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Seminormality and Upper Semicontinuity in Optimal Control*

Lavserto Cesari?

Abstract. This paper concerns the concept of upper semicontinuity of
variable sets, precisely the variant of Kuratowski’s definition of upper
semicontinuity that Cesari has denoted as property (Q). This concept has
been used by Cesari in most of his papers on existence theorems for optimal
solutions, and later used by Olech, Lasota and Olech, Brunovsky, Baum,
Suryanarayana, and Angell. First, criteria are given for property (0} in
addition to those which had been already given previously. Then, it is shown
that a slight restriction in the concept can be expressed in a form which is
similar to Tonelli’s concept of seminormality for free problems of the
calculus of variations. Thus, the property (Q) appears to be a generalization
to Lagrange problems of control of the well-known concept of seminormality
for free problems.

1. Introduction

In the present paper, we discuss properties of upper semicontinuity of
variable, convex, closed sets in Euclidean spaces, taking into consideration
the modification of Kuratowski’s concept of upper semicontinuity (Ref. 1),
which we denoted in Refs. 2-3 as property (). We have used this property
in the proof of lower closure theorems in Lagrange and Mayer problems of
optimal control. These theorems reduce to well-known lower semi-continuity
statements for usual free problems of the calculus of variations. Lower
closure theorems are used to prove existence theorems for Lagrange and
Mayer problems of optimal control (Refs. 2-3). The same property (Q)
mentioned above was used again in recent studies by La Palm (Ref. 4),
Lasota and Olech (Ref. 5), Olech (Refs. 6-7), Cesari, Nishiura, and La Palm
(Ref. 8), and in recent papers by Cesari (Refs. 9-12) concerning existence
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theorems for Lagrange problems with multiple integrals and partial differential
equations. In these papers, property (Q) was requested for variable sets J(x)
of the form O(x) = [(2% 2) |2 = fo(x, u), 2 =f(x, u),uec Ux)]CE,.,,
where f, and f = (f1 ,..., f,,) are given continuous functions.

In the present paper, we give criteria (Section 3, 4, 7, 9) for property (Q)
of the sets O(x) in addition to those already proved in Refs. 2-3 and those
proved by Olech in Refs. 6-~7. In particular, we show (Section 4 and 9)
that a slight particularization of property (Q) for these sets J(x) can be
expressed in a form which is similar to Tonelli’s seminormality condition
(Ref. 13) for free problems of the calculus of variations. Thus, property (Q)
of the sets J(x) is shown here to represent a generalization for Lagrange
problems of the well-known seminormality condition for free problems. In
Sections 5, 6, 8, we state a number of properties of convex, real-valued
functions on a convex subset of E,, , related to the concept of seminormality,
and we use these results in Section 9. In Section 7, we prove another criterion
for property (Q) of the sets O(x) when f is linear in x and f, is convex and
serninormal in u.

2. Properties (U) and (Q) of Variable Sets

Let 4 be a given subset of the x-space E, , for every x € 4 let U(x) be a
given subset of the u-space E,, , and let M be the set of all (x, u) with x € 4,
u € U(x). Thus, M is the graph of U(x) in the space E, X E, . For every
we Aand 8 > 0, let N,(x) denote the set of all x € 4 at a distance < § from ¥.
For every x€ A and 8 > 0, let U(%; 8) denote the union of all U(x) with
x € No(®), or Ux;8) =[uck, |ue Ulx), xc N{(%)]. We say that the sets
U(x) have property (U) at a point ¥ 4 if

U(x) = () cl U(&; 8). 1)
8
We say that the sets U(x) have property (Q) at ¥e A if
U(x) = () cl co U(#; 8). )]

[
Here, cl and co denote the closure and the convex hull, respectively, of the
sets under consideration. We say that the sets U(x) have property (U) [(Q)]
in A if this property holds at every point % € 4. Property (U) is Kuratowski's

concept of uppersemicontinuity of sets (Ref. 1) and was used, for instance,
by Choquet (Ref. 14) and Michael (Ref. 15).
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Note that in (1)~(2) the sign C holds trivially, and thus the actual require-
ments can be written in the form

Ux)D (e U®8) or U@ D()clco U; ),
s B

respectively. The following statements are easily proved:
(2.4) If U(x) has property (U) at &, then U(X) is closed.
(2.i) If U(x) has property (Q) at &, then U(X) is closed and convex.

(2.iii) If 4 is closed, then U(x) has property (U) in 4 if, and only if,
M is closed.

A number of other statements concerning properties (U) and (Q) have
been stated in Refs. 2-3 and will not be repeated here.

I f (%, u) = (fy o0 [u)» (%, u) € M, is a given vector function, f: M — E,, ,
we shall denote by Q(x) C E,, the set O(x) = f(x, U(x)), or

O(x) = [# = (*Y..., 2" | & = f(x, u), u € U(x)].

3. The Sets (x) and a First Criterion for Property (Q)

In Lagrange problems of optimal control and the calculus of variations,
besides the vector function f(x, ) = (f ,..., f,,), also a scalar function fy(x, u)
is given, fo =M — E, .

Iff(x, u) = (fy, /) = (fo s f1 ss f), then we may denote by O(x) C E,,.,
the set f(x, U(x)), or O(x) = [(2% )| 2® = fo(x, u), & = f (%, u), € U(x)].
Also, we shall denote by O(x) the set

Olx) = [z 2) | 2 = folw w), = =flx,u), weUWE)].

We may say that O(x) is the figurative and that O(x) is the set of points above
the figurative. Note that, for every x € 4, the set O(x) is the projection on the
z-space E, of the set J(x) C E,,, . Thus, if J(x) is convex, then certainly
O(x) is also convex.

We shall say that a function g(x, #) is of slower growth than fi(x, u) as
[ # | —> oo uniformly in some subset 4, of A4, provided given ¢ > 0 there is
some % =, Ay) >0 such that xed,, ueU(x), |u| =% implies
| 8 @)] < efol, 1),
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(3.4) [A criterion for property (Q) under a growth condition.] Given 4
closed, M closed, f(x, #) and f(x, u) == (fy ,..., f) continuous on M, assume
that 1 and f are of slower growth than f; as | # | — - 00 uniformly on some
neighborhood A, of a point & € A. If the set J(%) is convex, then the sets
O(x) satisfy property (Q) at .

A proof of (3.1) has been given in Ref. 3.

4. A Second Criterion for Property (Q)

Note that, if the sets O(x) satisfy property (Q) at a point ¥ € 4, then
O(@) 2 () cl co O(x; 8).
8

This means that, if a point (2% z) belongs to the set (s cl co §(5c‘; 8), then
(20 2) € O(%) = [(2% =) | 2° = fo(®, u), @ = f(&, w), u € U(X)]; hence,
2€Q®) = [ = f(& u), ue U]

In other words, the following property (a) is a necessary condition for the
sets J(x) to have property (Q) at &:

(@) If (22, 2) € Ns cl co O(&; ), then z € O(%).

For free problems of the calculus of variations, # = m, f = u, or f; = 1},
¢ = 1,..., n, and U(x) = E, . For these problems, the sets under consideration
reduce to Q(x) = E,, and

Q(x) == [(2% #) | &° = folx,u), ue E)CE,;,
Ox) = [(=% u) | 2° = fow,u), u€E]CEpy.

Thus, property («) is trivially satisfied for free problems.
We shall now introduce the following condition (X) at a point ¥ € A4:

(X) For every Ze(Q(%), there is at least one point Ze U(¥) with
# = f(#, %) and the following property: given ¢ > 0, there are numbers § > 0
and 7, b = (b ,..., b,) real such that

XY folww) =7+ Z bifi{x,uy  forall xeNy%) and ue Ulx),

(X fm ) <7+ L bhE D) + e
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For free problems (that is, m = n, f = u, U = E,)), the present property
(X) reduces to the following one concerning the function £, only:

(X;) For every # = (@,..,#)€E, and ¢ >0, there are numbers
8 >0and7r, b=(b,..,b,) real such that

(X)) flw,uw) v+ ) bu! forall xeNyx) andall u=(,..,u") ek,
i

X @D <r+Y b+ e
i

As we shall see in Section 6 below, this condition (X)) is the well-known
weak seminormality condition of the function f; at (¥, %) for all ue E,,, .

(4.i) [A criterion for property (Q) under conditions (x) and (X).] If
conditions («) and (X) hold at the point & € 4, then §(%) is closed and convex,
and the sets J(x) satisfy property (Q) at the point .

Proof. To prove that the sets ((x) satisfy property (Q) at & [and,
hence, (%) is closed and convex], we have only to prove that, if
g =(8%2)e sclco O(X; ), then £ = (2" %) O(F). From condition («),
all we know is that ¥ € Q(¥). Hence, there is some # € U(¥) such that & = f(&, %)
[hence, (¥, #) € M], and statements (X’), (X") hold for a suitable choice of %.

For every 8 > 0, we have § = (%, %) & cl co O(x; 8), and thus, for every
§ > 0, there are points ¥ = (2°, %) € co O(&; 8) at a distance as small as we
want from & = (2%, Z). Thus, there is a sequence of numbers §;, > 0 and of
points &, = (2,2, ;) € co O(¥; §,) such that §,—~0, 5, — % as k— 0. In
other words, for every integer k, there is a system of points x,* € N, (%),
y = l,...,», say » =n -+ 2, corresponding points % = (2%, ") € O(x,*),
points #;* € U(x,?), and numbers A, > 0, y = 1,..., », such that

1= z Ay B = Z, A&y, 20 = Z A2y, 2y == Z Agv2i?, @)
z%y > fo(xky’ uk'y)s zkv == f(xkv, ukv)’

where y = 1,..., v, where ¥ ranges over all v = 1,..., », and z,* — &, 5, — %,
7l >3 2, ~>Fask— 0,y =1,.,n

By condition (X), there is a neighborhood N (%) of ¥ in 4 and numbers r,
b = (by ..., b,) real such that

folm,uw) = folw,u) —r — b - f(wyu) 20  forall xeNy®) and wuweUlx), 4)
fol® #) = f® @) —r —b-f(% @) < e ®)
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For k sufficiently large, so that | %, — &| <8, y = 1,...,», we have now,
from (3)—(4),
22 =Y N 2% =Y Aflx, ) = YA b (s )]
=Y MTr+b -z =r+b-Y Ny =r+b z.
As k& — o0, we obtain % > 7 - b « F; hence, from (5),
Brtb-F=r+b fFa)=LfE5) &7 = [fET) —-

Here, € > 0 is arbitrary; hence, #° = fi(#, %), while = f(&, #). This shows
that § = (2", %) € O(&). We have proved that the sets J(x) satisfy property (Q)
at the point ¥ € 4. Statement (4.1) is thereby proved.

5. Some Properties of Convex Functions

If U is a given subset of E, and F(u), u € U, a real-valued function, then
F(u) is said to be convex in # provided U'is convex, and #, , up€ U, 0 <« < 1,
implies F(any + (1 — o) up) < aF(y) + (1 — «) F(4,). The following state-

ments are well known:

(5.i) If U is a convex subset of E, and F(u), u € U, a given real-valued
function, then F(u) is convex if, and only if, ;e U, A; >0, j=1,..,v,

v finite, Ay + 4+ A, = 1,y = 3,3 A, , implies Flu,) < s NF(uy).

(5.i1) If Uis a convex subset of E, and F(u), u € U, a given real-valued
function, then F(x) is convex if, and only if, the set

0 =1[(zu))2 > Fu),uc UJCE,,

i3 convex.
A linear scalar function

Hu)y=v+ bt 4+ -+ bu" =r+b-u wuek,,

7, by ey b, real, is said to be a supporting plane of F(u), ue U, at a point
% e U, provided F(#) = 2(7) and F(u) > 2(u) for all ue U.

(5.ii1) If U is a convex subset of E, and F(u), u € U, a given real-valued

convex function, then F(z) has a supporting plane at every interior point %
of U.
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Proof. We know already that the set 0 = [(%, u) | 2 > F(u),uc U] CE,,
is convex, and hence there exists some supporting hyperplane V at (%, #),
F=F@). It V=_[(2u)|p°z+p u—c=0] p% p=(p%..,p"), c real,
thenp’? +-p % —c=0andp’2 +p-u — ¢ = Oforallue Uand z = F(u).
Let us prove that p® # 0. Indeed, if p° = 0, then we have p % — ¢ = 0,
p-u—c>=0forall ue U. If u, € E, is a point where p - u; — ¢ > 0, and
¢ real, then for 4 = u(e) = eu; + (1 — €) @ we have p - u(e) — ¢ > 0 for all
€ >0, and pu(e) — c < 0 for all ¢ <0, with u(e) — % as e — 0. Since
% € int U, then both u(e), u(—«¢) belong to U for € > 0 sufficiently small, and
pu{—e) — ¢ < 0, a contradiction. We have proved that p, 7= 0. Actually, we
must have py > 0, since p%2 + p - % — ¢ = 0 for all & > F(@). Finally, if we
take 2(u) = (—p - u -+ ¢)/p° then 2(%) = F(%) and F(u) > 2(u) for all ue U.

Given a set U, we denote as usual by int U the subset of its interior
points.

If U has no interior points, that is, int U = g, statement (5.iii) has the
following implication. First, let us denote by R the hyperspace of E, of
minimum dimension 7 containing U. Then, UCRCE, ,0<r <n. If Uis
reduced to a single point, then R = U and r = 0. Otherwise, 1 <r < n,
and we denote by Rint U the certainly nonempty set of points of U which
are interior to U with respect to R. Thus, int UCRint UCUCRCE,.
Statement (5.iii) now has the following corollary:

(5.iv) Under the same hypotheses as in (5.iii), F(#) has a supporting
plane at every point % € Rint U.

The following statement also is relevant:

(5.v) Under the same hypotheses as in (5.iii), F(u) is continuous at
every point 7 € Rint U.

Proof. We may well assume that U is not a single point, that 1 <r < n,
and Rint U 5= @. Let @ be any point Ze Rint U, and let 2 =¢ + p - u be
the supporting plane at %, so that F(#) = ¢ -+ p - %. Assume, if possible, that
for some ¢ >>0 and sequence of points u, € Rint U, 4, — % as k— o0, we
have F(u,) — F(#) << —o for all & 'Then, F(u;) > ¢ -+ p - w5, and hence
—o = F(u) — F(@) 2 p - (u, — @). As k—> o0, we have —o > 0, a contra-
diction. Assume now, if possible, that for some o > 0 and sequence of points
u, € Rint U, u;,— % as k— o0, we have F(u,) — F(i) > o for all & Then,
we can choose 7 points v, € U, j = 1,...,, 7, independent in R, such that

lo;—u|=08>0,j= 1,..]., r, and % = ¥ ; (1/r)v;. Since u; — %, we have
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u, =Y\ v; with Ay —1/r as k— 00, j = 1,..., 7. If y=min [Ay, j=1,...,7],
then 0 < A, << Ur, w, = 35 (A, — ) v + (A7)%, and hence

Fi) < A — M) F () + () F (@),

where Ay — A, — 0, Mz — 1. For all & sufficiently large, we have then
F(u,) C F(#) + o/2, a contradiction. This proves that F is continuous at
every point # € Rint U.

(5.vi) Under the same hypotheses as in (5.iii), F(«) is bounded below
on every bounded part K of U.

Proof. Indeed, if K contains more than one point, then K contains
some point ¥ Rint U, and, if 2(u) = ¢ + p - u is a supporting plane at 7,
then F(u) > ¢ + p-uforallue K C U,and ¢ ++ p - u has a finite lower bound
on K.

(5.vii) Under the same hypotheses as in (5.iii), F(u) is upper semi-
continuous at every point Z e U — Rint U along any segment s issued from #
and contained in U.

Proof. Let s be the segment s = @u,, s C U. Assume, if possible,
that there is a sequence of points u,esC U, w,—% as k— oo, with
F(u,) — F(#) = o for all k. Then, all points interior to the segment s are
certainly points of Rint U, say u = (1 — o) % + oy, 0 << a < 1, and since
Fu) < (1 — o) F(u) + oF(u,), we see that F is bounded above on s. Since
by, = w, — %—>0 as k— o0, there is a sequence of numbers B, > 1 with
By —> 00, Buly,—>0 as k-» co. Hence, the points 1, =% + B,(u;, — 7)),
k =1, 2,..., are on the straight line from % containing s, and %, — % as & — o0.
Thus, u, €5, u,’ € Rint U for all k& sufficiently large, and the following
relations hold:

uy, = Blu + igil(ﬁk — 1),
Flug) < BeF(u) + B (B — 1) F(@),
Fluy) 2 BueF () — (B — V) F(@) = F(7) -+ Byo-

Hence, F(u,') ~> + o as k — + o0, a contradiction since F is bounded above
on 5. We have proved that F is upper semicontinuous at % along s.

A function F{u), u € U, convex on a convex set U, may not be continuous
at the points of U — Rint U, as the following example shows. Take
U=[u|0<u<1], and F(u) =0 for 0 <u <1, F(u) =1 for u =0 and
u == 1.
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(5.wviii) If U is a convex subset of E, , if F(u), ue U, is a given real-
valued convex function on U, and the set 0 = [(2°, u) | 2° > F(u), uc U] is
convex and closed, then the function F(u) is lower semicontinuous at every
point % € U — Rint U, and even continuous on each segment s issued from %
and contained in U.

Proof. Assume, if possible, that there is a number ¢ > 0 and points 7,
w,, k=1,2,., with se U — Rint U, u, e U, F(u,) <F(@) — o for all k.
Take %° = F(%), and note that all points (8° — o, %) are in §. Then, as
k —» o0, we see that (20 — o, %) is in the closed set 0, a contradiction, since
(2,%) € O if, and only if, 2 = 2% = F(#). The last part of the statement is a
consequence of (5.vii).

A function F(u), u € U, convex on a convex set U, may not be continuous
at the points of U — Rint U, even if the set 0 is closed, as the following
example shows. Take U = [(#, 0} |0 <u <1, 0 <o << /[l —(1—u)?,
Fu,) =0if0 <u<1,0 <o <o, Flu, v) = Quy (v + oM if 0 <u <1,
# <L v <A/ [1 — (1 —u)P]. Obviously, U is convex, F is convex in (u, v),
but F is not continuous at (0, 0), since F(0, 0) = 0, F(u, +/[1 — (1 —u)?]) =1
forall 0 <u << 1.

Given a convex set U C E,, and a scalar function F(u), u € U, we say that
F(u) is convex at the point # € U provided F(#) < 3., ; \;F(x,) for any convex
combination # = ¥;_; A, of points u; € U.

(5.ix) If U is a convex subset of E, and F(u), u € U, a given real-valued
function, then F(u) is convex at an interior point # of U if, and only if, F(u)
has a supporting plane at 7.

A proof of this statement can be found in Turner (Ref. 16). We repeat
here the proof for the convenience of the reader.

Proof. Suppose F convex at the point %€ int U. Then, the smallest
convex set co O containing § = [(2, u) | = F(u), u € U] C E,,., is the set of
all points (2, u) = Yy A(z;, 1) with (27, 4)e O, 4 >0, + = + A, =1,
v finite. Now, (2, %) ¢ co § if = < F(&) since, for every convex combination
(z,0) = T2 A2, u;) with uw =%, =73, \u;, we have z=3,Nz; =
¥ MF(u;) = F(#@). Hence, 2 > 2, , and therefore (F(#), #) is a boundary point
of co 0. Then, there is a hyperplane V = [(z, 1) | pyz -+ p-u— ¢ =0]CE, 4
such that p,F(@) + p - % — ¢ = Oand pyz + p - u — ¢ > Oforall (2, u) € co 0.

For every convex combination =7 Au; and numbers z; >> F(u;), we have
(z5,u;)eco 0, and po3; + p - u;— ¢ = 0. Therefore, p[3; Azl +p -2 ~c >0,
PoF(@) +p i —c=0, and p[3> \z; — F(@)] = 0. Since this is true for
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arbitrary large z; and A; > 0, we conclude that p, > 0. But p, = 0 implies
pu—c>0 for all ue U, which is impossible, as in the previous proof.
Thus, p, >0, and the hyperplane V' can be written now in the form
2=>b u-t+r with b= —p/py,7 = —c/py, and 2 =b-u-+r for all
(z,u)eco @, F(@) = b - % -+ r. Thus, 2(u) = b - u - r is a supporting plane
for F(u) at u = 4.

Conversely, if F(x) has a supporting plane 2(u) =b-u + 7 at ae U,
then, for every convex combination # = Y; A#; of points u; € U, we have
i aF ) =3 Na(wy) = ;M0 uy vl =b -8 47 =F(u), and F(u) is
convex at u.

The following statement (5.x) concerns the case where U = E,, , F(u) is
convex in # in E,, and (5.x) gives a characterization of those F that are
linear on no straight line of E,, .

(5.x) IfF(u),ucE,,is convex in u, then there are no points u; , u, € E,,
with 2, 7 0 such that

Fluy) = 271 [Fluy + duy) + F(ug — Muey)}  for all real A, 6)

if, and only if, there is a linear function w(u) =7+ b-u, uck,, 7,
b=(b,,..., b,) real, such that F(x) > w(u) for allu e E, , and F(u) ~w(u) — + .

This statement was essentially proved by Tonelli (Ref. 13) under smooth-
ness conditions on F. The proof below, based only on continuity and convexity
properties, can be found in Turner (Ref. 16) and is repeated here for the
convenience of the reader.

Proof. (a) Let us prove the sufficiency. Assume, if possible, that
such a linear function w(u) as above exists and also that (6) holds for some
ug, i €E, ,u; #0. Lets(w)=r +b-u,uckE, ,r,b=(b,..., b,) real, bea
supporting plane of F(u) at #, . Then, F(u) > 2(u) for all e E, , and

Fluy + Ay =7 + b~ (g -+ Aogy),
Fluy — dy) =7 + b - (uy — duy),
Flug) =7 +b-uy.
By difference, we have
Fluty + s) — Flag) = b - (),
)= b

Flutg — huy) — F(uy * (=),

809/6/2-3
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and, by using (6), also
27 F(uy + duty) — Fluy — da)] > 6 - (M),
27 F(uy — duy) — Flug + dy)] 2 b - (—Auy).

Since the sum of these relations is 0 = 0, we conclude that the equality sign
holds in both; hence,

Flug + M) — Fluy) = 27 F(ug + Any) — Fluy — doty)] = b+ (M),
Flug — Muy) — Fltg) = 2-[F(uy — Mty) — Flug + Mag)] = b » (—y),
and, finally,
Flug + Mty) = Flug) + b+ () =7 -+ b - (1 -+ ay).
From F(u) > w(u), we deduce now that
Flug + M) =7+ b+ (g + Mag) =7 -+ b - (uy - Maty),
and, hence,
P (b—b)uy = AE —b) -y

for all A real. Since the first member is a constant, we must have (6 —b) - 4, = 0,
and then

Fluy 4 duay) — wlug + digy) = v + b~ (g + ) — 7 — b - {uy -+ M)
=7 —F+ (b —b)u,

where the last member is a constant. This contradicts that F(u) — w(u) — oo
as | u | — +o0. We have proved the sufficiency of the condition.

(b) Let us prove the necessity. First, assume that F(u) >0 for all
ueE, , with F(0) = 0. Let T be the set of all real vectors & = (4, ,..., b,,) for
which there is some real number 7 such that F(u) > r + b-uforallucE, .
If b, , by € T and 7y , 7, are the corresponding numbers, then, for 0 < a < 1,

Fu) — [ory + (1 — o) 7y — (eby + (1 — ) B3) “ 1]
= ofF) —(ry + b u)] + (1 —o)[F(@) — (rz + 5, -0)] >0

for all ueE, . Hence, ob, + (1 — o) b,e T, and T is convex. Moreover,
T contains the origin since F(u) > O forall uc E, .
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Let us prove that 7 is not contained in any (n — !)-dimensional subspace
of E, . If it were, there would be a unit vector e such that ¢ - b = 0 for all
b e T. Since F(de) + F(—2Ae) > 0 for some A 3% 0, then either F(de) > 0 or
F(—Xe) > 0. Suppose F(Ae) > 0, to be concrete. Let 2(u) = F(Ae) -+ b - (u — Je)
be a supporting plane for F(z) at the point Ae. This supporting plane exists
by force of (5.iii). Then, F(u) = 2(u) for all u, so beT, e-b =0, and
2(ye) = F(Xe) + b - (ye — Xe) = F(de) > 0 for all y real. Thus, in the direc-
tions -ke, the function =(u) is constant and positive. But 2(0) <F(0) =0, a
contradiction. Thus, 7 is n-dimensional.

We know that a convex set in E, contained in no (n — 1)-dimensional
manifold has an interior point. Therefore, let b, ¢ > 0, be such that b € T and
b —b| <e implies be T. Let 7 be a constant such that F(u) > w(u) =
#-+b-u for all ueE, . Suppose that lim inf[F(u) — w(u)] # -+ 0, where
lim inf is taken as | # | — + 0. Then, there is a constant ¢ > 0 and a sequence
[#,] such that |, | — + o0, F(uy) — w(u,) < a for all k. Without loss of
generality, we can assume that u,/| u; | converges to a unit vector # as
k— . Then, b+ eicT, and there is a constant 7, such that
() = ry + (b + eit) - u < F(u) for all u. Thus,

F(uk)ww(uk)>rl+(5+€ﬁ)uk“'"fmg‘uk
=7y — F -} €t - uy,

=y —F €| up i (uyf] w4y |) — o0

as k — o0, a contradiction. Thus, F(#) — w(u) — -+c0 as | # | — +o0.

We have proved the statement for functions F with F(u) > 0 and F(0) = 0.
For an arbitrary F(u), let 2(u) = F(0) -+ b, - 1 be a supporting plane for F(u)
at the origin. Let G(u) = F(u) — z(u). Then, G(u) = 0 for all ue E, and
G(0) = 0. Thus, G satisfies the hypotheses assumed at the beginning, and
there exists wy(#) = ry -+ b, - u such that G(u) > wy(u) for all « and
G(u) — wy(u) — +o0. Let wl(u) = z(u) - wy(u). Then, F(u) — wlu) =
G(1t) — wy(u) >0 for all u € E,,, and lim[F(u) — w(u)] = im[G(u) — wy(u)] = + o,
where both limits are taken as | u | — -+ co. Statement (5.x) is thereby proved.

6. Seminormality of Convex Functions

As usual, let 4 be a closed subset of the x-space and fy(x, ) a given
scalar function continuous on 4 X E, .
The function fyx, u) is said to be weakly seminormal in u at the point



126 JOTA: VOL. 6, NO. 2, 1970

(%, u)e 4 X E,, provided, given e > 0, there are numbers § >0 and r,
b = (by,..., b,) real such that

(Xy)  fixuwy=r+b-u forall xeNyx), uck,,
X)) f@mD<r+b-ate

The function fy(x, ) is said to be weakly seminormal in # at the point
¥ed if it has the just-mentioned property at (%, @) e A X E,, for every
uck, .

The function fy(x, u) is said to be seminormal in u at the point
(7)€ A X E,, provided, given ¢ > 0, there are numbers § > 0, » > 0, and
7, b = (by ..., b,) real such that

SNY  fixwy=r-+but+v|iu—u| forall xeNyx), uek,,
SN") [y F @) <rtb-wte

The function fy(x, u) is said to be seminormal in # at the point ¥ € 4 if
it has the just-mentioned property at (¥, #) € 4 X E,, for every € E,, . These
concepts of seminormality are essentially due to Tonelli (Ref. 13).

Requirement (SN”) is often stated in the stronger form (SN”*):
Jolx,u) <7+ b-u-+ eforall xe Ny&), uckE,,, |u— u| <6 As we shall
see, statement (6.1) below holds for both forms (SN”) and (SN"*).

(6.1) If f(x, u) is continuous in 4 X E,, and convex in u for every x € 4,
then f; is seminormal in # at ¥ if, and only if, for no%, u, € E,, ,u, =0, it
occurs that fi(¥, #) = 27 [f (&, # + Auy) + fo(® % — Auy)] for all X = 0.

This statement was proved by Tonelli (Ref. 13) under smoothness
conditions on F. The proof below, based only on continuity and convexity
properties, can be found in Turner (Ref. 16) and is repeated here for the
convenience of the reader.

Proof. (a) Suppose fy(x, #) seminormal in u at the point ¥ € 4. Then,
for every u e E,, , there are constants 7, b = (b, ,..., b,) real and v > 0 such
that (SN') and (SN”) hold. Let {(«) denote {(u) = » + b - u. If 3°; Nju; is any

convex combination of points u; € E,, , with % = 3; Aju; , then

fo®@ @) <@ + e =Y M) + ¢ <X Nfl®w) + e

where € is arbitrary. Thus, f(¥, ) is convex in u at the point u == 7.
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If there were points %, u, € E,, with u; # 0 such that
27U fo(®, 7 + Auy) -+ fol® & — duy)] = f(%, #) ™
for all real A, then, by force of (SN),

Jo(®, @) = 27 fol®, & + huy) + fo(®, & — duy)]
= 271 4 dug) + L@ — da)] + 20 [ A ] o | = {(@) + 20 [ A ] [y |-

This is impossible since A can be arbitrarily large. We have proved the
necessity of the condition.

(b) Let us assume that f(x, u) is convex in % and that, for no points 7,
u, € E,, u; 0, the relation fy(¥, #) = 27Y[ (& @& + Auy) + foX, @ — duy)]
holds for all A >0, and let us prove that f; is seminormal in u at ¥ 4.
Let @ be any point of E, , and let v(#) = r; + b, * u be the supporting plane
of fo(%, u) at uw=1u. Let w(u) =7+ b u be the function satisfying the
requirements of (5.x) for fy(%, u) thought of as a function of # alone. Then,
for 0 < o < 1 and all u, we have

Jo(@ v) — [aw(u) + (1 — Jo()] = o fo(® #) — w(w)] + (1 — [ fo(% #) — e(w)] > 0.
Let oy, 0 < oy < 1, be so small that « | w(@) — v(@)] < /4, and let

2(u) = ogulu) + (1 — o) v{u) — €/4.

Then,
fo(®, u) — 2(u) = o fol®, 1) — wlw)] + (1 — ) fol®, u) — o(w)] + €/4
>ef4 foral uck,, 8
Um[ fo(®, u) — 2(W)] = +o0  as |u|— +o0, )
fol®, @) — (1) = o) — 2(%) = x[v(#) — w(@)] + /4 < ¢/2. (10)

From (9), we conclude that, for some m > Q, we have

o Lfo® w) — 2(w)] > 2e.

Now, define n(x) = inf[f(x, #) — 2(u)], where inf is taken for
u— % | =m. Then, n(x) is a continuous function of x for xe 4, and

&) > 2e.
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Then, (8)-(9) above and the continuity of (x) imply that there is § > 0
such that

Folw,u) — 2(u) > €/8  for |a—%| <6, ju—u|<m, (11)
2x) > 98 for |x—&| <8, (12)
folx, ) < 2(u)+e for |x—X| <8, |u—u| <8 (13)
Relation (13) 1s requirement (SN”) [actually, the stronger statement (SN"*)].
If v = ¢/8m, then (11) implies
Jol, ) —2() —viju—@| >(8) —viu—%]| > 8 —¢/8=0

for |0 — x| <8, ([u—u|<<m. For \u—7|>m let a=m/ju—7)|,
i

so 0 <a <1, and let us define w; = o(u — %) + % Then, |, — % | =
(mflu—a|)|u—a|=m, u, = au -+ (1 — o) %, and thus, for |x — & | < §,
Jol®, ) < ool w) + (1 — o) folv, &),
fo®, ) — 3(0) < o folx, w) — 2(W)] + (1 — Q) folw, #) — (@)},
ol 1) — 5(0) > £, @) — @) + (1oL foles ) — 3] — [, @) — 2(@)}
> 0+ (1/o)[n(x) — €] > (1/x)(9€/8 — €} = €/Ba.
Since ov | 4 — % | = ¢/8, we have

oz, u) — 2(u) — v |u — i | > (¢/8a) — (¢/8a) = 0,

or fo(x, u) > 2(u) +v|u — @ | for all # and |x — & | < 8. This is require-
ment (SN'). Statement (6.1) is thereby proved.

7. A Third Criterion for Property (Q)

We give here a simple criterion for property (Q) of the sets J(x) of
Section 3 for the case in which f is linear in u.

(7.1) [A criterion for property (Q) for f linear in «.] If A is closed,
U=E,, M= A4 x E,, if fi(» u) is continuous on M, convex in u, and
seminormal in # at a point ¥e 4, if f(», u) = B(x) u + C(x), where the
matrices B, C have entries continuous on 4, then the sets J(x) satisfy property

(0) at x.
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Proof. By seminormality, we know that there is a neighborhood N; (¥)
of #in 4 and real numbers#, b = (b, ,..., b,) such thatfy(w, ) —7r — b-u >0
for all x € N, (%), u € E,, . By replacing f, by f, — 7 — b - u, if necessary, we
see that it is not restrictive to assume fo > 0 for all x € N; (¥) and u € £, .

Thus, fo(x, u) =0 for all xe N, (%), u€ E, , and the sets O(x) are
defined by [(2°, 2) | 2° = fo(», u), 2 = f (¥, u), u € E,]. We have to prove that
§ = (2% 2) e s cl co O(%; 8) implies #e O(x). Let § be a given point
£ = (2% 2) € N cl co O(F; ), and let us prove that £ € §(%). For every § > 0,
we have £ = (2°, #)eclco O(%; 8), and thus, for every § >0, there are
points Z = (2% 2) € co O(%; 8) at a distance as small as we want from
& = (5% ). Thus, there is a sequence of numbers §; > 0 and points
%, = (22, ) € co O(F; 8;) such that 8§, —0, % —F as k—> co. In other
words, for every integer &, there is a system of points x,” € N, (%), ¥ = 1,..., »,
say v = n -+ 2, corresponding points £, = (2%, 2,) € O(x,"), points w,* € E,,
and numbers A, 0 < Ay < 1, y = 1,..., v, such that

1=3A%  &=YN%, 5 =YX, 5=y (14)

2 = flo, uY), 2 = f(wy?, ) = Blag) wyr + Cley?),

wherey = 1,...,v;k =1, 2,...; where 3 ranges overall y = 1,...,v; x,” € Nsk{:i);
and xpy — % 8, — 52> 2 5, —>Fask—> o0,y = L., v

By seminormality of f, at the point ¥, there are numbers 8', 0 < 8" < §,,
v > 0, 7 real so that fi(x, u) = r + v | u | for all x € Ny(%). If & is sufficiently
large so that §, << 8" < §,, and hence | x — & | < 8, < &', and because
{ =17 - v|ulisa convex function of #, we have

zko == Z Ak"’zgv 2 Z )lk”ﬁ)(xk", uk”) 2 Z )\ky[T —E‘ v f uk” I} > ¥ + v l Z Akyuk’y E.

Thus, | T A7uwy | <viz — 7], where 2,°— 2% as £— co. This proves
that 3 A u,”, k=1, 2,..., is a bounded sequence of points of E,. By a
suitable extraction, there is a subsequence, say still [%], such that
U, = > Ny -—>ickE, as R — oo,

From the third of relations (14), where 2,2 — 2% 2% >0, 0 < A < 1,
we deduce that each of the v sequences [A2Y, &k =1,2,..], y = L., v, is
bounded. From the fifth of relations (14), we then deduce that

A2 = N folwy, we) = N + v [ w? ),

and hence Ay | w” | < v A22Y + [#[]. Thus, each of the » sequences
A k= 1,2,..],y = 1, 2,..., », is bounded.
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If we denote by 4,7 the expression
4y = ,\k?[(B(xk‘/) Y + C(xk")) — (B(o’c") w4 C(éc‘))],
or
4y = (B(w) — BE)wm) + %(Clx?) — C(F)),
and because of the continuity of B and C, and of x,” — &, 0 << A < 1, we
conclude that 4, -0 ask— oo,y = 1,..., ».
Given € > 0, by the seminormality of fi(x, ) at ¥, we can determine
new numbers 8" > O and 7, b = (b, ,..., b,) real so that
folx,w) =r+b-u forall xeNg&), uck,,
fEmT) <r+b-ate

Now, we have

20 =Y ARy = Y Nl ) Z Y NTr + b w] =1+ b -
b a by — @) S 8) b — ) — 6

2 = Y ARy = 3 M[B(ag) wy” + Clag)] = 3. M[B(®) uy -+ C(®)] + 4y
= B(&)u, + C(¥) + 4y .

At the limit, as & — o0, we obtain
z0 >f0(;’?’ ﬁ) — & g = B(‘i’.)ﬂ + C(‘EL

and, because ¢ >0 is arbitrary, also 2° > f(&, %), ¥ =f(& %); hence,
§ = (2° %) € O(F). Statement (7.i) is thereby proved.

8. The Function T

Given 4, U(x), M, fo, f = (fi o fu)» Q(x), O(x) as usual (4, M closed,
fo , f continuous on M), let us recall here that the sets O(x) are the projections
of the sets §(x) C E,,, on the z-space E, . Hence, for every (3%, ) € O(x),
we have 2 € O(x), and 2 = f(x, ©), 2° = fy(x, u) for some u € U(x). Conversely,
if 2eQ(x), hence 2= f(x,u) for some ue U(x), all points (20, 2) with
20 > fy(x, ) certainly are in O(x).

For any fixed & € 4, let us consider the following scalar function defined
on O(%):

T(x; %) = infl fy(® ) | 5 = f(® u), we U(E)]

—inf[20 | (2%, 2) e 0(®)], =2eQ(F).
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Then, for ¥€ A, we have —co < T(2; &) < + o0 for all x e O(F). We shall
consider T(z; X) as a function of z in O(%).

Note that the convexity of §(¥) C E,,, implies the convexity of §(%) C E,,
but Q(#) may not be closed even if J(F) is closed. Also, we shall denote by
R the linear manifold in E, containing Q(%) of minimum dimension r; thus,
O@F)CRCE,, 0 <r < n As usual, we shall denote by int (%) the set of
all z € E, which are interior to (%) with respect to E,, and by Rint Q(¥) the
set of all points z which are interjor to Q(%) with respect to R; thus,
intQ(x)C Rint Q) CO®)CRCE,.

(8.i) If (%) is convex, then either T(z; ¥) = — oo for all 2 € Rint O(%)
or T(z; ) > —oo for all 2 Q). In the latter case, T(z, ¥) is finite every-
where and a convex function of = in O(&), T(z; &) is bounded below on every
bounded subset of O(%), and T(z; ¥) is continuous in the convex set Rint J(x)
open with respect to R. Finally, if §(%) is convex and closed, and
T(z, &) > —oo for all x e Q(x), then T(z; &) is lower semicontinuous at every
point x € Q(¥) — Rint O(X).

Proof. If O(%) is a single point, then » =0, RintQ(F) = &, and
nothing has to be proved. Assume that Q(¥) is not a single point. Then,
1 <r < and RintQ(F) = ». Let ¥ be any point 7€ Rint §(X). Assume
that, at some point z, € Q(¥), we have T(z;,¥) = —oo, and let us prove
that T(z; &) = — co. For any integer %, there are points (2,0, %) € O(%) with
2,8 < —k, B =1,2,.... Take A = 2 — %, and choose § > 0 so small that
2, = ¥ — A € Rint Q(%). Take any point (2, 2,) € O(¥) and note that all
points

(04220 + (1 — @) 20z + (1 — o) 31), 0<e<],
belong to O(%). In particular, for « = (I -+ 8)~%, we have

oy F (1 —ajay = —A8) + {1 —a)zy
=F (1 —a)(f —2) —aA8 =F + M| —a —od) =7,

T(F &) < oz® + (1 — @) 2,2 < (1 + 8) 2,0 — (1 — (1 + 8) )k,

where the last term approaches — oo as & — c0; hence, 7(%; &) = — o0. Since
# is any point of Rint Q(¥), we have proved the first part of (8.1).

The remaining parts of (8.1) are now a consequence of the definitions
and statements (5.v), (5.vi), (5.viii).

The first of the two cases mentioned in (8.i) may actually occur, even in
situations where the sets § have property (Q) at # Indeed, take m = # = 1,
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fo=1uf=0U=E . Then,O =[2]2=0],0 = [(2% 2) | € B, 2 = 0],

and T'= —o0. As another case, take n = 1, m = 2, u, » control variables,
fo=u f=sinov, U= [(w,v)eE)]. Then, O = [2| — 1 <5 < 1],
O=1[(%2)]22ck, ~1 <z<1],and T(2) = —o0 for all —1 <2< 1.

In both cases, Q and @ are fixed, closed, convex sets, and certainly have
property (Q). As a third example, take n = 1, m = 2, u, v control variables,
Jo= (1 —sin? o), f = sinv, U = [(u, v) € E,]. Then,Q = [z ] —1 < 2 < 1],
and 0 = [(2% 2) | 2% € E, if —1 <=z < 1, and 2% =0 if z = 4-1]. Finally,
T(z) = —oo for —1 <z <1, T(z) = 0 for 2 = +1.

The following example proves that T'(z; ¥) may not be lower semi-
continuous on Q(%) if the set (%) is not closed. As usual, we shall denote by
[g(P)], the function of P which has the value g{P) if g(P) > £ and the
value 2 if g(P) << h. Now, take n =1, m = 2, u, v control variables,
fo=[(1-sin?o)u] 4, f=sino, U=[(4,v)cE,)]. Then, Q = [z |- 1 <2 <1],
and 0 = [(2°, 20> -1 if -1 <z2<1,22>0 if 2= +1]. Finally,
T(z) = —lfor —1 <2 <1, T(z) = 0 for 2 = 1.

The following example shows that, even if the set (%) is closed and convex,
the function T'(2; ¥) may not be continuous at the points 2 € Q(¥) — Rint Q(%).
Let O be the convex set [(£,7) |0 <<E<1,0<y < /(1 —(1— &P
and let T(£,m) be defined by taking T'=19 for 0 < ¢ <1,0<y < §
T=0QHYHE+n*) for 0 <€ <1, § << A/(1— (1 £)?). As we have
seen in Section 5, T(¢, n) is convex and bounded in Q and continuous in Q
except at the point (¢§ = 0,7 = 0). Now let us define the set §. To this
purpose, let U be the union of the two closed disjoint sets

Uy=[mo,2)|0<a<<], -1 <o<u—1,»>=0]

and

Up=[wo,2)|0<e<,e<o<y[1 -1 —u? = =0

Let o(w) = (w + 1)}, w > 0. Finally, let us define the functions fi(u, v, ),
filu, v, w), fo(u, v, w), continuous on U= U, U U, , by taking f, =u, fy=v -+ 1,
fo=von U, and

fzflxua
n:f2mva

fo = [o(@) + (1 — a(@))(@* + 2*)]/[o(w) + 21 — o(w))u]
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on U, . Then, if @ denotes the set
O=[G%en|=f, E=h,n=F, @v,w)eU = UV U]
and
T, 7) = inf[2*] (2%, & n) e O],

then T is exactly the convex function defined above on Q, and § is convex
and closed.

The follewing example shows that, at points ¥ € ((#) — Rint O(¥), the
supporting plane of J(¥) may be vertical even if O(%) is convex and closed,
(%) is convex and compact, and T'(z; #) continuous on Q(¥). Indeed, take
O=[wo) | +*<1,T=—/(1 - = U=0,h=ufi=0f =T,

7% <
0 =[(=%u09)] 2> T,(xv)e U]

9. A Characterization of Property (Q) for the Sets 0(t, x)

For fixed ¥¢ A and 8§ > 0, let us consider the set

0%(% 8) = o 0 8) = co | |J O()| C By (15)
\zeNglX)
and its projection on the z-space E,
OX(®; 8) = coO(%; 8) = co{ {J Q(wz)} CE,.
weNg(x)
Both sets J*(%; 8) and Q*(&; §) are convex, and
Enn D0 8)20@), B, 0% 8) D 0(®). (16)

As before, we shall consider the following scalar function defined on
O*(%; 9):

TH(; % 8) = infl2? | (2%, 2) € 0¥(%; B)}, 2 €0%(%9).

Thus, we have again — o0 < T%(2; %, 8) < co for all 2 e O*(%; §). Also, for
every z € Q(¥), we have T%(z; &, 8) < T(z; ¥). We now have the following
characterization of property (O):
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(9.i) If T(z; &) > —oo in O(%), then the sets J(x) have property (Q)
at X if, and only if, properties («) and (X) hold at the point &.

Proof. We have already proved in (4.1) that the union of («) and (X)
implies (Q). We need only prove that, if T(z; ¥) > — o0 in Q(%) and J(x) has
property (Q) at &, then both (x) and (X) hold at & We know already that («)
is a necessary condition for property (Q), and thus («) holds. Also, J(%) is
closed and convex. Since T(z; ¥) > —co by hypothesis, we know from (8.i)
that 7'(z; ¥) is a lower-semicontinuous convex function of 2 in the convex
set Q(%). We have already noticed that —co < T%(z; %, 8) < T(z, ¥) < + o0
for all e Q(%) and 6§ > 0.

Now, take any point € Q(¥), and let 2% = T(%, X). Then, by (8.1), the
point (2° %) belongs to O(%), and hence there is some #e U(¥F) with
3= T(%, %) = fo(&, %), & = f(& %). Given ¢ > 0, the point P = (3® — ¢, %)
is not on the closed set J(%), and hence has a minimum distance % from this
set, with 0 <7 <{e. Since T(z;X) is lower semicontinuous at %, there is
some 7', 0 < 5" < %, such that T'(z; %) > T(; ®) — /3 for all z € Q(¥F) with
[z — 23| <7

Let o be the closed ball in E,; of center P = (2% — ¢, %) and radius %'/3.
Let o, denote the projection of o on the 2-space; thus, o is the closed ball
in E, of center ¥ and radius »'/3. We shall denote also by o; the closed ball
in E,, of center # and radius 2»/3.

Now let us consider the convex sets 0*(&; 8) = co J(%; 8) defined in (15)
and their relative functions T*(z; %, 6) defined in (16). Let us prove that
there is some 8, > 0 such that

0 < T(5 &) — Tz &, 8) < /3 (17)

for all 0 << 8 < §, and = € oy N Q*(&; 8). Indeed, in the contrary case, there
would be numbers §, >0 and points z,€0,CE,, k=1,2,.., with
8,—>0 as k— oo and T*(z; &, 95,) < T(g %) — /3, and hence points
(2:2 2,) € co O(&, 8,) with 2,0 < T(5; X) — 5/3 = 8° — 5/3. Hence, for every
8 > 0, we have (2,2, ;) € co O(&; ) for all & sufficiently large, and then also
(2% — 7/3, z;,) € co O(#; 8). If &’ is any point of accumulation of [z,], we have
then 5 e€o;, (2°—5/3,8)eclcoQ(#;8), and by property (Q) also
(8% — 7/3, 8') e O(F) = N, clco O(F; 8). This implies T(F';x) < & —n/3
with & €0y, | & — F] < 29'/3 <7/, a contradiction. We have proved that,
for some &, > 0, relation (17) holds for all 0 < 6 < §, and 2 € o; N O*(%, 5).
Let us prove that any two points

P=(22)ecoc and P =(2"2)e0X53,)
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have a distance {P, P’} > 7'/3. Indeed, either P’ is outside the cylinder
(%€ E, , 2 € 0y), and then

PPz =22 | —F|— |z —F] 223 —73=173
or P’ is inside the cylinder above, and then, by (17), for 0 <6 < §,,
¥ > THE; 8, 8) > 1(E, &) — /3 = 30— 3,

(P P) 2 2" — 20 = [0 — (39 — &)] + [ — 8] + [§0 — ¢ — 2]
>e—93—{P,P} =79 —n/3—n/3=nf3

Thus, the convex sets ¢ and *(#; 8) have a distance > %/3, and the
same occurs for the convex closed sets o and cl 0%(%, §), ¢ compact. We
conclude that there is some hyperplane IT in E, , separating the two convex
sets ¢ and cl 0%(; §).

This hyperplane IT must intersect the vertical segment

[50— e+ 73 <20 < 305 — 3]

at some point (2° = 7, ¥ = %), and IT cannot be parallel to the 2-axis, other-
wise all points of the straight line ¥ = ¥ would be on 17, in particular, the
center P of the ball o, and not all points of o could be separated from J*(&; 8).
Thus, I is of the form

I 2=r4+b-(g—2)=@F—5-2)+b-2,

O(%) as well as cl §%(&; §) are above I7, and thus (2°, 2) € ¢l §*(x; 8) implies
2= (r —b- %)+ b- 2z In other words, for 0 <8 << 8, xe Ny(&), xc 4,
uwe U(x), we have fy(x, u) > (r — b+ )+ b+ f(x,u). On the other hand,
fo(Z0) =8"= (8" —e) te<r+e=(—b-3)+b-5- e Wehave
proved that property (X) holds at the point ¥ € 4. Statement (9.i) is thereby
proved.

We now state, for the convenience of the reader, a criterion for property
(Q) recently proved by Olech (Ref. 6). Let us consider again the subsets O(x)
defined in Section 3 of the #-space E,,,, & = (29 2) = (&9 z%,..., 2*). We
shall denote by ¢ = (% ¢) = ( éY..., "), d = (d° d), ¥ = (2%, 2) arbitrary
points in E,_, . For any point x € 4, let C(x) denote the set

Clx) = [f€Eppy | 5+ Ne((x) forall A =0 and 3e0(x)].

Obviously, C(x) is a cone of vertex ¢ = 0 in E,,_; . The set C(x) is said to be
the asymptotic cone of the set O(x). It is easy to see that, if J(x) is convex, so
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is C(x); if O(x) is closed, so is C(x). Let I' denote the particular cone in E,,,
made up of the only positive half axis 2° > 0, or

F=[28=(202)]|2">02=0].

Then, I' C C(x) for all x € 4.
We shall denote by C%x), or polar cone of C(x), the set

Cx) = [de By |d ¢ <0 forall ¢eC).
If C(x) = I, then obviously C® = " = [d = (d° d) € E,, | d* < 0,d e E,].

(9.ii) [A criterion for property (Q).] If the sets O(x) satisfy property (U)
in A (hence, they are closed and their graph is closed), if they are convex
and do not contain any line, if the asymptotic cone is constant, or
C(x) = C = const, and for each number » > 0 and point d € int C°, C° the
polar cone of C, we have

sup  sup (d-%) < +oo,

xed, |e|<r ZeQ()

then the sets O(x) satisfy property (Q) in 4 (see Olech, Ref. 6, p. 169).
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