

y ~ y(a)  ~ N ( a ) N ( - - a )  so p =- p(a) = yl/~ _ 1 (A.1) 
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Because of (2) all derivatives of y exist and are continuous for i a ' , <  y 
where y = rain(%/3). For a function f let (a/aa)'f be denoted by f{*); then it 
follows from Leibniz's rule for differentiating a product that for n = 0, 1 .... 

(t a I < y) (A.2) 

Pairing off terms from the ends of the sum (A.2), it follows that 

ytm(0) = 0 (n odd) 
(A.3) 

(ni2)-1 (;) Y(n)(0) = 2  ~ (--1) ~ tzJ*~_,,+ �89 (--1) n/2/*~/22 (n even) 
r=0 

(A.4) 

The derivatives of y will now be used to calculate the derivatives of p. 
The approach is to write (A.1) in the form 

y = (1 + p)2 (A.5) 

from which is obtained, by Leibniz's rule, denoting O/Oa by D, 

y(~) = ~ ( ; )D*(  1 + p)D~-r(1 + p) (1 a I < r) (A.6) 

Pairing off terms from the ends, this reduces to (for l a I < y) 

( n - l ) / 2  

y(~) = 2 }-" 
r=O 

( ; )  (1 + p)r -f- p)(~-*) (n odd) (A.7) 

(n/2)--1 

r~0 
(1.8) 

Using (A.3) and (A.7), it follows by induction that 

p(~)(0) = 0 (n odd) (A.9) 

Using (A.4), (A.8), and (A.9), the even derivatives are calculated sequentially 
and it is found that 

p(2)(0) = ~2, p(~)(0) = ~4, pr = ~ 6 -  10ua ~, 

p(8)(0) = 280/z~a2 - 56/~a/z5 + /z8  
(A.10) 
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When the distribution of W is symmetric about the mean, all odd 
central moments are zero and referring to (7) expanded as a Taylor series, 
there follows the simple solution for the even central moments 

P(2~)(0) =/~e~ (r = 1, 2,...) (A.11) 

This result may also be arrived at by induction from (A.4) and (A.8). 
Equating the expressions for y~)(a) in (A.2) and (A.6), it follows by an 

i n d u c t i o n  a r g u m e n t  o n  n t ha t  

p(~)(a) exists and is continuous, [n = 0, 1 .... ; (0 ~< [ a i < ~)] (A.12) 
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