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Abstract. We address the problem of sequentially inspecting the depen-
dent characteristics of a product, where the dependency is expressed in
terms of the joint probabilities of the fitness of the characteristics. We
show that, even when the inspection has classification errors, the joint
probability mass function of the observed fitness of the characteristics
is independent of the sequence of inspection. Using this result, a dynamic
programming approach is presented for finding the optimal sequence
that minimizes the expected total cost of inspection. Previously reported
policies for independent characteristics are shown to be special cases of
the results presented here.
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1. Introduction

In the multicharacteristic inspection problem, products (referred to in
the sequel as "components") with several characteristics must be inspected
(Refs. 1 ,2) . These characteristics have different effects on the component
fitness for use; indeed, some are of critical importance to human life (Ref.
2). For any produced component, inspection of each characteristic must be
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carried out. However, inspection is costly, depending on the type of test and
equipment needed to carry out the tests. Moreover, these tests are imperfect
and have associated with them the usual type I and type II errors.

An important and realistic situation is one where the inspection of a
component characteristics can be carried out sequentially. The component
is rejected if one characteristic is observed to be defective; if all characteristics
pass inspection, the component is accepted. The problem of ordering the
characteristics for such sequential inspection was addressed in Ref. 2, using
the assumption that the fitness of the characteristics were statistically
independent; this led to the independent multicharacteristic sequencing
problem (IMIP). Under this assumption, the policy that minimizes the
expected inspection cost per accepted component was shown to be (Ref. 2)
"inspect the characteristics in increasing order of the ratio of the cost of
inspection to the probability of rejection," where the probability of rejection
is a simple function of the probabilities of fitness and inspection errors. This
policy is similar in structure to those commonly found in machine scheduling
problems (Ref. 3). In Ref. 4, the IMIP is stated in more general terms, a
necessary and sufficient condition is derived for the optimality of this sequ-
encing rule, and many examples are cited as special cases of this more
general model. The stochastic sequencing problem (Refs. 2, 4), a further
generalization of the IMIP, allows some input variables to be random. The
associated optimal sequencing rule is obtained in Ref. 5.

This paper generalizes the IMIP by relaxing the assumption mat the
fitness of characteristics are statistically independent; i.e., we analyze the
dependent sequencing problem (DSP). Many situations exhibit such depend-
ence. For example, an applicant joining the police or the armed forces must
be examined medically for blood pressure, weight, and heart function; yet,
these are clearly statistically dependent characteristics. Another example
involves the final inspection of an air conditioner, in which there are 14
inspectable characteristics (e.g., inner temperature, outer temperature, ther-
mostat response, compressor current draw, etc.) most of which are statist-
ically dependent.

In particular, we develop a dynamic programming (DP) approach for
finding the optimal sequencing policy (i.e., one that minimizes the expected
cost of inspection) for the DSP. The motivation for using DP is that it
provides an immediate structural form for the optimal inspection policy,
one which reduces to the rule given in Ref. 2 for independent characteristics.

The rest of the paper is organized as follows. In Section 2, the problem
is defined precisely. Section 3 presents the joint probability mass function
for the observed fitness and its properties. Section 4 provides the DP formu-
lation. Section 5 contains the conclusions.
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and so, by definition,

Pi = Pw i(0) .

Each characteristic i can be inspected at a cost ci > 0. The inspection of
characteristic i produces an observation Xi/{0,1} such that:

(a) if Xi = 0, the component is declared defective with respect to that
characteristic; e.g., it is rejected and not subject to further
inspection;

(b) if Xi = 1, the component is declared fit with respect to that charac-
teristic, and another characteristic is chosen to be inspected.

If all characteristics are declared fit, the component is accepted.
Due to the stochastic nature of the test, Xi is a random variable, which

leads to type I and type II errors defined as

ai = Prob{Xi = 0| Wi=1}

= Prob{classifying characteristic i as defective when it is fit},

3i = Prob{Xi= 1| Wi = 0}

= Prob {classifying characteristic i as fit when it is defective}.
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2. Statement of the Problem

We are given a component with N characteristics, each of which is
either defective (D) or fit (F). For each characteristic, it is assumed that we
know

Pi = Pr {characteristic i is defective}.

For convenience, we use the indicator random variable W,, such that

Wi = 0, when characteristic i is D,

Wi= 1, when characteristic i is F.

Since we are concerned about the case where the characteristics are
dependent, this is equivalent to recognizing that the random variables Wi

are dependent. In particular, we assume that we know P W ( W 1 , w 2 , . . . , w N ) ,
the joint probability mass function of the components of the fitness vector
W=(W1 , W2,. . ., WN). The marginal probability mass function for Wi is



In the above, we assume implicitly that the distribution of Xi is independent
of Wj, for j=i. However, the Xi themselves are not necessarily mutually
independent, and for that reason we introduce the following notation:

qx(x 1 , x 2 , . . .,XN)

=joint probability mass function of X = (X 1 , X2,. .., X N ) .

The fundamental problem is to find the optimal sequence of inspections,
that is, the sequence that minimizes the expected cost of inspection per
component. For small values of N, it is feasible to compute the expected
cost of inspection for all AM sequences, and from that to find the optimal
sequence. However, as N becomes large, this total enumeration approach
becomes infeasible. It is not uncommon in industry to have a component
with N=15 characteristics which results in over 1012 sequences to be
considered.

3. Joint Probability Mass Function of the Observations

In this section, an expression for qx(x1, x 2 , . . . , XN) is obtained for
xiE {0, 1}, i= 1, 2 , . . . , N. It has been shown earlier (Ref. 3) that, when the
Wi are independent, this function is independent of the order of the sequence
of inspection. We show that this is true even for the dependent case. We
also show that computing qx(x1 , x2,..., XN) involves complexity of at most
N2N.

For convenience, we first define the function d i ( x ) such that

560 JOTA: VOL. 103, NO. 3, DECEMBER 1999

When N=1, the probability mass function for the observation X\ is

When N=2, conditioning on all possible values of w1 and w2 produces



Proposition 3.1. The joint probability mass function qx(x 1 , x2,
... ,XN) of the observed characteristic fitnesses does not depend on the
order of inspection.

This is evident by inspecting the right-hand side of Eq. (3) above.

Proposition 3.2. The computational complexity of producing qx(x1 ,
x2,..., XN) is no greater than N2N.

This follows by noting that, for each of the 2N realizations of
(x 1 , x2, . . . , xN), the right-hand side of Eq. (3) involves the sum of at most
N terms.

4. Dynamic Programming Approach to the Dependent Sequencing Problem

An analogy exists between the classical traveling-salesman problem and
our multi-characteristic sequencing problem. If we represent the N character-
istics by N cities to be visited, and the inspector by the salesman, the problem
becomes one of sequentially deciding which city to visit next. One difference
is that the inspector will terminate the tour as soon as a defective character-
istic is encountered (i.e., an observation of Xi=0 is made). Otherwise, the

where the variables zk are defined such that

Note that this formula incorporates all possible combinations of xi and
1 — X i , i= 1, 2, in the argument of Pw1,w2( •, • ). More importantly, the condi-
tioning does not depend on the order of inspections (i.e., whether or not
X1 =x1 is observed before X2 = x2, or vice versa).

The formula for qx1,x2(x1, x2) can be generalized easily for X =
(X 1 , X2, XN) by first defining the set

Si= {i: Xi in the argument of qx( • • •) equals

Wi in the argument of Pw( • • • ) } .

Then, a straightforward extension of the analysis leading to Eq. (2) yields
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inspector will proceed to another city (characteristic) if Xi= 1. Another obvi-
ous difference is that the inspector does not return back to the first
characteristic.

The analogy suggests that the sequencing problem lends itself to a DP
formulation similar to one that can be constructed for the traveling-salesman
problem (Ref. 6). Such a formulation is not useful for the direct computation
of the minimum inspection cost when N is large. However, it does provide
a structural result that specifies the form of the optimal sequential inspection
sequence. To show this, let:

C= {1, 2 , . . . , N} =set of all characteristics;
® = any subset of C with cardinality i;
fi(T) = optimal value function = minimum expected inspection cost per

accepted component with i yet-to-be-inspected characteristics in
T, given that all the characteristics in T={C\T} have been
inspected and classified as fit.

For convenience, we define the probability that an inspected character-
istic will be classified as fit, given that all inspected characteristics in & have
been classified as fit, to be

where
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Using this definition, we can write the dynamic program

with boundary condition (where P = the empty set)

The solution fN(C) provides the optimal sequence in which characteristics
should be inspected.

Note that, when T=C, the values of p k (T ) can be computed from Eq.
(3) by using the Bayes theorem, i.e.,



This formulation provides the following structural result for the optimal
inspection policy.

Theorem 4.1. Suppose that, in some sequence of inspections,

(a) a set T c C has been inspected;
(b) k E T and j e T are any two candidate characteristics for the next

inspection;
(c) inspecting characteristic k before characteristic j will be preferred

to (or no worse than) inspecting characteristic j before character-
istic k.

Then,

Proof.

(i) Under condition (c), the right-hand side of Eq. (6) requires that

JOTA: VOL. 103, NO. 3, DECEMBER 1999 563

With no previous inspections, T=C, and thus T = P, in which case

(ii) If characteristic j is inspected after characteristic k, the resulting
value function is

(iii) If characteristic k is inspected after characteristic j, the resulting
value function is

(iv) The probability that both characteristics j and k will be classified
fit, given that all characteristics in 0 were classified fit, is



gives the result of the theorem. D

5. Independent Characteristics

If all the characteristics are independent, then

Then, condition (11) becomes

the same result reported in Ref. 2.

6. Conclusions and Comments

The problem of sequencing the inspection of characteristics with depen-
dent fitness is addressed by using the results of Theorem 4.1, which reduces

Combining Eqs. (12) through (15), and noting that Proposition 3.1 implies
that

This can be written in two ways, providing the identity
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which reduces to

with

in which case



to the rule given in Ref. 2 for independent characteristics. In particular,
expression (11) allows a determination (at any point in the inspection pro-
cess, when a set 0 has already been inspected) of the optimal next character-
istic to inspect. This special characteristic (i*) is given by
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Moreover, evaluation of pi(T) has computational complexity no worse than
N2N. Of course, the dynamic programming equation (5) can also be used,
for small N, to compute the resulting minimum expected cost. However, as
is common with DP in general, an a priori evaluation of the optimal cost
function fN(C) cannot be provided for arbitrary input data P W ( - ) , ci, ai,
Bi, and for large N the associated computation may become excessive.


