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Abstract. This paper focuses on certain analytic criteria given by the 
authors in earlier works, for the geometric property of upper semicon- 
tinuity of set-valued functions, used in the proofs of lower closure 
theorems, and hence in existence theory. In particular, it is observed 
that, under Filippov-type condition (namely, when the set of controls is 
bounded in measure or in norm), mere Carath6odory-type continuity of 
the relevant functions f is sufficient to guarantee a weak form of 
property (Q), and in turn the lower closure theorems. 
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1. Introduction 

The role of upper semicontinuity properties of sets, in relation to 
closure and lower closure theorems in optimal control theory, has been 
studied by several authors such as Filippov (Ref. 1), Cesari (Refs. 2-6), 
Cesari and Suryanarayana (Refs. 7-8), Olech (Ref. 9), Lasota and Olech 
(Ref. 10), Bidaut (Ref. 11), Berkovitz (Refs. 12-14), and others. Recently, 
such semicontinuity conditions have been drastically reduced or eliminated 
by the use of simple geometric properties of the sets (Cesari, Ref. 5, and 
Suryanarayana, Ref. 15), or by the use of analytic conditions on the relevant 
functions )Co and f (Cesari and Suryanarayana, Refs. 7-8), or by a combina- 
tion of the two ideas. The purpose of this paper is to highlight certain 
remarks concerning analytic criteria which are found in earlier work of the 
authors and have not been explicitly stated (Refs. 4, 5, 7, 8). These remarks 
have recently gathered considerable interest in applications; as such, this 

1 This work has been partially supported by Research Project AFOSR-71-2122 at the 
University of Michigan, Ann Arbor, Michigan. 
Professor, Department of Mathematics, University of Michigan, Ann Arbor, Michigan. 

3 Associate Professor, Department of Mathematics, Eastern Michigan University, Ypsilanti, 
Michigan. 

165 

O 1976 Plenum Publishing Corporation. 227 West 17th Street, New York, N,Y. I0011. No part of this publication may be 
reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, 
microfilming, recording, or otherwise, without written permission of the publisher. 



166 JOTA: VOL. 19, NO. 1, MAY 1976 

paper tries to give them their due emphasis and perspective. The proofs 
remain the same as in our previous papers, though for some statements also 
alternate proofs are given here. 

First, we shall point out here that closure and lower closure theorems 
under only usual Carath6odory continuity conditions on f0 and f are 
essentially proved in our papers under the sole hypothesis that the sequence 
of minimizing controls are bounded in the Ll-norm. Indeed, convergence in 
measure to zero of the usual differences 

t~k(t) = f(t, Xk(t), uk(t))--f(t, x(t), uk(t)) 

implies the weak form of property (Q) which we mentioned in Ref. 8 and 
which is sufficient to ensure closure and lower closure theorems. 

It was also noticed in Ref. 5 that, in the case of Mayer optimal control 
problems, that is, when 

Q(t ,x)=f( t ,x ,  U(t ) )CE ~, with U(t )CE m, 

the sets Q(t, x) have property (K) provided f is continuous and If(t, x, u)l 
oo as ]u] ~oo uniformly for (t, x )c  A (more detailed and less demanding 
statements can be found in Ref. 5). However, this growth condition is not 
needed if we know that the sequence of minimizing controls are bounded in 
the L~-norm. The same holds for Lagrange problems under usual lower- 
bound conditions on the integrand fo of the cost functional (e.g., fo 7> 0). 
Several examples are given to illustrate our statements. 

2. Preliminaries 

Let G be a given measurable subset of the t-space E ~ of finite measure, 
t = (t 1 . . . . .  t~); for every t c  G, let A(t) be a given nonempty subset of the 
x-space E n, x = (x 1 . . . . .  xn), and let 

A ={(t, x)] t c  G, x cA(t)}. 

For each (t, x) c A, let O(t, x) be a given subset of the ~ = (z °, z)-space E l+r, 
z = ( z  1 . . . . .  z ') ,  and let O(t, x) be its projection on the z-space E r. Let 
Ho c G denote a subset of G of measure zero. We assume that A (t) is closed 
for tc  G - H o .  As usual, we say that the sets O(t, x), x cA( f ) ,  for a fixed 
f c G, satisfy property (K) with respect to x at g c A (t-) if 

O(/, £ ) =  (") cl u {O(f,x)llx-gl<--8, xcA(f)}; (1) 
~>o 

and we say that they satisfy property (Q) if (1) holds with cl replaced by cl co. 
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In the proofs of closure and lower closure theorems, the following 
weaker form of property (Q) has been used (see Refs. 4, 5, 7, 8). We say that, 
for fixed f ~ G, the sets Q(t, x), x ~ A (t) satisfy property (Q-) at ~ c A (D if, 
for every sequence of points Xk C A(f) ,  Xk ~ as k ~oo,  and, for every 
sequence of points Zk, k = 1, 2 . . . . .  with Zk ~ Q(t, Xk), there exists a subse- 
quence Zks such that 

O([, ~) D ~') cl co w {zk~, s >/h}. (2) 
h = l  

The following criterion for property (Q-) is of interest. 

Lemma 2.1. Let  [~ G and ~ A ( [ ) ,  and let Q([, ~) be closed and 
convex. Let  us assume that, for every sequence (xk, zk), k = 1, 2 , . . . ,  with 
x k c A ( i )  and zk~Q( t ,  xk), X k ~ ,  there is another sequence zk, k =  
1, 2 . . . . .  of points zk ~ Q(t,  ~), and a subsequence ks such that zk~ - zk~ -~ 0 
as s ~ ~ .  Then, the sets Q(/,  x), x ~ A(i),  satisfy property (Q-) at :L 

Proof. The subsequence Zks , guaranteed by the hypothesis, satisfies 
Eq. (2). Indeed, let z* be any point of the right-hand side of relation 
(2). Then 

n l 

z * =  lim Y, (ctiZks,), 
l-~ov i = 1  

where 

c, >! 0 and Y. c, = 1. 

Since zk~ - ~?k~ ~ 0, we also have 

n !  

Ot = Y. ClY-ks, ~ Z* as l ~ ~ .  
i = 1  

Here  0z E O([, ~), since Q([, Y~) is convex, and Z'ks ~ Q([, £~). Then, z* 
Q(f, y), since 0z ~ z* and Q(i,  ~) is closed. This proves (2) and property 
(Q-) at ~ ~ A (i). 

Theorem 2.1. Let  G, A(t) ,  Ho be as above. For t c  G, let U ( t ) C E  m 
be a nonempty subset of the u-space Em. Let  

M = {(t, x, u) l t~  G , x ~ A ( t ) ,  u c U ( t ) } C E  ~+n+m. 
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Let  f : M ~  E r be a given function satisfying the following Carath6odory- 
type condition: 

(C) Given e > 0 ,  there exists a compact subset K C G - H o  with 
I G -  KI < E and such that the sets 

MK={( t , x , u ) cMI t6K}  and A K = { ( t , x ) e A I t e K }  

are closed and f is continuous on Mr.  
Let  

O(t, x) ={ztz  =f( t ,  x, u), u e U(t)}. 

Let  xk(t), uk(t), x(t), t e G, k = 1, 2 , . . . ,  be a.e. finite, measurable functions 
on G with Xk(t)~ x(t) in measure in G, and such that the functions 

gk(t) = f(t, xk(t), uk(t))--f(t, x(t), uk(t)) 

converge in measure to zero. Let  us also assume that the sets Q(t, x(t)) are 
closed and convex for almost all t c  G. Then, there is a subsequence [ks], 
such that Xks(t) ~ x(t) pointwise a.e. in G as s ~ oo; and, for almost all t c G, 
we also have 

Q(t, x(t)) D (~ el co {f(t, xk,(t), Uk~(t))tS >1 h}. (3) 
h = l  

ProoL The proof is found in Ref. 8. In that paper, the functions iSk(t) 
were assumed to converge strongly to zero, but the proof in Ref. 8 uses only 
the convergence in measure. 

Remark 2.1. See Example 5.4 for the case where 8k ~ 0 weakly, but 
above relation (3) does not hold. 

Remark 2.2. Statements analogous to the ones above are also valid 
for the sets 

O(t, x ) =  {(z °, z)J z°>>- fo(t, x, u), z = f(t, x, u), u u(t)}. 
More precisely, let the sets U(t) depend only on t, let f =  (fo, f)=f(t,  x, u) 
satisfy condition (C), let x(t), Xk(t), uk(t), t e G, k = 1, 2 . . . . .  be measurable 
functions, let the sets O(t, x(t)) be closed and convex for almost all t ~ G, and 
let gk(t) = (6o(0, 6k(t)) be defined as usual by 

gk(t) =f(t, Xk(t), Uk(t))--f(t, x(t), uk(t)). 

If both 6 k ~ 0  and Xk-->X in measure in G as k - > ~ ,  then there is a 
subsequence ks, s = 1, 2 . . . . .  such that Xk~(t)~x(t) pointwise a.e. in G as 
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s ~ o o ;  and, for almost all t e  G, we also have 

O(t, x(t)) D 1"~ el co{(z °, z)lz°>~fo(t, Xk~(t),Uk,(t)), 
h = l  

z =f(t, xk,(t), uks(t)), x >I h}. 

Following is an analogue of a Nemitsky's theorem (see Lemma 2.1, p. 
20, Ref. 16, and Theorem 17.4, p. 355, Ref. 17). 

Theorem 2.2. Let G C E ~, H0C G, A ( t), U( t), M a n d f a s i n T h e o r e m  
2.1. In particular, f satisfies property (C); and, for t c G - /40,  A (t) is a closed 
subset of E". Let x(t), xk (t), uk (t), t e G, k = 1, 2 , . . . ,  be a.e. finite, measur- 
able functions on G with xk-> x in measure in G as k ~ oo, and uk e 
(LI(G)) m, ]1 uk Ill <~ L, k = 1, 2 , . . . ,  for some constant L. Then, the functions 

6k ( t) = f(t, xk ( t), uk ( t) ) - f(  t, x( t), uk ( t)) 

converge to zero in measure in G as k ~ oo. 

Proof. Given e > 0  and ~ > 0 ,  we have to prove that there exists 
No(e, rt) such that k > No(e, ~/) implies that 

meas {t c G Il  (t)l > < E. 

Since x(t) is a.e. finite, there is an N1 > 0  such that, whenever N > N 1 ,  
the set 

S(x, N) ---{tllx(t)[<. N } 

satisfies the condition 

[G - S(x, N) I < e/4. 

Since Ilud[1 ~< L, for each N > 0, the set 

S(uk, N ) = { t 6  Glluk(t)l<~ N} 
satisfies 

Io-S(uk, N)I 

Let Nz > 0 be such that L/N2 < e/4. 
Let K C G be a compact subset of G such that I G - K I  < e/4 and f 

restricted to the set Mk be continuous. Then, the set 

M(K, S t ,  N2) = {(t, x, u) c Mt  t c g,  lxl<~ Nl + 1, tul <~ N2} 

is compact and f is continuous, hence uniformly continuous, on 
M(K, N1, N2). Let 0 < 6 < 1 be so chosen that 

I(t,x, u)-(t' ,x',  
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implies that 

If(t, x, u)-f( t ' ,  x', u')l < n 

for (t, x, u), (t', x', u') ~ M(K, N1, N2). 
Since Xk(t)~ x(t) in measure, there exists N3(e, ;~) such that the set 

S(xk, x, 8) = {t I [xk (t) - x (t) I ~< 8} 

satisfies 

I G -  S(Xk, X, 6) ! < e/4 

for k >N3(e, 8). Now, for k > N3(e, 8) and for 

t ~ S = K n S(Xk, X, 8) n S(X, NI) c3 S(uk, N2), 

we have 

and 

and 

But, 

Ixl~N~, Ixk l~Nl+l ,  lukl~N=, 

If(t, xk(t), Uk(t))--f(t, x(t), uk(t))l < ~. 

IG- SI<E/4 +e/4 +~/4 <E, 

and Theorem 2.2 is thereby proved. 

Remark 2.3. In the above theorem, we need less than L1- 
boundedness of the controls Uk. Indeed, we need only boundedness in 
measure; that is, given E > 0, there is L, > 0 such that 

meas{tcGllUk(t) t>~L,}<e foral l  k = 1 , 2 , . . . .  

3. Closure Theorems 

The following closure theorems for orientor fields (Theorem 3.1) and 
Mayer problems (Theorem 3.2) are valid in view of the remarks in Ref. 4 
(see also Ref. 7). Alternate direct proofs are omitted here, since these 
theorems can be considered as particular cases of the lower closure theorems 
of the next section. 
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Theorem 3.1. Let G C E  ~, tG[<oo, HoCG,  tH0[=0, and let A ( t ) C  
E", Q( t, x) c E r be given nonempty subsets for t ~ G, x ~ A ( t). Let ~(t), x( t), 
~k(t), ~k(t), 6k(t), k = 1, 2 . . . .  , be measurable functions such that 

~, ~k E (LI(G))', x(t) ~ A(t),  ~k(t) ~ Q(t, x(t)), 

8k(t)=~k(t)--~k(t), t6  Ga.e . ,  k = l , 2  . . . . .  

and ~ -~  ~ weakly in (La(G)) ~ and 6k ~ 0  in measure in G as k ~o~; and 
finally, let the sets Q(t, x(t)) be closed and convex for t~ G - H o .  Then, 

~(t) ~ Q(t, x(t)), t 6 G a.e. 

Remark 3.1. An aspect of the above theorem is highlighted by 
introducing the notion of approximate weak convergence. We shall say that a 
sequence £k in (LI(G)) r converges to £ c (L1(G)f  approximately weakly, if 
there exists a sequence £k(t) in (LI(G)) r such that (i) ( k -£k  converges to 
zero in measure and (ii) £k converges to £ weakly in (LI(G)) ~. 

With this notion, the above theorem can now be considered as a closure 
theorem under approximate weak convergence; thus, if ~k (t) ~ Q(t, x(t)) and 
(k ~ ~ approximately weakly in (LI(G)) ~, then £(t) 6 Q(t, x(t)) a.e. 

Remark 3.2. It is to be noted that there are no constraints on ~k(t), 
except those required by the definition of approximate weak convergence. 
In view of this, we obtain the following corollary. 

Corollary 3.1. Let G, 14o, A(t),  ~(t), x(t), ~k(t), ~k(t), and Q(t, x(t)) be 
as in Theorem 3.1. Further, let there exist functions ~0k (t), Ok(t), ~b(t), to(t) in 
(L~(G)) r such that (i) ~k(t)--~k(t)=pk(t)+tok(t), k = l ,  2 . . . . .  and (ii) 
q~k(t)--> q~(t) in measure in G and tok ~ tO weakly in (LI(G)) ~. Then, 

~(t)-q~(t)-to(t)6 Q(t, x(t)), t6  G a.e. 

Proof. Let ~'k(t)=~k(t)--tok(t)--q~(t ) and 6'k(t)=q~k(t)--q~(t), k =  
1, 2 , . . . .  Then, ~ , ~  ~ - t o - ~ b  weakly in (LI(G)) r and 6 ~ 0  in measure as 
k~oo .  Thus, by Theorem 3.1, ~(t)-to(t)-~p(t)~ O(t, x(t)), t~ G a.e. 

Remark 3.3. In the above corollary, ~:k - (k may not converge to zero 
in measure, even if q~(t) = O(t) = O. 

The following closure theorem for Mayer problems follows directly 
from Theorem 3.1. 

Theorem 3.2. Let G, A, M, f, Ho, O(t, x) be as in Theorem 2.1. Let 
xk(t), x(t), ~k(t), ~(t), Uk(t), 6k(t), t e G ,  k = l ,  2 . . . . .  be measurable 
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functions, such that 

~, ~k ~ (LI(G))  r, xk (t) ~ A (t), uk (t) ~ U(t), 

~k(t) = f(t, xk(t), uk(t)), 

6k(t) =/( t ,  Xk(t), Uk(t))--f(t, x(t), uk(t)), t6  (3, k = 1, 2 . . . . .  

and let 

Xk ~ X and 6k ~ 0 in measure in G and ~k ~ ~ weakly in (LI(G))  r as k ~ oo. 

Let Q(t, x(t)) be convex and closed for t6  G a.e. Then, there exists a 
measurable function u( t), t ~ G, such that 

x(t) ~ A( t ) ,  u(t) ~ U(t), ~(t) = / ( t ,  x(t), u(t)), t ~ G a.e. 

Remark 3.4. In the above theorem, we have more information on the 
sequence ~k(t), which can be used to obtain convergence (to zero in 
measure) of 6k(t) under the assumption of boundedness (in norm or in 
measure) of the sequence Uk of controls. Also, in the above theorem, we 
have xk(t) ~ A( t ) ,  xk ~ x in measure. By a suitable choice of subsequences 
and omitting sets of measure zero, we obtain x k ( t ) ~  x(t) for almost all t. 
Since A ( t )  is dosed, it f611ows that x(t) c A ( t )  a.e. 

4. Lower Closure Theorems 

The following theorem is valid in view of Theorem 2.1 above, Remark 7 
of Ref. 4, and the remarks immediately preceding Theorem (7.iv) of Ref. 4. 
However, we present here for convenience a direct proof which essentially is 
the proof of Theorem (5.i) of Ref. 4. 

Theorem 4.1. Let G C E  ~ be of finite measure, and let A ( t ) C E " ,  
t )  (t, x ) C E 1 +r be given nonempty subsets for t ~ G, x ~ A (t). Let x (t), ~k (t), 
~(t), 19k(t), ~k(t), ~k(t), hk(t), A(t) be a.e. finite, measurable functions on G. 
Let 

~, ~k, ~k ~ (LI(G))  ~, x(t)  ~ A( t ) ,  (~k(t), (k( t))~ t)(t, x(t)), 

t e G a . e . ,  k = l ,  2 . . . . .  

and let gk denote (8 °, 8k) with 

~k "~" ~k - -  ~k and 8 0 = T~k - -  ~k" 

Let ~k -~ ~ weakly in (LI(G))  r and gk --~0 in measure in G as k ~oo, 

- ~  < i = lim inf f rlk(t ) dt < ~ .  
k ~ ° °  "/G 
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Le t  ~Tk(t)~>hk(t), h, h k ~ L a ( G ) ,  h k ~ h  weak ly  in L~(G) as k ~ o o .  Le t  
Q(t, x(t)) be  closed and convex  for  a lmost  all t~  G. Then ,  there  exists a 
funct ion aq(t), t ~ G, rt ~ L~(G), such tha t  

(~q(t),~(t))eQ(t,x(t)), teGa.e., a n d f  71(t)dt<~i. Ja 

Proof .  Le t  

so tha t  

jk = f~ ~k(t) dr, 

i = lira inf ]k. 
k---~co 

By choosing a sui table subsequence ,  we m a y  assume tha t  jk ~ i as k ~ oo. 
Thus,  there  exists a set Ha C G of measu re  zero  such that  for  t e G -  H I ,  
x(t)sA(t), x(t) is finite, ()(t, x(t)) is convex  and closed, and 6 k ( t ) ~ 0  as 
k ~ oo. For  each  s = 1, 2 . . . .  , let us consider  the  sequences  As+k, ~s+k, k = 1, 
2 . . . .  , which converge  weak ly  to h and  e as k ~ o o  in L I ( G )  and (L I (G) )  r, 
respect ively.  Then ,  by  Mazur  t heo rem,  there  are  convex  combina t ions  

N N 

A~)(t) E (s) ~e~)(t ) (s) CNk~+k(t), G, = cN~hs+~( t ) ,  = E t ~  
k = l  k = l  

N = 1, 2 . . . .  , such tha t  h ~ ) ~  h and ~ r  ~ ~ ~ in the L i - n o r m  as N ~ oo. This  is 
t rue  for  each  s. Hence ,  there  exists a set  Hs of m e a s u r e  zero and a sequence  
of integers  N(h ~, h = 1, 2 . . . . . .  such that,  for  t e  G-H,, bo th  h(t) and ~(t) 
a re  finite and 

Since 

h(ff~(t)-~h(t), ~).(t)~(t), as h -~ oo. 

"0k(t) ~> Ak(t), fa~k(t) dt=jk, k = 1, 2 , . . . ,  

we have,  for  s = 1, 2 , . . . ,  N = 1, 2 . . . . .  

rl(ff(t)~h(ff(t), t~G, i-ps<~f2(ff(t) dt~i+ps, 

where  ~/~)(t) is cons t ruc ted  by  the s ame  convex  combina t ion  as h~)(t) and 

ps=max{[jk-i[,k>~s+l}-.O as s~oO.  
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For N = N~h ~) and h -> 0o, using Fatou's lemma, we have 

~ ) ( t )  = tim inf B~>,(t) >/A (t), t e G a.e., 
h--~oo 

fG fG (s) ~l~)(t) d t ~  lim inf ~lu~(t) d t ~  i +p~, s = 1, 2 , . . . .  
h->oo  

Thus, ~/<~(t) is finite in G - H'~ with [H'~[ = 0 and is also in L~(G). Finally, let 

so that again 

rl(t) = lim inf rl¢'>(t), t ~ G, 
s---> co 

f 
• / ( t )~A(t) ,  t e G ,  ~ (t) dt<~i. 

Thus, ~(t) is finite a.e. in G. Let H'~ be the set of points t for which ~/(t) is not 
finite, and hence ]H'61 = 0. Let H denote the union of Ho, Ha, H'~, and all sets 
Hs and H's. Then, IH] =0 .  Let toe G - H a n d  Xo=X(to). Then, gk(to) ~ 0 as 
k -> 0o. also, 

~,+k(tO)--6s+k(tO)=.~s+k(tO) and ns+k(tO)--6°+k(tO) = ~,+k(t0), 

SO that, by convexity of 0(to, Xo), we have 

6,+k(to), C(~(~,+k(to)--6,+k(to)) ~ O.(to, X). (4) 
k i k = l  

Finally, for N = N<h ~> and h -> 0o, the points in the first member  of (4) form a 
sequence for which ('q<~>(to), ~:(to)) is an accumulation point in E ~+~. It is to be 
noted that gk->0 and that ~/<~>(to), ~(to) are both finite. Thus, (7/~)(to), 
~(to)) e ()(to, Xo). Finally, 

*/(to) = lira inf n~(to) 

is finite, and hence (~/(to), ~(to)) ~ 0(to,  xo). Theorem 4.1 is thereby proved. 

Remark 4.1. As in Corollary 3.1, we may have gk  = ffk + q~k with 
~k = (~ o°, ~Ok), q~k = (~b °, qJk), ~k -> q~ in measure, and ~k -> ~O weakly in LI(G).  
Then, 

('1 _q  o_$o ,  ~ -q~-~O)e  O(t, x(t)) a.e., 

fc (~l(t) - q~°(t) - tp°(t)) dt <~ i. 

In particular, some of the coordinates 4> ~, ~0 ~, i = 0 . . . . .  r may be zero. 
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The following theorem is a direct consequence of Theorem 4.1. 

Theorem 4.2. Let G C E  ~, ]G[<oo, HoCG, IHI =0,  A(t), t c  G b e a s  
above. Let U(t) CE  m and 

M = {(t, x, u)]t ~ (3, x c A(t), u ~ U(t)} 

as in Theorem 2.1. Let T = (fo, f) : M ~  E l+r satisfy property (C). Let 

Q(t,x)={(z°,z)lz°>~fo, z=f} ,  xcA( t ) .  

Let ~(t), x(t), ~k(t), xk(t), nat), uk(t), A(t), Ak(t), t e  G, fl = 1, 2 , . . . ,  be a.e. 
finite, measurable functions such that 

~,~k~(LI(G)) r, ~k~LI(G), xk(t)cA(t),  uk(t)~U(t), 

(nk(t), ~k(t)) =T(t, xk(t), uk(t)), gk(t) =/( t ,  xk(t), uk(t))-f(t, x(t), uk(t)), 

where 

gk = (6 °, 6k) and f =  (/o, f). 

Let 0( t ,  x(t)) be convex and closed for t s  G-Ho .  Let 

~k ~ ~ weakly in (Lx(G)) r, xk -~ x and gk ~ 0 in measure, 

rtk(t) ~> Ak(t), A, Ak ~ LI(G),  Ak -~ A weakly in LI(G),  

-oo < i = lim inf t ~k(t) dt < o0. 
k--~oo Jc 

Then, there exists a measurable function u(t), t c G such that 

x(t)~A(t) ,  u(t)e U(t), ~(t)=f(t, x(t), u(t)); 

and if 
n(t) = ]'o(t, x(t), u(t)), t~ G, 

then Io n(t) dt exists (finite or -oo) and is <~ i. 

Remark 4.2. In view of Theorem 2.2, since/satisfies property (C), the 
functions gk ~ 0 in measure if xk-* x in measure and the sequence uk is 
bounded in the L~-norm, say I]ukl[~ ~< L, for some constant L, k = 1, 2 . . . . .  

Remark 4.3. We can say that n(t)~Lx(G) provided ]:o/>0 or fo 
satisfies any one of the weaker conditions (c~o), (/3o), (Yo), (60) of Remark 11 
of Ref. 4. 

Remark 4.4. Theorem 4.2 above includes the results presented by 
Berkovitz in Ref. 13 as well as Ref. 14. In particular, we do not require the 
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norm boundedness of the trajectories Xk. Also, we require the convexity of 
the sets Q(t, x) only for x = x(t), that is, along the limiting trajectory alone. 
Another point of departure from Ref. 14 is that we work with Ll-spaces 
which definitely includes the situation with Lp,-spaces, p~/> 1, since the 
domain G is of finite measure. 

Remark 4.5. As observed in Ref. 7, no condition on 3k is needed if ~k 
are known to converge strongly or in measure to some ~. This is certainly the 
case in control problems where ~k denote the partial derivatives of order less 
than or equal to some integer, say d, of the trajectories Xk and we assume Xk 
to converge weakly in some Sobolev space of order larger than d. 

Remark 4.6. In Theorem 4.1 (and correspondingly others), we have 
used a weak form of property (Q) in assuming 6k ~ 0 in measure. In a 
different approach (see Ref. 5), the same conclusions are obtained using 
property (Q) merely of the sections ()(t, x) c~ (E ~ × V(0, N)) rather than of 
the whole sets (~(t, x); here, V(O, N) denotes the ball of radius N around the 
origin in E r. This assumption on the sections is satisfied under property (K) 
and boundedness below. Under this weak form, we need an additional 
assumption of the form p( t )~O( t ,  x). x ~ A ( t ) ,  t e  G, a.e., for some p c  
(L~(G)) 1÷~. Variations of this geometric condition are found in Ref. 14. 

5. Examples 

The following examples illustrate the various aspects of the theorems 
above. Analogous examples are found in Refs. 2, 4, 5, 7, 8 and collected in 
Ref. 17. 

Example 5.1. In reference to Theorem 2.2, we observe that ~k may 
converge to zero in measure even if the sequence Iluklll, k -- 1, 2 . . . . .  is not 
bounded. Indeed, let 

G={tlO<~t<-l},  

A ( t ) =  U ( t ) = E  1, t6[0,  1], 

f(t, x, u) = xu for (t, x, u) in M = [0, 1] × E 2, 

Xk(t) = k -2, t~ G, 

and 

u~(t) = k ~ ( t ) ,  
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where 

and 

q)k(t) = +1 for ik- l<~t<-(2i+l)(2k)  -1, 

~0k(t) = - 1  f o r (2 i+l ) (2k ) -~<- t<- ( i+ l )k  -1 , 

with i = 0  . . . . .  n - 1, k = 1, 2 . . . . .  Then, Ilu lll -- k and is clearly 
bounded. However,  Xk ~ 0 uniformly, and hence in measure, and also 

3k(t) =f(t ,  xk(t), uk( t ))- f ( t ,  x(t), uk(t))= xk(t)uk(t) = k-lq~k(t)~ 0 

uniformly, and hence in measure. 

Example 5.2. Same as above, but with 

xk ( t )=k  for0~<t~<k -1, 

x k ( t ) = 0  for k-~<t~< 1, 

Uk(t)= k, t e [ 0 ,  1]. 

Then, 

and 

not 

x ( t ) = 0 ,  0 ~ < t ~ l ,  

6k( t )=xk( t )uk( t ) - -O=k 2 for0~<t~<k -1, 

~k(t) = 0  for k - l <  t ~  1. 

Clearly, 6k(t)~ 0 in measure but not weakly. 

Example 5.3. This is to show that, in the notations of Theorem 3.2 
above, if 6k (t) converges to zero in measure but not weakly, then Theorem 
3.2 can be applied but not Theorem 5.ii of Ref. 7. Let  G - - [ 0 ,  1] and 
A(t )  = U(t)= E 1 as above. Let  

f ( t , x , u ) = O  ifx>~u, 

f ( t , x , u ) = u - x  ifu>~x. 

Clearly, f is continuous on M = [0, 1] x E 2. Let  

xk(t) = uk(t) = k for 0 ~< t ~< k -1, 

Xk(t)=uk(t)=O for k - l <  t<~ 1. 

Then, 

f(t, xk(t), uk(t)) = 0 
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and Xk( t )~  x(t) in measure with 

x(t) = O, 

so that 

and 

0~<t~<l, 

[(t, x(t), u~(t))= uk(t) 

6k(t) = --Uk(t), 

which converges to zero in measure but not weakly. In this case, 

~k( t) = f(t, xk(t), Uk(t)) = O, 

and thus ~:~(t)~ ~(t) weakly with ~:(t)= 0. Theorem 3.2 applies, and there 
exists a measurable u(t) with 

~(t) = f(t, x (t), u(t)); 

indeed, we may choose 

u ( t ) = 0 ,  0~<t~<l. 

Example 5.4. This is to show that, if the sequence t~k(t ) does not 
converge to zero in measure, then Theorem 3.2 above cannot be applied, but 
we can apply Theorem 5.ii of Ref. 7 if ~k "-) 0 weakly in L1. As before, let 

G = [ 0 ,  1], A( t )  = U ( t ) = E  1, f(t, x, u ) = x u ,  

and 
Xk(t) = k -1. 

Let Uk(t)= kq~k(t) as in Example 5.1 above. Then, I[Uk[[1 = k and x ( t )=  O. 
Also, 

6k(t) =f( t ,  xk(t), uk(t))--f(t ,  x(t),  Uk(t))= f(t, xk(t), uk(t)) 

= ~g(t) = Xk(t)uk(t) = q~k(t), 

with q~k (t) as in Example 5.1. Thus, 6k (t) = (k (t) = q~k (t) converges weakly in 
LI (G)  to 0 as k-~eo. Hence, ~ =0 ,  and Theorem 5.ii of Ref. 7 applies. 
Indeed, ~:(t)= x(t)u(t)  with u( t )= 1 for t~[0 ,  1]. However,  Theorem 3.2 
does not apply since 6k(t) does not converge to 0 in measure. Note that Eq. 
(3) does not hold in this case. 

Example 5.5. This is to show that Theorem 3.2 (and similarly 
Theorem 5.1) can be applied if the sets 

Q(t, x(t)) = f(t, x(t), u(t)) 
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are  closed and convex,  while O(t,  x) for  o the r  x m a y  not  be  convex.  Le t  

G = [ 0 ,  1] a n d A ( t ) = E  ~, U(t)  = { -1 ,  +1}. 

Le t  

f(t,  x, u) = xu, 

which is clearly cont inuous  on M = [0, 1] x E ~ x { - 1 ,  +1}. Let  

X k ( t ) = l  for  0~<t~<k -1 , Xk(t )=O for  k - l <  t~< 1. 

Le t  Uk(t) = q~k(t), where  q~k(t) are  as in E x a m p l e  5.1. He re ,  

~k(t) = f ( t ,  xk(t), Uk(t)) = +1 for  0 ~  < t <  (2k)  -1, 

~ k ( t ) = - I  f o r ( 2 k ) - ~ < _ t < k  -1, 

~k(t) = 0 for  k - ~ <  t~< 1. 

Also,  Xk (t) --> X (t) with x (t) = 0 for  0 ~< t ~< 1. Thus,  8k = ~k, and bo th  converge  
to 0 s t rongly and in measure .  Thus,  ~(t) = 0, and we can apply  T h e o r e m  4 
above .  In fact, $(t) = x( t )u ( t )  with u(t) = +1,  0 ~< t ~< 1. He re ,  the sets Q(t, x) 
are  { -x ,  x} and are not  convex,  unless x = 0. 

E x a m p l e  5.6. This  is to show that,  if/~k does  not  converge  to 0 e i ther  
weak ly  or  in measure ,  then  the closure p rope r ty  may  not  hold. Le t  

and  

Le t  

G = [0, 1] 

f ( t ,  x, u)  = xu  

and A ( t )  = U(t) = E 1 

for  all (t, x, u) ~ M = [0, 1] x E 2. 

~bk(t) = t - ik -1 

~0k (t) = (i + 1 ) k  - 1  - t 

with i = 0 . . . . .  n - 1, k = 1, 2 . . . . .  Le t  

xk(t) = 2qJk(t) and Uk(t) = k, 

Then ,  

and 

for  ik-1 ~ t < ik -1 + (2k)  -1, 

for  (2i + 1)(2k) -1 ~< t < (i + 1)k -1, 

~k(t) = f( t ,  xk( t ) ,  uk ( t ))  = 2kOk( t )  

~0 
1 

0 ~ < & ( t ) ~ ] ,  ~k.(t) d t = 2  -1. 
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Here ,  £k ~ ~ weakly in LI(G)  and xk ~ x uniformly in [0, 1] if ¢(t) = 2 -1 and 
x(t) = 0, 0 ~< t ~< 1. In this case, there is no measurable function u(t) such that  
¢(t) = x(t)u(t) a.e. in G, because ~ = 2 -1 and x = 0. Also, the sets O(t, x(t)) 
are f(t, x(t), U(t)) = {0} and are clearly closed and convex for all t. In fact, 
O(t, x ) =  E 1 for x # 0 and O(t, 0)={0}. Theorems 3.2 of this paper  and 
Theorem 5.ii of Ref. 7 fail because 6k(t) = ¢k(t) and 6k does not converge to 
0 in measure  and 6k converges weakly to 2 -1 and not to 0 (see Corollary 3.1). 

Example 5.7. This is to show that property (C) of f as a function of 
(t, x, u) is relevant. Let  G, A (t), U(t), and M be as in the above example.  Let  

f(t, x, u) = x if u = ±n~r/2, 

f(t, x, u) = x tan u otherwise. 

Let  £k, Xk, 6k be as above. Let  uk (t) = arc tan (k), 0 ~< t ~< 1. In this case, xk ~ x 
and & ~ £ with x( t )= 0 and £ ( t )=  2 -I .  Again, s~(t) cannot be written as 
f(t, x(t), u(t)) for any measurable function u(t), t ~ G. Here,  once again 6k 
converges to zero neither in measure nor weakly. The function f does not 
satisfy proper ty  (C). 

Example 5.8. 
O(t, x(t)). Let 

and let 

Let  

This is to show the relevance of convexity of the sets 

G = [ 0 ,  1], 

A( t )  ={x : x  ~>0}, U(t) = { 1 , - 1 }  for all t~ [0 ,  1]. 

xk ( t )=k  for0~<t~<k -1, 

xk (t) = 0 for k -  1 < t ~< 1. 

Let  uk(t) = q~k(t), where q~k are as in Example  5.1. Then,  xk -~0 in measure  
and uk ~ 0 weakly. Let  

f ( t ,  x, u)  = u + x  ~. 

Then, 

£k (t) = f(t, xk (t), Uk (t)) = Uk (t) + (Xk (t)) ½ 

converges weakly to 0 in LI(G).  Indeed,  

I j  = --, as - ,  0o. (xk(t))  ½ dt k-½ 0 k 



JOTA: VOL. 19, NO. 1, MAY 1976 181 

Also, 

6k (t) = (Uk (t) + (Xk (t)) ½) -- (Uk (t) + 0) = (Xk (t)) ½ 

converges to zero strongly and in measure. Here, ~: = 0 and x = 0, so that 

~( t) = u( t) + (x( t) ) ½ 

only if u(t)= O, 0<~ t<~ 1; and, since U(t)={1,  -1}, this control function is 
not admissible. Theorem 3.2 and Theorem 5.ii of Ref. 7 do not apply, 
because Q(t, x(t)) ={1, -1} are not convex. It is to be noted that, if U(t) is 
chosen to be [ -1 ,  1] (the closed interval), then the sets Q(t, x(t)) are closed 
and convex, and Theorem 3.2 applies. 

Example 5.9. This is to illustrate the lower bound restrictions on the 
integrands of cost functionals in the lower closure theorems. Let 

G = [ 0 ,  1], A ( t ) =  U ( t ) = E  ~, 0~<t~<l. 

For (t, x, u) e M = [0, 1] x E 2, let 

f(t ,  x, u) = O, fo(t, x, u) = ut -½ 

Let 

for 0 < t ~< 1, and/o(0, x, u) = O. 

Xk (t) = X (t) = 0 for 0 ~< t ~ 1, 

Uk(t)=t -½ for2-k-l<~t<~2 -k, 

Uk (t) = 0 otherwise. 

Then, uk -> u strongly in LI([O, 1]) if u(t) =0,  t~ G. In this case, 

fo fo fo(t, Xk(t), Uk(t)) dt = - log  2 and fo(t, x(t), u(t)) dt = O. 

Thus, the function u(t) = O, t ~ [0, 1], which is the strong limit of Uk(t), is not 
the measurable function guaranteed by Theorem 4.2. However, if we choose 

u( t )=c ,  t e [0 ,  1], with c < - 2 - 1  log 2, 

then 

fo(t, x(t), u(t)) dt ~< lira inf fo(t, xk(t), uk(t)) dt. 

It is to be noted that here fo is not bounded below (by an L~-function) 
uniformly in u. 
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Example 5.10. 
example  may make  it inadmissible. Le t  

This is to illustrate that  a choice of u(t) as in the above 

G = [ 0 ,  1], 

For  (t, x, u) 6 M = G × E 2, let 

A( t )  = U ( t ) = E  1. 

f ( t ,  x, u)  = x + u, fo( t ,  x, u)  = x u t  -~ 

and fo(0, x, u) = 0. 

x k ( t )  = 1 

Let  

for  0 <  t ~  < 1, 

and u k ( t ) = - t  -'~ for  2-k-1~< t ~<2 -k, 

xk(t) = uk(t) = 0 otherwise.  

Then,  Xk(t)--> x(t) in measure  if x(t) = O, t ~ [0, 1]. Also, 

~k (t) = xk (t) + uk (t) -~ 0 

strongly in L I ( [ 0  , 1]), SO that  ~(t) = 0. Now, ~(t) = f(t, x(t),  u(t)) is t rue only if 
u(t) = 0 ,  t ~ [ 0 ,  1]. But,  in this case, 

fo(t, x(t),  u(t)) = 0 
1 

and ~o fo(t, x(t),  u(t)) dt is not  less than 

fo x lim inf fo(t, xk(t), uk(t)) dt = - l o g  2. 

Here ,  once again, fo is not  bounded  below uniformly in u by an Ll - funct ion .  
Moreover ,  it is not  possible to choose a weakly convergent  sequence  hk(l) 
such that  

r/k(t) = fo(t, Xk(t), uk(t)) >~ hk(t). 

It is to be noted,  however ,  that  

~k = (xk + u k ) -  (x + uk) ~ 0 

as k -~ co in measure  and 

60=(XkUk__XUk)t-½=__t 1 for  2 - k - 1 <  t~<2-g ' 

6°(t) = 0 otherwise,  

and thus 6 ° ~  0 in measure .  
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