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Function-Space Quasi-Newton Algorithms 
for Optimal Control Problems 

with Bounded Controls and Singular Arcs I 

E. R. E D G E  2 A N D  W .  F .  P O W E R S  3 

Communicated by T. N. Edetbaum 

Abstract. Two existing function-space quasi-Newton algorithms, the 
Davidon algorithm and the projected gradient algorithm, are modified 
so that they may handle directly control-variable inequality constraints. 
A third quasi-Newton-type algorithm, developed by Broyden, is 
extended to optimal control problems. The Broyden algorithm is further 
modified so that it may handle directly control-variable inequality 
constraints. From a computational viewpoint, dyadic operator 
implementation of quasi-Newton methods is shown to be superior to the 
integral kernel representation. The quasi-Newton methods, along with 
the steepest descent method and two conjugate gradient algorithms, are 
simulated on three relatively simple (yet representative) bounded con- 
trol problems, two of which possess singular subarcs. Overall, the 
Broyden algorithm was found to be superior. The most notable result of 
the simulations was the clear superiority of the Broyden and Davidon 
algorithms in producing a sharp singular control subarc. 
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1. Introduction 

In  the past  few years, numerous  quasi-Newton type algorithms for the 
solution of pa ramete r  optimization problems have been extended f rom 
Euclidean spaces to infinite-dimensional, real Hilbert  spaces. Just as in 
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Euclidean space, the primary advantage in Hilbert space is the accelerated 
rate of convergence due to the building of second-order information while 
requiring only function and gradient evaluations. The primary difficulty in 
Lz[t0, tf] lies in representing the infinite-dimensional H operator. Two 
representations, the integral kernel representation and dyadic operator 
representation, have been suggested and successfully implemented. The 
integral kernel representation requires a fixed, although large, amount of 
storage. The dyadic operator representation requires increasing amounts of 
storage as a function of the number of iterations. It will be shown that, even 
with this apparent disadvantage, the dyadic operator representation is 
superior to the integral kernel representation. 

Except for the conjugate gradient and gradient methods, existing 
function-space methods cannot handle directly control-variable inequality 
constraints. Thus, applications to optimal control problems have primarily 
dealt with the classical Bolza problem. Since most realistic problems contain 
control-variable inequality constraints, it is desirable to be able to handle 
them directly in a computation scheme. In attempting to solve such prob- 
lems, a new function-space algorithm has been generated, and two existing 
quasi-Newton type algorithms have been modified to allow them to handle 
directly the bounded control problem. The modification of the algorithms 
was strongly influenced by the work of Pagurek and Woodside (Ref. 1) on 
extending the conjugate gradient method to include bounded controls. The 
methods modified include the Davidon (Ref. 2), Broyden (Ref. 3), and 
projected gradient (Ref. 4) algorithms. 

2. Algorithms 

In this section, the various algorithms will be formally stated for the 
problem of minimizing a real functional J(u), where u may be either 
finite-dimensional or infinite-dimensional. With u finite-dimensional, the 
formulas are applicable to the standard unconstrained parameter optimiza- 
tion problem. In a later section, the appropriate modifications for applica- 
tion to optimal control problems with bounded control variables will be 
presented. 

In the listing below, each algorithm requires the specification of a 
starting vector Uo. The Davidon, projected gradient, and Broyden 
algorithms require the specification of a positive-definite, self-adjoint linear 
operator H0. Also, (a, b) and a)(b will be used to denote the inner and outer 
dyadic products (Refs. 5-6), respectively, on the given Hilbert space. Note 
that, if the space is n-dimensional Euclidean space, then 

(a, b) = a rb and a )(b = ab T, 
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where a, b are n-dimensional vectors. The inner and outer products for the 
optimal control problem will be defined in the next section. 

Let g ( u )  denote the gradient of J, and define the update formula by 

ui+l = ui +aid t ,  (1) 

where dl is the search direction vector and ai is a scalar parameter defined by 
a one-dimensional search technique which minimizes J with respect to a. 

Gradient Algorithm (G) 
(a) Calculate the search direction d i=  -g(ui). 
(b) Use Eq. (1) to calculate ui+l and return to Step (a). 

Conjugate Gradient Algorithm 1 (CG1, Ref. 7) 
(a) Calculate the search direction 4 

di = - -g(ui)  + t~i-ldi-1,  (2) 

where 

f l i-1 = (gi, g i ) / (g i -1 ,  gi-x). (3) 

(b) Use Eq. (1) to calculate ui+l and return to Step (a). 

Conjugate Gradient Algorithm 2 (CG2, Ref. 8) 
On the first iteration i = 0, (CG2) ---- (CG1). However, for i -> 1, define 

f l i-1 = (gg, g ~ - g i - ~ ) / ( g ~ - l ,  gi-1) (4) 

and proceed as in (CG1). 

Davidon Algorithm (DAV, Refs. 2 and 9) 
(a) Calculate the search direction 

d~ = - H ~ g ( u i ) .  (5) 

(b) Use Eq. (1) to calculate ui+l. 
(c) Calculate 

si = u/+l - ui, (6) 

Yi = g(ui+O - g(ui) .  (7) 

(d) Update H according to the following formula: 

I-I~+~ = Hi  + (sg)(s~)/(s~, y~) - (H~y~)(Hiyi)/(y~, H~y~). (8) 

(e) Return to Step (a). 

4 On the first iterate i = 0, define d i=  -g(ul).  
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Projected Gradient Algorithm (PGA, Ref. 4) 
The same as DAV, except for Step (d), where H is updated according to the 
formula 

Hi+ l = Hi  - ( H~yi)(H~y~) / (y~, Hiyi) .  (9) 

Broyden Algorithm (BRD, Ref. 3) 
The same as DAV except for Step (d), where H is updated according to the 
formula 

/ - / /+I  = H / - t - [ 1 - 4 - ( Y i ,  I-IiYi)/(si, Yi)][(si)(si)/(si, Yi)]- (si)(UiYi)/(si, Yi) 
- (H~yl)(se)/(s,, yi). (10) 

It has been shown by Dixon (Ref. 10) that, if an exac t  one-dimensional 
search is employed, then algorithms DAV and BRD produce the same 
search directions. However, in the simulations of this paper and Ref. 11, the 
BRD algorithm tended to give a slightly smaller performance index than the 
DAV algorithm in the same CPU time. This, of course, is due to the 
nonexactness of the search. 

3. Extension to Optimal Control Problems 

A motivating way of viewing the quasi-Newton methods is as a class of 
algorithms between the first-order (Ref. 12) and second-order (Refs. 12-15) 
optimal control gradient methods. The goal of a quasi-Newton algorithm is 
to build information about the second-variation operator without comput- 
ing it explicitly, i.e., based upon gradient information only. As noted 
previously, in n-dimensional space, the algorithms are used to minimize a 
scalar-valued function J ( u ) ,  where u is an n-dimensional vector, the inner 
product is 

(s, 

the dyadic operator is 

s ) (y  - s y  , 

and the H operator is an n × n matrix of scalars. Implementation of the 
algorithms on this type of problem is well documented in the literature. All 
of the algorithms described, with the exception of the (BRD) algorithm, 
have also been generalized to optimal control problems where g is the 
gradient of a functional. The primary difficulty in implementing the quasi- 
Newton type algorithms on optimal control problems lies in representing the 
infinite-dimensional H-operator. 
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In L2-space, the inner product is 

(s, y)=--I£: s ry dt, 

and the dyadic operator (Refs. 5-6) is 

(s}(y)u-=(y, u)s. 

However, there simply is no convenient way to represent H. One way to 
overcome this difficulty is presented in Ref. 4 by Lasdon, where it is 
observed that only/-/~g, (not Hi itself) is needed to compute d, This is also 
true for the Broyden algorithm. To implement the Broyden algorithm, 
where g is the gradient of the functional, and u, s, and y are time functions, 
we proceed as follows: 

(i) Ho is taken to be any positive-definite, self-adjoint operator. 
(ii) Hi in Eq. (10) is expressed as a sum back to Ho. We operate on the 

resultant expression for ~ with & to obtain the following search direction: 

i-I 

4 = -Hog, - Z [(l+(yj,  Hm)/(sj, y/))((sj, g,)/(s/, yj))sj 
i=0 

-((H/y/. g,)/(s, yp)s/- ((s/. g,)/(s, y~))Hjy:]. (11) 

Equation (11) requires the computation of inner products of the 
functions /-L,.yl, si, y,, and operating with Ho (H0 = I being the simplest 
choice). The functions (So,.. . ,  si-1) are available from past iterations. To 
compute the functions/-/~y,, we need only replace -& by y, in Eq. (11), i.e., 

operating on y, instead of -g,. Then, for the case i - 1, 

,--2 
H,_,y,_, = Hoy,_, + Z [ ( l + ( y .  Hjyj)/(s. yp)((s, y,_,)/(s, y,))sj 

j=O 

-((/-//yi, y,-1)/(si, yi))si- ((sj, y,-l>l(sj, yi))/-//yi]. (12) 

Thus, ni-lyi-1 can be computed in a way requiring only inner products and 
operation with Ho=I, as was the case for -Hi&. Note that 2 i+4  time 
functions must be stored after the ith iteration in order to compute the 
(i + 1)th iteration, i.e., 

( so , . . . ,  s,), 

(HoY0 . . . . .  H/-lyi-1), 

g,, Ui+l~ Yi-1, 

i + 1 functions, 

i functions, 

3 functions. 

(13) 
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Another approach, recently suggested by Oi, Sayama, and Takamatsu 
(Ref. 16), and earlier recognized by Ladd (Ref. 17), is the integral kernel 
representation. Consider the rank-one dyadic operator 

(u)(v)w = u(t)(v, w)= u(t) v(s)w(s) ds 

= '~ u ( t )v ( s )w(s )  ds = K~( t ,  s )w(s )  ds, (14) 
o o 

where 

K.~(t,  s) = u( t )v (s )  

is a rank-one integral kernel operator and u, v, w ~ L2[to, ti]. This leads to 
the explicit representation of H and the rank-one correction dyadic 
operators as integral kernels. (u)(v) is represented as 

Ku~(t, s) = u(t)v(s) .  

is represented as/-/~ (t, s). 
This formulation allows the direct application of Eqs. (8)-(10), where 

I~ tr 
di = - I-I~(t, s)gi(s) ds. (15) 

o 

Only one function of two variables H/(t, s) along with four functions of one 
variable ui, ui+l, g~, g~+~ must be stored to compute/-//+1 and the (i + 1)th 
iteration. Computational aspects of the two representations will be 
discussed later. 

4. Bounded Controls 

We shall now define the basic optimal control problem and then discuss 
the problem of implementing the quasi-Newton algorithms. The interpreta- 
tion of the above formulas and operations is more motivating in an optimal 
control setting. 

The optimal control problem of interest is a Bolza problem with control 
constraints as follows: 

It t~ minimize J(u)  = ¢k(xr) + L(t,  x, u) dt, 
o 

subject to 2 =f(t, x, u), X(to) = Xo, 

]ui[ "~ C i, i = 1 , . . . , n ,  

to, tr specified. 

(16) 

x --- k-vector, 

u -= n-vector, 
(17) 



JOTA: VOL. 20, NO. 4, DECEMBER 1976 461 

If terminal conditions are present, they are included in the term ¢ (xr) in Eq. 
(11) by the method of penalty functions. Also, the algorithms apply to 
problems with free t r, but the examples of this paper are for fixed t~. Since 
only gradient and function evaluations are required for the quasi-Newton 
methods, we shall first outline the gradient method for optimal control 
problems, and then discuss the modifications for a quasi-Newton method. 

In all of the algorithms, the following equations are required: 

H = L + h  Tf(t ,  X, U), (18) 

i = - OH/Ox, h (tr) = O¢/Oxr, (19) 

g ( u )  = OH/Ou. (20) 

The function H above is the Hamiltonian, which is not to be confused with 
the operator Hi of the algorithms, and g ( u )  = OH/Ou is the function space 
gradient. The usual implementation of the standard gradient method is 
shown in Fig. 1, where 

u~+l(t) = u s ( t ) - a i ( O H / O u ) .  (21) 

Note that the subscripts indicate the iteration number for the respective 
vectors; this allows less cumbersome writing of the quasi-Newton formulas. 

The optimal control for the problem defined by Eqs. (16)-(17) will, in 
general, consist of a sequence of component intervals with interior control 
(]uil < c  i) and bounded control (lull = c~). On each subarc, the following 
conditions must be satisfied: 

u e = c ~  ~ O H / O u ~  <-O, (22) 

- c  i < u ~ < c ~ ~ O H / O u  ~ = 0, (23) 

u ~ = - c i  © OH/Ou ~ >-- O. (24) 

We shall now discuss how bounded control variables are treated directly in 
the standard gradient method, since the same basic idea is employed in the 
quasi-Newton methods. 

As new controls are generated by varying a in Eq. (20), they may 
violate the inequality 

luiI<_c '. 

On these intervals, u ~ is truncated such that, if u i > c  ~, u i is set equal to c ~ 
and, if u ~ < - c  ~, u i is set equal to - c  ~. After truncation the cost associated 
with the given a is calculated. In this way, the saturation region may change 
from iteration to iteration, and costs are only computed for realizable 
controls. 
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...... C a l c u l a t e  d o = - g o ( t )  

>,, 

S e t  X o ( t f )  = ~xf 

1 -D  s e a r c h  =:~ o~ 
o 

- -  u 1 = u ° + a O % 

i [G g m P u te  k l ( t ) ,  g t ( t )  = Hq(t) 

I 
It" . . . . .  C a l c u l a t e  d 1 = - g l  (~') 
I 

.......... ] 

.......... i 

>,: ......... 

1 
Set X l(t~} = +xf 

1 -D  s e a r c h  z:~-a 1 

- u 2  = Ul + e l d l  

tl 
. 4  

l~z~t) =4, :,#t) ..... 

] [Compute  k2(t), g2(t)  = Hu(t ) 

! 
F . . . . .  C a l c u l a t e  d 2 = -g2( t )  

> 

ISet ~zlt~) = ¢~ 

1 -D  s e a r c h  =:~ ~2 

u 3 = u 2 + a g d  2 

Fig. 1, F l o w o f t h e s t a n d a r d g r a d i e n t m e t h o d .  

The implementation of the quasi-Newton type algorithm on 
unbounded control problems is shown in Figs. 2-3. As in Fig. 1, the 
subscripts indicate the iteration number, and Eq. (8) implies the Davidon 
algorithm, Eq. (9) implies the projected gradient algorithm, and Eqs. 
(11)-(12) imply the Broyden algorithm. 

As the iteration proceeds, the number of functions stored increases. 
The computation time per iteration will also increase because of more inner 
product evaluations in the updating formulas for Hy and d. To overcome 
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t o tf 

[ ~o(t) ~ .o(t) [ [ set %(t d : *xf 
: Ho(t)  I ; 
i 

1 
F . . . . . .  Ca lcu la te  d o = -go( t )  
) 
I 1-D s e a r c h  ~ (~ 

~ _ _ _ . . . . . ~  Ul = u + o 
! o ~ o  do  
! 

. . . . .  S t o r e  So(t ) = u l ( t  ) - Uo(t ) = a o d o  
i ! 
t . - - N _ _  To ta l  s t o r a g e  go '  U l '  So 

Fig. 2. 

,x,x,!!) ........... t - - '  iSet xl(t ~) -- ~ f  
[ C°rr tpute k l ( t ) :  g i ( t )  = Hu(t )  I '! 

. . . . . . .  Store  Yo(t ) = g l ( t )  - go(t)  

. . . . . .  Ca l cu l a t e  and s t o r e  HoY ° = Iy ° = Yo 

0 
F . . . . . .  C~Zculate (tl = gz(t) - . ~  [ Ea .  8, 9, o r  11] 
i 

1-D s e a r c h  =:~a 1 
~ - -  u2 = U 1 + a I fl 1 
I 
I 

. . . . . .  S to r e  Sl(t ) = u2(t  ) - ul(t)  = a l d  I 

¢ 
t. . . . . .  To ta l  s t o r a g e  g l '  Ul' So' Yo' HoYo 

e l 

Flow of the  funct ion-space quas i -Newton  algor i thms for  H o  = I and i = 0, 1. 

this difficulty, the algorithm is restarted with a pure gradient step when i = q, 
where q is some predetermined integer. This problem will be discussed in a 
later section. 

To apply the quasi-Newton type algorithms to the bounded control 
problem, a modification to the updating formula is required. In the interior 
portion of the control, we wish to build second-order information, while 
second-order information on the bounded portion of the control is of little 
use. Thus, the quasi-Newton formulas should concentrate on the interior 
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Set k 2 ( t f )  = # x f  

. . . . . . . .  S t o r e  Yl( t)  = g 2 ( t )  - g l ( t )  

0 
. . . . . . . .  C a l c u l a t e  a n d  store H l y  1 = Iy  1 ~ ~ [ E q .  8 ,  9 ,  o r  1 Z] 

j=o 
1 

. . . . . .  C a l c u l a t e  d 2  = - g z ( t }  - j__~ [ E q .  8 ,  9 ,  o r  l l ]  

' -  1 - D  s e a r c h  ~ ~ > 1 

u 3 = u z + a 2 d z  

. . . . . . .  S t o r e  sZ( t  ) = u 3 ( t  ) - uZ( t  ) = ~ 2 d 2  
I 

i 

....... Total storage g2' u 3' S o '  YI' HoYo 

s I 

s 2 

tl 

[u(t) ,~  xn(t) _ _ ] - -  

[Com  te : , I - -  
S e t  Xn(tf) = @xf 

. . . . . . .  S t o r e  Yn_l ( t )  = g n ( t )  - g n _ l ( t )  

n - Z  

. . . . . .  C a l c u l a t e  a n d  s t o r e  Hn_ lYn_  1 = Iyn_  1 j ~  [ E q .  8 ,  9 ,  o r  1 2 ]  

n - 1  
~1 . . . . .  C a l c u l a t e  d n = - g n ( t )  - ; 0=  [ E q .  8 ,  9 ,  o r  11]  
I 
I 
I 1 - D  s e a r c ~ t  
I = I Un+l u n F e rids 
I 
...... Store sn(t ) = Un+l(t ) - Un(t ) = ~ndn 

I 
i 

H y L . . . . .  T o t a l  s t o r a g e  g n '  U n + l '  So ' Y n - l '  . o  o 

Fig, 3. 

sn_  1 I-In_ lYn_  1 

s n 

Flow of the function-space quasi-Newton algorithms for Ho = I and i = 2 . . . . .  n . . . . .  

controls ,  and a standard gradient  formula  can be used on the bounded  
port ion of the control .  

A s  with the gradient  algorithm, as n e w  controls  are generated,  they  are 
truncated before  calculating the associated cost.  A saturation funct ion wl (t), 
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identical to that of Pagurek and Woodside (Ref. 1), is defined. This satura- 
tion function is set equal to zero when the control is on the boundary and is 
set equal to unity on the interior. The saturation function is then used in the 
following way to compensate for our lack of freedom in choosing the control 
on the boundary. Instead of using g, y, Hy in the formulas for calculating the 
search direction and updating Hy, we use wg, wy, wHy. We know that g = 0 
on the interior portion of the optimal control, and this is where we wish to 
build second-order information. On the region of saturation, g # 0 (in 
general) and the y's (or Ag's) should not contribute to the inner products in 
the updating formulas. It is not necessary to apply the saturation function to 
s because, on the saturation region, s = Au will already be zero. 

The quasi-Newton algorithm for bounded control problems differs 
from the algorithm for unbounded control problems in the following ways: 

(i) As the one-dimensional search seeks the best a, the associated 
controls are truncated before the associated cost is calculated. 

(ii) A saturation function wi(t) is generated after each iteration. 
(iii) wg, wy, wHy are used in the updating formulas and in the calcula- 

tion of the search direction. 
(iv) On the bounded portion of the control, the search direction is 

chosen to be - OH/Ou. This allows the control to become interior if Eqs. (22) 
and (24) are not satisfied. 

5. Computer Implementation Considerations 

Dyadic and Kernel Representations. Since dyadic and integral kernel 
representations will generate the same search directions, given the same H0, 
the choice of representations must be determined by practical considera- 
tions, such as storage required, number of inner products required, and 
previous computational experience. First, consider the total amount of 
storage required by each representation. 

Numerically, functions of one variable are stored pointwise at m mesh 
points on t s [to, tr]. H(t, s), a function of two variables, will be stored at 
m x m grid points on t, s ~ [to, tr]. In order to calculate intermediate points 
required for inner product evaluations, some form of interpolation is used. 
Let n equal the number of controls, i be the iteration number, and q be the 
reset parameter. We have: 

dyadic storage = (2i + 4)n time functions 

= (2i + 4)nm storage locations; 
kernel storage = (4n time functions) and H(t, s) 

= 4nm + n(n + 1)m2/2 storage locations. 
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The amount of storage required for dyadic representation is a function 
of i and does increase from iteration to iteration; however, the fixed storage 
required by the kernel representation is a function of (nm) 2 and is very large. 
The breakeven point, where the storage required by each representation is 
equal, occurs at 

i = (n + 1)m/4 (25) 

Thus for a typical mesh (m = 100) and only one control (n = 1), the break- 
even point is the 50 th iteration; for two controls (n -- 2), the breakeven point 
is the 75th iteration. Computational experience (Refs. 4 and 18) indicates 
that to restart with a gradient step every 3 to 5 iterations will, for many 
problems, improve the convergence rate. In these cases, the dyadic rep- 
resentation is superior, because of the much smaller amount of storage 
required. 

The quasi-Newton algorithms have been implemented on a relatively 
high-dimension space-shuttle ascent, trajectory optimization problem. 
During the initial testing of the program on the University of Michigan IBM 
360/67 virtual memory computer, all storage was done in fast core memory. 
However, it was found that core storage was exceeded when the program 
was first run on the Johnson Space Center UNIVAC 1108 computer, which 
is not a virtual memory machine. To overcome this difficulty, drum storage 
was used to store the large amount of information needed by the quasi- 
Newton algorithms. This reduced the amount of core storage required 
allowing the program to fit on the UNIVAC 1108 computer. Upon running 
the modified program on the IBM computer, a considerable savings was 
realized in reduced virtual memory charges. It was also found that no 
significant increase in the amount of CPU time was incurred. There are two 
reasons for this. 

(i) On high-dimension problems with relatively long integration inter- 
vals, only a small percentage of the CPU time is involved in the calculation of 
the search direction. Most of the CPU time is spent integrating the equations 
of motion. On each iteration, a forward integration and a backward integra- 
tion are required to determine the gradient and a number of cost evaluations 
also requiring forward integrations are performed by the one-dimensional 
search. 

(ii) The updating equation for//~yl and the equation for di are summa- 
tions which require inner products of the stored functions in the same 
sequence as they were generated and stored. Assume that/-/~-lYi-1 and di 
are to be calculated. HoYo through Hi-2Yi-2 a r e  stored in a file as shown in 
Fig. 4. 

At the end of the last iteration, the file has been rewound. The updating 
equations for H,--ly,--I will read HoYo, Hly  1 . . . . .  /-L-2yi-2 in order, calculate 
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Star t  o£ 
F i le  

J 

Read 
Wri te  
Po in te r  

Fig. 4. File storage arrangement.  

/-/~-lyi-1, then write Hi-lYi-1 onto the file and rewind. Concurrently, the 
equation for d~ employs the Hy hmctions. The files in which Hy and s are 
stored need only be rewound once on a given iteration, and no forward or 
back spacing is required. Even if tape is employed as the storage medium (as 
opposed to fast-core storage), the increase in computer time would be small. 
When drum storage is used, the increase in computer time is insignificant. 
Thus, there is no need to restart with a gradient step because of limited 
storage. 

Another measure of the desirability of one representation versus the 
other is the number of inner products required as a function of the iteration 
number. On each iteration, the following inner products must be calculated 
when implementing the dyadic representation: 

(sj, y:), ( i -  1)n, 

Using the identity 

(yj,/-//yj), (i - 1)n, 

i 
(sj, gi), n E K,  

i 

(/-/jyi, gi), n E K, 
K = I  

i--1 

(sj, y~_l), n E K, 

i--1 
(Hjyj, yi-1), n E K. 

K = I  

i 

Y K = i(i + 1)/2, 
K = I  

(26) 
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we have 

(dyadic) = ( i -  1)n + ( i -  1)n +ni ( i  + 1) + n ( i -  1)i 

= 2 n ( i 2 + i - 1 )  for i > 1 .  (27) 

The integral kernel representation requires the following inner product 
evaluations: 

Therefore, 

I l i  y i, n Z mi, 

correction to Hi, 2ni, 

de = Hgi ,  n 2mi. 

(28) 

(kernel) = 2n2mi  + 2 h i  = 2 i n ( n m  + 1). (29) 

The breakeven point, where the number of inner products required by each 
representation is equal, occurs when 

2n(i2 + i - 1) = 2in(rim + 1), 

i Z - n m i -  1 = 0, (30) 

i ~ nrn. 

Thus, for a typical mesh (m = 100) and only one control (n = 1), the 
breakeven point is the 100th iteration; for two controls (n = 2), the break- 
even point is the 200th iteration. Now, assume that each method is restarted 
with a gradient step every qth iteration. The number of inner products 
required by the integral kernel representation is not changed. The number 
of inner products required by the dyadic representation becomes 

(dyadic) = 2n (q2 + q + 1)i/q,  for i = q, 2q, 3q . . . . .  (31) 

The number of inner products required by each representation increases 
linearly in i; therefore, consider the ratio 

o r  

(kernel)/(dyadic) = (2 in (nm + 1)]/[2n(qZ + q  - 1)(i/q)], (32) 

(kernel) =[nm + 1/ (q  + l(1/q))](dyadic). 

For m = 100, n = 1, we have the results shown in Table 1. 

(33) 
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Table 1 

q (kernels)/(dyadic) 

2 40.4 
4 21.3 
6 14.8 
8 11.4 

10 9.3 
25 3.9 

Even for q = 25, the integral kernel representation will require almost four 
times as many inner product evaluations as the dyadic representation per 
iteration. Note that all calculations are for one control (n = 1). For larger n 
or a finer mesh (m > 100), the dyadic representation becomes even more 
attractive. 

Inner Product Calculations. In L2[to, ff], the inner product is a quad- 
rature: 

It t¢ (u, v) = u rv dr, (34) 
o 

where u and v are stored pointwise. If it is assumed that the stored functions 
are linear between storage locations, the evaluation of the inner product  
reduces to a summation. Consider the interval t~ to t2, let T =  t - h  and 
At=  t2--h; then, on [tl, t2], 

u(t)=at+b, v(t)=at+/3, 
where 

a = (u2 -  Ul)/At, a = ( / ) 2  - -  vl)/At 

b = ul, 13 = vs. 

The inner product  of the functions between tl and t2 is 

I0 at (u, v),l,t2 = (at+b)(at+/3) dt 

= [aat2 + (a/3 +ab)t+b/3] dt 

= (a~/3)  At3+ [(a/3 + ~b) /2]  At2+ (b/31 At, 

and the total inner product  is 

n - - I  

(u, V>,o,,~ = 2 (u, v),,.,,+~. 
i = 0  

(35) 

(36) 

(37) 
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It was found that this method of evaluating inner products is considerably 
faster than higher-order quadrature formulas and that the convergence rates 
of the algorithms do not suffer. 

6. Numerical Study 

In order to obtain some idea of the relative merit of the modified 
quasi-Newton algorithms, a controlled study was conducted. Three rela- 
tively simple bounded-control problems with known analytical solutions 
were chosen. Two of the three problems have both singular and nonsingular 
subarcs. The third problem has an optimal bang-bang control with seven 
switches. 

In addition to the three quasi-Newton algorithms, the problems were 
also solved using gradient and conjugate gradient algorithms. Terminal 
constraints were handled with quadratic penalty terms. A quadratic curve fit 
is used in the one-dimensional search. In all cases, a gradient step is taken 
every sixth iteration (q = 6). Only the gradient, conjugate gradient, and 
Broyden algorithms are illustrated. In all three cases, the control and 
gradient functions were stored every 0.01 sec and were assumed to be 
piecewise linear. 

Problem 6.1. 
minimize, 

subject to 

X1 ~--- X2, 

-~2 = U, 

The optimal solution is 

This problem is taken from Ref. 19: 

i ~" 2.985 
J = t (x~-x~)  dt, 

Jo 

xl0 = 0, x l f  = 0.065, 

tul <- 1, X2o = 1, xzr = -1.336. 

u = i - s i n t ,  t ~ [0, 37r/4), 

t - 1, t ~ (3~r/4, 2.085]. 

The optimal cost is J* = 0.022386. The optimal control is shown in Fig. 5. 
The augmented cost functional is 

J '  = 10(xlr-  0.065) 2 + 10(xzr + 1.336) 2 +J.  

This problem has a discontinuous optimal control consisting of a 
singular arc followed by a nonsingular arc (Fig. 5). On this problem, all of the 
algorithms performed considerably better than the gradient method, as 
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Fig. 5. 

lime 

1.0 / 2.0 3.0 
/ 

I , / ~  J 

-I.0 

Initial control estimate and the optimal control f o r  P r o b l e m  6.1 .  

noted in Fig. 6 and Table 2. The Broyden algorithm obtained the least cost 
and approximates the optimal control more closely than the other methods 
(see Figs. 7-9). Note that, on this problem, the conjugate gradient method 
also had very good performance. 

Fig. 6, 

4 
¢n 

E- ~. 

b 

! 

5 tO I5 ZO 

Iteration Number 

P e r f o r m a n c e  i n d e x  v s  iteration number for Problem 6.1, 

2 
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Table 2. Final cost for Example 6.1. 

Method FinaI cost Number of iterations CPU (sec) 

Broyden -0.00294 48 78.4 
Davidon -0.00289 63 95.6 
Conjugate gradient I -0.00244 72 75.1 
Conjugate gradient 2 -0.00241 67 81.2 
Projected gradient -0.00100 306 456.1 
Gradient 0.03686 385 366.7 

Fig. 7. 

-13.5 

- t . 0  

Tim~ 

k O  2 . 0  3 .0  

1 

Cos| = O. 0 3686  

1 
i 

1 
1 i 
t 
1 t 

1 
1 
I 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - t  

Control obtained by the gradient method for Problem 6.1, 

P r o b l e m  6 . 2 .  
minimize  

I) J=  x2dt, 

sub jec t  to  

i=u ,  iul-<l, 

T h e  op t ima l  so lu t ion  is 

This  p r o b l e m  is t a k e n  f rom Ref .  1: 

Xo = 1.0, x2 = 0.5. 

- 1 ,  t ~ [ 0 ,  1), 

u = 0, t ~ (1, 3 /2) ,  

+1 ,  t e  (3 /2 ,  2]. 
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-LO 

,B 

-0.5 

li° 

Time 

1.0 2.0 3.0 

I . . . . . .  -4 

-0, O0 

Control obtained by the conjugate gradient method for Problem 6.1. 

-0.5 

Fig. 9. 

-I .0 

2.0 3.0 

Cost = -0.00294 

Fig. 8. 

Control obtained by the Broyden method for Problem 6.1. 

The  opt imal  cost is Jr* = 0.375. T he  opt imal  control  is shown in Fig. 10. The  
augmen ted  cost  funct ional  is 

J ' =  50(xf-½)2 + x 2 dt.  
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Fig. 10. 

0.5 

-0.5 

-I.0 

0.5 

I 

/ 
/ 

/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ /  

/ 
/ 

/ 
1,0 / 

/ 
7 / L5 

/ 
/ 

/ 

o 

2.0 
Time 

Initial control estimate and optimal control for Problem 6.2. 

Fig. 11. 
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-0.5 
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0,5 L0 
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Control obtained by the Broyden method for Problem 6.2. 

This problem has a discontinuous optimal control consisting of three 
subarcs, one of which is singular. Note that the Broyden method (Fig. 11) 
shows action in the neighborhood of the singular arc, whereas the other 
methods do not (Figs. 12-13). It is also interesting to compare Fig. 11 with 
Fig. 2 of Ref. 1, which illustrates the optimal control for a second-order 
method requiring considerably more computation than the Broyden 
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1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0.5 L0 

-0,5 

-L0 

Fig. 12. Control obtained by the gradient method for Problem 6.2. 

Fig. 13. 

t.O 

0.5 

-0.5 

-I.0 

iii 

Control obtained by the conjugate gradient method for Problem 6.2. 

method. The controls in the two figures are similar and obtain approximately 
the same value of the performance index. This indicates that the Broyden 
method is approximating the second variation operator, while requiring only 
first-order information. The performance of the methods is presented in Fig. 
14 and Table 3. 
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Fig. 14. 
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0.5 ~ Gradien..._~t 

Z 0.4 ~-, 
~ .  "~ - .  Conju~te gradient I 

B royden 

2 4 6 8 IO 

Iteration Number 

Performance index vs iteration number for Problem 6.2. 

Table 3. Final cost for Example 6.2. 

Method Final cost Number of iterations CPU (sec) 

Broyden 0.37475 55 75.1 
Davidon 0.37479 63 91.2 
Conjugate gradient 1 0.38012 65 79.6 
Conjugate gadient  2 0.38141 68 74.7 
Projected gradient 0.43672 283 388.2 
Gradient 0.44345 390 310,2 

P r o b l e m  6.3, This p r o b l e m  is t aken  f rom Ref.  20: 

min imize  

J=x fx , to--O, tr=4.2, lul-<l, 
subject  to 

22 = - 0 .5xl  + 5x2, 

22 = - 5x~ - 0.5x2 + u, 

23 = - 0.6x3 + 10X4, 

24 = - 1 0 x 3 -  0.6x4 + u, 

Xlo = 10, 

X2o = 10, 

X3o = 10, 

X4o = 10. 

The  opt imal  cost is J*  = 0.996. The  opt imal  control  is shown in Fig. 15. 
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0.5 

g, 

-0,~ 

-I.0 

Fig. 15. 

l 
COSt ~ 0. 996 

4.0 3.]0 
J 

Optimal control for Problem 6.3. 

- -q 

The optimal control for this problem (Fig. 15) has no interior subarcs. 
For the simulations, the initial control is Uo(t) = 0 and the associated cost is 
J(Uo) = 4.293. For all of the algorithms, major reduction in cost is realized 
only on the first iteration, which is a steepest descent or gradient step; in this 
iteration, the control changes from totally interior to totally bang-bang (Fig. 
16). The final cost is J(U~) = 1.0138. Since there are no interior subarcs after 
the first iteration, all of the algorithms reduce to essentially the gradient 
method, i.e., the various inner products required by the conjugate gradient 
and quasi-Newton methods are computed only on interior subarcs. 

0.5 

-0.5 

-t.0 

Fig. 16. 

3.0 1.0 l 1,0 5.0 

1 I I 

Cost L 0138 

Control obtained by all methods for Problem 6.3. 
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7. Summary 

A parameter optimization scheme due to Broyden is extended to a form 
which is applicable to bounded optimal control problems. Several other 
quasi-Newton algorithms are also extended to apply to bounded control 
problems. These quasi-Newton algorithms, along with two conjugate- 
gradient algorithms and a pure gradient algorithm, are applied to two simple 
optimal control problems which contain both singular and non singular 
subarcs. The examples indicate that the Broyden and Davidon algorithms 
approximate the singular subarc portions of the trajectories more accurately 
than the gradient and conjugate gradient methods. A bang-bang control 
example problem was also simulated. The methods performed well on this 
problem, yielding a control history close to the optimal. 

An alternate way of treating the bounded control is to transform the 
problem into an unconstrained problem, e.g., if [ut-< 1, then define u = sin ~. 
The three examples in Section 6 were simulated with this artifice, and it was 
found that the direct method had a more rapid rate of convergence and 
produced sharper control histories. The u = sin t7 transformation also intro- 
duces oscillations about bounded control subarcs in the tGspace. Because of 
this oscillatory nature, the artifice appears to be less effective if the solution 
tends to be bang-bang with a number of switches (e.g., Problem 6.3). 

The choice of integral kernel or dyadic operator representation of the 
quasi-Newton algorithms is shown to depend not only upon storage consid- 
erations but also upon the number of inner products required. The dyadic 
representation appears to be superior, since less storage is required and far 
fewer inner product evaluations are necessary. 
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