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Geometric and Analytic Views in Existence Theorems
for Optimal Control. II1. Weak Solutions'

L. CESARI®

Abstract. Existence theorems are proved for weak optimal solutions
of problems of optimization with distributed and boundary control.
Many examples are given. Application is made of recent remarks on
closure properties of linear and nonlinear operators. Recent geometric,
topological, and analytical views are brought to bear on the underlying
seminormality conditions.
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1. Introduction

In the present paper, we discuss optimal solutions of problems of
optimization with distributed and boundary controls, with application of
recent remarks on closure properties of linear and nonlinear operators, and
geometric, topological, and analytic views concerning seminormality con-
ditions. The latter type of requirements are indeed drasticaily reduced or
completely eliminated in the present paper.

The present paper completes the previous ones (Refs. 1, 2) where we
limited ourselves to strong solutions only. For the sake of brevity, we refer to
Ref. 2 for some of the notations and definitions.

2. Problem of Optimization with State Equations in the Weak Form

As pointed out in Ref. 2, we are interested in the minimum of
functionals of the form

1=y, L_ F, dy;
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on measure spaces (G;, A, u;), j=1,..., N, under constraints of the form
Zx = Nj[x, u;], each involving a certain u;-measurable control function y;
on G;, while the unknown x is an element of some abstract topological space
X. Asin Ref. 2, to be specific and for the sake of simplicity, we assume that
one of the spaces is a subset G of E” of point ¢, with Lebesgue measure df,
and a functional relation £x = N[x, u] to satisfy, involving a measurable
control function u with values in E™, and that there is only another space,
namely, a measure space (I', &, ) of points 7, with measure w, and a
functional relation to satisfy $x = N'[x, v], involving a w-measurable con-
trol function v with values in E™. Actually, in most applications and
examples, G is a Morrey-type domain, I’ is a part of the boundary of G of
some dimension 1 =g =<+vy—1, and p is simply the o-measure (area, length,
or in general g-area subsumed by G on I'). Then, X is a Sobolev space
W;,(G) on G, and Sobolev’s imbedding theorems may have a fundamental
role.

In the present paper, we are interested in the case where the functional
relations on G and on I" may be written in weak form as is usual in partial
differential equation theory.

Let G be any measurable subset of E” with finite Lebesgue measure
|G| < 0. For every point t € G, let A(f) denote a given subset of E* and let A
denote the set

A=[t y|teG, ye A1)

Forevery (1, y)€ A,let U(t, y) denote a given subset of E™, and let M denote
the set

M——_—[(t, Y, u)|t€ G, y eA(t), ue U(t’ y)]CEv+s+m.

Let fo(t, y, u), f(t, y, u)={(f1, ..., f,) denote given functions defined on M
with values on E' and E’, respectively.

Let (I', d) be a given metric space which is also a finite complete
measure space (I, &f, p) such that the o-algebra of contains the Borel sets of
(T, d). For every point 7 €I, let B(7) denote a given subset of E* andlet B
denote the set

B=[(r,¥)|rel, e B(7)].

For every (7, ¥)€ B, let V(r, y) denote a given subset of E " and let M
denote the set

MI[(’E )L;, U)lTEF, )‘} eB(T), ve V(T, ﬁ)]cersq-m'.

Let go(7, ¥, v), g(7, ¥, v} = (g1, - - . , &) denote given functions defined on M
with values in E' and E, respectively.

Here, y, ¥ are the state variables, u and v the control variables, the sets
U(t, y), V(7, ¥) the control spaces, on G and on I', respectively.
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We shall assume that f,, f, A, M satisfy a Carathéodory condition (C), as
stated in Ref. 2. Thus, in particular, f,, f are measurable in ¢ for every (v, u)
and continuous in (y, u) for almost all . Analogously, we assume that g, g,
B,M satisfy a Carathéodory condition (C).

Let (X, 9) be a given topological space and S a given subset of X. Let 4
and J be operators, not necessarily linear, mapping $ into (L,(G))" and
(Lp(D))", respectively, 1= p=o00.

To state the general weak form of the state equations, we need first the
space W of test functions w = (wy, w,),

WC(L,(G) X(L, (D),
with
p g =1, l1=g=w, l=p=co.
Namely, we shall assume that W is a normed space with norm | [w

satisfying a relation
lwillg +Hliwall,=Klwllw ~ forall w=(w;, wo)e W, ey

and some constant K, where || [, are the L,-norm in G or . Let W™ denote
the dual space of W, so that

W* 2 (L, (G)Y X (L,(T))".

Let T denote the set of all measurable functions u : G- E™ and T the
set of all w-measurable functions v : T->E™. Let % : S~ W* be a given
operator, not necessarily linear; and, for any (x, u, v), xe S, ueT, ve T
[under the usual restrictions #x(t) € A(¢), u(t) € U(t, Mx(1)), t€ G, Hx(r)e
B(7), v(t)e V(r, #x(7), rel], let

e, Mx(t), u() e L,(G),  g(r, #x(r), v(r)) e (L),
let £, or .0, OF £(x, u, v) be the linear operator £ : W E', defined by

v = B0, w2) = 6 M0, ) w0

+ L g(7, Hx(1), v(1)) - wal7) dp,
where f - w, and g - w, denote usual inner products in E” and E”, respec-
tively. The weak form of the state equation is now

F=4,
or

F(xyw=~4(x, u, v)w,
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or

F(x)wy, wo)for(Wy, wy) forallwe W.

We are now in a position to state the problem of optimization we are
concerned with in the present paper. Namely, we are concerned with the
problem of finding elements x€ S, ueT, ve T, which minimize the func-
tional

I[x, u,v]= L folt, Mx(t), u(t)) dt+J'F go(, #x(1), v(7)) dpu, 2)

with state equation
Fw=4A(x, u, v)W forall we W, 3)
and constraints
Mx(t)e A(p), u(t)ye U(t, Mx(1)), te G, a.e., 4)
Hx(1)e B(1), v(7) e V(1, #x(1)), Tel, w-a.e. 5)

The only functional relation, Eq. (3), replaces here the two strong form
state equations usually written as

(&x)(t) =f(t, (Mx)(t), u(t)) inG,
and
(Fx) (1) =g(r, (Fx)7),v(s)) onT,

as in Ref. 2. In any particular situation, it is understood that Eq. (3) is a
generalization of the corresponding strong form, [that is, whenever x, u, v
satisfy &x = f, $x = g, then they satisfy necessarily Eq. (3)]. Many examples
have already been given in Ref. 3. In Ref. 3, we showed also that the case
where controls appear in £ and §, and therefore in &, does not present
difficulties (see Remark 3.1 below and examples).

For every t€ G and y € A(t), we shall denote by o, y) the set

O, y) =[(z° 2)|2°=fo(t, y, w), z=f(t, y, w), ue U(t, y)]CE™".
For every 7€l and ¥ € B(r), we shall denote by R(7, ¥) the set
R(7, 5)=[(z° 2)| 2°= go(7, §, v), 2 =g(1, §, v), ve V(r, ICE""".

Asin Ref. 2, we need properties of the sets a, v), R(, ¥). We restate here
only properties (K), (Q), (P), and (P’) with respect to y for the sets o, y).
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Topological Properties (K) and (Q). The sets Q(t, y) are said to
satisfy property (K) at (¢, yo) with respect to y provided
é(t(h }’0) = m CI U é(tO’ y}9

>0 ue Ne(yp)
where
Ne(YO) "‘:[)’GA(O, ly—yﬁgée}'

The same sets are said to satisfy property (Q) at (¢, yo) with respect to y
(Ref. 4) provided

Olto, yoy)={clco U Qlto, y).
>0 yeNlyo)
Any set Q(t, y) satisfying property (K) is closed; any set satisfying property
(Q) is closed and convex.

A number of criteria have been proved in Refs. 5-8, which guarantee
property (Q) of the sets Q(t, y). We mention here only one which we shall
need below.

For any given 1o € G and yg€ A(t), a function ¢(t,, v, u) is said to be of
slow growth with respect to fy(z, y, u) at y,, provided

(a) for some & >0 and M =0, we have
fO(tOz )’, u)Z -M fOI' au y EA(IO)a i}"‘}’olssa ue U(fcu )’);

(b) given € >0, there is it = 0 (which may depend on €, 8, M, I, yo) such
that
yEA(t), ly—vl=8  weUlly), |uza
implies
W (to, y, | = el folto, y, u)+M].
It was proved in Ref. 4 under different notations that, if fo(to, y, u),
f(t, y, u) are continuous in (y, u), and both 1 and f(t, y, u) are of slow

growth with respect to fo(to, ¥, 1) at yo, then the sets Q(%o, y) if convex, have
property (Q) with respect to y at (, yo).

Geometrical Property (P). First, let us note that the projection of the
set Q(t, y) on the z-space E” is the set
O y)=[z|z=f(t, y,u),uc U(t, y)ICE’,

and thus OQ(t, y) is convex whenever o, y) is convex. For every te G,
ye A(t), z€ Q(t, y), we denote by T(z; ¢, y) the scalar function

T(z; 1, y) =inf[2°(z°, 2)e Ot y)], —oo=T(z;4y)<+oo.
For every N >0, we denote by V(0, N) the closed ball [z € E"||z|= N].
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We say that the sets O(t, y) satisfy property (P) with respect to y
provided

(P,) there is a measurable bounded function p(t) = (p°(1), p(1), teG,
p’(HeE’, p(t) e E', say |[p°(t)| = c, |p(t)| = o, t € G, such that p(t) e O(1, y),
T(z;ty)=—c for all (t,y)eA, te G—T,, |Ty|=0, and z € Q(t, y) with
=0, _

(P,) for every N> o, the sets Q(t, y) N (E' X V(0, N)) have property
(Q) with respect to y atevery (fo, y) € A, to€ G — Ty, | To| = 0 (Ref. 9, Remark
8, p. 396).

A remark is needed here. Property (P,) implies that the sets
O, y)n[E'XV(O,N)], N=g,

are closed and convex, and hence the sets é(t, y) themselves are closed and
convex. Conversely, if we assume that the sets Q(t, y) are closed and convex,
then the sets

O, y)N[E'XV(0O,N)], N=o,

are also closed and convex. Because of their special structure, property (K)
of the same sets

O, y) n[E'x V(0,N)]

implies property (Q) of the same sets (Refs. 7, 10). Thus, if the sets O, y)
are closed and convex, it suffices to require property (K) in (P,) above.
Finally, if we know that, for every , fixed, toe G—T,, | To|=0, we have
| f(to, y, u)| > +00 as |u| >0, u € U(ty, y), uniformly on every compact sub-
set of A(¢,), then the sets

Qto, y) N[E'x V(0, N)]

certainly have property (K) with respect to y at every (¢, ¥o), Yo€ A(to) [a
consequence of the continuity of folto, v, u), (1, y, u) with respect to (v, u)].
If the sets Q(t, y) are closed and convex, then the sets

Qlto, y) n[E* X V(0, N)]
have also property (Q) with respect to y at (4, yo) (Ref. 9, p. 395).

Property (P). The following variant of property (P) is of interest (Ref.
10; see also Ref. 2). It will be expressed in terms of sequences of functions
ve(t), te H, k=1,2,.... In applications, this will be any minimizing se-
quence of state functions.

We say that the sets Q(t, y) satisfy property (P}) provided, for any
sequence y, (1), te G, k=1,2,..., with y,(£) € A1), y,(£) > y(¢) strongly in
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(Li(G))", there are other functions w(t), w,(1), p(t), p(t), teG, k=
1,2,..., 0, m € Li{G), p, pr € (Ly(G)Y, such that

(1), () € Ot, yi(1),  teGae, k=1,2,...,

e~ weakly in L(G), or g, - p in measure in G,

PP strongly in (L(G))" as k - 0.

We shall say that the sets Qq, y) satisfy condition (P} provided the same sets
satisfy conditions (P}) and (P,).

Control Spaces U(t), V(7) Independent of the State Variables. When
the control spaces U(t) depend on ¢ only and V(r) depend on 7 only, the
Nemitsky operators

Ly, ul=>fC-, v ), u(-)),  [Fol=g(, ¥(-), v(+)),

and the analogous ones with f,, gy, have relevant properties which have been
studied in detail in Refs. 11-13. Some of the results have been reported in
Ref. 2.

On the basis of properties of the Nemitsky operators above, it has been
proved in Refs. 12-13, for instance, that, if y, > y in measure in G and u, is
bounded in the L;-norm, say [u,||=L [or f satisfies some natural analytic
conditions as (F), or (G), or (H) of Refs. 11-12], then the differences

(1) = f(1, ye (1), w () = f(8, y (1), wi (1))

approach zero in measure in G as k -» c©. Then, the lower closure and lower
semicontinuity theorems hold without requiring the verification that the sets
Q(t, y) have property (Q), or (P), or (P"). We refer to Ref. 2 for properties
(F), (G), (H).

3. Existence Theorem

Let p be given, 1 < p=<o0, and let g such that
g '+p =1

A triple (x, u, v) is said to be admissible provided x€ S, ueT, Ve T,
provided relations (4)-(5) hold, provided

folt, Mx (), u(1) € Li(G),  golm, Hx(7), v(7)) € Ly(I),
&, Mx (), u() e (L,(G)),  g(r, Hx(r), v(n) e (L, (D)),
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and the state equation (3), or

Fw = £(x, u, v)w,
holds for all ue W.

We shall consider below nonempty closed classes €} of admissible
systems (x, u, v). A class () of admissible triples is said to be closed if the
following occurs: if (x, u,, 1, )eQ, k=1,2,..., x> xin (X, J) as k>0,
xeS, if I[x;, w,, v, ]>a<00 as k>0, and there are admissible triples
(x, u, v) such that ITx, u, v]=< a, then there is also some triple (x, &, 7)€
with I[x, &, 5]=< a. This definition is justified by lower closure theorems
(Refs. 4, 6, 9, 14, 15).

For the operators 4, #, & introduced above, we shall need the property
of closure in S, the closure graph property in S, and the convergence
property that we introduced in Section 7 of Ref. 2.

Given a nonempty class 2 of admissible triples (x, u, v), we shall denote
by {), the nonempty subset of only those (x, u, v) € ) with I [x, u, v]= M, for
some constant M,. We shall also denote by Ay, A, A the sets

A0={x}no={x€X|(x u, v) € Qo},
A={(x, u)}o,={(x, u) e X X T|(x, u, v) € Do},
A={(x, 0}, ={(x, V) e X x T|(x, 4, V) € Qo}.

The vector functions f(1, y, u), g(r, ¥, v) actually define Nemitsky-type
operators F, G:

Flx, u](t) = f(r, Mx(t), u(t)), te G,
Glx, v](r) = g(t, Kx(7), v(1)), rel,
F:A>(L{(G)Y, G:RA->(@L ().

We shall need below the requirement that the images F(A) of A and
G(A) of A are relatively sequentially weakly compact subsets of (L,(G))
and (L,(G))". This is certainly the case if fo, f, and go, g satisfy the following

growth condition
(H) For p=1, we assume that, given any € >0, there are functions

¢.=0, ¢.€L(G), andd.=0, G.=L,(T),
such that
lf(t y, W= () +efo(t, y,u)  forall(t,y,u)eM.
g(7, , V)| = (1) +ego(r, §,v)  forall(r, §, v)e M.
If p>1, we assume that there are functions

¢o=0, doc Li(G), and 4;020, <i;oe LD,
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and constants a >0, b >0, such that
[f(6, y, WP < do(t) +afolt,y,u)  forall(s,y, u)eM,
|g(T’ }3’ U)Ip = d;O(t) +bg0(T’ )37 'U) for aH (T’ )‘;7 U) € M

This condition, for p = 1, has been consistently used by Cesari (see, e.g.,
Refs. 6, 9, 14), as a suitable extension of previous more restrictive growth
hypotheses used by Tonelli and McShane.

We say that f,, f satisfy condition (a) on G if there is some function
Y(t)=0, t€ G, Y € L,(G) such that

fO(ta ys u)Z _llf(t)

for all (¢, y, u) € M. We say that f,, f satisfy condition (8) on G if there are a
function ¢(f)=0, te G, Y € L,(G), and a constant y =0 such that

fO(t’ Y M)Z wll’(t)—'Ylf(t’ Y u)l

for all (¢, y, u) € M. Analogous properties hold for g,, g on M.

Finally, let &f be an operator, not necessarily linear, from a set § of a
topological space (X, 7) into a topological space Y = (Y, &). We say that the
operator

A :S=>(Y, %), SC(X, 9),

isclosedon S, provided x, €S, k=1,2,...,x€8 x,»xin{X, 7), dx, >y
in (Y, %), implies y = «/x. We say that

A:S->(Y, %), SCX ),

has the closed graph property provided x, € S, k=1,2,...,xe X, x, > x in
(X, ), dx,»yin (Y, %), implies x€ S and y = ox.
We say that the operator

A:S->(Y, %), SC(X9),

has the convergence property [with respect to S, (X, 9), (Y, &)} provided, if
€8, k=1,2,..., xeX, x,=>x in (X, 7), then the sequence ox,, k=
1,2,...,hasaconvergent subsequence in (Y, &), that is, there issome ye T
and a subsequence [k,] such that x;_ >y as s >0 in (Y, %).

If § is the whole space X, then closure and closed graph properties are
identical. In Ref. 2 we have given examples and criteria for some of these
properties.

Theorem 3.1. Existence Theorem for Optimal Weak Solutions. Let
us assume that A, M, f,, f satisfy conditions (C) on G, that B, M, 8o, g satisfy
condition (C) on T, that f,, f satisfy condition (8) on G, and g,, g satisfy
condition (B8) on I'. Let us assume that the sets Q(t, y) in E™" satisfy
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property (Q) with respect toyonlyatall (f, y)e A, te G— Ty, ]Tol 0, and
the sets R(r, ) i in E" satxsfy property (Q) with respect to y only at all
(r,9)eB, reT— Ty, u(Ty)=0. Let us assume that relation (1) holds, and
that 4, %, ¥ have the closure property in S, that # and ¥ have the strong
convergence property in S, and that at least one of the operators M, #, # has
the closure graph property. Let () be a nonempty closed class of admissible
systems (x, u, v) such that A, is sequentially relatively compactin (X, 7) and
that the images F({A) of A and G(R) of A are relatively sequentially weakly
compact subsets of (L,(G))" and (L, (I)", respectively. Then, the functional
ITx, u, v] has an absolute minimum in {}.

If f,, f satisfy condition (H), then certainly f,, f satisfy condition (8), and
the image F(A) of A is a relatively sequentially weakly compact subset of
(L(G)) . I go, 8 satisfy condition (H), then certainly g, g satisfy condition
( ﬁ) and the image G(A) of A is a relatively sequentially weakly compact
subset of (L,(I")".

Alternate Assumptions. Property (Q) above can be replaced by prop-
erty (P), or by property (P'), for the sets Q, or R, or both. If the sets U(t)
depend on ¢ only, and one of the conditions (F), or (G), or (H) holds for f,, f
then conditions {Q), or (P), or (P') need not be verified. The same holds for
the sets V(7) and the functions go, g. Again, if U(t) depends on ¢ only, and
we know that, for (x, u) € A, u is bounded in norm, then the sets Q(%, y), if
convex and closed, need not verify conditions (Q), (P), (P'), and f, need not
verlfy conditions (F), (G), (H). Analogous statements hold concerning V(7),
A R(7, ¥), go-

Remark 3.1. As often occurs, control variables may appear in the
expressions of the operators %, #, M, X, and therefore in &. Existence
theorems analogous to Theorem 3.1 hold, as we have already shown in Ref.
3, Section 5. They are obtained by treating such controls as state variables.
We shall see this situation in examples below (Section 4).

Conversely, it may occur that state variables, appearing in the functions
fo. 1> 80, & are better treated as control variables (for instance, derivatives of
state variables). Again, we shall see this situation in examples below.

Proof of Theorem 3.1. As usual, let ¢ denote the infimum of I[x, u, v]
in the class {2, and hence also in the class g, —00 == i < My < +00. We write

I[xr u, U}=11+IZ7 IIZJ detaIZIJ godp"
G r

Let (x., uy, ve), k=1,2, ..., be a sequence of elements in (), with

Ik = I[Xk, Uy, Uk:]—)!' as k>0,
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Let I, I, bethe values of I, I, computed on the elements x;, u, vy Since
xkEA0={x}QOCSCX, k:1,2,...,

and A, is relatively sequentially compact as a subset of (X, ), there is a
subsequence, say still [k], and an element x € X such that x, > x in (X, 9).
Let z;, Z; denote the functions

2 (1) = f(t, yi(), w (D)€ F(A),  t€G,
2 (1) = g(7, Yi (1), v (7)) € G(A), rel, k=1,2,...,
where
Vi = Mxy, Vi = Hxi,
and
y(H) e A(t), u (t) € U(t, yi (1)), te G, a.e.,
v (7)€ B(7), ve(1) e Vi, yi (7)), rel,u-ae., k=1,2,

Since F(A) and G(A) are relatively sequentially weakly compact subsets
of (L,(G))" and (L, ()", there is a subsequence, say still [k], and clements
Z€ (L (G)Y, 2 e(L, ()", such that z, -z weakly in (L,(G))" and Z, -+ 2
weakly in (L,(I"))" as k > co. Thus, ||z, ||; and [|Z,|/; are bounded. By property
(B), we have now

folt, Mx, (1), w (D)) = = () — vz (1),  teG,
go(m, Hxi (1), v (1N = — (1)~ 2 (1),  1eT;

hence,
Ilkz—L Ydt—y|zif, L= _j- ll';d#«_')’“Zok“b
T
This proves that

I xy, uy, v ]=I1y + 1,

is bounded below, that is, ¢ is finite. If w = (w,, w,) is any element of W, then
by relations (1) we know that

wie(Ly(G)),  wye (L)

Hence,

Jn-w@as] w0wm@a | 4w me
> [ 20 witr) au
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as k - 00. Since
F(x)w = A(x, Uy, V)W

for all k, we conclude that %(x,)w converges as k » 00, namely,

(.%x,Jw»J z-wldt+'{ Z-wydu as k- o0,
r

G

We have assumed that 4 and # have the convergence property. Thus,
X~ x in (X, ) implies that, for some subsequence, say still [k], we have

Mx, >y, Hx, = ¥
for some

ye(L(G)),  ye(L.I))"

Finally, we have assumed that the operators #, #, % have the closure
property in S, and at least one has the closed graph closure property in S.
Thus, x € S, and then

Mx =y, Hx =y,

and
(Pix)w=J. zZ ' wy dt+J Z-wydu forall w=(w,, wo)e W. (6)
a T

Here, the sets Q(t, y) have property (Q) with respect to y in A(f) for
almost all £, and the sets R (r, ¥) have property (Q) with respect to  in B(r)
for p-almost all t. Then, by lower closure theorem (7.1) of Ref. 14, there are
elements ue T, ve T such that

y(eA(), u®eUly®), z@O=f(ty@®,u®), teGae,
y(1)e B(1), v(rye V(r, (1), Z(7)=g(1, y(7),v(7)), 7€el,u-ae,
folt, y(©), u() e Li(G),  go(7, ¥(7), v(n)e L),  I[x, u,v]=y,

where

and, by comparison with Eq. (6), we also have

(Fx)w = h(x, u, v)w, we W.
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Thus, system (x, u, v) is admissible; and, since () is closed, there is also some
admissible system (x, &, 0) in ) with I{x, i, 7]=</. The same system (x, @, ©)
belongs to (), hence

ITx, 4, 1=, and Ilx, 4, 6]=

Theorem 3.1 is thereby proved under the main hypotheses. The proof is the
same under the alternate hypotheses, by using the corresponding lower
closure theorems in Refs. 9 and 15.

4. Examples

Example 4.1. Let G be an open bounded connected subset of E”,
v=1, of class K. We are concerned with the minimum of a functional

I[x, ul= L folt, x(8), Vx(1), u(r)) dt, 7
x, u scalars, with state equations which we wish to be a weak form of

3 /(e = £t x(0), Vx(0), u(0), (®)
and with constraints

x(t)e A1), u(t) e U(e, x (1)). (9)

Here, x and u are functions on G. Thus, g,=0, we have no boundary
conditions on x, we can take g=0, §=0, # =0, and need make no
references to ', B, V, M.

By introducing the increased control

a=(',...,u", u),
we have the equivalent problem of minimizing the integral

e, a1= | fols x(0), ) de

with differential equations (8) in weak form and
axfot'=f=u’, i=1,...,v, (10)
and constraints
x(H)e A1), u(ye E*x U(t, x(1)). (11
We shall think of W as being (C5(G))”™, with

w={w,0)e W, w=w', ..., w",w), andw',..., w", we C3(G).
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As aweak form of the present system of differential equations, we now take

Z J (8x/at ) (w'(2)) dt— J i (ax/at Yow/ot') dt

P i=1
=J 1, x(1), ﬁ(t))w(t)dt-*—ij W (OwW'@)dt  (12)
G i=1 4G

for all
w=(w',...,w,we(CF(G) .

It is easy to verify that any strong solution x, u of the original system of
equations, say x € Wi(G), ue T, is certainly a solution of (12). Instead, we
take S = Wi(G) with the weak topoiogy, thusxeS=Wi(G), u=T, p=1,
or equivalently xe §= W1(G), and i measurable in G.

We shall take in W= (C5(G))"*" the topology defined by the norm

[Wllw =max|w(®)|+ ¥ max|ow/at'[+ Y, max|w'(1)].
i=1 i=1

We have here r=v+1; and, if we denote by | W] the norm of w as an
element of (Lo(G))” X W(G), then [|W]l. = |[W]lw for every element w € W.
Also,

(Lol G)) D (Lol G))” X Weo G) DW,  (L1(G))" C W,
and relation (1) holds with K =1, since
¥ llein =[]l =1W]lw-
We have here
Mx = x, M S->Li(G),
and
F:S->(L(G)y Ccw*

is the operator defined by the first member of (12) Now, if x, x,€8=
Wi(G),k=1,2,...,and x, > x weaklyin § = Wi(G), then x, - x as k > 00
in L,(G), and

ax, /ot - ox/ot’ as k - oo weakly in L(G), i=1,...,v
Hence,
(Fx)w—>{Fx)w
for every

W e (Lo(G))” X WL(G),
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and then certainly for every
weW=(Cg(G)""".

Thus, & has the closure property in S as well as the closed graph property in
S. By Sobolev’s imbedding theorems, x, - x strongly in L(G), or #x; > Mx
strongly in L,(G). Thus, A : S - L;(G) has the strong convergence property
as well as the closure and closure graph properties.

Note that here R C E*"*? is the set of all (¢, y, i) with

e G, ye A(l), GaeU(, y)=E"x U(t, y),

and that fo(t, y, 1), f(t, y, @) =(f1, ..., [, f) are defined on M with f; = u’,
i=1,...,v, f=f(t,y,u). For Z=(Z...,Z"), d=W",...,u" u), the
sets O(1, y) are the subsets of E*** defined by

O, y) =1 2. 2)|2°= folt, y, ), 2= ft, y, 1), Z' =u', € U1, )]
=[(z°% z, 2)|2°=folt, y, Z,w), z=flt, y, Z,u), ue U(t, y), Ze E"].
Now, let A()=E', U=E’,
fo=1* P +[VxP+u®),  f=1+u+27"u|, O<a<w

Let us prove first that f, f satisfy condition (H) with p = 1. Indeed, for every
0<e=1, we take

p(=e"lf| " +1z=1, g eLi(G),
and we note that
27N =lu+27ul|=(3/2)|ul.

Now, either

G/Dfulz=e ™,
and then

[fl=@/Dlul+1=G/Dlul "u’+ 1=/ el "u’+ 1=y () +(9/4) efo,

or

3/lul=e7d ™,
and then again

fl=d(0)+(9/4) efo.

An ansalogous statement holds for each function

fi=u', i=1,...,n
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Let us prove that the class Ay ={x}q, is sequentially relatively compact
in Wi(G). It is enough to prove that, for (x, u) € (y, the functions

<1)(t)=]x(t)[+_§v lox/ot],  teG.

are equiabsolutely integrable in G. Indeed, either

b= Yt
and then

Q="' O’ <€|t|*(v+ D(x*+|[Vx) =y () + (v +1)f,

or

d=e |t
and then again

D=y (1) +e(vellfy.

Thus, ®, f, satisty a growth condition (H) with p = 1, and again the functions
® are equiabsolutely integrable in G. .

For all 1€ G, t # 0 (thus, certainly for almost all te G), the sets Q(t, y)
are closed and convex, and all functions 1, f, , =u',i=1, ..., v, are of slow
growth with respect to f, as [u| > 00. Thus, for almost all ¢ € G, the sets Q(t, y)
have property (Q) with respect to y only in A(f)=E'. However, property
(Q) is not needed here. Indeed, for almost all fe G, the (v+1)-vector
function f=(f,...,f,f) has the property that |f|->+00 as [i]-c0,
uniformly for y in any compact subset of A(¢) = E. Thus, the convex closed
sets Q(t, y) have property (P,) (Section 2). For the same sequence [x]
above, let us take

m(D) =G0, p()=-1,
so that
(e (1), pe(6)) € Q1 x,. (1)), te G, k=1,2,....

Here, x,(t)-> x(¢) in L, and, therefore, by taking a suitable subsequence,
also x,(t) » x(¢) in measure. Thus,

"X () > [t]“x* (1)

in measure in G. Thus, property (P}) holds, and (P') holds.

Example 4.2. This is the same as Example 4.1, with A(t)=E",
U=E", fot, x, Vx, u), f(t, x, u) defined as follows. For 7=0, {=0, let
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®(Z, 7) denote the real-valued continuous function defined by
(¢, 7)2—7‘1/24*{ if7§254,
D, 1)=2"7"20 it =4

Thus,
O, T) =D, 7)= -7 forall {=0, 7=0.
Now, for
xe A()=E', ueU=E'
we take
ftx wy=u,  folt,x, u)=(fl, ),
that is,

folt, x, Vx, u) = (Vx| +u?"?, |1]).

Let us prove that f,, f satisfy property (H) with p = 1. For every ¢ >0,
7> (0 fixed, let us consider the function of € only:

Ae)=—e 27724671 O<e=l1,
which is continuous in {0, 1], with
AO+)=—c0, A(l)=—7 124

and thus A (¢) has a maximum A, in (0, 1]. For 7¢ <4, \(e)is increasing in
(0, 1]; hence,

Amax =A(1)= =724 ¢;
for 77> =4, we have
Amax = A7 2T =0720120,
Thus,
—e 2P r e =D, 7) {13)

for all 0<e=<1, (>0, 7>0, and the same relation holds actually for all
0<e=1, (=0, =0, and obvious conventions. With

Y () =€"Me[ 72,
we derive from (13) that
(=17t x, W= (0 +efolt, x, @),

and this relation holds for all0<e <1, t € G, x € A(t). Thus, condition (H) is
satisfied with p = 1.
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Note that, for 7>0, ®(/, r) is a continuous convex function of ¢,
0= { < +00, namely,

DL r)=—7"+  forO=¢=27""7
O, 1)=2"7"7  for2r TV =s¢<+00.

For 1 # 0, the sets Q(t, x) are closed and convex. Indeed, for fixed ¢ # 0, the
point z =(z",..., 2" 2", with z'=a',...,z2"=a", 2" =u, (G u)e
U=E""", describes E*", while

2°=fo(t, x, &) = ®(dl, |1].

Again, as in Example (4.1), the sets égt, y) satisfy property (Q).
However, we do not need this property. Here, | f(1, y, &i)| > +00 as [i]| > + 0
uniformly for x on every compact subset of A(), and the sets Q(t, y)

v+1,

certainly have property (P,). Here, Q(t, x)=E*"; and, for p(t)=0, cer-
tainly p(t)e Q(¢, x) all te G, x € A(¢t). Moreover,

— P < Tz 6, x) <2727 %41

for |z|=1 and all te G, x € A(1). Thus, property (P,) also holds. In other
words, the sets O(t, x) satisfy property (P).

Example 4.3. Let G be an open bounded connected subset of E”,
v =1, of class K. We are concerned with the minimum of a functional

I[x, ul= L folt, x(£), Vx(t), u(t)) dt, (14)

x scalar, u an m-vector, with state equations which we wish to be a weak
form of

3 /@Y =il x(0), u(o), (15)
e x(0)(@x/51') = foe x(1), u(0), (16)

and with constraints
x(tye A(1), u(=",...,u™e U x(t) CE™ (17)

Asin Exoample 4.1,g=0, $=0,3% =0, and we need make no reference to ',
B, V, M. Here, the functions A;(¢, x) are assumed to be continuous in

d GXE'.
By introducing the increased control

a(ty=@',...,a%u',...,u™),
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and differential equations
axfor =i, i=1,...,v, (18)

we have the equivalent problem of minimizing the integral

I[x, a]= L folt, x(1), 4(2)) dt,

with differential equations (15), (16), (18) in suitable weak form, and
constraints (17). We shall think of W as being (Cy~ (G))**?, with

w=W,0eW, w=mw,...,#w,w), and w,..., weCyG).

As aweak form of the present system of differential equations, we now take

¥ ,[ (8x/0t)(w' (1)) dt—J’ f (8x/at' ) (ow" /ot") di
G G

i=1 i=1

] 15 At x)@yawi @ di= | fixo, w0 di
G G

i=1
+ j (8 x(0), () wi(o) di+ Y J 7 W (t) di, (19)
G i=] JG

for all
w=w, ..., %%, ww?)e(CF(G) .

We take here S = W,(G) with the weak topology, thus, x € § = Wi(G),
ueT, p=2, or equivalently xe § = Wi(G), ii measurable in G. We shall
take in W= (Cy(G))”*” the topology defined by the norm

Wllw = maxjw'(6)]+ EV: max]ow'/at'| + max|w?(1)| + f max|w'(£)].
i=1 i=1

We have here r=v+2; and, if we denote by ||W|, the norm of W as an
element of W(G) X (Lo(G))”*", then ||W]le =||W|lw for every element w e
W. We have here p=q =2, and

Wlcacon =W lwie + W llaer W lhaaon: <IGI Wl
Hence,
WC Wy (G)x(L,(G) ™ CLAG)Y,

and relation (1) holds with K =|G|">.
Here,

Mx = x, M S L(G), s=1, r=2.
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If x, > x weakly in S, then x, - x strongly in L,{G), or #x, - Alx strongly in
L,(G), and thus . has the strong convergence property, and also the closure
and closed graph properties in S.

Again, if x, > x weakly in S, thus dx,/at' - dx/dt' weakly in L,(G), and
x, > x strongly in L,((G); then, for a suitable subsequence, say still [ k], x; = x
in measure on G, A;(f;x.(5))-> A;(t, x(t)) in measure in G, i=1,...,,
because of the continuity of the functions A;. If we know that

2= T Al x()(0xi/a)

converges weakly to some z(1) in L,(G), then, by statement (9.2) of Ref. 2,
we conclude that

2(0)= ¥ At x(t))(ax'/an).

We have proved that the operator %, defined by the third integral in the first
member of Eq. (19) has the closure and closed graph properties. Finally, the
operator &, defined by

(Frx)w = J Y (ax/at)@w'/or') dt (20)

G i=1

has the closure property as well as the closed graph property in § = W3(G)
by the same argument as used for % in Example 4.1. Then, the operator F
defined by the first member of Eq. (19) has the closed graph property,
provided we know that [z, ] converges weakly in L;(G).

We take here A(t) =[— L, L]forsome L >0finite, m =1, U(t, y) = E",
and

fo=ltF+xP+[Vaf+Ixllul,  fi=1+u,  fr=xu

Here,

f:(fl""9}?mfbf2)o ﬁ:ai 2.:1,...,1/’, fOZO’

and thus fj, f satisfy conditions (a) and (8) with ¢ =0, y=0.
Let M, >0 be a given constant, and let ) denote the set of all pairs
x, u, x € Wi(G), u e L,(G), with

lul.=M,,  x®I=L,
satisfying Eqs. (17) and (19) and such that
folt, x(2), Vx (1), u(?)) € L1(G).
Let M,>0 be a constant sufficiently large so that the subset y of all
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(x, u)e Q with I[x, u]= M, is nonempty. Then, for (x, u) € (y, we certainly
have {x|, [féll,, {lull.=M, for some constant M,, and thus A={x}q, is

relatively weakly compact in § = W3(G), and

Ao={a(t), u(t), x(thu(1)}
also is relatively weakly compact in (L,(G))” ", since |x(¢)]< L. Then, some
subsequence of [z,] is also weakly convergent in L,(G) as we required

above. )
Here, the subsets O(t, y) of E*™ are defined by

é(ta )7)3[(20, g);zozf()(t’ ¥s 1;)7 21 :ﬁls ey ZV:Z}V? ZV+}:“’ ZV+2

=xu, e U],
where
F=(527 2= 22 ), d=(a, ., 0 we U=E",

and these sets are obviously closed and convex. They do not satisfy property
(Qyatany (1, v), t€ G, y =0. Indeed, if we take

i=0, teG, x=z%xm, 9>0, u==x9",
we see that the points
pr=["=f+1,7=02"" = x4} 2" =1]
belong to O, £7), respectively; hence, the point
P=[2"=if+1,2=0,2"""=0,2""=1]
belongs to U,ﬂs,7 Q(, y) for any 1 >0; and the same point P belongs to
(>0 Uy=n Q1 y), while
PEQ(y)=[2"=|t’, 2=,z =u, z"*?=0,dc E", ic E'].

However, the sets O({, y) satisfy property (P'). To prove this, first we note
that, if
(0, 5 (1)), teGk=1,2,...,

is any minimizing sequence, we can always assume, by extraction, that x; > x
as k -0 weakly in § = W3(G) to some x € W5(G), and then x, - x strongly
in L,(G) by Sobolev’s imbedding theorem. Now, we take

(=0, w®)=0, wO=>=+x0), pO=4x0),
pilt) = (@ (1), we (8), % (Y w (1))=(0,0,0),  p()=(0,0,0), teG,
k=1,2,...,
so that u, - u strongly in L,(G), p. - p strongly in (L,(G))"*?, and
(), p() € O, x (1)),  teG,  k=1,2,....
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Thus, property (P}) is satisfied. Also we note that, for any ¢ € G, we have
‘fl :'(ﬁl’ ceey ﬁy’ u, xu)l—) +0

as |ii|»> 00 uniformly for x in any compact subset of A(¢). Thus, the sets
Q(, x) satisfy property (P,), and hence (P’). We conclude that the specific
problem under consideration has an absolute minimum.

Example 4.4. Let G be asubset of the t£-space E”*', £=(¢",.. ., &")
of the form G = (0, T) X G' is an open bounded connected subset of E” of
class K. Thus, v+ 1 replaces », and I'=8G' is made up of parts

I ={0}xc G, I,=[0, T]xaG', O;={T}xcl G

On T, and I';, we have the Lebesgue v-dimensional measure, or | |, and we
shall use the symbol dr in integration. In I';, we have the product measure
o =| | X u of the one-dimensional measure on [0, T]and of the hyperarea u
on the boundary 4G’ of G', and we shall use the symbol dt du in integration.
Given a function x in G, say belonging to some Sobolev space Wlp(G), we
shall denote by yx the boundary values, or traces, of x on I' =90G; specific-
ally, we shall denote by y,;x the boundary valuesof x onT',, i=1,2,3. We
also denote by T, T, the families of all measurable functions on G, T,
i=1, 2,3, respectively.
We are concerned with the minimum of a functional

105 00 v, 051 = | ult & 30,80, (V006 €), () drdt

+] e @ ey

with state equations (on G and I';) which will be a suitable weak form of the
system of equations

ox/ot= 3 x/@¢V <flt £ x(1 O, (L H.uE) G (22)

Aolt, £ x(6 )0x/a0+-X A1 & x(1, £)x/0¢")

=, & x(5, &), (V)& §), u(t, §))  inG, (23)
x/on +us(t, E)y.x(t, £) =0 onl, (24)

and constraints
x(t, &) e AL, &), u(t, e U, £ x(1, §))  ae.inG, (25)
(ysx)(E)eB(£),  vi(§)e VI (vsx)(§)  ae.inls. (26)
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Here,
1 1 1
x,u:G-E", vy > E  v;:15>E

denote real-valued functions, x state variable, u, v,, v; controls. In other
words, we are interested in the determination of a function x(z, ¢) in G [in
particular, of its initial values, say »{£)=x(0, &) on I'{, and of controls
u(t, &) in G, vy(t, £) on Iy, v5(€) on I'5, such that the functional (21) has its
minimum value, under constraints (25), (26), and a suitable weak form of
state equations (22), (23), and (24).

Above, the functions fo, fi, f2, g0 will be assumed to satisfy
Carathéodory’s condition (C), though, in the actual examples, they will be
taken to be continuous in their variables. The functions Ay, A4, ..., A, are
assumed to be continuous in their arguments, and uniformly Lipschitzian
with respect to x. (In Example 4.5, we shall assume the same functions A,
only continuous.)

By introducing the increased control

a & =@, ..., a4"" ),

we have the equivalent problem of the minimu n of the integral

T 01,5, 03] | folt €300, 3, 6) drde

+] et s00, o) 2

with differential equations
0x/o~ 5 Fx/0¢V =it £ x(, ), 4 ) G,
Aot £ 36 0)(0x/00+ ¥ At £ x(t £)(03/3¢')

= € x5, §), 41, §)  inG,
ax/on +uy(t, E)yx(t, =0  onl,,
xjoE' =f=a', i=1,....v, ox/ot=u""" inG,
with constraints (25), (26), and
u'eE", i=1,...,v+1.
We take for W the space of all pairs w = (@, yo), with
o=@,..., """ o', 0), &cCG), i=1,...,v+1,

w'e C*@ G), 0’ e Cy(d G).
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Then,
yo=(0,...,0, yw).
As a weak form of (22)-(24), we take the equation

J i(ax/ag")(awl/agi) dtd§+J (0x/ot)w'(t, &) dt dé
G G

i=1

#] ot 913 Om0'(0 9 drda

2

+§ J (0x/0€)@' (1, €) dt d& + J (0x/at)@” (1, &) dt d¢
i=17G G

+[ LAt & x(c )ax/20
G

L AL Ex(,8) (3x/39EN]w™(t, €) dt dé
=] e 66,9, 00 00 &) drdg

+j'G f2(ts f: X(t, E)a l](t, f))wz(ts §) dt df

v+1

+3 | weoste e ad @7)

for all

é=(@"...,0"", o', 0?) e (CIG))" ' x (C* (cl G)).

Here, %,,, or F(x, v,)w, that is, the operator % is defined by the first member
of (27). It is easy to verify that any strong solution x, u, v, or (22)—(24), with
X€ Wﬁ, ue T, v,e L,(T';), is certainly a solution of (27) for all we W.

Note that, for every x, «,, il for which (27) holds for all &, that s, for all
e i=1,...,v+1, 0’ arbitrary, then necessarily

axfat=u""", oxfeg'=a’, i=1,...,v+1, ae.inG,

and Eq. (23) is satisfied also a.e. in G. We denote by %;, Fi=1,...,v+1,
%, the single operators in the first member of (27) as expressed in terms of
o, ® i=1,...,v+1, o’ respectively.
Now, M is here the set of all (1, & y, i) € E**™* with
(t,Oed G=d G'x[0,T], yeA®s), acUGEy).

Let fo(t, & v, 4), f(t, &, 1) be real-valued continuous functions on M.
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Then, Q(t, £ y) are the subsets of E*** defined by
Ot & )=[(z° 2, Z) | 2°=fo(t, £ y, 1), z = f(1, & y, i1), Z' = u
iUt & y)]
=[z% 2 2)| 221, £y, Z w), z=f(1, & y, Z, w),
ueU(t, & y), ZeE™],

where
Z=(Z,...,Z""Y  andia=@',...,u""", u).

We shall take here § = W1 (@) w1th the weak topology, thus, xe § =
Wi(G), p=2, ueT, »eT), with T, a weakly closed subset of L,(T,),
1/p+1/q=1, which is bounded in the norm of L (I';). We take in W the
topology deﬁned by the norm

Wil = (&, vé|| = maxle(1, &)|+maxfow’ /31| + Z max|dw'/8¢'|

+max|w’(4 &)|+ Y. max|é' (4, &),
i=1
where all max are taken in ¢l G. With r = v +2, we have
lélliar +I¥ollm= o lwie +lyo lrm+ ; 16"+l o)
=(GI"*+ [T 9)wlw-
From this we deduce that
W C W (G) X L(T) X (W,(G))"? C(L(G)) ' x (L, (D)),
and that relation (1) holds with
K=|G["*+[1]".
We have here
xeS=Wy(G), Mx = x, M:S-> L, (G),
Hx = ysx, H:S->L,T5), s=s'=1.

Also, x, »x weakly in S implies /#x, - Mx strongly in L,(G), y,X. > v»X
strongly in L,(I";), #x, > Hx strongly in L,(T;), axk/az»ax/at 3%,/ OE >
dx/oE weakly in L AG),i=1,... v Furthermore if vy, v, k=1,2,.

are elements of T, C L,(T) w1th vay -> vp weaklyin L, (T,), then the products
vor(¥2%) converge weakly in L1(T,) to vo(y,x). Fmally, from the definition
of F1(x5, v»), we conclude that

1 1
Fi(xp, vop)w > Fi(x, vy)w as k- oo forevery o'.
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Again, if we assume that x, »>x weakly in S, then Fix )@ > F(x)e',
i=1,...,v+1. Finally, if we assume that, for some constants C, D, we have

AL E=Clx|, AL EX)-AL & Y)|=Dlx—yl, (28

for all (1, &)e G, x, yeE', then x, > x strongly in L,(G), p=2=q=1,
implies that x; - x strongly in L,(G), and
Ai(ta Ea xk(ta f)) “>Ai(t7 f’ X(t, 5))
strongly in L,(G). If, in addition,
ax, /0t —>0x/at,  ox JoE »ax/aEl,  i=1,...,%

weakly in L,(G), then the products appearing in the expression of %,
converge weakly in L,(G) toward the corresponding products, and

Fr(x)w” > Frp(x)w.
Thus, combining the various parts, we have

g;(xk& U2k)w_) g(x7 Uz)W
for every we W.
We may take p=¢g =2,

fo=C+|EP+x*+ Vx| +u?,
fi=—1+t+|g+x+u+2""ul,
fH=(—2+t+|&)’x+u,
8o=(1+|¢[)x*+(1+|x]),

ueU=E', uv,eVs=E', ,eV,=E"

We take for Q the set of all pairs x, u, xe W5(G), u, v; measurable,
12 € Ly(G), |jv,)l, = 1, satisfying the constraints and the functional relations
already mentioned. Note thatthe i, i =1, ..., »+1, are assumed to be only
measurable, but since the equations

oxfar=u""",  oxfef =u, i=1,...,v,
hold a.e. in G, we see that
el (G), i=1,...,v+1.

For Ag, A4, ..., we may take functions as
Ap=1, Ay, =[x, A, =lt]]xl,
As=|xsinlx|,  As=[x[1+x)7,
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and analogous ones satisfying (28). Here, condition (H) for p=g=2 is
satisfied since

il 1R =C+Dfo

for suitable constantsC, D.

The sets Q(4, £ y) are obviously closed and convex. These sets satisfy
property (Q) (because 1, f;, f, are of slow growth with respect to f,).
However, this is not needed here. Indeed, for every (t, £) € G, |f|~> + as
|u|-> +00 uniformly for x in any compact subset of A (%, £). Moreover, if [x, ]
is any minimizing sequence of state functions, x, - x as k - weakly in
S = W3(G), then, by Sobolev’s imbedding theorem, x,, x € L, (G), x, - x
strongly in L, (G) for any

A<24+(p+1D7h
If we take
wi(t, )= P+EP+x0(1, 8, nt, &= +|E+x7( 8),
()= ~1+1+lg+x (6 6),  p=—1+t+[g+x( 8,
we see that w; > u strongly in L(G), p, - p strongly in L,(G), and that
(s, ), (1, )€ O & (D), 1€G, k=1,2,...,

as we can see by taking i =0, u = 0. Thus, the sets Q(1, £ x) satisfy property
(P). On T3, g=0, g,=0, hence the corresponding sets R (¢, £ y) are half
straight lines, and certainly convex and closed. The continuity of g, guaran-
tees that property (Q) is satisfied. The condition (H) is also trivially satisfied.
On T, I'; we have both g =0, go= 0, and no further discussion is needed.

1f ¢ denotes the infimum of I[x, &, v;,v,, vs] in £, and ), denotes the
subset of Q with I </ +1, then ||ull, i, |x||2 = C for some constant C, and
the set A ={x}q, is certainly relatively sequentially weakly compact. The
integral (21) has an absolute minimum in {.

Note that the same argument above would hold if f,, f, are replaced by

1= al(t’ ga X)+Bl(f, g)(VX) + 71(1, f’ x)u,
fZ = C(z(f, gs x)+52(t3 g}(vx) + ’y2(ty gv X}u,

with a;, a, continuous functions in cd GXE", Bt &)=Bs1, .-, Bu)
s=1,2,[Bs] a 2X» matrix with entries continuous in ¢l G, of rank 2
everywhere in cl G, and y,, y, continuous functions in cl GxE" with
Yi+¥:>0incd GXE'.

Example 4.5. This is analogous to Example 4.4 and concerns the same
problem (21)-(26). However, we do not assume condition (28) nor
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condition (H). Here, the functions A;(f, & x) are assumed only to satisfy
Carathéodory’s condition (C). Thus, we can take for Aq, Ay, ..., functions
as

A=t A=t A=|x],
Ay=Ixf’,  As=exp(x]),  A.=1"exp(x]),

and analogous ones. We may take here

fo= 1+ +x7+|Vx” +|x||ul,

fi=—1+t+|E+x+u,

fo=(—2+1+]|€])°x +xu,

go=(1+[&")x*+(1+|x)  onT;,

ueU=E', v,eVs=E' w,eV,=E"

We take for €} the set of all pairs x, i, x € W(G), v; measurable, u € L,(G),
v2€ Ly(G), lulla = Lo, w2l = L4, with Lo, L; given constants, satisfying the

constraints and the functional relations as in Example 4.4. Again, the @',
i=1,...,v+1, are assumed only measurable; but, since

ox/ot=a""", ax/eE=ud', i=1,...,», ae.inG,

we that '
ﬁleLz(G), i=1,...,V+1.

Since f,= 0, certainly fo, fi, f> satisfy properties («) and (8) with ¢ =0 amd
y=0.
Let ¢ denote the infimum of Iin , and let (), be the subset of () with

I[xa a’ Uy, Uy, 03]5 i+1.

Then, |||, Vx|, llull, lo-ll = C for some constant C, as well as [jizl], = C for
elements (x, &) in (g Thus, A;={x}q, Is relatively weakly compact in
$ = Wj(G). Since

Ixl.=C  |Vxl.=C  |ul.=C

by Sobolev’s imbedding theorem, we see that, from any sequence [(xx, )]
in Q, there is a subsequence, say still [k ], such that x; - x strongly in L,(G),
u > u weakly in L,(G), and hence x,u - xu weakly in L{(G). This shows
that f,(A), f(A) are relatively sequentially weakly compact in L,(G). We
shall apply Theorem 3.1 with p = 1, g = 0. Relation (1) holds for g.=c0 by
the same argument as in Example 4.4.

It remains to prove that %, has the closure property, but this is a
consequence of our statement 9.2 of Ref. 2 (the convergence property that
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we verified in Example 4.4 is not needed in Theorem 3.1). For any (¢, §)e G
and Xe E', obviously the sets Q(4, & x) are convex and closed. They do not
satisfy property (Q) as it can be seen by the same argument as in Example
4.3. However, they have property (P') as proved for Example 4.3.

We conclude that the functional (21) has an absolute minimum in  in
the specific case under consideration.

Example 4.6. This is analogous to Examples 4.4 and 4.5, but now we
replace Eq. (23) with the equation

xdivx=1£0 & x4, &, Vx(t, &), u(t, £)).

The same arguments hold as for Examples 4.4 and 4.5 with f,, fy, f>, fo
chosen as stated there. The operator %, becomes

Fo(x)w> = J‘G x(t, &)[ox/ot + él ox/o& Iw(t, &) dt dg,

and the closure property of this operator was proved in Theorem 9.2 of
Ref. 2.
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