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Consider a Brownian particle in three dimensions in a random environment. 
The environment is determined by a potential random in space and time. It is 
shown that at small noise the large-time behavior of the particle is diffusive. The 
diffusion constant depends on the environment. This work generalizes previous 
results for random walk in a random environment. In these results the diffusion 
constant does not depend on the environment. 
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1. I N T R O D U C T I O N  

In this pape r  we cons ider  a Brownian  mo t ion  vers ion of  the di rected 
po lymer  p r o b l e m  in a r a n d o m  env i ronmen t  which was cons idered  by 
Imbr ie  and  Spencer  ~3~ and  Bol thausen.  ~lJ The  ma in  result  of  the I m b r i e -  
Spencer  work  is that  for a weak  r a n d o m  env i ronment  in d imens ion  d~> 3 
the large- t ime behav io r  of  the po lymer  p rob l em is given by  Brownian  
mot ion.  O u r  goal  in this p a p e r  is to set up  a general  s t ra tegy for p rov ing  
results of  the I m b r i e - S p e n c e r  type. It will be clear  f rom this tha t  in general  
one should  expect  the diffusion cons tan t  of  the Brownian  m o t i o n  to be 
renormal ized  by the average effect of  the envi ronment .  This should  be 
con t ras ted  with .the s i tua t ion  s tudied in refs. 1 and  3, where there is no 
renormal iza t ion  of  the diffusion constant .  We  shall  see how a special choice 
of  env i ronment  as in refs. 1 and  3 gives rise to no r enormal i za t ion  of  the 

diffusion constant .  
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We shall first describe our strategy for the situation when the environ- 
ment is a Gaussian random field. The remainder of the paper will then be 
devoted to rigorously implementing this strategy in the simpler situation 
when the environment consists of variables independent in space and time. 

Consider a Gaussian random field V: IR+x Rd--* R with covariance 
given by 

(V( t , x )  V( t ' ,x ' )>=q~(x-x ' )~b( t - t ' ) ,  x , x ' ~ R  a, t '~R  + (1.1) 

Here the positive-definite functions q~: R ' I ~  R, if: R --, R are assumed to be 
shortrange. Hence the varibles V(t, x), V(t', x') are approximately inde- 
pendent if I t - t ' l  or I x - x ' l  is larger than some fixed length scale. 

Next let dW,., be Wiener measure on Brownian paths X(s), 0 <~s <~ t, 
in R a with X ( 0 ) =  x. We define a new probability measure on the paths 
X(s), O<~s<<.t, by 

dWy.,, v = exp eV(s,X(s))ds dW,. , /normalization (1.2) 

where e is a parameter  which we will choose to be small. We wish to 
compare the random measure dW,. ,. v to the Wiener measure dW,..,. To do 
this recall that for any continuous function f :  Rd--* R which grows at most 
exponentially at infinity one has 

[ (x(,)- 
E,. .f \ -~/ff -jj = E [ f ( r , ) ] ,  t > 0  

where E.,. denotes expectation with respect to the Wiener measure dW,.., 
and Y~ is the standard normal random variable. The basic question 
addressed in this paper is to find criteria on V such that 

�9 ~ = E [ f ( Y . ) ]  (1.3) 

with probability 1 in V. Here E v denotes expectation with respect to the 
random measure dW,..,, v and Y~ is a normal random variable with mean 
zero and variance a'-. 

The statement (1.3) is reminiscent of the strong law of large numbers. 
To motivate our strategy for proving (1.3) we recall the proof  of the strong 
law. Suppose that S,, is the number of heads in n tosses of a fair coin. The 
strong law says that 

lim --=S" 1 with probability 1 
,,~o~ n 2 
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The number 1/2 is obtained by 

�89 lim E[S,/n] 
#z ~ ef., 

The probability-I convergence is obtained by estimating fluctuation as in 

- -  ~<---s ( 1 . 4 )  E 17 17 - 

where C is a universal constant. 
If we were to follow the proof of the strong law of large numbers 

exactly, then our first goal would be to identify the RHS of (1.3) as the 
limiting expectation of f((X(t)-X(O))/x/~) with respect to the measure 
Ev[dW,..,. v] as t --, co. Here Ev denotes expectation with respect to V. The 
problem with this is that Ev[dW,.,. v] is a complicated measure since the 
normalization factor in (1.2) depends on V. We try to circumvent this 
difficulty by replacing Ev[dW,.,. v] by a simpler measure which we denote 
by dW,.,.A. To define dW,..,.~ we first define the partition function Z.,. v(t) 
by 

E_,.{ exp [ i ;  cV(s, X(s)) ds] } 
Z.,.. v{ t) - EVE.,.{ exp[~ ~ eV(s, X(s)) ds] } (1.5) 

Observe that Ev[Z,-v(t)] = 1. The m e a s u r e  dmx, , .  A is then defined by 

dW,.  ,.~ = E, . . [  Z , .  ,,.( t} dW, .  ,. v] ( 1.61 

It is clear that dW,..,.,4 is a probability measure explicitly given by 

dW,..,,A=Ev{exp[;~V(s,X(s))dsltdW,.,/normalization (1.7) 

In the case where V is a Gaussian random field with convariance given by 
(1.1) one can evaluate the expectation with respect to V in (1.7) to obtain 

dW,., . .4=exp 2 J0 ~o(X(s)-X(s'))O(s-s')dsds' dW,.., 

x (normalization) ~ (1.8) 

The measure dW,.,.~ is the measure for a self-attracting Brownian motion 
with short-range interaction. We shall call it the averaged process. The 
measure dW,.,..4 can be analyzed by the methods of classical statistical 
mechanics. In fact dW,.,...~ is rather like the measure for a one-dimensional 

s22184;3~4-7 
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statistical mechanics system with short-range interaction. It can therefore 
be controlled by perturbation theory for small e or by the transfer matrix 
method for any value of e. 15~ In particular one should expect that, if E~ 
denotes expectation with respect to dW,-,.A, then 

f ( X ( t ! -  X(O)'~] = E l f (  r~)]  (1.9) ,lirn E~ ~ ] j 

for some normal variable Y, with mean zero and variance a 2. Equa- 
tion(1.9) identifies what the RHS of (1.3) should be. Observe that we 
should in general expect a ~ 1 except in the special case when the covariance 
function r in ( 1.1 ) is the Dirac 6 function. In that case it is easy to see that 
dW~.,.A is just the Wiener measure dW.,.., again. The situation discussed in 
refs. I and 3 is a discrete version of this. 

So far in our discussion we have not required the dimension d to be 
at least 3 or the parameter e in the definition (1.2) of dW,.,, v to be small. 
These enter because we require fluctuations to be small in analogy to the 
inequality (1.4) in the proof of the strong law. In view of the definition (1.6) 
it is clear that the fluctuation of Z.,.. v(t) should be small. Using the fact that 
V is a Gaussian random field, we can compute 

[ ]] Ev[Zx.v(t)-]" -- E.,..,.'~ exp e 2 ~p(X(s)- Y(s')) ~k(s-s') dsds' 

(1.10) 

where the X(s), Y(s), 0 <~s <~ t, are independent self-attracting Brownian 
motions with measure (1.8). In the case when ff is a Dirac 6 function the 
RHS of (1.10) is just an expectation value for the quantum two-body 
problem with interaction potential given by ~p. We can also think of 
it as a Feynman-Kac integral in 2d-dimensional space {(x, y): x, y ~  •d} 
with potential ~o(x--y). Since ~p is short range, the potential ~p(x-y) is 
effectively supported on the diagonal set x - y  = 0, that is, on a set of 
dimension d. Observe that the codimension of this set is also d and that 
Brownian motion is nonrecurrent to a set if and only if the codimension is 
larger than 2. It follows that for d ~< 2 Brownian motion is recurrent to the 
support of the potential function ~p(x-y). Hence we should expect the 
RHS of (1.10) to be large when d<~2, but we can expect it to be O(1) if 
d~>3. Now even if d>~3 the RHS of (1.10) can still be large, simply by 
choosing e large enough. The reason is that the cost in probability of 
confining Brownian motion (X(s), Y(s)) to a region Ix-X(s)l<& 
I x - Y ( s ) l  <6,  O<~s<~t, looks like e x p [ - ~ t ]  for some ~>0 .  This small 
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probability can be more than offset by the growth in the exponential in the 
expectation value, which is bounded below by 

exp[e2t inf{ cp(x ' -y ' ) :  ] x - x ' l  <6,  Ix-y'l <6} ] 

On the other hand, if e is small, this will not be the case and so we can 
reasonably expect the RHS of (1.10) to be O(1). 

Now if the RHS of (1.10) is O(1), then Z,..v(t) cannot become too 
large, but it does not rule out the possibility of Z,., v(t) coming arbitrarily 
close to zero as t--* m. From the definition (1.6) it is clear that the situa- 
tion where Z.,.. v(t) can come close to zero is also dangerous. The problem 
then of proving that inf,> 0 Z,..v(t) is bounded away from zero with prob- 
ability 1 in V is a central issue. Once this issue has been resolved the proof 
of(1.3) follows from (1.9) by estimating mean square fluctuations or higher 
moments as in the proof of the strong law. We consider the process X(t) 
with measure dW,..,.v at some large time, say t ~/3. Since inf,>oZ,.,v(S) is 
bounded away from zero, the density for X(t 1/3) is spread out on a length 
scale t 1/6. Now we think of X(t) as starting at time t ~/3 from a density 
spread out on a length scale t t/6. The fluctuation will then be proportional 
to some power of t -j/6 and hence goes to zero as t--* oc. 

We shall implement now the strategy described above for field 
variables V(t, x) which are independent on length scales larger than 1. 

We consider independent Bernoulli random variables Vi .... i =  1, 2 ..... 
n E 7/'/. For  n ~Z  a let Q,, be the unit cube centered at 1l. Our random 
environment is then a function V: R + x [~a._+ { _ 1, 1 } defined by 

V ( t , x ) = V i  .... i - l < t ~ i ,  x sQ , ,  (1.11) 

The main theorem we shall prove here is the following: 

T h e o r e m  1.1. Let V be given by (1.11) and f : R a ~ R  be a 
measurable function satisfying the condition 

n, e -lyl If(y)l  -~ d y <  oo 

Then if e > 0 is sufficiently small and d>~ 3, one has that 

lim E,.{exp[ I~ eV(s, X(s)) ds] f ( (X( t )  - X(0))/x,/'7) } 
. . . . . . . .  z., =2. E,.{exp[l~ sV(s, X(s)) ds]} 

(1.12) 

with probability 1 in V. The diffusion constant a depends only on ~, d. 
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Remark .  In Theorem 1.1 we require the values t to go to infinity 
exponentially fast in (1.12). This is a technical requirement which we must 
impose since we confine ourselves in this paper to estimating only mean 
square fluctuations. Just as in the proof  of  the strong law of large numbers, 
one must estimate higher moments  to obtain convergence with probability 
1 along the entire integer sequence. 

A key ingredient in the proof  of Theorem 1.1 will be to show that the 
partition function (1.5) converges as t--* oo to a function Z,.. v(oo). This 
function is trivially nonnegative. We shall need to show that it is strictly 
positive with probability 1. In fact we can show that 

P(Z.,., v(oo) < 3) ~< C/llog 31 = (1.13) 

where 3 < 1/2 is arbitrarily small and C, e are positive constants independ- 
ent of  3. It would be interesting to show that the limit in (1.12) holds if one 
takes the expectation value with respect to V on the LHS. This of course 
does not follow from Theorem 1.1 since almost everywhere convergence of 
a sequence does not imply that integrals converge. To prove such a 
theorem it appears that one would need to sharpen the inequality (1.13) to 
have C3 = on the RHS. We are unable to prove this. 

Our  first task here will be to study the averaged process (1.7). In 
Section 2 we shall show by using the transfer matrix method that the 
measure (1.7) is similar in many  respects to the Wiener measure. In 
particular the recurrence properties of the measure (1.7) are the same as for 
the Wiener measure. However, the mean square deviation of X(t) at large 
t is different. The constant a in (1.2) is given by 

lim t-tE~[ (X(t)- X(O))2] =a 2 

and a :~ 1 in general. 

2. T H E  A V E R A G E D  P R O C E S S  

In this section we shall use the transfer matrix method of statistical 
mechanics 151 to analyze the measure (1.7). First let us consider the nor- 
malization factor with t = N an integer 

E,.Ev {exp [ f; eV(s, X(s)) ds] } 
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Let us denote by K(x, y), x, y �9 I~ d, the kernel defined by 

K(x,y)=E. , . , yEw{exp[I~eV(s ,X(s)ds l}~exp(- - lx2Yl:  ) (2.1) 

where E.,.. y indicates that the expectation is taken with respect to Brownian 
motion X(t) conditioned on X(0)=x ,  X(1)= 3'. Thus we have 

E,-Ev {exp [ f :  eV(s, X(s)) ds] } 

=I, , . . . I , ,dy,  dy2...dy~cK(x,y,)K(y,,yz)...K(yN_,,yN) (2.2) 

Next observe that K is translation invariant, whence 

K(x+n, y+n)=K(x,y), n�9 (2.3) 

We may write the integral in (2.2) as integrals over the unit cube Qo in N a 
centered at the origin together with sums over n �9 7/d. Thus 

... f . , ,dy, dy2"" "dyN K(x, y,) K(y,, Y2)"" K(yN_,, YN) 

= y" ... ~" ~ ~ f "''[o dyt'''dyN 
nl  ~ 7/'1 nN r Z 'l (20 

• K(x, Yl +hi)K(yl + nl, y2 + n2) " " " K(yN--l + nN--l, Y~V+nN) 

n t  I E Z d nl  N E ~_d (20 

x K(x, Yl + mi) K(yl, y2 + m,_) ''' K(yN_l, yN + mN) 

where we have used the translation invariance (2.3) in the last identity. If 
we define now a new kernel Ko on Qo • Q0 by 

Ko(x, y)= ~. K(x, y+m) 
m E 77d 

then we have that 

E.,.Ev {exp [ ~ eV(s, X(s) ) dsl } 

= ~(2o "" ~(2o dyi ...dyN Ko(~?, y,) Ko(y,, Y2)'" Ko(YN-I, YN) 
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where .f e Qo is determined by .f - x �9 7/'1. We may write the last expression 
in operator notation. Let A o be the operator on L2(Qo) defined b y  

Aof(x) = f Ko(x, y) f(y) dy 
~Q o 

Then we finally have 

E.,.Ev {exp [ f~ eV(s, X(s) ) ds] } = < 6~, ANXo> (2.4) 

where c~e is the Dirac c~ function centered at 2, and for ~ �9 C d, Xr is the 
function Xr = exp[ i~. y], y �9 Qo. 

We shall be interested in computing the Fourier transform ~b,(~), 
�9 R a, given by 

r - E,. [exp[ i~. (X(t) - X(0))] ] (2.5) 

We can obtain an expression for ~b,(~) of the form (2.4) by observing that 

E.,.Evlexp[ f f  eV(s,X(s))ds ] exp[id.(X(N)-X(O))]] 

= fQ ... fQody, ...dyN 

x exp[ --i~. 2] K~(fc, y, ) Kr 3'2)" Kr YN) exp[i~ "YN] 

where the kernel Kr is given by 

Kc(x, y ) =  ~ K(x, y+m) e ir .... (2.6) 
n t E Z d 

Hence if Ar is the operator on LZ(Qo) given by 

Aef(x) = f _  Kr y) f(y)dy 
off o 

we have 

CN(~) = <z~(x) 47, Aux,>~<6.,., ANZo> 
In (2.7) we are using the convention 

<4' ~> =IQ,, ~(x) r dx 

(2.7) 
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Our first task is to investigate the structure of the operator A~. 
Toward that goal we prove some properties of the kernel Kr 

Lemma 2,1. The kernel Kr has the following properties: 

(a) Kr y) as a function of (x, y, ~), x, y ~ R a, ~ e C a, is continuous 
in x, y and analytic in ~. 

(b) K ~ , ~ e C  'i, is periodic, K~.+,_,,,=Kr neT/a, the d-dimensional 
integer lattice. 

(c) For x, y, ~ E R a there is the identity 

Kr y) =Kr x) 

(d) Ko(x, y)>O, x, y6 l~  a. 

Proof. (a) The kernel K(x, y) given by (2.1) is continuous in x, y 
and satisfies an inequality 

O<K(x,  y)<~ C e x p [ - J x - y ] ' - / 2 ] ,  x, y e ~  a (2.8) 

The continuity follows by writing the conditional expectation E.,..,. as a 
Brownian bridge expectation value. Continuity in x, y is then a conse- 
quence of the dominated convergence theorem. The continuity and 
analyticity of Kr y) follow from the continuity of K(x, y) and the bound 
(2.8). 

(b) This is immediate from (2.6). 

(c) Observe that K(x, y ) =  K(y, x), x, y e R a. This follows from the 
time-reversal invariance of conditional Brownian motion. To get (c) we use 
(2.3) to obtain 

K~,(x,y)= ~ K ( x , y + m ) e  -ie .... 
m E ~ d  

= ~ K ( x , y - - m )  e ir .... = ~ K ( x + m , y )  e i* .... 
n~ E 7;7 d m ~ 7/'I 

= ~ K ( y , x + m )  e i~ .... =K~(y ,x )  
11~ E 2 "Td 

(d) This i~ immediate from (2.1). 

Proposition 2.1. The operator Ae on L2(Qo) has the following 
properties: 

(a) A~ is a compact operator for ~ e C a. 

(b) Ae is self-adjoint for ~ ~ R a. 
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(c) 
(d) 

Proof. 
theorem. 

(b) 
(c) 
(d) 

The function ~ ~ Ar is strongly continuous for ~ E C a. 

Ao has an eigenvector Uo with eigenvalue IrAol[. The function 
Uo(X), x~  Qo, is continuous and strictly positive, i.e., Uo(X)> 0, 
x~Qo. There exists ~,<1 such that 12l~<y IIAol[ for all other 
eigenvalues 2 of Ao. 

(a) This follows from (a) of Lemma 2.1 and the Ascoli-Arzela 

This follows from (c) of Lemma 2.1. 

This follows from (2.6) and (2.8). 

This follows from (d) of Lemma2.1 and the Krein-Rutman 
theorem/4~ 

Let Pt(Y), Y ~Ra, be the Fourier inverse of ~b,(~). We shall use 
Lemma2.1 and Proposition 2.1 to estimate p, for large t. 

P r o p o s i t i o n  2.2. There exist constants C~, C_,/> 0 such that 

0 ~ p , ( y )  ~< ~ exp t~/2 , t > O  (2.9) 

Proos We first estimate the denominator in (2.7). We have 

(de, A~VZo) = ( Aod ~, A~ v- 'Zo) 

where Aod_e e L2(Qo). Next observe that 

Ao ~-  'Zo = -'/oN-'[ <.o. Zo> .o + eZo] 

= (U, Xo) IlAoll N-l  Uo+Ag-lPXo 

where P is projection orthogonal to u o. In view of Proposition 2.1(d) we 
have that 

I I A ~ - ' Z o - ( U ,  Zo)IlAoll N-I uoll ~<yN-, IIAolIN-~ IlZoll 

Hence we have the inequality 

Ilao[[ ̂ '- t[ ( A o ~ ,  Uo) ( Uo, Xo) - yN-  t Ilao6.ell �9 [Ixoll ] 

(Ao~.,., Ao N- ~Zo) 

~< IIAollN-'[ (ao,~.~, Uo)(Uo, Zo) + y N - ,  IIAo6~[I" Ilzoll] 

Since (Uo, Xo) > 0 and (Aode,  Uo) > 0, by Proposition 2.1, it follows that 
the denominator of (2.7) behaves like [IAol[ N- ~ for large N. 
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Next we consider the numerator of (2.7). We have 

Y', <Zr AN+2~,,Xr e x p [ - - i ( ~ + 2 r m )  .y ]  
n E .~d 

:<Xe(-~)fix, AN{xe ~,X2,,exp[--2~zni'(fc+Y)]}>exp[--i~'Y] 

= <Z~(X)6x, A ~'[X~(.V--+-f) fix+y] > exp[ --i~ .y ]  (2.10) 

In the final step above we used the Poisson summation formula, Hence we 
obtain the following formula for PN(Y): 

x [(2zr)d< 6: ,  ANZo> ] -1 (2.11) 

where J is the cube [ - to,  ~]d. 
To estimate (2.11) we shall prove that there exists a constant c > 0  

such that 

IIA~II ~< IIAo[I (1 - c  1~12), ~ J  (2.12) 

First we consider the case when I~1 is small. Let us write ~ = tn, where n 
is a unit vector and t a scalar. Then we have 

A~=Ao + tA l + tZA2 + O(t s) 

Let P be a coordinate plane through the origin in •u and let ~p denote 
reflection in this plane. It is easy to see that the kernel Ko of A o has the 
property 

Ko(~?(x),~rp(y))=Ko(x,y), x, yeQo 

It follows by the uniqueness of the eigenvector u o that Uo(rep(x))= Uo(X), 
x e Qo. Now if the unit vector is along a coordinate axis, the kernel K~ of 
A~ has the property 

Kl(~z?(x),ree(y))= -Kl(X,y), x, yeQo 

We conck that for all directions n one has 

<Uo, A,uo> = 0  

whence the vector A IU 0 is orthogonal to Uo. 
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In view of the analyticity of Ar in ~ there is an eigenvector ur of Ar 
analytic in ~ in a neighborhood of ~ = 0. We can seek this eigenvector by 
expansion 

ur = a(~) Uo + v(~) 

where a(O)= 1, v(O)= O, and the vector v(~) is orthogonal to Uo. We can 
expand a(~), v(~) in powers of t, 

a (~ )=  1 +al t  +a2t2 + ... 

v (~)=vl t  + v2t2 + ... 

Evidently all the vectors v~, v2 .... are orthogonal to Uo. For  ~ real the eigen- 
value of ur is given by []Ar which also has an expansion 

[[Ar = [[Ao][ + 2 ,  t +2_,t2 + ... 

We can compute the coefficients in the expansion by using the equation 
Acur = IIAr ur and identifying coefficients of powers of t. Thus 

[ A o + t A l + t 2 A 2 + . . . ] { ( l + a t t + a 2 t  2 + . . . )u  o+vj t  +v,_t'-+ ...} 

={llAoll + 2~t + 22tz + . . . ]{( l  +a~t +a2t2 + ...)uo +v~t +v,_t'- + ...} 

Equating the coefficients of t on both sides of the equation, we have 

alAouo+Ajuo+Aovl  = a l  IlAoll uo+21Uo+ IIAoll vl 

which is the same as 

Aluo + Aov, =)olUo + IIAoll t,~ 

If we take the scalar product of tt 0 with this last equation and use the fact 
that both v~ and A juo are orthogonai to u 0 we conclude that 2~ = 0. Hence 
v~ is given by the formula 

t , i  =(llAolI-Ao) - t  AlUo 

Next we equate the coefficients of t'- and put 2j equal to zero. Thus we 
have 

a2Aouo +alAluo + A2uo + Aov2 + Alvt 

=a,_ [IAoll Uo+A,Uo+ IIAoll v,_ 
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which is the same as 

alAluo+A2uo+Aov2+Alvl =)-2Uo + IIAoll v2 

Taking the scalar product of the last equation with Uo and using the fact 
that v2 and A tu o are orthogonal to Uo, we conclude that 

2,_=(uo, A2uo) +(uo, Atvt) 

Since A: is self-adjoint for ~ ~ R a, it follows that A t is self-adjoint. Thus we 
have 

22 = (Uo, A_,uo) + (Atuo ,  (llAoll - Ao)- t  At Uo) 

It is clear that the first term on the right in the last equation is less than 
or equal to zero. Since (llA0[I-Ao) - t  is nonnegative definite, the second 
term in the last equation is greater than or equal to zero. Hence it is not 
obvious that 22 is negative. We shall prove in the Appendix that 22 < 0. 
Thus for [~1 small we have 

IIAr = [IAoll + a(~, ~) + O( I~_l 3) (2.13) 

where Q is a negative-definite quadratic form. Thus there is a constant 
c > 0  such that Q ( ~ , ~ ) ~ < - c  IIAoll. Ill'-. We have proved therefore the 
inequality (2.12) in some neighborhood of ~=0 .  

To complete the proof of (2.12) observe that for any d > 0 there is a 
constant e > 0 such that 

IK:(x,y)l<~(1-e)Ko(x,y), x,yr ~ J ,  1~1>6 

Thus [ lAbi le( i -e ) [ ]Aol l  for ~ J ,  l~l>6. The inequality follows by 
choosing c sufficiently small so that c [IAoll- 1~12< ~, ~ ~ J. 

Let us take t=N, an integer, in (2.9). Then the inequality (2.12) 
immediately implies (2.9) with y = 0. In fact from (2.11) we have 

IPN(Y)I ~ C fj { 1 -- c 1~12] N d~ 

< C Ij exp[ - c N  I~l 2] d~ <. C, IN '~/'- 

for some constant Ct independent of N. Observe that we have used the fact 
that 

sup IlAcxr ~.~11 < 
, ~ J  
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In order to prove (2.9) for lyl > Nl/2 we need to deform the integration in 
(2.11) to an integration involving complex ~. Observe that by Lemma 2.1(b) 
the integrand in (2.11) is periodic. Thus 

r . . . .  [Zr . . . .  ( ~ )  d.,.+y]) e x p [ - - i ( ~ - - n n ) . y ]  

= <zr A ~'+,~,,[z~ +,,,,(;r +.,.3 > 

x e x p E - - i ( ~ + n n ) . y ] ,  ~ e C  d, ne77 d, x, y e ~  d 

Hence we may deform the integration d ~ = d ~ l . . . d ~ a  on [ _ n , n ] a  to 
d(~l + iq , ) . . ,  d(~a+ iqa), where Jl~ ..... qa are arbitrary real parameters. We 
choose the p/j, j =  1 ..... d, by q j=  sgn(yj) /N ~/2. The inequality (2.9) follows 
for all y �9 ~a provided we can show that for any ~ > 0 there exist positive 
constants c, d >  0 such that 

IIAr ~ e J ,  I~11 < ~  (2.14) 

Observe that it is again sufficient to  prove (2.14) provided ~ + h  1 are in a 
small neighborhood of the origin. In that case the self-adjoint operator 

A A*+;,. ~Ar ~ has a unique eigenvector ur whose eigenvalue is II r 
When q = 0  this eigenvector coincides with the previous eigenvectors ur 
Now it is easy to see that 

A~+iqA~ +iq= Ar +iu 

Hence, as before, IIA~+~,II -~ is analytic in ~, 1/close to the origin. We need 
to show that in a power series expansion in ~, i / the linear term in II is zero. 
To do this let us write q = tn, where n is a unit vector and t real. Then 

Ai,l= Ao + tA, + ... 

ui,l= (1 + a l t +  . . . ) U o + V , t +  ... 

I IAJ 2= IlAoll2 + ) . i t  + ... 

as we had before, with v) _1_ :.to, etc. 
We equate the coefficients of t in the equation 

,4-i ,  Ai, ui,l = IlAi, ll2ui,1 

to obtain 

a lAouo+Aov l  + A o A l u o - - A i A o u o = a .  IlaollZuo+ IIAoll2v, +,a.lUo 
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which is the same as 

Aovt + AoAluo-  IlAo[] A,uo = IlAol[2v, + ;tt Uo 

If we take the scalar product of this last equation with u0 we obtain 21 = 0. 
Hence the linear term in q is zero in the expansion of ][Ar z. Conse- 
quently we have 

IIAr +,,111z = ilAo[12 + 2 llA0ll Q(~_, ~) + Q,(~, q)+ Q2(ll, q)-I- o( [ 141 + I~ll ] 3) 

where Q is the quadratic form of (2.13) and QI, Q_, are quadratic forms. 
The inequality (2.14) follows easily from this last expression and the 
negative definiteness of Q, on using the Schwarz inequality. 

We conclude the proof by showing how to obtain (2.9) for t not an 
integer. We have 

P,( Y) = E.,[ Ev{exp[~' o eV(s, X(s)) ds]} 6(X(t) - X(O)-y)  ] 
E.,.El:{exp[I' o eV(s, X(s)) ds]} 

Putting N--  [ t ] ,  the integer part of t, we have then 

p,(.v) <~ C E"[ Ev{exp[~U eV(s, X(s)) ds] } 6(X(t) - X(O) - y ) ]  
N E.,.Ev{exp[ jo eV(s, X(s) ) ds]} 

for some constant C independent of x, y, t. Next we write 

X ( t ) - X ( O ) - y = X ( N ) - X ( O ) - [ y +  Y] 

where Y= X ( N ) -  X(t) is independent now of X(s), 0 <~ s <~ N. Thus 

p,(y) <~ CE[pu(y+ Y)] 

The inequality (2.9) follows now from the previous inequality, since Y is 
Gaussian with mean zero and variance less than or equal to 1. QED 

Proposition 2.3. There exist pl>0 and a Gaussian random 
variable Y such that for any measurable function f :  R '~---, R with 

then 

J'R., e - "  I:'1 If(y)l  dy< c,o 

f ( X ( t ) -  X(0)'~] = E[/ ' (  Y)] lim El: - ~  j ] . 
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Proof. Let us first assume that f is a Schwartz function and that 
t = N is an integer. Then we have 

E•L k -~'7- }j=f~,~N f(r 

where @N is given by (2.5) and f is the Fourier transform o f f  We estimate 
the last integral by using the Poisson summation formula as in Proposi- 
tion 2.2. Thus we have 

E 
tt E ~ d  

<z~ + ;.,,(.e) 6~. A~+ 2.,,x~ + 2,,,> f([~ + 2=,,] v/~) 

=(Xe'-~)~.e,A~[ze,,~e, X2,,,f([~+2nn]x/~)exp[-2mfi" fc]l) 

= (Zr O.~, A~ze> f(~ ,v/~) + EN(~) 

when EN(~) is simply the remainder term. Hence 

where J =  [ -re,  rr] a. Since f is a Schwartz function, we have 

lim [Na/ZIg d~ (Xr Ox, A~xr f(~ v/N)]/(d.e,A~Xo) 

,im E "2 f 
N ~ o-j I'~1 < I / N  I/3 

N ~ , ~  ,y,[ < I / N I / 3  

We have now that for [~[ < 1/N I/3, 

= (Acdv, ue,)(ur Xo) ][Ad[ N- ' [  1 + O(e - - ~ N ) ' ]  
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for some d > 0. Here ur is the principal eigenvector of A~ and d is related 
to the spectral gap of A~ as given by Proposition 2.1(d). We therefore have 

( ,, A'JXo) / ( A 'Zo) 

= [ 1  + O(1/N'/3)] IIAAN-'/IIAoll N-', I~l < 1/N'/3 

Using (2.13) and the previous identity, we conclude that 

N - -  < J i l l  < I IN  113 

= lim Na/Z I d~exp[NQ(r162162 
N ~  ~ I'~1 < I/NIl3 

where Q is the quadratic form in (2.13). Since Q is negative definite, this 
last limit is the same as 

In,' d~ exp[ Q(~, ~)/llA011 ] f(r El f (  Y)] 

where Y is a Gaussian random variable. 
Observe next that the remainder term E~v(~) satisfies the inequality 

sup ]EN(~)I/( 6x, A~Zo) <~ Ck/N k 
~EJ 

where k is an arbitrary positive integer and Ck is independent of N. This 
follows from the fact that f is a Schwartz function. Proposition 2.3 for 
integer t and Schwartz functions f immediately follows. 

We extend the result to noninteger t and Schwartz functions f To do 
this put N = [ t ] and 

y= X(t) - X(O) X(N) - X(O) ,/7 (2.151 

Then we have 

{X(t)-X(O)'~ (X(N)-X(O)'~ ' {X(N)-X(O) +sy)  
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Just as in Proposition 2.2, we have 

l (X(N)_X(O)+sy) ] E fl[IYI Io dslVfl\ -x~ 

t,~/N 

where Y is the Gaussian random variable defined by (2.15) under the 
assumption that X is Brownian motion. It is evident that the mean of Y is 
bounded by CI/N 3/2 and the variance by C2/N for constants C~, C,. If we 
use Proposition 2.2 to estimate PN(Y), then we have 

. [,,., I; +} 
<~CE IYI ds ,Vf(z+sY)exp(-c[zl)dz 

for positive constants C, c > 0 .  Since the mean and variance of Y are 
O(1/N), this last expression is O(1/N~/2). Hence the result for noninteger t 
follows from the integer-t result. 

Finally we wish to extend the class of functions f from Schwartz space 
to the class given in the statement of the proposition. This follows 
immediately from Proposition 2.2. In fact for any 8 > 0 there is a Schwartz 
space function g such that 

fR,, e-" ~-''~ If(y) -g(y)l dy < (2.16) 

It follows from (2.16) and Proposition 2.2 that if J7 > 0 is sufficiently small, 
then 

: t ; - .  7 

from some constant C > 0. The result now follows from this last inequality 
by standard argument. QED 

We have shown in Proposition 2.3 that the process X(t) with measure 
(1.7) is in some sense a renormalized Brownian motion. Here we wish to 
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show that it has similar recurrence properties to Brownian motion. Let us 
consider two independent copies X(t), Y(t) of the process (1.7). Thus the 
pair (X(t), Y(t)) forms a process in ~2,( We consider a subset 5: of ~2d 
defined by 

50= U { Q , , x Q , , : n e Z  a} 

where as before Q,, is the unit cube centered at n e 7/a. Now the dimension 
of the set 5: is d. Hence by the recurrence properties of Brownian motion 
we should expect that for d>~3 the process (X(t), Y(t)) spends a finite 
amount  of time in Y.  We shall prove a version of the statement as follows: 

T h e o r e m  2.1. Let Z.~, be the characteristic function of the set 5:. 
Then there exist Jo, ~ > O, and a constant C sufficiently large such that 

1 IaEAv[exp[6f~X~,,(X(s),Y(s))ds]]dxdy 
Inl  

C6 
~< 1 + t>~0 (2.17) 

(1 + Is~l) =' 

for any 6 ~< 6o and ba l l /2  c I~ 2d, d~> 3. 

Proof. We write the expression on the left in (2.7) as a sum 

• J"a. 
/ l = 0  

where a0 = 1 and a,, for n >/1 is given by the formula 

] a,, = E,. ~, dsl ... ds,, X~,.(X(si), Y(si)) dx dy 
"<Sl  " ( S 2 < 2  " ' "  "<Sn'<t i = l  

We can rewrite a ,  in terms of the joint probabili ty density 

(x(0), Y(0)), (X(s~), Y(s l ) )  ..... (X(s . ) ,  Y(s . ) )  

which we denote by 

pt(x, y, 0; x l ,  Yl, sl ;  x2, Y2, s2;...x,,, y,,, s,) 

822/84/3-4-8  
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a s  

1 

x Io dsl . . .  ds,, 
< S l  < s 2  "< " �9 �9 < $ n  < t 

x pt(x, y, 0; x l ,  Yl, Sl; x2, Y2, s2;...x,,, y,,, s,) 

Next we use the following proposition, which proves 

p,(x, y, O; Xl, Yt, sl ; x2, Yz, Sz; . . .x , ,  y , ,  s,,) 

C" (-c2(IXl-Xl+lyl-yl)) 
~< ~ exp 

S 1 S 11/2 

,,-x 1 (.-- c2(Ix~+t-xA+ly~+l 
• 1-[ (si - s i )  dexp \ ( s i + l - s i )  1/2 

i = l  +1 

for some constants C1, 
1 ~< i <~ n. Using the fact that 

--Yi l))  (2.18) 

c2 > 0 independent of  x,  y, t and the x ~ ,  y ~ ,  si, 

I5 ds-~exp (-c'(Ixl + lyl)) 
- s112 <~ 

C3 
(Ixl + lyl) 2~-2 

for some constant Cs depending only on c2 and the fact that 

f dX;+l dy,+l/(Ixl-xi+ll + tYi--Yi+l[)2d-2<~ C4< Go 

where the constant C4 is independent of (x,., yi), we conclude 

a,,<-~(C'~/1121) I dxdy!~dXl dy l / ( IX-XlL  + [y-Yll) 2d-2 

for some fixed constant C5 > 0. Observe that the RHS of the last inequality 
is bounded by a constant times C~. To get the decay in 1121 as 1121--' ~ ,  
let 12j be the ball concentric with 12 which has radius equal to 2 j times the 
radius of 12, j = 0, 1, 2 ..... 
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Then we can write 

( I / IOl)  I,~ dx dy I..dx) dyl/(Ix-x,l + ly-y, l )  za-2 

= ( I / IOl )  Is dx dy f.~,~,dx, dy,/(Ix-x,l + l y - y , l )  2'I-2 

'L ! + ~' -~I dxdy d x l d y , / ( l x - x , l + l y - y n l )  2a-2 (2.19) 
j = o  ~/' c~ (Qj+ t\s~a 

Now if we take a unit cube Q c R a with Q x Q ~ 6f c~ O, then it is clear 
that 

( I / IOl)  I,~ dx dy Io • Q dx, dy,/(Ix - x, I + l y -yl l ) - ' " -- '  ~ c/IOl'- TM 

for some constant C. Since 5~ c~ O is the union of order-IOI n/2 unit cubes, 
we conclude that 

(1/1~1) { &dyf  dx, dy~/(lX-Xll+ly-yll)2a-'-<~C/IOl '/2-1/a 

Hence we have bounded the first term on the RHS of (2.19) appropriately. 
Clearly we have a similar bound for the j = 0 term also. The j t h  term in 
the sum for j>~ 1 is bounded by C/U (a-2) IOI n/,_-,/,~. Hence, on summing 
the series in (2.19), we conclude that 

a,, <~ C'~ C6/(1 q- i~1)  ~ 

where C6 is a constant and ct = 1 / 2 -  l/d. Now if we choose 6o such that 
C56o< 1, the inequality (2.17) follows. QED 

We are left to prove (2.18). This is evidently a generalization of 
Proposition 2.2. First observe that since the processes X, Y are inde- 
pendent, it will be sufficient to consider X alone. The inequality (2.18) 
follows then from the next result. 

Propositipn2.4. Let O=so<s~<sz<. . .<s , ,< t  and xi~R a, 
0 ~ i~< n. Suppose p,(xo, So, x n, s~ ..... x,,, s,,) is the joint density of the 
variables X(s~), X(s2),..., X(s,,) for the averaged process (1.7) started at Xo 
at time 0. Then there is a constant C >  0 such that 

pt(XO, SO, X I ,  SI ..... X n, Sn) ~ C n f l  P s i - s i - i ( x i - I ,  S i - l ,  x i ,  si) 
i=l 

(2.20) 
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Proof. The inequality (2.20) with C =  1 would follow from (1.7) if 
the normalization constant in (1.7) were unity. However, the normalization 
constant has the form y IIAoll', where y depends on t and also on the 
starting point and time. However, there are constants cl, C~ > 0 such that 
c, ~< y ~< C~ for all starting points and times t. The constant C in (2.20) is 
then bounded by C<~ CJCl. 

3. THE PARTIT ION FUNCTION 

Here we establish some properties of the partition function defined by 
(1.5). Now Zx, v(t) is a random variable in V and it is clear that it has 
expectation value equal to 1. Thus by the Chebyshev inequality one has for 
any given t and 0~ > 0 the inequality 

P(Z,-. v(t) > ~) <~ 1/o~ 

We shall prove the following: 

P r o p o s i t i o n  3.1. There is a constant C > 0  such that for any c t>0  
there is the inequality 

P(sup  Z.,.. v(t) > o~) ~ C/o~ 
t > 0  

Proof. Let r be the smallest integer such that 

sup Z x . v ( t ) > ~  
0 < t < r  

In particular, we must have Z.,., v(t)>~oc for some t with r -  1 < t ~< r. Now 
let N be a large integer. Then we have 

1 =E[Zx ,  v(N) ] =E{E[Z. , . .v(N) I V(s, x), s ~  ^ N, x e  ~d]} 

It is clear now from the previous section that there is a constant el > 0 such 
that 

E[Zx, v(N) I V(s,x),s<~ r ^ N, x e R  d] >~ClZ,. v(r ^ N) 

Hence we conclude that 

E[ Z,. v(r A N)]  ~< 1/c, 

If r < N, then there is a constant c2 such that Z,.  v(z A N) >1 c2o~, and so we 
have 

C2o~P(z < N) <~ 1/c, 

which yields the result. Q E D  
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Observe that Proposition 3.1 holds for all e > 0 and all dimensions d. 
In contrast, the behavior of inf,>o Z,.. v(t) appears to depend critically on 
both e and d. 

Proposition 3.2. Let 6 satisfy 0 < 6 < 1/2. Then there exists eo > 0 
such that if e ~< eo and d~> 3, there are constants C, 0c > 0 depending only on 
d such that 

P( inf Z,.. v(t) < 6) ~< C/llog 61" (3.1) 
t > 0  

Proof. Let r be the smallest integer such that 

inf Z.,. v( t ) < 6 
0 < t < r  

As in Proposition 3.1, we must have Z, . .v( t )<6 for some t with r - 1  < 
t ~< r. Let N be a larger integer. Then there is a constant C, > 0 such that 

E[Z, .  v(N) I V(s,x),s<<. r ^ N , x ~ W  I] <<. CiZ, . .v(t  ^ N) 

Hence we have the inequality 

1 <<. C2 6P(r < N) + E[Z.,.. v(N); r/> N] (3.2) 

where C2 is a constant. 
We have now by the Schwarz inequality 

E[  Zx. v(N); r >/N] ~< P( r  >t N)1/2 E[Z.,.. v(N) 2 ] 1/2 

Hence if we put 

M =  sup E[ Z,. v(N) 2] 
N>~I 

and assume M is finite, then we have on letting N--* oo in (3.2) the 
inequality 

1 ~ CzdP(r<  oo) +Ml/2[1 - - P ( r <  00)'] I/2 

If C2 6 < 1, it follows from this last inequality that 

P ( r  < oo) ~< 1 - ( 1 - C26)2/M (3.3) 

Hence if M <  oo, we see that the LHS of (3.1) is strictly less than 1 for 
small 6. However, the inequality (3.3) does not give a dependence on 6 as 
6 ~ 0 .  
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We shall show now that M <  oo. From (1.15) we have 

xEv{expI ~Uo eV(s, Y(s))ds]})-~l (3.4) 

where E A denotes that the expectation is with respect to the averaged x , x  

process (1.7), and X, Y are two independent copies of the process. Now for 
i = 1 ..... n e Z a let ri.,,(X) be the amount of time the path X(s) spends in the 
cube Q, during the time interval i -  1 ~< s ~< i. Similarly we define r~,,,(Y). 
Then it is clear that 

exp[ f f  eV(s'X(s))dsl=exp I ~= ~. eVi.,,ri.,(X)] 
i 1 n ~ Z d 

whence 

Ev exp eV(s, X(s)) ds = I-I 1-[ c~ 
i =  1 n E Z  d 

Consequently, we have 

Ev{exp[~ u eV(s, X(s)) + eV(s, Y(s)) ds]} 
Ev{exp[~ eV(s, X(s)) ds]} Ev{exp[~N eV(s, Y(s)) ds]} 

N cosh[er/.,,(X) + eri,,,( Y)] 

__IJ, [-[ cosh[eri,,,(X)] cosh[erc. (Y)] ~ i =  n E Z  d 

N 

<I-I H 
i = l  n ~ Z  a 

i 1 n e Z "1 

=exp ~. e z Ze.(X(s))ds Xa.(Y(s))ds 
i 1 n ~ Z  d - - 1  - - 1  
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~exp[,,~zuf]e2~:ZQ,,(X(s))ZQ,,(Y(s+u)) 
+ Xe,(X(s + u)) Xe,,(Y(s)) ds du] 

= e x p  ~2 Xu,(X(s), Y(s+u))+Xu,(X(s+u), Y(s))dsdu (3.5) 

where 5e = 0 { Q,, x Q,,: 11 �9 Z d} is the set defined prior  to Theo rem 2.1. 
Hence we have 

E[ Z.,. v(N) 2] 

<~ EA ,. [ exp [ f] e2 i :  Z.~,( X(s), Y(s + u) ) + Z.~.( X(s + u), Y(s) ) ds du] ] 

<<,I] duE,.,.[exp[e2 f:Z.v,(X(s), Y(s+u))+Xv,(X(s+u), Y(s))ds]] 

<~ �89 I] du { E'..,. [ exp I 2e2 f :  x~( X(s), Y(s + u) ) dsl l 

+ E',x [ exp [ 2e2 I: z~(X(s + u), Y(s)) ds] l } 

by Jensen's  inequality. T h e o r e m  2.1 now tells us that  the RHS of  this last 
inequality is uniformly bounded  as N--* oo provided e is sufficiently small. 
Hence M is finite. 

Next  we wish to obta in  the dependence in fi for the RHS of  (3.1). To  
do this we define for k = 1, 2 .... a par t i t ion function Z,-V.k(t) by 

Ex{ exp[~'k eV(s, X(s) ) ds] } 
Z,.. V.k(t) = EvE,,{exp[J'k eV(s, X(s)) ds]}' t >~k 

It is clear that  there is a n u m b e r  a > 0 such that  

Z,.v(t)>~akZ.,,,~;k(t), t>~k (3.6) 

Evidently we have 

E[Z,.V~k(t)] = 1, k4 t  
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On the other hand, 

E[ Z.,.. v.k( t)2] <~ fR,, f~ dz dw p(z, w) 

x �89 ~ du {E~., [ exp [ 2e2 ~-kx~,(X(s), Y(s + u)) ds] l 

+ E:A.,. [ exp [ 2e2 I~-kXj.( X(s + u), Y(s) ) ds] ] t 

where the density p(z, w) is given by 

P(Z, w)= po(z, w) EvE_- [ exp [ ~-keV(s, X(s)) ds] l 

x EvE.. [ exp [ fs Y(s)) ds] ]/normalization 

where Po is the density for Brownian motion in ~2a at time k started at 
(x, x) at time 0. Clearly p(z, w) is concentrated on a scale of radius k ~/2 
Hence by Theorem 2.1 we have 

E[Z.,. v.k(t) 2 ] <~ 1 + Ce2/k a~, t>~ k (3.7) 

provided e is sufficiently small and again the bound is uniform in t as 
l ---* O0. 

Now for k =  1, 2 .... let 

Mk = sup E[Z.,. i<k(N) 2 ] 
N > ~ k  

and rk be the smallest integer ~>k such that 

inf Z,. V,k( t ) < 
k <~ t < rk 

As before, we have 

E[Z,. v,k(N) [ V(s, x), s<~ r k A N, x~ R a] 
<~ C, Zx, v,k(rk A N), N>k 

Hence we have an inequality analogous to (3.3), namely 

P(rk  < oo) ~< 1 - ( 1  - C26)2/Mk 
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Using the inequality (3.7), we have that 

P(zk < oo) ~< 1 -- 1/M~ + 2C26 

<-% Ce2/k a~ + 2C2,~ 

If we take fi = e2/k d~, we conclude that 

P(  inf Zx. v.k(t) < E2/k a~) <% Ce2/k a" 
t>~k 

Hence from (3.6) it follows that 

P(  inf Z,.. v(t) < e2ak/k a') <% Ce2/k a~ 
t > 0  

The inequality (3.1) follows immdiately from this last inequality by choosing 
k appropriately, depending on ft. QED 

Next we wish to address the problem of showing that Z.,_.v(t) con- 
verges to a limit as t--. m. We shall show that, provided we take an 
exponentially growing sequence of t values, the limit exists if e is small and 
d/> 3. We are unable to make any statement about the convergence proper- 
ties of Zx.v(t) if either e is large or d~<2. However, there is a quantity 
closely related to Zx, v(t) which converges for all e and dimension d. Let 
Uo(X), x �9 Qo, be the principal eigenvector of the operator A0 of Section 2 
with eigenvalue ][A0l I. The function Uo can be extended to all of R d by 
translation. Thus for x �9 •a, Uo(X) = Uo(.f), where Y �9 Qo and .f - x �9 Z d. For 
N = 1, 2 .... we define Z,-. v(N) by 

E,.[ e x p [ ~  eV(s, X(s) ) ds] Uo(X(N) ) ] 
Z,., v(N) = EvE.,.[exp[~ ~ eV(s, X(s)) ds] Uo(X(N))] 

It follows from (2.4) that the denominator of the last expression is simply 
[IAo[[NUo(X). It is easy to verify that the sequence of random variables 
Zx, v(N), N =  1,.2,..., is a martingale and 

E[Z,., v(N)] = 1, N =  1, 2,... 

Hence by the martingale convergence theorem t2~ the limit l imu_ o~ Zx, v(N) 
exists with probability 1. This is true for all e > 0 and dimension d. Our 
convergence theorem for Zx. v(t) is based on the following: 
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Proposition 3.3. There exists e0 > 0 such that ife <~e0 and d I> 3, then 

E[ {Z,. v(M)-Zx,  v(N)} "-] <~ C/N ~' 

for any integers N, M, 1 ~< N ~< M. The constant C and index ct > 0 depend 
only on to and d. 

Proof. Let X(s), Y(s), s>~O, be independent Brownian paths. For  
i =  1, 2 ..... we define gi(X, Y) by 

1] gi(X, Y)=Ev exp e _ V(s,X(s))+ V(s, Y(s))ds 
1 

x E v  exp e V(s, Y(s))ds 

Then according to Eq. (3.4) one has 

E[Z~v(N)2] "~'lV'NI 'v 1 -, =E.,-.x 1-[ g~(X, Y) 
i = 1  

The right-hand side in the last equation is an expectation with respect to 
the averaged process (1.7). We have introduced the parameters N, N to 
indicate the dependence of the averaged process on the time t. Similarly we 
have the expressions 

E[Z.,-,v(M) 2 ] =EA'M'M--.,'..; l--I gi( X, Y) 
i = l  

Letting [ .  ] denote integer part, we have that 

EA,~v,N[ N ] [tN/21 ][ 
.,.,.,- I-I g,(X, Y) -E:,.A,',u. 'N l--[ g,(X, Y) 

i = 1  i ~ l  

<~E~.'.~ "~ 1-[ gi(X, gi(X, Y ) - I  
i = 1  i = [ N / 2 ]  + l 

)'] - N <- ra,N,~v[ (flY~Z] 1/2 A.lV, N 
"~'~x,x [\i_I=-I 1 el( X, Y) E,.,.,. ( I] 

L l i : [ N ] 2 ] + I  

(3.8) 

gi(X, Y) - 1 2] 1/2 
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It follows now from (3.5) and Theorem 2.1 that 

,..~ g,(X, Y) -E~',u. m I-I g,(X, Y) < C/N ~' 
i i=l 

for suitable constants C, 0t>0. Using the formulas (3.8) and arguing as 
above, we conclude there are positive constants C, 0c such that 

E[ { Z,. v(M) - Z,.. v(N) } 2 ] 
[tNm y)] 

<~EA'N'N.,.., I-I gi(X, 
i = 1  

+E~.'Y '~ I-[ g,(X, Y) - 2 E ~ . y  .~ 1-I g,(X, r) +C/N ~ (3.9) 
L i i = 1  

Next let us define a function w(z) for z e Qo by 

w(z) = a~-tNmZo(Z) AtoNmZo(X)/A~Zo(X) 

The function w is extended to all of R a by periodicity, w(z +n)= w(z), 
n ~ y a  Then we have 

x,.,. L I E u/21 Y)] EA'u'N i~=,__ gi(X' 

[ tum ] 
-E,...,.- A.CN/zl.ru/23 I-I g,(X, Y) w(XC[N/2]))w(Y([N/2])) 

i = 1  

It is clear from Proposition 2.1 that 

w(z) = (Zo, Uo) Uo(Z) + O(e-"V) 

for some positive constant c. Hence 

A'N'N [ [ N/2 ] ] 
E,-..,- I-I gi(X, Y) 

i=l 

i 
- [N/X] 

=E'~'rNm't~mx.x 1--I g~(X, Y) 
- i = 1  

x (Xo, Uo) 2 uo(X([N/2] )) Uo( Y( IN/2] ))] + O(e-cJv) 

We can obtain similar formulas for the other terms on the RHS of (3.9). 
The result follows from this and inequality (3.9). 
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Corol lary  3.1. I f  e > 0 is sufficiently small and d>_-3, then the limit 

lim Z.,.. v( t ) = Z,.. v( oo ) 
n ~ 0 5 ,  t = 2 n 

exists and 0 < Z.,. v(OO) < oo with probability 1. 

Proof. The existence of the limit follows immediately from Proposi- 
tion 3.3 by standard argument. The fact that 0 < Z,-. v(OO) < oo is a conse- 
quence of Propositions 3.1 and 3.2. 

4. C O N V E R G E N C E  TO D I F F U S I O N  

In this section we shall prove Theorem 1.1. First we write 

E,.[exp[~ N eV(s, X(s)) ds] f((X(N) - x)/v/N) ] 
E,_[exp[ ~ v eV(s, X(s)) ds] ] 

E,.[exp[~eV(s, X(s)) ds] f ( (X(U) -x ) / x /~ )  ] / Z  tU~ 
= E,.Ev[exp[~eV(s, X(s))ds]] / .,..v, , 

_ u f X ( N ) - x  

x(ExEv[exp[~eV(s,X(s ' )ds]E, .[expE[2~'~eV(s,X(s))ds]])  ' 

(4.1) 

where 0 < ? < 1 and [. ] denotes integer part. Now let us define 

E x [ e x p [ ~  eV(s, X(s)) ds]; X(M) = y ]  
PM'v(Y)= E,.[exp[~t eV(s,X(s))ds]] 

gu.y(y)= E,.Ev[ exp [ I2N"l eV(s, X(s)) dsl ] 

[ I  V(s, X(s) ) as] x 
E,.Ev[ exp[ ~ eV(s, X(s) ) ds] ] 



Brownian Motion Version of Directed Polymer Problem 445 

Then we have that the expression (4.1) is the same as 

Zx, V( )j,~,,r dy p [N;]. v(y) g~ ;,(y) 
Z.,., v[ N ] 

x E"Eexp[l[vm] eV(s, X(s))ds] U((X(N)- x ) / x / ~ )  ] 

EvE,,[exp[j~N,,,] eV(s, X(s) ) ds] ] 

Now let us define a function qM, v(Y) for y ~  R d by 

E, .[exp[lo ~t eV(s, X(s)) ds]; X(M) = y ]  

qu, v(Y) = E,.Ev[exp[~yeV(s, X(s))ds]] 

It is evident that 

observe that 

qM.v(y)=Z.,.,v(M)p~,v(y), yeR a 

fRapM, v(y dy= 1 

(4.2) 

(4.3) 

Proof. We have 

PM(Y) dY 

where PM is as in Proposition 2.2. The result follows immediately now from 
this proposition. 

Lemma 4:2. Let IN. V be the expression 

IN, v = fe d dy q[m]. v(Y) gN.~,(Y) 

• ] 

E l f  q M.v( y) dyJ <~ C exp[ - cM 6] 
[ y - - x i  > MI/2-+ ,~ 

and hence we do not expect the integral of qM. v to be unity. 

L e m m a  4.1. Let ~ >0.  Then there exist constants C, c depending 
only on ~ such that 
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Then there exist positive constants C, ~ such that 

E [ I~v" v] <~ C/N~' 

Proof. We consider first 

E[Iu. vl V(s,.),s<<,[N"]] 

= oref, onQdY dz q[ N;'], v(Y) gN, I,(Y)qEN'~].v(Z)go, r( z ) 

(4.4) 

' l } 

x f((X(N-- [ N)'])--x)/v/'N) f(( Y(N-- [ N~'])--x)/v/N)I 

In the last equation X(s), Y(s) are paths which run for time s ~< N - [ N  )'] 
with X(0)=y ,  Y(0)=z. In view of (3.5) it follows that 

E[IN. vl V(s, .) ,s~[Ur]] 

x Ifl ((X(N-- [N~']) -X)/v/-N ) Ifl (( Y ( N -  [N>']) - x)/v/-N) ] 
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Hence we have 

E[IN. v] = E[E[IN, v I V(s,. ), s <<, IN ~] ] ] 

~< ]]gN.;.][~ I.,,f.,,dY d= pE^~,,](y) PtN'q(Z) 

x Ifl ((X(N- [N~']) -- x ) /x /~ )  Ifl (( Y(N-- [N)']) - x ) /x /~ )  ] 

Applying the Schwarz inequality to this last expression, we see that 

,~r ,;,.vl ~ ,~N.~.lL2:: [ io.,,,y 

x PENn'S(Y) EJ[ If l  2((X(N - [N~']) --.',)/v/'U)] ] 

x { ~ au lw, fn,,dy dz pE ̂ ,~'](Y)P[ u~'2(z) 

x~ [~p[~'rN ~ -  ~`~,, ~̀s+~, ~o  

The inequality (4.47 follows from this last inequality by virtue of Proposi- 
tion 2.2 and Theorem 2.1. 

I . e m m a  4.3. There exist constants C, ~ > 0 such that 

[{fo }~] E dyq[Ar,%v(y)[gu.~,(y)--l] <~C/N ~ 
d 

Proof. We consider first 

E[ fRjdy qEN'q,v(Y) gN, y(Y)] = A[oN~']gu.~,(x)/A[o~'])(.o(X) 
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It is easy to see that 

gN,~,(Y) = <Zo, Uo> uo(y) + O(e -'N) 

for some positive c. Thus we have 

E[ I~ dy qtNq.v(Y) gN.~,(Y)] = l + O(exp(--cN~')) 

Next we use the notation of Proposition 3.3 to write 

E dyqtNq v(Y) =EA'[N;']'[N;'] 1"I gi( X' Y) 
d ' . x ' , x  

i = l  

Just as in Proposition 3.3, we have 

[[Nq ] 
E.~.'~ N;q't N;'l 1-] gi( X, Y) 

i = 1  

A'[N'r]'[N:'] [ [N7/2] ] =E.,-.x l-I g,(X, Y) +O( I /N =) 
i : I  

x EA'EN"m'tN'al,., 1--[ gi(X, Y) <Zo, Uo> 2 
i=| 

x Uo(X( [ N~'/2 ] ) ) uo( Y( [ N~'/2 ] ) + O( 1/N ~) = aN + O( I/N ~) 

where aN denotes the expectation value in the last expression. Similarly we 
have 

E dyqtN'q v(Y)gu.,.(Y) = a N +  O(1/N ~) d " 

The result follows now from the last three equations. 

Proof of Theorem 7.7. We start from the expression (4.2). First 
observe that by Corollary 3.1 we have 

lim Zx.v([ N~'])/Z.~,v(N)= I 
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with probabi l i ty  1. N o w  let us put  

/ .  

aN = Jr~u dy P[N'q, v(Y) gN, ~.( Y) 

• Ev [exp [  J~V~rq eV(s, X(s)) ds] f ( (X(U)-  x ) / x / ~ ) ]  

EvEy[ exp[j ~N, q eV(s, X(s) ) as] ] 

bN = fR,I dy p [Nq. v(Y) gN.~,(Y) 

X EvE'[exp[~.m] eV(s, X(s)) ds] f ( (X(N)-  x ) / x / ~ )  ] 

EvEy[exp[~m] eV(s, X(s)) ds]] 

We need to show that  lim . . . . .  N=V aN exists and is equal  to the RHS of  
(1.12), which we denote  by s N o w  by Propos i t ion3 .2 ,  (4.2), and 
L e m m a  4.2 it is sufficient to show that  lim . . . . .  N = v  bN exists and is equal  
to s Next  we define e N by 

CN= I dy ptmq,v(Y) gN.~,(Y) 
I x - -y[  < N//2+,~ 

xf(X(N)-x,/x//-N,/EvE.,,[exp[fENqev, s,X(s,)ds]l 

where 6 > 0. Then  by L e m m a  4.1, (4.3), and Propos i t ion  3.2, it is sufficient 
to show that  lim . . . . . .  N=V CN exists and is equal  to ~ .  Observe  next that  
if ~/2 + d < 1/2, then 

b EE; 11 sup EVE,, exp eV(s, X(s)) ds 
Ix --.v[ < N ;'/2 +'~ [NT]  

xf(X~N)--x)/a/~)/EvE~[exp[f~qeV(s,X(s))ds]l-s 

converges to zero as N ~ oo. Thus  if we put  

d N = f  , dyPENq, v(Y) gu,~'(Y) 
d [x --  3,1 < N'l/2 +'I 

822/84/3-4-9 
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it is sufficient to prove lim . . . . .  u=2,, dN = 1. Again by Lemma 4.1 this is the 
same as showing that the sequence 

= JRa dy P[Nq. v(Y) g~.r(Y) eN 

converges to 1 as N goes exponentially fast to oo. However, this last fact 
is a consequence of Lemma 4.3. QED 

A P P E N D I X .  E X I S T E N C E  OF S P E C T R A L  GAP 

Here we shall show that the quantity 2, defined by 

22 -- < Uo, A2uo> + < A, Uo, (llAoll - Ao)- '  A,uo> 

is strictly negative. 
Our first goal will be to prove that 22 ~< 0. To do this let ~ = tn, where 

t e R and n e •d is a unit vector. Suppose v e L2(Qo) is a function which is 
pure imaginary and orthogonal to u o. It is clear that 

<Uo+tv, A~(uo+tV)> ~<<luo+tvl, Ao luo+tV]> 

~< IJAoll" IlUo + tvll 2 

= IlAoll [ [luoll 2 + t2 Ilvl[ z] (A.1) 

where [Uo + tvl is the function defined by 

lUo+tvl ( x ) =  lUo(X)+tv(x)l, x e R  a 

We have now that 

( u 0 + tv, Ar 0 + tv ) > 

= <u 0 + tv, (A 0 + tA, + flA2)(Uo + tv)> + O(t 3) 

= IIAol I �9 IlUol12 + t"<v, Aov ) + 2t2<Uo, A i r  ) + t2<Uo, A2uo> + O(/3) 

(A.2) 

In this last identity we have used the fact that v is pure imaginary, since it 
implies that (Uo, A~v> is a real number. Now if we let t ~ 0 in (A.1) and 
(A.2) we easily see that 

<Uo, A2Uo> + 2<Uo, Alv> -<v ,  (llAoll-Ao)v> <.0 

Taking v = ( [[Ao][ - Ao)-  1 A, Uo in this last inequality yields 22 ~ 0. 
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In order  to prove  tha t  2 2 < 0, we need to obta in  a formula  for the 
difference between the L H S  and R H S  of (A.1). We have that  

(u~176 IQ d.'<dy ~ f (x,y,m) 
Q0 0 m ~ z~ d 

where 

f ( x ,  y, m)  = [Uo(X ) - -  tv(x) ] K(x ,  y + m)  e i~ ' '[  uo( y) + tv(y)  ] 

Hence we have 

I < u o +  tv, Ar + tv) >[ 2 

: f z 
Qo 0 m E Z d 

= o o & dy ,,~"z,,~ I f ( x ,  y, m)l 

1 

x ~ I I f ( x ' y ' m ) l f ( x " y " m ' ) - I f ( x " y " m ' ) l f ( x ' y ' m ) 1 2  

,,, ~z,, I f ( x ,  y, m)l .  I f (x ' ,  y', m')l  

(A.3) 
It  is clear that  

I f (x ,  y, m)l = [Uo(X) 2 + t 2 Iv(x)1231/-" K(x,  y + m)[uo(y )  z + t 2 Iv(y)l 2] 1/2 

Consider  the function g,(x)  defined by 

g,(x)  = [uo(x)  2 + t z Iv(x)lz]l/2--Uo(X) 

Then  we have 

Q ;Q dx 2ly y '  I f (x ,  y, m)l 
0 0 nl ff 7) 'd 

= ( g , + u o ,  A o ( g , + u o ) )  

: IIAoll [ Iluoll 2 + t z H/)][ 2"] "~  ~ g t  "4" UO, (A 0 - -  IIAoll)(g, + Uo)> 

= IlXoll E II.oll= + t 2 Ilwll 2] + < g , ,  (Ao- I IAo l l )  g,> 
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Since g, = O(tZ), we conclude that  

Ioofoo"x" m E Z  d 

Next  we write 

Since 
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f ( x ,  y, m ) = a o + t a  I + O(t 2) 

f ( x ,  y, m) = [Uo(X) -- tv(x) ] K(x, y + m) 

x [1 + i t m . n ] [ u o ( y ) + t v ( y ) ]  + O(t 2) 

it follows that 

ao= Uo(X) K(x, y + m) uo(y) (A.5) 

al = i(m . n) ao + Uo(X) K(x, y + m) v(y) - v(x) K(x, y + m) uo(y) 

Observe that ao is real while a I is pure imaginary. We conclude that  

If(x,  y, m)l f ( x ' ,  y', m') - I f(x ' ,  y', m')l f ( x ,  y, m) 

= ao[ a'o + ta'] ] - a'o[ ao + tal ] + O( t 2) 

= t[aoa'l - al ] + O(t 2) 

where a ; ,  a'~ are the quantities for f ( x ' ,  y', m') corresponding to ao, a , .  
Hence 

I l f (x ,  y, m)l f ( x ' ,  y', m') - [f(x',  y', m')l f ( x ,  y, m)l 2 

If(x, y, m ) l .  If(x', y', m' ) l  

t" [aoa'l- a~all 2 = +O(t  3) 
t 

t lO( I  o 

It follows now from (A.3)-(A.5) and the previous equat ion that  

l( Uo + tv, A~(u o + tv) )l 2 

= ( l lAol l  [ [luoll 2 + t 2 iiv[12])2 

t 2 

2 f Qo f Qo dX dy ,,,~zd f Qo f Qo dx' dy' 

If(x, y, m)l  = IIAoll I-Iluoll 2 + t 2 Ilvll2-1 + 0 ( : )  (A.4) 
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x ~ K(x,y+m) K(x' ,y '+m') 
n~' E 2~d 

x [Uo(X) uo(y) Uo(X') uo(y') i(m' .n--re. n) 

+ Uo(X) uo(Y) Uo(X') v (y ' ) -  Uo(X') uo(y') Uo(X) v(y) 

-Uo(X) uo(y) v(x') uo(y') + Uo(X') uo(y') v(x) uo(Y)l'- 

x [Uo(X) uo(y) Uo(X') uo(y ' ) ]  - ]  + O(t 3) 

F rom (A.2) we have 

I (Uo+ to, Ae(uo + tv) ) l  2 

= (llAoll" Iluol12) -" 

+ 2  ItAoll- IlUol] 2 t2[ (v ,  Aov) + 2(Uo, Air)  + (Uo, A2Uo) ] '~ O(t 3) 

Compar ing  the coefficients of  t 2 in the last two identities, we see that 

(v, Aov) + 2(uo, AlV) + (u o,A:uo) 

1 
= [[A~ l/vii-'--4 I[aoll" Iluoll iI(v) 

where 

I(v) --- f e  ~ Ieodxdy~.feofoodX' ay' 

x 2 K(x ,y+m)K(x ' ,y '+m')  
m'  E 27d 

x luo(x) uo(y) Uo(X') uo(y') i(m'. n --m. 17) 

+ Uo(X) uo(y) uo(x') v(y') -uo(x') uo(y') Uo(X) v(y) 

--Uo(X) uo(Y) v(x') uo(y') + Uo(X') uo(Y') v(x) Uo(y)[ 2 

x [Uo(X ) uo(y) Uo(X') uo(y ' ) ]  - l  

We shall show ,that I(v) > 0 if v ~ 0. To  see this, we bound  I(v) below by 
the sum restricted to m = m'. Thus, if 

h(x, y, x', y')=uo(x) uo(y) Uo(X') v(y') 

--Uo(X') uo(y') Uo(X) v ( y ) -  Uo(X) uo(y) v(x') uo(y') 

+ Uo(X') uo(y') v(x) uo(y) 
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we have 
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x ~ K ( x , y + m ) K ( x ' , y ' + m ) l h ( x , y , x ' , y ) l  2 
m ~ ~ d  

• [Uo(X) uo(y) Uo(X') uo(y')]  -1 

Observe next that 

h(x, y, x', y) 

= -Uo(X) uo(y) v(x') uo(y ) + Uo(X' ) Uo(Y ) v(x) uo(y) 

= uo(y) 2 [ -Uo(X) v(x') + Uo(X') v(x)] 

If I(v)= 0, then we must have 

Uo(X) v(x') = Uo(X') v(x), x, x' 6 Qo 

whence v(x)= CUo(X) for some constant c. It is easy to see that I(uo)> O. 
Hence I(v) > 0 all v r 0. 

We finally conclude that 22 < 0 since 

v=( l lAol I -Ao)  - l  AlU0~0 
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