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Seminormality and Upper Semicontinuity in Optimal Control I 

LAMBERTO CESARI 2 

Abstract.  This paper concerns the concept of upper semicominuity of 
variable sets, precisely the variant of Kuratowski's definition of upper 
semicontinuity that Cesari has denoted as property (Q). This concept has 
been used by Cesari in most of his papers on existence theorems for optimal 
solutions, and later used by Olech, Lasota and Olech, Brunovsky, Baum, 
Suryanarayana, and Angetl. First, criteria are given for property (Q) in 
addition to those which had been already given previously. Then, it is shown 
that a slight restriction in the concept can be expressed in a form which is 
similar to Tonelli's concept of seminormality for free problems of the 
calculus of variations. Thus, the property (Q) appears to be a generalization 
to Lagrange problems of control of the well-known concept of seminormality 
for free problems. 

1. Introduction 

In the present paper, we discuss properties of upper semicontinuity of 
variable, convex, closed sets in Euclidean spaces, taking into consideration 
the modification of Kuratowski's concept of upper semicontinuity (Ref. 1), 
which we denoted in Refs. 2-3 as property (Q). We have used this property 
in the proof of lower closure theorems in Lagrange and Mayer problems of 
optimal control. These theorems reduce to well-known lower semi-continuity 
statements for usual free problems of the calculus of variations. Lower 
closure theorems are used to prove existence theorems for Lagrange and 
Mayer problems of optimal control (Refs. 2-3). The same property (Q) 
mentioned above was used again in recent studies by La Palm (Ref. 4), 
Lasota and Olech (Ref. 5), Olech (Refs. 6-7), Cesari, Nishiura, and La Palm 
(Ref. 8), and in recent papers by Cesari (Refs. 9-12) concerning existence 
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theorems for Lagrange problems with multiple integrals and partial differential 
equations. In these papers, property (Q) was requested for variable sets (~(x) 
of the form O ( x ) =  [(z ° ,z)]  z ° ) f o ( x , u ) ,  z = f ( x , u ) , u ~ U ( x ) ] C E n + l ,  
where fo and f = ( f l ,  .... f~) are given continuous functions. 

In the present paper, we give criteria (Section 3, 4, 7, 9) for property (Q) 
of the sets O(x) in addition to those already proved in Refs. 2-3 and those 
proved by Olech in Refs. 6-7. In particular, we show (Section 4 and 9) 
that a slight particularization of property (Q) for these sets ~(x) can be 
expressed in a form which is similar to Tonelli's seminormality condition 
(Ref. 13) for free problems of the calculus of variations. Thus, property (Q) 
of the sets O(x) is shown here to represent a generalization for Lagrange 
problems of the well-known seminormality condition for free problems. In 
Sections 5, 6, 8, we state a number of properties of convex, real-valued 
functions on a convex subset of E~, related to the concept of seminormality, 
and we use these results in Section 9. In Section 7, we prove another criterion 
for property" (Q) of the sets O(x) when f is linear in u and fo is convex and 
seminormal in u. 

2. P rope r t i e s  (U) and  (Q) of  Var iable  Sets 

Let A be a given subset of the x-space Er, for every x e A let U(x) be a 
given subset of the u-space E.~, and let M be the set of all (x, u) with x ~ A, 
u ~ U(x). Thus, M is the graph of U(x) in the space Er × E~.  For every 
2 ~ A and ~ > 0, let N~(2) denote the set of all x e A at a distance ~< ~ from .~. 
For every ~ ~ A and S > 0, let U(2; 8) denote the union of all U(x) with 
x e N~(~), or U(~; 3) = [u ~ Er~ I u e U(x), x ~ _N~(~)]. We say that the sets 
U(x) have property (U) at a point ~ a A if 

u(~) = 0 cl u(~; ~). (1) 

We say that the sets U(x) have property (Q) at ~ e A if 

g(x) = 0 cl co u(x; ~). (2) 
8 

Here, cl and co denote the closure and the convex hull, respectively, of the 
sets under consideration. We say that the sets U(x) have property (U) [(Q)] 
in A if this property holds at every point ~ ~ A. Property (U) is Kuratowski's 
concept of uppersemicontinuity of sets (Ref. i) and was used, for instance, 
by Choquet (Ref. 14) and Michael (Ref. 15). 
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Note that in (1)-(2) the sign C holds trivially, and thus the actual require- 
ments can be written in the form 

U(~) D N cl U(~; 3) or U(~) D N cl co U(~; 3), 

respectively. The  following statements are easily proved: 

(2.i) 

(2.ii) 

(2.iii) 

If  U(x) has property (U) at ~, then U(2) is closed. 

If U(x) has property (Q) at ~, then U(~) is closed and convex. 

If  A is closed, then U(x) has property (U) in A if, and only if, 
M is closed. 

A number of other statements concerning properties (U) and (Q) have 
been stated in Refs. 2-3 and wilt not be repeated here. 

I f f (x ,  u) ~ (f l  ,..., f~), (x, u) ~ M,  is a given vector function, f :  M -+ E~ , 
we shall denote by Q(x) C E~ the set Q(x) = f ( x ,  g(x)), or 

Q(x)  = [z = l = f ( x ,  u), u V(x)]. 

3. The  Sets  Q(x) a n d  a F i r s t  C r i t e r i o n  fo r  P r o p e r t y  (Q) 

In Lagrange problems of optimal control and the calculus of variations, 
besides the vector funct ionf(x,  u) = (fl  ,...,f~), also a scalar function fo(X , u) 
is given, f0 = M -+ E 1 . 

Iff(x,  u) ~ (fo , f )  ---- (fo ,f~ ,...,f~), then we may denote by ~)(x) C E~+~ 
the set f ( x ,  U(x)), or Q(x) - [(z °, z) I z  ° -~f0(x, u), z = f ( x ,  u), u ~  U(x)]. 
Also, we shall denote by ~(x) the set 

~(x) = [(z °, z) ] z ° ~ fo(x, u), z ~ f (x ,  u), u ~ U(x)]. 

We may say that ~(x) is the.figurative and that ~(x) is the set of points above 
the figurative. Note that, for every x ~ A,  the set Q(x) is the projection on the 
z-space E~ of the set ~ (x)C E~+ 1 . Thus,  if 0(x) is convex, then certainly 
Q(x) is also convex. 

We shall say that a function g(x, u) is of slower growth than f0(x, u) as 
t u I -+ ~ uniformly in some subset A 0 of A,  provided given ~ > 0 there is 
some ~ = ~ ( ~ , A o ) > ~ 0  such that x ~ A o ,  u e U ( x ) ,  l u l  > / u  implies 
i g(x, u)i < efo(x, u). 
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(3.i) [A criterion for property (Q) under a growth condition.] Given A 
closed, M closed, fo(x, u) and f ( x ,  u) -~ (.[1 ,..., f~) continuous on 3], assume 
that 1 and f are of slower growth than f0 as I u ]---~ + oo uniformly on some 
neighborhood A 0 of a point £ ~ A. If the set ~(£) is convex, then the sets 
0(x) satisfy property (Q) at £. 

A proof of (3.i) has been given in Ref. 3. 

4. A Second  C r i t e r i o n  for  P r o p e r t y  (Q) 

Note that, if the sets 0(x) satisfy property (Q) at a point £ 6 A, then 

0(.~) ~ N d co 0(~; O. 
o 

This means that, if a point (z °, z) belongs to the set ~ cl co 0(~; 3), then 
(~o, ~) ~ 0(~) = [(zo, 0 1 ~o ~> fo(~, u), ~ =f(x, O, u ~ u(e)]; hence, 

z ~Q(~) = [z = / ( ~ ,  ,,), . ~ v(~)]. 

In other words, the following property (~) is a necessary condition for the 
sets O(x) to have property (Q) at £: 

(a) If (z °, z) 6 0e cl co ~.(~; 3), then z ~ Q(£). 

For free problems of the calculus of variations, n ~ m, f = u, o r f i  = u i, 
i ----- 1,..., n, and U(x) ~ En.  For these problems, the sets under consideration 
reduce to Q(x) = En and 

O(x) = [(z0, u) I zO = fo(x, u), u ~ E. ]  C g . + l  , 

O(x) = [ 0  0, ~) I . o / >  f0(x, ~), ~ e E.]  C E~+I. 

Thus, property (a:) is trivially satisfied for free problems. 
We shall now introduce the following condition (X)  at a point £ ~ A: 

(X) For every ~eQ(£) ,  there is at least one point ~ U(£) with 
= f ( £ ,  ~) and the following property: given ~ > O, there are numbers 3 > 0 

and r, b = (b 1 ,..., bn) real such that 

(x') %(~, ~) >i ~ + E b~(~, ~) 

(X") f0(~, if) ~< r + E bffj(x, if) + e. 
J 

for ~1 x ~ A~(~) a~d u ~ U(~), 
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For free problems (that is, m -= n, f = u, U = E,~), the present property 
(X) reduces to the following one concerning the function f0 only: 

(X~) For every ~ = ( ~ t  .... ,~m) eEm and e > 0 ,  there are numbers  
8 > 0 and r, b = (b~ ,..., b~) real such that 

( X / )  fo(X, u) >~ r 4- ~ b~ui for all x e 2¢(2) and all u = (u*,..., u m) ~ E,~, 

(X;)  fo(2, ~) <~ r + E b,W + ~. 

As we shall see in Section 6 below, this condition (X)) is the well-known 
weak seminormality condition of the function f0 at (g, ~) for all ~ e E ~ .  

(4.i) [A criterion for property (Q) under conditions (~) and (X).] If  
conditions (~) and (X) hold at the point £ e A, then ~(£) is closed and convex, 
and the sets O(x) satisfy property (Q) at the point £. 

P r o o f .  To  prove that the sets 0(x) satisfy property (Q) at 2 [and, 
hence, 0(2)  is closed and convex], we have only to prove that, if 
~. = (2 °, 2)  ~ (')~ cl co 0(£;  8), then ~ = (2 °, 2) ~ 0.(£). From condition (~), 
all we know is that 2 ~ Q(~). Hence, there is some ~ ~ U(2) such that 2 = f ( 2 ,  ~) 
[hence, (~, ~) ~ M],  and statements (X ' ) ,  (X" )  hold for a suitable choice of ~. 

For every 3 > 0, we have ~ -= (2 °, 5) ~ el co 0(x; 8), and thus, for every 
S > 0, there are points ~ = ( z  °, z )  ~ co 0(~; 8) at a distance as small as we 
want from ~ = (2 °, 2). Thus,  there is a sequence of numbers  8 k > 0 and of 
points 2k = (zk °, %) ~ co ~(£; Sk) such that 8 k -+  0, zk --* ~ as k -+  oo. In  
other words, for every integer k, there is a system of points xk ~ ~ N~(£) ,  
y = 1,..., v, say v = n + 2, corresponding points zk" = (z~, zk" ) ~ ~(xk'), 
points uff ~ U(xff), and numbers  Ak, ) 0, ~, = 1,..., v, such that 

1 = E = = = E (3) 

z °" >/fo(Xk', u~), z f f  -~ f ( x f f ,  uff), 

where y = i,..., v, where ~ ranges over all y = 1,..., v, and z k" -+ 2, Zk -+ z=, 
%O_,z -O,  % - ~ a s  k - - *  o% y = 1 . . . .  , v. 

By condition (X'),  there is a neighborhood N~(~) of 2 in A and numbers  r, 
b = (b 1 ,..., b~) real such that 

fo(X, u) = fo(X, u) - -  r --  b " f (x ,  u) > 0 for all x e N~(2) and u e U(x), (4) 

fo(£, ,7) --~ .[o(2, if) -- r --  b .  f (& if) < e. (5) 
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For k sufficiently large, so that ] xk" --  21 < 3, V = 1,..., v, we have now, 
from (3)-(4), 

zk ° = E hz~" z°" ~ E A~'fo(xeV, u~') ) ~, ,\ev[r + b . f(x~ v, u~')l 

= X h~'[r -4- b .  z~,] = r -}- b .  X ae"z~" = r + b .  z~. 

As k --~ 0% we obtain 5 ° />  r + b • ~; hence, from (5), 

5 ° ) r + b.  ~7 = r + b -f(g, g) = fo(2, a) -- fo(2, g) ~> fo(~, a) -- e. 

Here, e > 0 is arbitrary; hence, z -° ~ fo (2 ,  ~), while K = f ( 2 ,  ~). This shows 
that ~ = (~o, ~) ~ 0(£). We have proved that the sets ~(x) satisfy property (Q) 
at the point £ a A. Statement (4.i) is thereby proved. 

5. S o m e  P r o p e r t i e s  o f  C o n v e x  F u n c t i o n s  

If  U is a given subset of E~ and F(u), u e U, a real-valued function, then 
F(u) is said to be convex in u provided U is convex, and u l ,  ue ~ U, 0 <~ o~ <~ i, 
implies F(~ul + (1 --  c~) u,) <~ o~F(ul) + (1 --  a)F(u~). The  following state- 
ments are well known: 

(5.i) I f  U is a convex subset of E~ and F(u), u ~ U, a given real-valued 
function, then F(u) is convex if, and only if, uj ~ U, A~ >~ 0, j = 1,..., v, 

V V 

v finite, h 1 + ... + A, -~ 1, u0 = Zj=I A~uj, implies F(Uo) <~ ~j=l 2tjF(uj). 

(5 . i i )  I f  U is a convex subset of E~. and F ( u ) ,  u ~ U, a given real-valued 
function, then F(u) is convex if, and only if, the set 

0 = [(z, u) I~ >/f(u) ,  u e u]  c ~n+, 

is convex. 
A linear scalar function 

z(u)  = r + blu 1 + ... + b,u" = r + b . u, u ~ E ,  , 

r, bl ,..., b~ real, is said to be a supporting plane of F(u), u ~ U, at a point 
a U, provided F(~) = z(~) and F(u) ~ z(u) for all u ~ U. 

(5.iii) I f  U is a convex subset of E~ and F(u), u ~ U, a given real-valued 
convex function, then F(u) has a supporting plane at every interior point 
of U. 
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P r o o f .  We know already that the set 0 = [(z, u) [ z >/F(u), u ~ U] C En+ 1 
is convex, and hence there exists some supporting hyperplane V at (2, ~), 
2 = F ( ~ ) .  I f  V = [(z, u) [p°z + p .  u -- c >~ 0], p0, p = (p l  ..... p'~), c real, 
then p°2 -5 p . ~ - -  c = 0 and p°z + p • u -- c >~ 0 for all u ~ U and z ~ F(u). 
Let  us prove that p0 =A 0. Indeed,  if p0 = 0, then we have p • ~ --  c = 0, 
p - u - - c > / 0  for a l l u e U .  I f u  t e e  h i s  a p o i n t w h e r e p . u  1 - c > 0 ,  and 
E real, then for u = u(e) = eUl + (1 - -  e) ~ we have p .  u(E) - -  c > 0 for all 

> 0 ,  and p u ( E ) - - c  < 0  for all e < 0 ,  with u(e)- -+~ as e - + 0 .  Since 
E int U, then both  u(e), u(--e)  belong to U for e > 0 sufficiently small, and 

pu(--E) - -  c < 0, a contradiction. We have proved that Po ~ 0. Actually, we 
must  have Po > 0, since p°z + p • ~ - -  c > / 0  for all z >/F(~).  Finally, if we 
take z(u) = ( - - p .  u + c)/p °, then  z(~) = F(~) and F(u) >/z(u)  for all u e U. 

Given a set U, we denote as usual by int U the subset of its interior 
points. 

I f  U has no interior points, that is, int U = ~ ,  statement (5.iii) has the 
following implication. First, let us denote by  R the hyperspace of E n of 
min imum dimension r containing U. Then ,  U C R C E~ ,  0 ~ r ~< n. If  U is 
reduced to a single point, then R = U and r = 0. Otherwise, 1 ~ r ~< n, 
and we denote by Rint  U the certainly nonempty  set of points of U which 
are interior to U with respect to R. Thus ,  int U C Rint  U C U C R C E n . 
Statement (5.iii) now has the following corollary: 

(5.iv) Under  the same hypotheses as in (5.iii), F(u) has a supporting 
plane at every point ~ E Rint  U. 

T h e  following statement also is relevant: 

(5.v) Under  the same hypotheses as in (5.iii), F(u) is cont inuous at 
every point ~ e Rint  U. 

P r o o f .  We may well assume that  U is not a single point, that 1 ~< r ~ n, 
and Rint  U if= ~ .  Le t  ~ be any point  ~ R i n t  U, and let z = c + p  • u be 
the support ing plane at ~, so that F(~) --~ c + p • ~. Assume, if possible, that 
for some c~ > 0  and sequence of points uk ERin t  U, u k - - ~  as k--~ 0% we 
have F ( u k ) - - F ( ~ )  ~ - - a  for all k. Then ,  F(uk) ) c + [ . u k ,  and hence 
- -a  >/F(uk) --  F(rt) >/p"  (u k --  ~). As k --~ 0% we have - - ~ / >  0, a contra- 
diction. Assume now, if possible, that for some cr > 0 and sequence of points 
uk ~ Rint U, uk --* ~ as k --~ 0% we have F(uk) -- F(~) >~ cr for all k. Then ,  
we can choose r points v~ ~ U, j = 1,..., r, independent  in R, such that 
] vj - -  u ] -~ 8 > 0, j = 1,..., r, and ~ ----- ~]j (1/r)vj. Since uk "-* ~, we have 
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us = ~jljk%' with Ajk--~ 1/r as k -+  Go, j = I, .... r. I f  Ae = min [;tjk, j =- 1,..., r], 
then 0 ~ A k <~ l/r, u~. ~ X~ (A~'k --  A~) v~ -}- (A~r)~, and hence 

i 

where A~.~- A~---* 0, Akr--~ 1. For  all k sufficiently large, we have then 
F(u~) C F(~) + a/2, a contradiction. This  proves that F is continuous at 
every point  ~ ~ Rint  U. 

(5.vi) Under  the same hypotheses as in (5.iii), F(u) is bounded below 
on every bounded  part  K of U. 

P r o o f .  Indeed,  if K contains more than one point, then K contains 
some point ~ ~ Rint  U, and, if z(u) = c q- p • u is a support ing plane at ~, 
then F(u) >/c + p • u for all u ~ K C U, and c + p ' u has a finite lower bound 
on  K ,  

(5.vii) Under  the same hypotheses as in (5.iii), F(u) is upper  semi- 
continuous at every point ~ ~ U ~ Rint  U along any segment s issued f rom 
and contained in U. 

P r o o f .  Let  s be the segment s = ~u 0, s C U. Assume, if possible, 
that there is a sequence of points u k ~ s C  U, uk--+u as k- -+oo,  with 
F(uk) - -F (~ )  >/a for all k. Then ,  all points interior to the segment s are 
certainly points of Rint  U, say u -~ (1 --  c 0 ~ q- ~u 0, 0 ~ ~ ~ 1, and since 
F(u) ~.< (1 -- a)F(~) + e~F(uo), we see that F is bounded above on s. Since 
hk := uk --  Vt -+  0 as k --* oo, there is a sequence of numbers  flk ~ 1 with 
flk --~ oo, fikhl~ --~ 0 as k --~ oo. Hence,  the points u s' = ~ + fi~(u~, - -  ~), 
k = 1, 2,..., are on the straight line from ~ containing s, and ul; --~. ~ as k ~ oo. 
Thus ,  u~'E s, uk 'a  Rint U for all k sufficiently large, and the following 
relations hold: 

u~ = ~ u ~ '  + ~ ? ( t ~  - 1)~, 

F(u,') >/fi~F(uk) -- (fl~ -- 1)e(~) ~> F(~) + fi,c,. 

Hence,  F(Uk' ) --+ q- oo as k -+  q- co, a contradiction since F is bounded  above 
on s. We have proved that F is upper  semicontinuous at ~ along s. 

A funct ion F(u), u ~ U, convex on a convex set U, may not  be continuous 
at the points of U _ - - R i n t  U, as the following example shows. Take 
U ~  [ u [ 0 ~ u < ~ l ] ,  a n d F ( u ) ~ 0  for 0 ~ u < l , F ( u ) =  1 for u----0 and 
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(5.viii) I f  U is a convex subset of E~,  if F(u), u ~ U, is a given real- 
valued convex function on U, and the set O = [( z°, u) ! z ° >~ F(u), u ~ U] is 
convex and closed, then the function F(u) is lower semicontinuous at every 
point ~ ~ U --  Rint  U, and even continuous on each segment s issued from 
and contained in U. 

P r o o f .  Assume, if possible, that there is a number  ~r > 0 and points ~, 
uk, k ----- 1, 2,..., with ~ ~ U --  Rint  U, u k ~ U, F(uk) < F(~) --  a for all k. 
Take 2 ° =  F(~), and note that  all points ( ~ 0 _  ~, ue) are in ~. Then,  as 
k -~  0% we see that  (z ° --  a, ~) is in the closed set ~,  a contradiction, since 
(z, ~) ~ ~ if, and only if, z >~ ~0 = F(~). The  last part of the statement is a 
consequence of (5.vii). 

A function F(u), u e U, convex on a convex set U, may not be continuous 
at the points of U --  Rint  U, even if the set ~ is closed, as the following 
example shows. Take U =  [(u,v) 1 0 ~ < u ~ < l ,  0 ~ < v ~  ~¢/[1-- ( 1 - -  u)2], 
F(u, v) = v i f0  ~ u ~ 1, 0 ~ v ~ u,F(u, v) = (2u)-l(u ~ + v 2) i f0  < u < 1, 
u ~< v ~< ~/[1 --  (1 ~ u)2]. Obviously, U is convex, F is convex in (u, v), 
b u t F  is not continuous at (0, 0), sinceF(0, 0) = O,F(u, ~/[1 --  (1 -- u)~]) = 1 
for all 0 < u < I. 

Given a convex set U C E~ and a scalar function F(u), u e U, we say that 
F(u) is convex at the point ~ e U provided F(~) ~< ~ = t  A~F(u~) for any convex 
combination ~ ----- ~"~=~ h~u~ of points u~ ~ U. 

(5.ix) I f  U is a convex subset of E~ and F(u), u ~ U, a given real-valued 
function, then F(u) is convex at an interior point ~ of U if, and only if, F(u) 
has a supporting plane at ~. 

A proof of this statement can be found in Turner  (Ref. 16). We repeat 
here the proof for the convenience of the reader. 

P r o o f .  Suppose F convex at the point ~ ~ int U. Then,  the smallest 
convex set co 0 containing (~ = [(z, u) i z >~ F(u), u E U] C En+ 1 is the set of 
all points (z, u) - -  ~=1 As(zj- us) with (zs, us) ~ 0,  1i ~ 0, '~1 ~ -  "'" - ~  )tv = 1, 
v finite. Now, (z, ~) ¢ co ~ if z < F(~) since, for every convex combination 
(z,u)  = ] ~ = i A j ( z j , u j )  with u = u ,  u : ~ / ~ j u  s,  we have z = X s A s z s > /  
~s AjF(us) ) F(~). Hence, z > z0, and therefore (F(~), ~) is a boundary point 
of co ~. Then,  there is a hyperplane V = [(z, u) i Po z + P " u -- c = 0] C En+ 1 
such thatp0F(~ ) + p -  ~ -- c = 0 andpoz + p • u -- c ) 0 for all (z, u) ~ co 0. 

For every convex combination ~ = ~  Aju s and numbers zj ) F(uj), we have 
(z s , u~) ~ co ~, andp0z j + p -  u s - c >/0.  Therefore, P0[Zs Afis] + P " ~ - c >~ 0, 
poF(~) + p .  ~ --  c ~ 0, and P0[X Aszj -- F(~)] 1>- 0. Since this is true for 
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arbitrary large z i and hj > /0 ,  we conclude that Po ) 0. But P0 = 0 implies 
p • u --  c ~> 0 for all u ~ U, which is impossible, as in the previous proof. 
Thus,  P0 > 0, and the hyperplane V can be written now in the form 
z - - - - b . z t 4 - r ,  with b - - - - - - p / p o , r  . . . .  C/po, and z ~ b . u 4 - r  for all 
(z, u) ~ co ~, F(~) = b • ~ 4- r. Thus,  z(u)  = b • u 4- r is a supporting plane 
for F(u)  at u --  e. 

Conversely, if F(u)  has a supporting plane z ( u ) =  b .  u 4- r at ~ ~ U, 
then, for every convex combination ~ = ~ j  Ajuj of points u~ ~ U, we have 
~ j  ?,~F(uj) >~ ~.j Aj.z(uj.) = ~ j  ?tj[b • uj + r] = b .  ~ 4- r = F(~), and F(u) is 
convex at ~. 

The  following statement (5.x) concerns the case where U = E ~ ,  F(u)  is 
convex in u in E~,  and (5.x) gives a characterization of those F that are 
linear on no straight line of E~.  

(5 .x )  ! f F ( u ) ,  u ~ E~ ,  is convex in u, then there are no points u0, u 1 ~ E~ 
with u 1 @ 0 such that 

F(uo) = 2-1[F(uo + Aul) + F(uo - -  Aul)] for all real A, (6) 

if, and only if, there is a linear function w ( u ) =  g 4 - b . u ,  u ~ E ~ ,  f ,  
b----(b 1 ,..., bn) real, such t h a t F ( u ) / >  w(u) for all u e Er~ , and F(u)  - w ( u )  - , .  + co. 

This statement was essentially proved by Tonelli (Ref. 13) under smooth- 
ness conditions onF .  The  proof below, based only on continuity and convexity 
properties, can be found in Turner  (Ref. t6) and is repeated here for the 
convenience of the reader. 

P r o o f .  (a) Let  us prove the sufficiency. Assume, if possible, that 
such a linear function w(u) as above exists and also that (6) holds for some 
gO' /ll ~ E~,  u 1 =~ 0. Let  z(u)  : r + b • u, u e En , r, b ~- (b 1 ,..., b~) real, be a 
supporting plane of F(u)  at uo. Then,  F(u)  >~ z(u)  for all u E E~,  and 

F(Uo + aut) >~ r + b . (Uo + ~ul), 

F(/~o - -  aul) > r + b .  (Uo - -  aul), 

F(uo) = r + b " Uo . 

By difference, we have 

F(Uo + aul) -F(Uo) ~> b. (aul), 

F(u o - -  Aut) --F(uo) >~ b . (--Au~), 

8o9/6/2-3 
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and, by using (6), also 

2-~[F(uo + Au~) - -F(u o - -  Au~)] > /b -  (~Ul) , 

2-X[F(u0 -- hu~) - -F(u  o + aua)] /> b.  (--aua). 

Since the sum of these relations is 0 ---- 0, we conclude that the equality sign 
holds in both; hence, 

F(u  0 + /~Ul) - - F ( u o )  = 2-~[F(uo + au,) - -F(u  o - -  aul)] = b.  (Au~), 

F(u  o - -  au~) --F(uo) = 2-~[F(uo -- hut) - -F(u o + aua)] = b .(--aUl), 

and, finally, 

F(u  o + au~) = F(uo) + b . (auz) = r + b . (u o + au~). 

From F ( u )  > / w ( u ) ,  we deduce now that 

F(u  o + Au~) = r + b . (u o + Aua) > e + 6- (u o + au~), 

and, hence, 

r - - g +  (b -- b)- u 0 >~ A(6-- b)-ut  

for all A real. Since the first member is a constant, we must  have ( / ; -  b) • ul = 0, 
and then 

F(Uo + Au~) - W(Uo + ~u~) = r + b . (uo + Au~) - ~ - 6 . (uo + ~ul) 

= r - - e + ( b - - 6 ) . u o ,  

where the last member is a constant. This  contradicts that F ( u )  - -  w(u)  --> ov 

as t u l --> + m. We have proved the sufficiency of the condition. 

(b) Let  us prove the necessity. First, assume that F ( u ) ~  0 for all 
u ~ E~,  with F(0) = 0. Let  T be the set of all real vectors b = (bl ,..., b~) for 
which there is some real number r such that F ( u )  >~ r + b • u for all u ~ E n . 
I f  b l ,  b~ ~ T and r 1 , r~ are the corresponding numbers, then, for 0 ~ ~ ~ 1, 

F ( u )  - [~r~ + (1 - ~) r~ - (~b~ + (1 - ~)  b. . )-  u] 

= a[F(u) -- (rx + b~" u)] + (1 -- ~)[F(u) -- (r~ + b~- u)] >~ 0 

for all u ~ E  n .  Hence, ~b l + ( 1 - . ) b  2 ~ T ,  and T is convex. Moreover, 
T contains the origin since F ( u )  > / 0  for all u ~ E~ .  
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Let  us prove that T is not contained in any (n -- 1)-dimensional subspace 
of/~'~. I f  it were, there would be a unit  vector e such that e • b = 0 for all 
b ~ T. Since F(Ae) @ F(--Ae) > 0 for some t @ 0, then either F(Ae) > 0 or 
F(- -~e)  > 0. SupposeF(;~e) > 0, to be concrete. Let  z(u)  = F(Ae) + b . (u - -  ~e.) 
be a supporting plane for F(u)  at the point Ae. This supporting plane exists 
by force of (5.iii). Then,  F ( u ) ) z ( u )  for all u, so b ~ T ,  e . b = 0 ,  and 
z(ye ) ~ F(Ae) + b . (7 e - -  Ae) = F()~e) > 0 for all 7 real. Thus,  in the direc- 
tions =Le, the function z(u)  is constant and positive. But z(0) ~ F(0) = 0, a 
contradiction. Thus,  T is n-dimensional. 

We know that a convex set in E~ contained in no (n -- 1)-dimensional 
manifold has an interior point. Therefore, let/~, e > 0, be such that b- ~ T and 
t b --  ~[ ~ e implies b ~ T. Le t  f be a constant such that F(u)  ~ w(u) = 

+ b ~. u for all u ~ En .  Suppose that lira inf[F(u) --  w(u)] @ + o %  where 
lira inf is taken as ] u t --~ + oo. Then,  there is a constant a > 0 and a sequence 
[u~:] such that i ul; ]--~ -k 0% F(uk) - -  w(uk) < a for all k. Without loss of 
generality, we can assume that uk/] uk] converges to a unit vector g as 
k--~ oo. Then,  6 +  e ~  T, and there is a constant r 1 such that 
z(u) = r 1 + (b + e~) . u <~ F(u)  for all u. Thus,  

F(u~) - -  w(u~) >7 rl + (5 + ~ a ) .  u~ - -  e - -  5 -  u~ 

= rl - -  f + ~ g ' u e  

= ~1 - e + ~ l u~ tu" ("dt u~ I) - ~  + o o  

as k -+  0% a contradiction. Thus,  F(u)  - -  w(u) --+ + oo as I u i --~ + Go. 
We have proved the statement for func t ionsF withF(u)  > / 0  andF(0)  = 0. 

For  an arbitrary F(u) ,  let z(u)  = F(O) + b 1 • u be a supporting plane for F(u)  
at the origin. Let  G(u) = F(u)  - -  z(u). Then,  G(u) >~ 0 for all u ~ E,~ and 
G(0) = 0. Thus,  G satisfies the hypotheses assumed at the beginning, and 
there exists w ~ , ( u ) = r  2 + b  z . u  such that G ( u ) ~ w ~ ( u )  for all u and 
G(u) - -  w2(u)"-~ + oo. Let  w(u) = z(u) + w~(u). Then,  e (u )  - -  w(u) = 
G(u) - w2(u ) > 0  for all u a E~, and lim[F(u) - w(u)] = l im[G(u)- w2(u)] = + oo, 
where both limits are taken as 1 u r --~ + oo. Statement (5.x) is thereby proved. 

6 .  S e m i n o r m a l i t y  o f  C o n v e x  F u n c t i o n s  

As usual, let A be a closed subset of the x-space and fo(x, u) a given 
scalar function continuous on A × E~.  

The  function fo(x, u) is said to be weakly seminormal in u at the point 
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(~, ~ ) ~ A  × E~ provided, given e > O, there are numbers 8 > 0 and r, 
b = (b 1 ,..., bn) real such that 

(x/) 

(x;') 

fo(X,U) >/r + b . u  for all x~N~(g), u~E~,,  

f o ( ~ , a ) < ~ r + b ' ~ + e .  

The function f0(x, u) is said to be weakly seminormal in u at the point 
~ A if it has the just-mentioned property at (~, ~)~  A × E,~ for every 

~ c E m .  
The  function fo(X, u) is said to be seminormal in u at the point 

(£, ~) ~ A × E m provided, g i v e n ,  > 0, there are numbers 3 > 0, v > 0, and 
r, b = (b 1 ,..., b~) real such that 

(SN') f o ( x , u ) > ~ r + b . u - + - ~ [ u - - g [  forall x~Na(g), u~E,~,  

(SN") fo(~, g) ~< r -1- b" g + e. 

The function fo(X, u) is said to be seminormal in u at the point ~ E A if 
it has the just-mentioned property at (~, ~) ~ A × E,, for every ~ ~ E , , .  These 
concepts of seminormality are essentially due to Tonelli (Ref. 13). 

Requirement (SN") is often stated in the stronger form (SN"*): 
fo(X,U) < ~ r + b . u + E f o r a l l x ~ N ~ ( g ) , u ~ E m ,  l u - - ~ [  ~<8. A s w e s h a l l  
see, statement (6.i) below holds for both forms (SN") and (SN"*). 

(6.i) Iffo(X, u) is continuous in A × E~ and convex in u for every x ~ A,  
then f0 is seminormal in u at g if, and only if, for no ~, Ux ~ Em, ux = 0, it 
occurs that f0(X, ~) = 2-1[f0(~, ~ q- Au~) q--f0(£, ~ -- Au~)] for all A >/0.  

This statement was proved by Tonelli (Ref. 13) under smoothness 
conditions on F. The  proof below, based only on continuity and convexity 
properties, can be found in Turner  (Ref. 16) and is repeated here for the 
convenience of the reader. 

P r o o f .  (a) Supposef0(x, u) seminormal in u at the point ~E A. Then,  
for every ~ ~ Era, there are constants r, b = (b 1 ,..., bin) real and v > 0 such 
that (SN') and (SN") hold. Let  ~(u) denote ~(u) = r + b • u. If  ~ A~uj is any 
convex combination of points uj e E~,,, with ~ = Z~ Aju~, then 

fo(~, ~) ~ ~(~) + ~ = ~ A¢~(uj) -[- ~ < ~. Ajfo(~ , us) + E, 
J J 

where E is arbitrary. Thus,  fo(~, u) is convex in u at the point u-----~. 
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If there were points ~, ux e E~ with u, v6 0 such that 

2-x[fo(& g -}- Au~) q- fo(g, ~ -- au,)] =fo(& u) (7) 

for all real A, then, by force of (SN'), 

fo(< a) = 2-~[A(~, a + Au~) + f o ( <  a - a,,,)] 

> 2-~[~(z7 + au~) q- ~(,7 - -  Au~)] q- 2v i A 1 t u~ I = ~(a) + 2v I A j { u~ !. 

This is impossible since ;~ can be arbitrarily large. We have proved the 
necessity of the condition. 

(b) Let  us assume thatf0(x,  u) is convex in u and that, for no points 9, 
u 1 ~ E m , u 1 =/= O, the relation fo(& 9) ----- 2-x[f0(~, ~ + aul) ÷ fo(& ~ --  au~)] 
holds for a~l A/> 0, and let us prove that )Co is seminormal in u at £ ~ A. 
Let  ~ be any point of Era, and let v ( u )  - -  r 1 + b 1 " u be the supporting plane 
o f fo(&U)  at u = ~ .  Let  w ( u ) = ? 4 - ~ . u  be the function satisfying the 
requirements of (5.x) for fo(g, u) thought of as a function of u alone. Then,  
for 0 ~ a ~< 1 and all u, we have 

fo (<  u) - [ ~ ( u )  + (1 - ~)v(u)] = s [ f o ( <  ~) - w(u)] + (I - ~)[fo(~, u) - v(u)] > o. 

Let  % ,  0 < % ~< I, be so small that %[ w(~/) --  v(~)l < ~/4, and let 

z ( u )  = %w(u) + (1 -- %) v(u)  - 4 4 .  

Then,  

f o ( &  u) - -  z ( u )  = %[fo(,v, u) -- w(u)] + (1 -- %)[fo(& u) -- v(u)] q- e/4 

>/e[4 for all u ~= g , ,  (8) 

lim[fo(~ , u) -- z(u)] = q-oo as i u ] ---* q-m, (9) 

fo(g, a) -- z(a) = v(a) -- z(~) = %[v(U) -- w(~7)] q- e/4 ~< ,/2. (10) 

From (9), we conclude that, for some m > 0, we have 

inf [fo(~, u) -- z(u)] > 2e. 
lu-al=m 

Now, define ~7(x) = inf[fo(x , u) --  z(u)], where inf is taken for 
[ u -  9 [ =  m. Then,  r/(x) is a continuous function of x for x e A ,  and 
,~(~) > 2~. 
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Then,  (8)-(9) above and the continuity of ~?(x) imply that there is 8 > 0 
such that 

f o ( X , U ) - - z ( u ) > ¢ / 8  for [ x - - ~ l  ~ 3  , j u - - 3 [  % m ,  (11) 

~7(x) > % / 8  for I x - - ~ ]  ~<8, (12) 

fo(x,u) < z ( u ) + e  for l x - ~ l  ~ < a ,  ! u - u i - < . ~ .  (13) 

Relation (13) is requirement  (SN") [actually, the stronger statement (SN"*)]. 
If  v = e/8m, then (11) implies 

f o ( X ,  , , )  - ~ ( u )  - ,, I u - a t  > ( ~ / 8 )  - ,, I ,* - ~ 1  > ~ / 8  - ~ / 8  = o 

for I x - - 2 ]  <~8, I u - - ~ i  ~ m .  For  i u - - 9 1  > m ,  let o ~ = m / i u - - ~ i ,  
so 0 < ~ < 1 ,  and let us define u l = ~ ( u - - 9 ) + 9 .  Then,  l u 1 - u t =  
(m/l u - -  g L) i u - -  9 1 =  m, u l = ~u + ( 1 -  ~) 9, and thus,  for I x - - ~ [ ~ < 8 ,  

fo(x, ul) < o~fo(x, u) + (1 -- ~) fo(x, ~t), 

fo(X, ul) --  z(ux) < c~[fo(x, u) -- z(u)] + (1 -- ~)[fo(X, *7) -- z(g)], 

fo(x, u) -- z(u) ~ fo(x, ~) -- z(a) + (I/oO{[fo(X , Ul) --z(ux)] -- [fo(X, 3) -- z(~/)]} 

> 0 + (1/cO[V(x) -- ~] > (1/a)(9e/8 -- e) = e/8c~. 

Since ~vt u --  9 I = e/8, we have 

fo(x, u) - ~(u) - ~ l u - 31 > (~/8~) - (~/8~) = o, 

orfo(X,U) > z ( u ) + v l u - - ~ l  for a l l u a n d  [ x - - ~ ]  ~<8. This  is require- 
ment  (SN'). Statement (6.i) is thereby proved. 

7. A T h i r d  C r i t e r i o n  fo r  P r o p e r t y  (Q) 

We give here a simple criterion for property (Q) of the sets ~(x) of 
Section 3 for the case in which f is linear in u. 

(7A) [A criterion for property (Q) for f linear in u.] If  A is closed, 
U = E m , M = A × Er,~, if fo(x, u) is continuous on M ,  convex in u, and 
seminormal in u at a point 2 ~  A,  if f ( x ,  u ) =  B ( x ) u  + C(x), where the 
matrices B,  C have entries continuous on A,  then the sets ~(x) satisfy property 
(Q) at ~. 
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P r o o f .  By seminormality, we know that  there is a neighborhood _~o(2) 
of 2 in A and real numbers  r, b : (bx ,..., b~) such thatfo(X, u) - -  r - -  b • u > / 0  
for all x ~ N~0(~), u ~ Era. By replacing fo by  fo - -  r - -  b • u, if necessary, we 
see that it is not restrictive to assume fo > / 0  for all x ~ N~(2)  and u a E m . 

Thus ,  fo(X,  u ) ~  0 for all x~N~0(2),  u ~ E , , ,  and the sets 0(x)  are 
defined by [(z °, z )  t z°  ~ fo(  x ,  u), z =: f ( x ,  u), u a E , J .  We have to prove that 

= ( z  ° , z ) ~ ( ] ~ c t c o ~ ( 2 ; 3 )  implies ~ ( 2 ) .  Let  Y be a given point 
= (z °, 2) ~ (], cl co ~(2; ~), and let us prove that ~ a 0 ( 2 ) .  For every ~ > 0, 

we have ~ = ( 2 0  , 2 ) ~ c l c o ~ ( 2 ; ~ ) ,  and thus, for every ~ > 0 ,  there are 
points ~. : (z ° , z )  a c o o ( 2 ; ~ )  at a distance as small as we want f rom 

= ( ~ , 2 ) .  Thus ,  there is a sequence of numbers  3k > 0 and points 
~ : (za, °, z~) 6 co ~(2; 8~) such that  3~ -+  0, 5~ -+  ~7 as k -~  ~ .  In  other 
words, for every integer k, there is a system of points xe ~ ~ ~%~(2), 7 ~ 1 .... , v, 
say v = n 4- 2, corresponding points 2k ~ = ( z  °~, Ze ~) ~ O(xe~), points u~ ~ ~ E m , 
and numbers  A~ ~, 0 ~< ~ ~< 1, 7 ----- 1,..., v, such that 

z °~' >/ fo(Xg,  u~'), z~ ~' = f(x,~ ~', u~ ~) = B ( x ~ )  u~ ° / +  C(x,~), 

(14) 

where 7 ----- 1,..., v; k = I, 2,...; where ~2 ranges over all 7 = t,..., v; x k, ~ N~(2);  
andxe"  --> og, zk --~xT, zl; °--> 2°, z k - ' +  z as k - - ~  ~ ,  7 = 1,..., v. 

By seminormali ty offo at the point  2, there are numbers  3', 0 < 8' <~ ~o, 
v > 0, r real so that  fo(X, u) > / r  4- v I u I for all x ~ N~(2). I f  k is sufficiently 
large so that 3~. < 3 '  ~ S o ,  and hence Ixk ~ - 2 1  ~<3k < 3 ' ,  and because 

--  r -7 v ] u ] is a convex function of u, we have 

Thus ,  I E A~uk" i ~ v - l [ z k  ° - -  r], where zk ° --~ 20 as k --+ Go. This  proves 
that Z Ak~uk', k := 1, 2,..., is a bounded sequence of points of Er~. By a 
suitable extraction, there is a subsequence, say still [hi, such that  

F rom the third of relations (14), where zk ° --> z -°, z~ r ~ 0, 0 ~ Aay ~ 1, 
we deduce that each of the v sequences [hkvz~Y , k : l, 2,...], ¥ ...... 1,..., v, is 
bounded.  F rom the fifth of relations (14), we then deduce that 

A~z °v ~ Ak~fo(x~ v, u~ ~) ~ A~(r + v [ uk ~ l), 

and hence Ak ~" t uk ~" i ~ v- l [Aa? 'z )  + [ r I]- Thus ,  each of the v sequences 
[Ak'uk ", k = 1, 2 .... ,], 7 = 1, 2,..., u, is bounded.  
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If  we denote by A1J the expression 

Ak ~ ---- ~k~[(B(x~) u~" + C(x~)) -- (B(~) u~, + C(~))], 

or  

~ g  = ( B ( ~ )  - B(~))(~;~.~) + ~ ( C ( ~ )  --  C(~)), 

and because of the continuity of B and C, and of xk ~ -+  2, 0 ~ A Z ~ l, we 
conclude that  A~7 ~ 0 as k -+  0% ~, = l,..., v. 

Given • > 0, by the seminormality of f0(x, u) at 2, we can determine 
new numbers  3" > 0 and r, b ~ (b 1 ,..., bn) real so that  

fo(x,  u) >/ r + b . u forall x e N~.(2),  u e E~ , 

fo(~, a) <~ r + b . ~ + ~. 

Now, we have 

~o = X ~ Y  >~ ~ ~ ' fo(~  ~, ~ ' ) / >  Z ~k'[~ + b. ~ , ]  = ~ + b. ~ 

-~ r + b " ~ + b " (u~ - -  U) <~ fo(2, ~) + b " (u~ - -  ~) - -  e, 

~ = X ~ = Z a~[B(~) ~ + C(x~)] = X ak[B(~),,~. + c(~)] + ,~  

= B(~) u~ + c(~) + A~. 

At the limit, as k --> 0% we obtain 

~o >/f.(~, ~) - ~, ~ -- B(~)~ + C(~), 

and, because e > 0  is arbitrary, also 2 o > / f o ( 2 , ~ ) ,  2 = f ( 2 , ~ ) ;  hence, 
== (5 °, 2) e ~(~). Statement (7.i) is thereby proved. 

8. The Function T 

Given A, U(x), M, fo ,  f = ( f l  ,..., f n ) ,  Q(x), ~)(x) as usual (A, M closed, 
f o ,  f continuous on M), let us recall here that the sets Q ( x )  are the projections 
of the sets 0(x) C E~+ 1 on the z-space E~.  Hence, for every (z °, z )  E ,~(x) ,  

we have z ~ Q(x), and z ----- f ( x ,  u), z ° >~ fo(X, u) for some u ~ U(x) .  Conversely, 
if z~Q(x) ,  hence z = f ( x , u )  for some u ~  U(x) ,  all points (z ° ,z)  with 
z ° )Jo(X,  u) certainly are in ~(x). 

For any fixed 2 E A ,  let us consider the following scalar function defined 
on 0(~): 

T(z ;  ~) ----- inf[fo(g, u) [ z = f(g, u), u ~ U(£)] 

= inf[ z° I ( z°, z) ~ 0(~)], z ~ Q(g). 
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Then,  for 2 ~ A, we have - -co ~< T(z; ~) < + oo for all z ~ Q(~). We shall 
consider T(z; ~) as a function of z in Q(2). 

Note that  the convexity of ~(~) C E~+I implies the convexity ofQ(o2) c E~, 
but  Q(x) may not be closed even if 0(~) is dosed. Also, we shalt denote by 
R the linear manifold in E~ containing Q(2) of min imum dimension r; thus, 
Q(2) C R C E~, 0 ~ r <~ n. As usual, we shall denote by int Q(2) the set of 
all z ~ E~ which are interior to Q(2) with respect to E~ and by Rint  Q(2) the 
set of all points z which are interior to Q(2) with respect to R; thus, 
int Q(x) c Rint  Q(~) c Q(2) c R C E~.  

(8.i) I f  ~(Z) is convex, then either T(z; 2) = --  co for all z s Rint  Q(~) 
or T(z; 2) > --  oo for all z ~ Q(o~). In the latter case, T(z, Y~) is finite every- 
where and a convex function of z in Q(2), T(z; y~) is bounded below on every 
bounded subset of Q(~), and T(z; 2) is continuous in the convex set Rint Q(~) 
open with respect to R. Finally, if ~(2) is convex and closed, and 
T(z, ~) > --oo for all z e Q(o~), then T(z; 2) is lower semicontinuous at every 
point z ~ ~(2) -- Rint Q(2). 

P r o o f .  t f  0(2)  is a single point, then r = 0, R i n t Q ( 2 ) =  ~ ,  and 
nothing has to be proved. Assume that O(2) is not a single point. Then,  
1 ~< r ~ n, and Rint  ~(2)  =~ ~ .  Let  ~ be any point ~ ~ Rint  ~(2).  Assume 
that, at some point z~ ~ ( X ) ,  we have T(z 1 , 2 ) =  --co, and Iet us prove 
that  T(~; X) = --co. For any integer k, there are points (zk °, zl) ff O(Y) with 
zk ° < --k,  k = t, 2, . . . .  Take ~ = z 1 --  ~, and choose ~ > 0 so small that 
z 2 = ~ -  AS ~ Rint~(2) .  Take any point (z~ °, z~)~ ~(2) arid note that all 
points 

belong to ~(~). In particular, for c~ = (1 -~- S) -I, we have 

= ~ - ( 1  - ~ ) ( ~  - z ~ )  - 6 ~  = ~ + A ( 1  - ~ - 6 ~ )  = ~, 

T(~; X) ~< ~z~ ° ÷ (1 -- 6) z~ ° ~< (1 ÷ 8)-lz~° -- (1 -- (1 + 8)-1)k, 

where the last term approaches --  co as k --~ co; hence, T(~; 2) = --  oo. Since 
f: is any point of Rint  (2(2), we have proved the first part of (8.i). 

The remaining parts of (8.i) are now a consequence of the definitions 
and statements (5.v), (5.vi), (5.viii). 

The  first of the two cases mentioned in (8.i) may actually occur, even in 
situations where the sets ~ have property (Q) at 2. Indeed, take m -- n = 1, 
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f o = u , f = 0 ,  U = E  1 . T h e n , Q = [ z I z = 0 ] , Q = [ ( z  ° , z ) [ z  ° G E : , z = 0 ] ,  
and T = --oo. As another case, take n = 1, m = 2, u, v control variables, 
fo = u, f = sinv,  U -- [ (u ,v)~E2] .  Then, Q = [ z [ - -  1 ~ z  ~< 1], 
0 - - [ (  z ° , z ) [ z  ° ~ E : , . - 1  ~<z~<l ] ,  and T ( z ) = - - o v  for a l l - - 1  ~ < z ~ < l .  
In both cases, Q and ~ are fixed, closed, convex sets, and certainly have 
property (Q). As a third example, take n = 1, m -- 2, u, v control variables, 
f0 = (1 -- sin ~ v)u , f  = sin v, U -- [(u, v) G Ez]. Then, Q = [z I - 1 ~ z ~ 1], 
and O = [ ( z  ° , z ) [ z  °EEI  i f - - 1  < z < l ,  and z ° = 0  i f z = ~ l ] .  Finally, 
T ( z ) =  - - ~  for --I  < z < l , T ( z ) = 0 f o r z = ! l .  

The following example proves that T(z; ~) may not be lower semi- 
continuous on Q(2) if the set ~(g) is not closed. As usual, we shall denote by 
[g(P)]h the function of P which has the value g(P) if g(P) ~ h and the 
value h if g ( P ) < h .  Now, take n =  1, m = 2 ,  u, v control variables, 
fo = [ (1-  sin ~ v)u]_:, f-~ sin v, U = [(u, v)G E.2]. Then, Q = [z l - 1  ~< z ~ 1], 
and O = [ ( z  ° , z ) ! z  ° > / - 1  if --1 < z < l , z  ° > ~ 0  if z =  ~1] .  Finally, 
T ( z ) = - - I  f o r - - 1  < z < l , T ( z ) = 0 f o r z =  ~1 .  

The following example shows that, even if the set ~(2) is closed and convex, 
the function T(z; ~) may not be continuous at the points z G Q(~) -- Rint Q(2). 
Let Q be the convex set [ ( f , ~ ? ) 1 0 ~ f ~ < l , 0 ~ < V ~ < % / ( 1 - - ( 1 - -  ~)~)], 
and let T(~,~) be defined by taking T = V  for 0 ~ < ~ < 1 , 0 ~ < ~  ~ ,  
T = (2~)-:(~ 2 + ~/~) for 0 < ~ < 1, ~ ~< ~ ~< %/(1 -- (1 -- ~)~). As we have 
seen in Section 5, T(~, ~7) is convex and bounded in Q and continuous in Q 
except at the point (~ = 0, ~ = 0). Now let us define the set 0. To this 
purpose, let U be the union of the two closed disjoint sets 

U:=[(u ,v ,w)  IO <~ u <~ l , - -1  <~ v <~ u - -  l ,w  >10] 

and 

U½ = [(u,v,w)tO ~ u <~ 1, u ~ v <~ ~/[1 --(1 -- u)2], w >~0]. 

Let or(w) = (u, q- 1)-1, w ) 0. Finally, let us define the functions fo(U, v, w), 
fl(u, v, w),f2(u, v, w), continuous on U = U: w U~, by takingft = u,f~ = v ÷ I, 
fo = v on U : ,  and 

fo = [~(w) + (1 - ~(w))(u~ + v~)]/[~(w) + 2(1 - ~(w))u] 
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on U2, Then, if 0 denotes the set 

= [(z°,  f , ' q ) t  z° >/fo, ~ = A ,  ~ = A ,  (u,v,w) E U ~- UIU U~], 

and 
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r(~ ,  ~) = i~f[zo I (zo, ~, ~) ~ ~?], 

then T is exactly the convex function defined above on O, and ~ is convex 
and closed. 

The following example shows that, at points ~-~ Q(2) - Rint Q(2), the 
supporting plane of ~(2) may be vertical even if ~(,g) is convex and closed, 
Q(ff) is convex and compact, and T(z; 2) continuous on Q(~). Indeed, take 

Q - [(u,v) iu 2 -F v ~ ~ t], T =  - -V(1  - -  u ~ - -  r e ) ,  U = Q , A  = u , A  ~ -  V, f o  = T ,  

= [(~o,., ~) i zo ) T, (., ~) ~ u]. 

9. A C h a r a c t e r i z a t i o n  of  P r o p e r t y  (Q) for  the  Sets Q(t, x) 

For fixed 26  A and 3 > 0, let us consider the set 

0"(,;,) =  o0(x; = co I u O(x/1 
and its projection on the z-space E~ 

Q*(Y:; ~) = c°Q(x; ~) = c° l U Q(x)} C E. .  
~eN~(~) 

Both sets 0"(~; ~) and Q*(~; 3) are convex, and 

05) 

As before, we shatl consider the following scalar function defined on 
Q*(~;  3): 

T*(z; ~, ~) = ~nf{z0 j (z0, ~) ~ 0"(~; ~)}, ~ ~ Q*(~; ~). 

Thus, we have again --oo ~< T*(z; o~, 3) < ov for Mt z ~Q*(~; 3). Also, for 
every z ~ Q(.~), we have T*(z; o~, ~) -~< T(z; ,~). We now have the following 
characterization of property (O): 
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(9.i) If  T(z ;  2) > - -co  in 9(2),  then the sets O(x) have property (Q) 
at 2 if, and only if, properties (~) and (X) hold at the point 2. 

P r o o f .  We have already proved in (4.i) that the union of (c¢) and (X) 
implies (~). We need only prove that, if T(z ;  2)  > - -  oo in Q(2) and O(x) has 
property (~) at 2, then both (~) and (X) hold at 2. We know already that (~) 
is a necessary condition for property (Q), and thus (~) holds. Also, ~(~) is 
closed and convex. Since T(z ;  2)  > - -oo  by hypothesis, we know from (8.i) 
that T(z ;  2)  is a lower-semicontinuous convex function of z in the convex 
set ~0(2). We have already noticed that --  oo ~< T*(z; 2, 3) ~ T(z ,  2) < -~- oo 
for all z ~ ~)(2) and 3 > 0. 

Now, take any point 2 ~ ~(2), and let 2 o = T(5,  2). Then,  by (8.0, the 
point (5O, 2) belongs to Q(2), and hence there is some ~E U(2) with 
2 0 = T(2,  2)  = fo(G ~t), 2 = f ( 2 ,  ~). Given e > 0, the point P = (5O --  E, 2) 
is not on the closed set ~(2), and hence has a minimum distance ~/from this 
set, with 0 < ~ / ~  e. Since T(z ;  2)  is lower semicontinuous at g, there is 
some ~/, 0 < ~ / ~  ~/, such that T(z ;  2) > T(2; 2) - -  ~7/3 for all z ~ Q(2) with 
t z -  21 ..<~'. 

Let  a be the closed ball in E~+ 1 of center P -  (20 - -  e, 2)  and radius ~//3. 
Let  % denote the projection of a on the z-space; thus, % is the closed ball 
in E~ of center 2 and radius ~'/3. We shall denote also by ~1 the closed ball 
in E~ of center 2 and radius 2~)'/3. 

N o w  let us consider the convex sets 0*(2;  3) = co 0(2;  3) defined in (15) 
and their relative functions T*(z; 2, 3) defined in (16). Let  us prove that 
there is some 30 > 0 such that 

0 ~ T(2; 2) --  T*(z; 2, 3) < 7/3 (17) 

for all 0 < 3 ~< 3 o and z ~ ~1 c~ Q*(2; 3). Indeed, in the contrary case, there 
would be numbers  3 k > 0  and points z k ~ I C E ~ ,  k---- 1 ,2  .... , w i t h  
3 k --~ 0 as k -+  oo and T * ( z  k ; 2, 3k) ~ T(2,  2) --  ~/3, and hence points 
(zk °, zk) E co ~(2, 3k) with zk ° <~ T(2; 2) --  ~/3 = 5 0 - -  ~//3. Hence, for every 
3 > 0, we have (zk °, zk) E co ~(2;  3) for all k sufficiently large, and then also 
(2  o - -  v / 3 ,  zk )  ~ co ~(2; 3). If 2' is any point of accumulation of [zk], we have 
then 5 ' a c t 1 ,  (5 ° -  7J3, 2') a cl co ~(2;  3), and by property (Q) also 
(2 0 - -  ~/3, 2')  ~ 0 (2 )  - -  ( ~  cl co ~(2;  3). This  implies T(2 ' ;  2) <~ 5 o --~7/3 
with 2' ~ a~ , I 2 '  - -  2 [ ~ 2~?'/3 < ~', a contradiction. We have proved that, 
for some 3 o > 0, relation (17) holds for all 0 < 3 ~< 3 o and z e al n Q*(2, 3). 

Let  us prove that any two points 

P = (z°,z) e a  and P'----- (z ' ° , z ' )EO*(2;~o)  
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have a distance {P, P'} >~ ~'/3. Indeed,  either P '  is outside the cylinder 
(z ° G E: , z E ~q), and then 

{ P ' , P } ~  l z ' - ~ i  > l z ' - ~ l - I z - ~ l  >.> % ' / 3  - 4 / 3  = 4 / 3 ,  

or P' is inside the cylinder above, and then, by (17), for 0 < 8 ~< 30 , 

z '° > r*(z';  2, 8o) > r(5, 2) -- ~/3 = 8 ° -- ~7/3, 

{ p , ,  p }  ~ ~ , °  _ zo  = [80 _ (~o  _ ~)] + [~,o _ ~o] + [80 _ ~ _ zo]  

~ - 713 - {P, P}  > / 7  - ,~/3 - 7t3 = 713. 

Thus,  the convex sets e and O*(x-; 3) have a d is tance/>  ~/3, and the 
same occurs for the convex closed sets e and cI 0*(2,  8), ~ compact. We 
conclude that there is some hyperplane H in E,+:  separating the two convex 
sets e and cl 0*(2;  8). 

This  hyperplane H must  intersect the vertical segment 

[ 8  0 - ~ + 7 / 3  ~ z ° ~-  8 °, z : 8 ]  

at some point (z ° = r, z : 3), and H cannot be parallel to the z°-axis, other- 
wise atl points of the straight line z == ~ would be. o n / 7 ,  in particular, the 
center P of the bail a, and not all points of a could be separated from ~)*(2; 8). 
Thus ,  H is of the form 

H: z : r  + b . ( z - - ~ ) = ( r - - b ' ~ , ) + b ' z ,  

0(2)  as well as cl 0*(2;  8) are above H, and thus (z °, z) Gcl 0*(x;  8) implies 
z ° / > ( r - b . ~ ) 4 - b - z .  In other words, for 0 < 8 ~ < 8 o ,  xGN~(2),  x ~ A ,  
uG U(x), we have fo(x,u)  > / ( r - - b . 5 ) + b . f ( x , u ) .  On the other hand, 
fo(2 ,~ )  = g o = :  ( 3 o _ e ) +  e < r +  , : = ( r - - b ' £ ) +  b . g +  E. W e h a v e  
proved that property (X) holds at the point 2 ~ A. Statement (9. 0 is thereby 
proved. 

We now state, for the convenience of the reader, a criterion for property 
(Q) recently proved by  Olech (Ref. 6). Let  us consider again the subsets Q(x) 
defined in Section 3 of the ~-space E , + : ,  ~ = (z °, z) = (z °, z:,..., z~). We 
shall denote by g = (c °, c) = (c °, c:,..., cn), d = (d °, d), ~ : (z °, z) arbitrary 
points in E~+:.  For any point x G A, let C(x) denote the set 

C(x) = [g ~ En+: I ~ + M ~ Q(x) for all A >~ 0 and 5 ~ ~(x)]. 

Obviously, C(x) is a cone of vertex g = 0 in E**+I. The  set C(x) is said to be 
the a~ymptotic cone of the set O(x). I t  is easy to see that, if O(x) is convex, so 
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is C(x); if 0(x) is closed, so is C(x). Let F denote the particular cone in E~+ 1 
made up of the only positive half axis z ° >~ 0, or 

r --- [~  = (z  o, z )  I zo >~ 0, z = 0]. 

Then,  F C C(x) for all x ~ A. 
We shall denote by C°(x), or polar cone of C(x), the set 

C°(x) = [dE E,~+, I d. g ~ 0 for all ~ ~ C(x)]. 

I f  C(x) : _P, then obviously C O : po : [d = (d °, d) ~ E~+ 1 i d° ~ O, d ~ E~]. 

(9.ii) [A criterion for property (Q).] If  the sets 0(x) satisfy property (U) 
in A (hence, they are closed and their graph is closed), if they are convex 
and do not contain any line, if the asymptotic cone is constant, or 
C(x) = C = const, and for each number  r > 0 and point d ~  int C °, C o the 
polar cone of C, we have 

sup sup (d '~ )  < +o% 
xeA,I~l-<<r ~eOlx) 

then the sets 0(x) satisfy property (Q) in A (see Olech, Ref. 6, p. 169). 
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