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Multicriterion Structure/Control Design 
for Optimal Maneuverability and Fault Tolerance 

of Flexible Spacecraft 
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Communicated by L. Meirovitch 

Abstract. A multicriterion design problem for optimal maneuverabil- 
ity and fault tolerance of flexible spacecraft is considered. The maneu- 
verability index reflects the time required to perform rest-to-rest 
attitude maneuvers for a given set of angles, with the postmaneuver 
spillover within a specified bound. The performance degradation is 
defined to reflect the maximum possible attitude error after maneuver 
due to the effect of  faults. The fault-tolerant design is to minimize the 
worst performance degradation from all admissible faults by adjusting 
the design of the spacecraft. It is assumed that admissible faults can be 
specified by a vector of  real parameters. The multicriterion design for 
optimal maneuverability and fault tolerance is shown to be well 
defined, leading to a minimax problem. Analysis for this nonsmooth 
problem leads to closed-form expressions of the generalized gradient of 
the performance degradation function with respect to the fault parame- 
ters and structural design variables. Necessary and sufficient conditions 
for the optimum are derived, and the closed-form expressions of the 
generalized gradients are applied for their interpretation. The bundle 
method is applicable to this minimax problem. Approximate methods 
which efficiently solve this minimax problem with relatively little com- 
putational difficulties are presented. Numerical examples suggest that it 
is possible to improve the fault tolerance substantially with relatively 
little loss in maneuverability. 
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1. Introduction 

The problem of the combined design of structures and controls for 
optimal maneuverability has recently received attention in Ref. 1. In that 
work, a maneuverability index is introduced to directly reflect the time 
required to perform a rest-to-rest attitude maneuver for a set of given 
angles. The spacecraft is modeled as a linear, elastic, undamped, nongyro- 
scopic system. The open-loop, bang-bang, time-optimal control history is 
obtained as a function of the spacecraft design parameters. By designing 
the flexible appendages of the spacecraft, its maneuverability index is 
optimized under the constraints of structural properties, and the postma- 
neuver spillover within a specified bound. The spillover constraint is 
achieved by retaining an appropriate number of flexible modes in the 
control design model. The resulting combined design shows that, for large 
flexible structures, the maneuverability can be much improved while the 
spillover is kept within specified requirements. 

Reliability is an important feature for any system. Although operation 
without failure is essential, it cannot be guaranteed that a system will be 
free from faults and their effects during its operational lifetime. In the case 
of a spacecraft, such faults generally include degradation of the system, 
damage from the environment, and change of application condition such as 
change of payload. Furthermore, the spacecraft parameters cannot be 
known precisely, due to modeling errors and human errors in manufactur- 
ing. All such instances will be considered as faults and will generally 
degrade the performance of the system. The open-loop nature of the 
time-optimal bang-bang control makes it difficult to compensate for faults 
by feedback. For this reason, the use of time-optimal control of bang-bang 
type for flexible spacecraft maneuvers has been criticized (Ref. 2): "near 
bang-bang controls are usually very sensitive to model errors; therefore, 
control shaping is an important issue in obtaining robust controls." In 
order to account for the effects of faults, fault tolerance should be 
considered as a part of the design problem. Certainly, one way of doing so 
is to make faults in the system as unlikely as possible. However, this is 
usually beyond the practical capability of designers. For instance, damages 
to a system are usually unavoidable and unpredictable. This paper is 
concerned with improving the fault tolerance of the open-loop system by 
modifying the design of the structure while considering maneuverability as 
the primary objective of design. 

Similar attempts to overcome the effects of faults have been made in 
structural design and control design respectively. Taylor summarizes fail- 
safe design of structures in Ref. 3. In fail-safe design, a system is required 
to meet a set of performance requirements beyond those dictated by its 
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primary purpose. The alternative performance requirements account for 
damage or degr~/d~ttion of the primary structure. Studies of such problems 
are reported in Refs. 4-6, for example. In the area of control design, a 
fundamental challenge is to account for and accommodate the inaccuracies 
in the mathematical models of the physical systems used for design. Such 
requirements lead to the concept of robust control (Ref. 7). Two types of 
robustness are generally considered in the literature, namely, stability 
robustness and performance robustness. Stability robustness is defined as the 
ability to maintain closed-loop system stability, and performance robustness 
as that of maintaining a satisfactory level of performance, in the presence 
of modeling errors, including parameter variations. A direct, more heuristic 
class of method for dealing with the robustness problem is sensitivity 
minimization (Refs. 8-10). Newsom and Mukhopadhyay studied the multi- 
loop robust controller design (Ref. 11). Kosut, Salzwedel, and Naeini (Ref. 
11) used singular-value robustness measures to compare the performance 
and stability robustness properties of different control design techniques in 
the presence of residual modal interaction for a flexible spacecraft system. 
Keel, Lim, and Juang (Ref. 12) developed an algorithm to obtain a state 
feedback controller that, given an allowable tolerance for the closed-loop 
eigenvalue perturbation, maximizes the uncertainty tolerance of the open- 
loop system matrix. Research on integrated structure/control design dealing 
with robustness has been scarce. Lim and Junkins (Ref. 13) considered the 
design problems of optimizing structural mass, stability robustness bound 
of Patel and Toda, and eigenvalue sensitivity with respect to a set of design 
parameters that included structural and control parameters and actuator 
locations. Rao, Pan, and Venkayya (Ref. 14) considered the multicriterion, 
integrated structural/control design problem in which structural weight, 
stability robustness index, and performance robustness index are objectives. 

The objectives of fault-tolerant design and performance robustness 
design are similar, namely, minimizing the performance degradation of the 
faulty system. All the work on performance robustness in the literature is 
done by adjusting the design parameters of the controller to achieve the 
desired goal, with the plant unmodified. In our present study of fault-toler- 
ant design, however, we minimize the effect of fault by adjusting the 
structural design, without modifying the control design. In the literature, 
faults are usually modeled as parameter variations in the system equations, 
and it is assumed that the worst performance degradation happens with the 
largest parameter variation. It will be more meaningful in application to 
directly minimize the worst performance degradation from among those 
associated with each admissible fault by adjusting the design. 

In the present work, we investigate the multicriterion design problem 
for optimal maneuverability and fault tolerance of flexible spacecraft. 
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Consider faults which may happen to the system in the process of model- 
ing, manufacturing, or during its operational lifetime. The effect of these 
admissible faults is to induce a performance degradation, which is defined 
to reflect the maximum possible attitude error after maneuver. The fault 
index formulated to reflect the worst performance degradation from all 
admissible faults is the secondary objective function, while the maneuver- 
ability index is of primary concern. The design problem is a nonsmooth 
optimization problem, because the performance degradation and the fault 
index may not be differentiable. The following fundamental assumptions 
are made to model the faults as covered in this study: 

(A1) 

(A2) 

(A3) 

(A4) 
(A5) 
(A6) 
(a7) 

(A8) 

(A9) 

the structural properties remain constant during the maneuver; 
as a result the induced system dynamics are time-invariant; 
the properties of a fault, i.e., the specification of structural 
degradation or defect, can be expressed via a vector of real 
parameters; 
the elements of the vector in (A2) lie within specified bounds, 
and this set of admissible faults is compact; 
the compact set in (A3) is independent of the spacecraft design; 
the faulty structure is undamped; 
the control input is not changed in the presence of any fault; 
the natural frequencies of the spacecraft are all distinct both in 
the nominal and any faulty configuration; 
the mass distribution and stiffness distribution of the spacecraft 
are jointly continuous functions of the structural design vari- 
ables and the fault parameters; 
the switching times and maneuver time of the time-optimal 
control (see Appendix B) are continuously differentiable func- 
tions of the structural design variables. 

To briefly outline the remainder of this paper, we formulate the 
attitude error, the performance degradation, the fault index, and the 
multicriterion design problem in Section 2. The properties of the perfor- 
mance degradation and the fault index are also presented. Since the 
performance degradation function and the fault index may not be differen- 
tiable, we develop the nonsmooth mathematical programming preliminaries 
in Section 3. The closed-form expressions of the generalized gradients of 
the performance degradation function and the fault index are derived. A 
necessary condition for optimality in this nonsmooth setting is also pre- 
sented. In Section 4, we outline the problem-solving procedure which 
is based on the development from Section 3. Two approximate methods 
to solve the minimax design problems are introduced. In Section 5, we 
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examine in detail some numerical examples. We conclude by summarizing 
the original contributions and limitations of this work in Section 6. 

2. Dynamics Preliminaries and Problem Formulation 

Consider the generic flexible spacecraft of Fig. 1 (Section 5), which has 
been modeled as a linear, elastic, undamped, nongyroscopic system; the 
same model was used in an earlier study (see Ref. 1) for the fault-free 
design. The spacecraft consists of a cylindrical symmetric rigid central 
body, to which N, N > 2, identical flexible appendages are attached with 
uniform spacing between them. For simplicity, we consider the special 
scalar control case where the spacecraft is controlled by only one torquer 
located on the rigid central body. It is to be controlled for attitude 
maneuver, and the amplitude of the torque is limited. The extension to the 
multi-input case is not difficult given the general results on time-optimal 
control discussed in Ref. 26. Let 0 be the attitude variable of the rigid 
central body. The primary objective of the design is to minimize the 
maneuver time of the spacecraft for a specified maneuver angle 0", where 
attitude spillover is required to lie within a specified bound. As indicated 
earlier, we elaborate on this problem in the present study by extending the 
model in order to account for structural faults. 

2.1. Attitude Error. Due to a fault, the control will in general not 
drive the system to the specified final state, an underformed rest state where 
the attitude angle of the central rigid body is the specified maneuver angle 
0". Let t~ be the optimal maneuver time in the absence of structural fault. 
Let 0e(t ) be the attitude error after maneuver, defined as 

oe(o ,= Io(t) - o , l ,  t >_ t 7 .  (1) 

We use the finite-element method for structural analysis, whereby 
appendages of the spacecraft are discretized into a finite number of beam 
elements. As discussed in Ref. 1, we have two mathematical models of the 
system: the control-evaluation model, which is assumed to represent the 
dynamics of the system (the finite-element analysis is used in this model); 
and the control-design model, which is the reduced-order model for the 
control design. Herein, the performance of the control will be evaluated 
based on the control-evaluation model. Let there be n flexible modes in the 
control-evaluation model (n is equal to the number of degrees of freedom 
in the finite-element analysis), and n flexible modes in the control design 
model. In this section, we will consider the formulation of the faulty model, 
attitude error, performance degradation function, and fault index. 
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Under the assumption that the spacecraft is controlled by only one 
torquer located on the rigid central body, let uo(t) be the torque input. 
From Ref. 1, we obtain the equations of motion for the spacecraft as the 
following coupled linear differential equations: 

J*0' + m r~ = u0(t), (2a) 

Mij + Kq + mO = 0, (2b) 

where the elements of the n • n matrices M, K, and the n • 1 vector m are 

mi - N fo L p(x)(R + x)c~i dx, 

M,+ - N p(x)+p, j dx, 

with i = l, 2 . . . .  , n and j = l, 2 . . . . .  n, and where R is radius of  the rigid 
central body, L is the length of the appendage, El(x) is the elastic rigidity 
distribution, and p(x) is the mass per unit length. The vector 

q = (q~ (t), q2(t), q3(t) . . . . .  qn(t)) r 

reflects the nodal degrees of freedom, and 

= (41(X)' ~2(X), ~)3(X), . . . ,  ~n(X))T 

is the elemental Hermite cubic. 
The natural frequencies and eigenmodes satisfy 

v'r[M - ( 1/J*)mm ~ V -= I, (3a) 

V r K V  = f~2, (3b) 

where I is a unit matrix, f F =  diag{og~; i = 1, 2, 3 . . . . .  n}, me is the ith 
natural frequency, and {v }i is the eigenvector corresponding to co~. Without 
loss of generality, the first nonzero component of {v}i is defined to be 
positive. 

The modal control influence parameters are defined as 

fl~ = l /J*,  fl~o = - ( 1 / J * ) / ~ { v } T m .  (4) 

The state vector is defined as 

x = ( x , ,  x 2 ,  . . . .  , 
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where 

x, = 0 + (1/J*)mTq, 

x2 = : t l ,  x~ = ~;, x~  = ~,/~0i, 

with i = 1, 2, 3 , . . . ,  n. The state space equations are 

Yc(t) = Ax(t) q- Buo(t), 
A = block diag[Ae], B = block col[Bg], 

where 

(5a)  

(5b) 

iE01] 0 0 '  i = 0 ,  
= (5c)  A i ~ I o  ] 

- -  CO i 0 ' " " ' 

8 i =  ~o ' 

with i = 0, I, 2 , . . . ,  n, with B~ defined in (4). Note that the states xl and x2 
do not represent the attitude position and velocity of  the rigid central body 
respectively. Indeed by definition these are given by 

0 : X 1 "q- {~0(,OiX3},  ( 6 a )  
i = l  

0 = x2 + ~ {/~~ (6b) 
i = l  

Actually, xl and x2 represent the rigid body mode. 
With Assumption (A6), the control input is not changed in the 

presence of  any fault. The computation of  the maneuver time and switching 
times of  the time-optimal control problem is discussed in Appendix B of  
Ref. 15. Since the control input is antisymmetric about the mid maneuver 
time, we shift the origin of  time to the mid maneuver, t 7/2.  Let the 
switching times be { - tk, - t~_ 1 . . . . .  - fi, 0, tl, t2 . . . . .  tk }, where k is the 
number of  switching times in half of the maneuver interval. 

The originally specified initial and final states are 

x( - t7/2) = ( - 0"/2, 0 . . . . .  0) r, x(t 7/2) = (0"/2, 0 , . . . ,  0) r. 

Integrating (2.5) with x ( - t ~ / 2 )  = { - 0 * / 2 ,  0, 0 . . . . .  0} T and the control 
mentioned above, we obtain the state variables at the end of the maneuver: 

x,(t~/2) = UolJ*[(tT/Z)2-2t~ +-." + 2 ( -  1)kt~] - 0  s, (7) 

xz(t 7/2) = 0, (8) 
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xi3(t?/2) = -2Uofl~C.i cos(o~,t?/2)/co,, i = 1, 2 , . . . ,  n, (9) 

xi4(t?/2) = 2UoflioCi sin(og;t?/2)/~, i = 1, 2 , . . . ,  n, (10) 

where 

C, = cos(coit?/2) -- 2 cos(ogltk) + ' "  + 2( -- 1) k cos(eoitl) + ( -- 1) k+ 1, 

/ = 1 , 2  . . . . .  n. (11) 

We have the following proposition. 

Proposition 2.1. With Assumption (A6), the velocity of  the rigid 
body mode at the end of  the maneuver defined in Eq. (8) will be equal to 
zero. 

Proof. From (5), we have X2 = uo(t)/J*, where Uo(t) is the control 
input and J* is the rotational moment of  the spacecraft. Since the control 
input Uo(t) is antisymmetric about the mid maneuver time t 7 /2 ,  x2 is equal 
to zero at the end of the maneuver. [] 

Since the value of xl(t) remains constant after the maneuver, the 
attitude error (1) has the form 

Oe(t ) -----10(t) - 0"/21 = [xl(t?/2) - 0"/2] - ~ {fl~toS3(t)]}, (12) 
i = 1  

where t > t?/2.  

2.2. Performance Degradation Function. F rom Assumption (A4), the 
faults are specified by the fault parameter vector 6, and the set of  faults is 
characterized by specifying bounds on the elements of  6. Let A represent 
the compact set of  all possible 3. 

After the maneuver, the flexible modes will undergo free vibrations 
because of nonrest conditions at the end of  the maneuver, 

Ma(t) = X~a(t?/2) cos(ogi(t - t?/2)) + M4(t?/2) sin(~oi(t - t?/2)), ( i3a)  

M4(t) = -o~ix~(t?/2) sin(og, (t - t?/2))  + ogix~4(t?/2) cos(ogi (t - t?/2)),  

Therefore, we have 

Ix' (ol <_ Utx' (t? /2)] 2 + [x~(t? 12)] 2, 

(13b) 

t _> t?.  (14) 

With (13) and (14), we can derive an upper bound of the attitude error 
after the maneuver as 
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] [xl(t~/2) - 0"/21 - ~ {fl~oe)ix~3(t)} 
i = 1  

<_ Ix~(tT/2) - 0*/21 + ,=~ {Bg~o,x~(t)} 

-< lXl (t 7/2) - 0"/21 + ~ I g,o; k/[x~(t7/2)12 + [xi,(t7/2)12, t >_ t 7/2. 
i = 1  

(15) 

The performance degradation, symbolized by 0-e, is defined to reflect 
the maximum possible attitude error after maneuver according to the 
bound (15) as 

O-e.- ~ 

with 

Ix, (t7/2) - o'/21 + ~ I/7~;co, I.,/[x'~(t7/2)12 + [x~4(t7/2)12. 
i = 1  

(9) -(11), we have 

(16) 

-e 

This 

]x,(t 7 /2)-o*/21+ ~ {2Uo(/~g)21~l}. 
i = 1  

expression (17) will be used to evaluate the fault index. 

(17) 

Remark 2.1. The performance degradation defined in (17) has value 
zero for the faultless spacecraft. 

Note that the performance degradation function is a function of the 
design variables and the fault parameters, i.e., 0e = 0-e(~, •), where ~ is the 
vector of structural design parameters. Since there are absolute value 
expressions involved in (17), this expression may not be differentiable. 

Proposition 2.2. Under Assumptions (A6)-(A9), the expression in- 
side the absolute value of (17) is jointly continuously differentiable with 
respect to the structural design variables and the fault parameters. 

Corollary 2.1. The performance degradation function defined as (17) 
is a jointly continuous function with respect to the structural design 
variables and the fault parameters. 

2.3. Fault Index. For our purpose, the fault index is defined to reflect 
the worst performance degradation from all admissible faults. Given the 
properties of the set of admissible faults, it is possible to apply optimization 
analysis to find the specific faulty mode which induces the worst perfor- 
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mance degradation of the system. The worst degradation itself, identified 
here as the fault index FI, is defined via 

FI(r .'= max [0-e(~, 6)]. (18) 
6EA 

Note that 

FI(r = max[0-e(~, 6)] = min [ -  0-e(r 6)]. (19) 
6 6 

From Proposition 2.2, we have that the performance degradation 
function (17) is a jointly continuous function with respect to the fault 
parameters and the structural design variables. From Corollary 3.2, which 
will be derived in the next section, the fault index is a continuous function 
of the structural design variables ~. Assume that the feasible design space 
of r is compact. Therefore, there exists a local minimum of the fault index 
with respect to the structural design variables 4, which implies the existence 
of an optimal fault-tolerant design for the spacecraft. However, it is 
apparent as noted that the fault index may not be differentiable for some 
value of the structural design variables ~. 

2.4. Problem Statement. The objective in this study is to provide a 
means for the synthesis of designs that are optimal with respect to 
maneuver time and robust with respect to the consequences of structural 
faults. Accordingly, both the maneuver time and the fault index are to be 
minimized with respect to design. Thus, the multicriterion design problem 
is stated as follows: 

min {tT, FL(~)}, (20) 

subject to structural design constraints and control spillover constraint for 
the primary objective (i,e., maneuverability), where E is the space of 
structural design variables. 

3. Nonsmooth Programming Prefiminaries 

From Section 2, we know that the performance degradation function 
" (17) and the fault index (19) are nondifferentiable. In what follows, we use 

generalized gradients in order to treat nonsmooth mathematical program- 
ming problems. We will need the following definition. 

Definition 3.1. Lipschitz Condition. 

(i) Let ,Y c R". A function f:  X ~ R is locally Lipschitz on X if, for 
any xo~X, there exists a nonempty neighborhood N(xo) and a 
nonnegative constant K(xo) such that 
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If(x, ) --f(x2) I < K(xo)II x] - x2 II, Vx,, x2eN(xo). 

(ii) Let X = R". A function f :  X-- ,R is globally Lipschitz on X if 
there exist a nonnegative constant K independent of x such that 

If(xl) -f(x=)l < gllxl - x2[I, Vx,,x2~X. 

Proposition 3.1. Under Assumptions (A6)-(A9),  the performance 
degradation function (17) is a jointly locally Lipschitz function of the 
structural design variables and fault parameters. 

Theorem 3.1. Rademacher's Theorem. Every locally Lipschitz func- 
tion is differentiable almost everywhere in the sense of the Lebesgue 
measure. 

Definition 3.2. Generalized Gradient. Let f :  R " ~ R .  We define the 
generalized directional derivativef~ v) at x eR n in the direction v ~R n as 

f~ v),= lim sup( f (y  + 2v) - f (y) ) /2 .  (21) 
y ~ x ,  2~0 

Then, the generalized gradient o f f  at x, denoted by Oxf(x), is defined as 
(Ref. 19) 

Oxf(x):={~R":  f~ v) > ~rv, for all v in Rn}. 

The computation of the generalized gradient from this definition is a 
formidable task. Fortunately, if f is a locally Lipschitz function, f is 
differentiable almost everywhere and we can compute ~xf(X) as follows. 
Suppose that f fails to be differentiable at x. We have the following 
characterization of the generalized gradient (Ref. 19). Let B be a set in the 
neighborhood of x, with measure zero, at which f fails to be differentiable. 
The generalized gradient o f f  at x, Oxf(X), is equal to 

co{lirn Vf(xi): xi ~ x,x~r (22) 

where co stands for convex hull, i.e., the set of convex linear combinations 
of points in a set. 

The following basic properties of generalized gradients are cited for 
future reference: 

(P1) if f is continuously differentiable at x, Oxf(X ) is the singleton 
{Vf(x) }; 

(P2) for any scalar s, one has Ox(sf)(x) =sa, f(x); 
(P3) let f.(x), i = I, 2 . . . .  , n, be a family of functions each of which 

is locally Lipschitz; we have O x ( Z f ) ( x ) c Z  O~f~(x), where a 
sum of sets is defined as the set of sums of elements of the sets. 
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Definition 3.3. Regularity. A function f :  R n--* R is said to be regular 
at x provided: 

(i) For all v, the usual one-sided directional derivativef '(x;  v) exists, 
where 

f ' (x ;  v).'= lim ( f ( x  + tv) - f ( x ) ) / t .  
tJ.o 

(ii) For all v, f~  v ) = f ' ( x ;  v), where f~ v) is the generalized 
directional derivative defined in (21). 

Remark 3.1. See Ref. 19. For (P3), if at a specific point x all f~ are 
regular, the inclusion can be replaced by an equality. 

Lemma 3.1. Let g: Rn ~ R: x --* g(x) be continuously differentiable. 
Let f :  Rn ~ R :  x ---~ f ( x )  = Ig(x) l. Then, f ( x )  is regular. 

In order to facilitate the computational treatment of  the design 
problem, the closed-form expression for the generalized gradient of  (17) 
needs to be derived. When all expressions inside the absolute value are not 
zero, (17) is continuously differentiable and can be represented as 

ff~ := [xl(t~ /2) - 0"/2] sign(xl(t 7/2)  - 0*/2) + ~ {2Uo(fl~)2Ci sign(Ci)}. 
i=1 

The generalized gradient is the singleton containing the conventional 
gradient, which can be obtained by application of the chain rule as follows. 
Suppose that the gradients of  the rotational moment, natural frequencies, 
and control influence coefficients with respect to the structural designs and 
fault parameters are available. The gradients of (17) with respect t o  those 
coefficients have the following expressions: 

O~e/OJ* ~ -  -(Uo/d*2)[(t~/2) 2 - 2t~ + . . -  + 2( - 1)kt~] 

X sign(x1 (t7/2) -- 0"/2), (23a) 

Offe/OO) i = -2Uo{2~(011io/~O9i)Ci + ([3~o)2(~Ci/c3(~i)} sign(C,.), (23b) 

where 

OCi/Oo), = - t ~ / 2  sin(o)dff/2) + 2t k sin(a~;tk) + . . . .  2( -- 1)ktl sin(ogdl ), 

i = 1 , 2  . . . . .  n, (24) 

3ff[O~o = 4UoP~Ci sign(C~), i = 1, 2 , . . . ,  n. (25) 

The quantities /~g, ~oi, and J* are functions of  the structural design vari- 
ables for the fault parameters. 



JOTA: VOL. 82, NO. 2, AUGUST 1994 231 

When any expression inside the absolute value function of (17) is zero, 
the evaluation of the generalized gradient is not so simple. Fortunately, all 
functions inside the absolute value expression are continuously differen- 
tiable. We first introduce the general chain rule. 

General Chain Rule. See Ref. 19. Let h: R m-* R n (the components of 
h are denoted by hi), and let g: R n ~ R .  Assume that each hl is Lipschitz 
near x and g is Lipschitz near h(x). Let f. '= g(h(x)). One has 

ax f (x )  c co ~ivi: viet3xhi(x), ~ ~Ohg(h(x)), 
l i =  1 

~i are the components of ct ~. where 
) 

Remark 3.2. Ref. 19. If g is convex and h is continuously differen- 
tiable, the inclusion property of the general chain rule can be replaced by 
an equality. 

Corollary 3.1. Let g: R " ~  R: x ~ g ( x )  be continuously differentiable. 
Let f :  R"  ~ R: x ---,f(x) = Ig(x) l. S u p p o s e  that g(x) = 0. Then, 

oxf(x) = ox Ig(x) I - { ~ Vg(x):  ~ ~[ - 1, 1] }. 

As in Corollary 2.1, (17) can be considered as a sum of absolute values 
of continuously differentiable functions; with (P3), Remark 3.1, and 
Lemma 3.1, the generalized gradient of (17) is the sum of the generalized 
gradients of each term. Moreover, with Corollary 3.1, we have the general- 
ized gradient of each term. Therefore, we have the generalized gradient of 
the performance degradation function (17) with respect to the structural 
design variables and the fault parameters. 

With the expression of the generalized gradients, we can compute the 
fault index by using nonsmooth mathematical programming in the next 
section. The method is formulated to accommodate the following necessary 
conditions. 

3.1. Necessary Condition for Nonsmooth Mathematical Programming. 
Let f:  R n ~ R, gi: R n --* R, 1 < i < ni, and hi: R"  ~ R, 1 < j  <_ ne, be locally 
Lipschitz. Consider an optimization problem as follows: 

minf(x), 
x E R  n 
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subject to the equality and inequality constraints 

gi (x) < O, i = 1, 2 , . . . ,  hi, 

hi(x) = O, i = 1, 2 . . . . .  ne. 

Let the Lagrangian L(2, x, 2, #): R x R n x R ntx R n~ ~ R be defined by 
nie ne 

L(2, x, t ,  #),=fl~f(x)+ ~ )~,gi(x)+ ~ #jhj(x). (26) 
i = l  i = l  

Let ~ be a local minimum. Then, from Ref. 19, there exist 2i, 
i = 1, 2 . . . . .  ni, and #j , j  = l, 2 , . . . ,  ne, such that: 

(i) ~>_0, 2i >_0, i = 1, 2 , . . . ,  n;; 

(ii) ~', 2i >_ 0, i = 1, 2 , . . . ,  nt, and #j , j  = 1, 2 . . . . .  ne, are not all zero; 

(iii) 2/gi(~)=0,  i = 1 , 2 , . . . , n , ;  

(iv) 0SaxL(,~, x, 2,/0. 

Remark 3.3. If  f ,  hi, and gi, for which gi = 0, are all differentiable at 
s condition (iv) becomes V~L(2, x, 2, #) = 0, yielding the usual necessary 
conditions for smooth mathematical programming. 

To further check whether our candidate solution is indeed a mini- 
mizer, we need to apply sufficient conditions for optimization. If  the 
performance degradation function is differentiable at the candidate solu- 
tion, this task is not difficult and the sufficient conditions are as follows. 

3.2. Sufficient Condition for Smooth Mathematical Programming. See 
Ref. 28. Suppose that f : R n ~ R ,  g i : R ~ R ,  l<_i<__ni, and h j : R ~ R ,  
1 < j  < ne ~C 2. Consider an optimization problem as follows: 

minf(x) ,  
x ~ R  n 

subject to the equality and inequality constraints 

gi(x) < O, i = l, 2, . . . , ni, 

hi(x) = 0, i = 1, 2 . . . . .  n~. 

Let the Lagrangian L(x,  2, #): R ~ x R n, x R ~ -~ R be defined by 
nie ne 

L(x,  2, # ) . ' = f ( x ) +  Z );igi(x) d- E ].tjhj(x). 
i = l  i = l  

Suppose that at 2 e R "  all Ka rush -Kuhn-Tucke r  necessary conditions 
hold, i.e.: 

(i) {Vxhj(~), l_<j <-ne, and Vg,-(~), Vi such that g i (~)=0} ,  are 
linearly independent; 



JOTA: VOL. 82, NO. 2, AUGUST 1994 233 

(ii) there exist 2,. > 0, 1 < i < ni, and #j, 1 _<j _< n~, 
).;g,-(:f) = 0, 1 < i < n~, and V~L(s 2, #) = 0; 

(iii) g ~ ( 2 ) < 0 , 1 < i < n ~ .  

such that 

Let D(~) be defined as the 

D(~) = {dsR~: (a) 

(b) 

(c) 

If  for such 2, we also have 
then 2 is a local minimizer. 

set 

Vhj(~)rd=O,j = 1, 2 . . . . .  n~; 

Vg~ (x) rd = 0, Vi such that gi (~) = 0 and 2; > 0; 

Vg~ (2) rd _< 0, Vi such that g`. (2) = 0}. 

that drV2L(~, 2, #)d > 0, VdED(2) and d # 0, 

R e m a r k  3.4. If  at 2, Vi such that g .̀ (2) --- 0 we have 2 i > 0, then D(~) 
is the tangent space of [Vxhl(~), Vxh2(ff) . . . . .  Vxh,e($ ), V~gi(2) . . . .  ], 
where gt(2) = 0. Note that, letting 

P = [Vxh, (.~), Vxh2(X) . . . . .  Vxhne(~), Vxgi(2) . . . .  ] 

the tangent space is spanned by the columns of I -  p(prp)- lpr .  

At a candidate solution, say 6", such that there is an expression inside 
the absolute value equal to zero, for example Ck = 0, we have that, in the 
neighborhood of 6", 

FI(~) =min[-O~(r 6)] =r~n [-lXl(t~ /2) -O*/2] i=l ~" {2U~176 

which is equivalent to 

mi'n min t -  [xl (t~/2) - 0"/2] sign(x1 (t~/2) - 0"/2) 

- ~ {2Uo(fl~)2C`. sign(C`.)}-2Uo(fl~)2Ck, 
i= l , i # k  

- [x~ (t~/2) - 0"/2] sign(x~ (t~/2) - 0"/2) 

- i=l,i~k ~ {2U~176176176 (27) 

Therefore the sufficient conditions for 6* to be the optimum for (27) will 
be the sufficient conditions for 6" to be the optimum for the fault index 
computation (19). Note that both functions inside the bracket are continu- 
ously differentiable at 6* and have the same value for 6 = 6*. Therefore, 
we will derive sufficient conditions for (27) at the candidate solution 6*. 
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Proposition 3.2. Assume that f~: R" ~ R, 1 _< i _ nr, gi: R~'-' R, 
1 _< i < ni, and h j : R  ~--, R, 1 <_j < ne, are differentiable. Consider the func- 
tion 

f ( x )  :-- rain{f1 (x) , fz (x) , f3(x) ,  . . . , f ~ ( x )  }. 

For the optimization problem, 

rain f ( x ) ,  (28) 
x E R  n 

subject to the equality and inequality constraints 

g i ( x )<O,  i = 1 , 2  . . . . .  ni, 

Suppose 

h,(x) 

that, 

fl( ) 

=0, i = 1 , 2  . . . . .  ne. 

at the feasible point $, we have 

=f2(x) =f3(x) = " "  =f~,(x). 

(29a) 

(29b) 

Then, $ is a local minimizer of the problem (28) subject to (29), if and 
only if g is a local minimizer of each optimization problem with f~(x), 
i = 1, 2 , . . . ,  nr, as objective function subject to the constraints (29). [] 

In summary, Proposition 3.2 is the sufficient conditions for our 
nonsmooth problem (19) when the objective function (17) is not differen- 
tiable at the candidate solution, i.e., there exists a term with value zero 
inside the absolute value of (17). 

Recall the fault index defined in (19) as 

FI(O = min [0"e(~, 6)1 , 

where 0-e is the performance degradation function. It is necessary to 
examine the minimization problem (20) with the fault index as the objec- 
tive, including the computation of its generalized gradient. 

First, we show that the fault index is locally Lipschitz. The following 
notation is adopted: let the performance degradation function be repre- 
sented by f, the fault index by f, the fault parameters by y, and the 
structural design variables by x. Thus, 

f(x) = maxf(x, y). 
Y 

From Proposition 3.1, the performance degradation function f ( x ,  y) is a 
jointly locally Lipschitz function of the fault parameters y and the struc- 
tural design variables x. We have the following proposition. 

Proposition 3.3. Let X ~ R nx, Y c R~r, with X and Y nonempty 
compact. Let the function f :  X x Y---, R: (x, y) --, f ( x ,  y) be jointly locally 
Lipschitz. Let 



JOTA: VOL. 82, NO. 2, AUGUST 1994 235 

f(x) ,= max f (x ,  y). 
y e Y  

Then, fix) is globally Lipschitz on X. 

Proposition 3.4. Under Assumptions (A1)-(A9),  the fault index 
defined as 

FI(~) = max [0-e(~, 6)], 
~EA 

where 0-e is the performance degradation function (17), is a globally 
Lipschitz function on the compact set A. 

Corollary 3.2. The fault index defined above is a continuous function 
of ~. 

Proof. This follows from Proposition 3.4 and the fact that, for 
D c R~, if D --. R is locally Lipschitz on D, f is continuous on D. [] 

As a consequence of  Proposition 3.4, the fault index has a gradient 
almost everywhere, and we can compute the generalized gradient by 
applying Definition 3.2. Moreover, for designs and admissible faults such 
that all expressions inside absolute values in the performance degradation 
function (17) are nonzero, the performance degradation function is ana- 
lytic. We have Proposition 3.4 and Corollary 3.2 to simplify the task of 
computing the generalized gradients. 

Proposition 3.5. Assume that f :  R n § m ~ R, gg: R m ~ R, 1 < i < n;. 
Consider the problem 

fix) ~=max f ( x ,  y), ( 30a) 
Y 

g~(x) < O, i = 1, 2 . . . . .  n~. (30b) 

Note that, without loss of generality, we consider only inequality con- 
straints. Define the Lagrangian function L(x,  y, 2): R m x R n x R nl ~ R  as 

hie 

L(x,  y,  2) ,=f(x ,  y) - ~. 2igi(y). 
i = 1  

Suppose that: 

(i) For x = ~ there exists a unique solution y* to the problem (30); 

(ii) f e C  1 with respect to x a n d f e C  2 with respect to y at (~,y*); 

(iii) g i ( y ) ~ C  2 at y = y * ,  i =  l , 2 , . . . , n ; ;  

(iv) the constraint qualification holds for y*. 
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With assumptions (i)-(iv), the Kuhn-Tueker  conditions assert that there 
exists 2*sR  "i such that 2,.>0, 2 ;g ; (y )=0 ,  i = l , 2 , . . . , n ~ ,  and 
VyL(2 ,y* ,2*)=O.  Without loss of generality, assume that gi(Y), 
i = 1, 2 . . . .  , r, are such that gi (y) = 0 and 2~ > 0. Let 
z ,= [y', 21, ).z, �9 � 9  2~]' and z* = [y.t,  2",  2* . . . .  ,2r~] t. Let F: R m x R" x 
R ~ R " + ' :  (x, z) ~ F ( x ,  z) be defined as [VyL(x, z) t, 2~g~(y), 22g2(Y), 
. . . .  2~g~(y)] t. Further, 

(v) assume that the Jacobian matrix [V,F(2, z*)] is not singular. 

Then, we have 

V~ f(x) = Of(E, y*)/Ox + [Oy/Ox](~. m {Of(2, y*)/Oy }, 

where [Oy/~Ox](~.z.) is the first m x n submatrix of --[V~F(2, z*)] r 
[V~F(2, z*)]-r.  

Corollary 3.3. Suppose that: 

(i) At x = 2, there exist more than one solution y to the problem 
(30), say y . l , y , 2  . . . . .  y.k.  Assume that g j ( y ) = 0  and 2j >0 ,  
1 < j  < r", for each y.i .  Let z*i.'=[y *it, 2",  2* . . . . .  2~*] r, 
l < i < k .  

(ii) The hypotheses (ii)-(v) of Proposition 3.4 hold for each (2, x*'). 
Then, the generalized gradient of f at x = )2 is 

c O { V x f ( - ~ ) [ y = y * ~ ,  V x f ( X ) l y = y . 2  . . . V x f ( X ) [ y = y . k  } ,  

where 

vx f(2)ly =,,, = of(2, y*')/Ox + [Oy/Ox](:~, z,o {of(2, y*,)/c3y}, 

and [Oy/Ox](~, z*o is the first m x n submatrix of 
--[VxF(~, z*)] ~VzF(2, z*)]-r .  

Of course it becomes difficult to solve the worst-case design problem 
(19) when the performance degradation function (17) is not differentiable. 
The problem-solving procedure is discussed in the next section. The proofs 
of Propositons 2.2, 3.1, 3.2, 3.3, 3.5, Lemma 3.1, and Corollaries 3.1, 3.3 or 
elements thereof are given in the Appendices to Ref. 15. 

4. Problem-Solving Procedure 

In this section we present algorithms to solve the multicriterion, 
worst-case design problem (19). We also introduce some approximate 
methods which efficiently solve the design problem with relatively little 
computational difficulty. 
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In Ref. 23, Osyczka surveys several approaches to solve multicriterion 
optimization problems. The advantages and disadvantages of  each ap- 
proach are also discussed. In the present paper, we use the method of  
weighted objectives. Recall that our problem is 

min {t~, FI(~)}, 

where ~ are the structural design variables and E is the feasible space of  ~. 
Define a new scalar objective, 

r(~) ~= wl t~ (~) + w2s FI(~), (31) 

where wi > 0, i = 1, 2, are the weighting factors with wl + w2 = 1.0, and s is 
the scaling factor such that the two original objectives are of  the same 
order. Thus, our problem is transformed into minimizing F(~) for ~ ~F,. 

Since t~ (~) is independent of  6, F(~), which is 

wl t~ (~) + w2s max[~Te(~, 6)], 

is equal to 

max[wl t~ (4) + W2Sffe(~, 6)], (32) 

where Oe is the performance degradation function. Therefore, our multi- 
criterion design problem is a minimax problem, i.e., 

min F(~) = rain max[w~ t~ (r + w2Sffe(~, 6)]. (33) 

There are two levels of  optimization in this problem: maximizing 
[wltT(~) + W2StTe(r 6)] with respect to 6 [see (32)], and then minimizing 
F(~) with respect to ~ [see (33)]. We note again that the objective functions 
of  the two levels are not differentiable everywhere, leading to nonsmooth 
optimizations. The algorithm to perform nonsmooth optimization in this 
work is based on the so-called bundle method (Ref. 21). A detailed 
discussion the bundle method can also be found in Ref. 20, Chapter 3. 
Together with the bundle method, we use the following proposition. 

Proposition 4.1. Let f :  X c R n ~ R. Let v be a vector in dxf(2), where 
2eX.  Suppose that v has minimum norm and v r 0. Then - v  is a descent 
direction for f at 2. 

A proof  is provided in Ref. 15. 

As a consequence of Proposition 4.1, even though the objective 
function is not convex, a descent direction can be found everywhere except 
at a minimum. 
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In Section 3, we have derived the closed-form expression of the 
generalized gradient of the performance degradation function 0-e(~, 6) [see 
(17)], i.e., the objective function for the maximization (32) with respect to 
4 and 6. With this closed-form expression, we can easily obtain a descent 
direction through Proposition 4.1. The computation is more accurate than 
obtaining the generalized gradient through the bundle technique. It is easy 
to check the solution with the necessary conditions developed in Section 3. 

However, we cannot find a closed-form expression of the generalized 
gradient for F(4), the objective function of the second level (33). We can 
only compute its generalized gradient by Corollary 3.3. In application, we 
have encountered the following computational difficulties with this ap- 
proach. 

(i) For each fixed ~, the maximization (32) requires substantial 
effort, because we need to perform a finite-element analysis to 
compute 0-e(~, •). 

(ii) The evaluation of generalized gradients of F(~) by Corollary 3.2 
is difficult. Also, the possibility of multiple local solutions 6 for 
the maximization problem (32) complicates matters. This issue 
should be treated in future work. Furthermore, when the perfor- 
mance degradation function 0-e(4, 6) is not differentiable, we can 
only solve for the generalized gradient through the bundle tech- 
nique with all the gradients in the bundle obtained by the 
finite-difference technique. In this case, the generalized gradient 
becomes corrupted by numerical errors. 

Since we have closed-form expressions of the generalized gradient of 
0-e(~, 6) with respect to ~ and 6, we can overcome these computational 
difficulties by avoiding the two-level optimization (33). We replace the 
minimax problem by iterations of minimization and maximization of 
w 1 t~ (~) + w2slTe(~, 6) with respect to ~ and 6, respectively. Each of these 
optimization problems is relatively easy to solve. In what follows, we will 
discuss possible ways to solve the minimax problem without solving a 
two-level optimization problem. 

Finding a sandle-point type solution is possibly the simplest way to 
solve a minimax problem. Specifically, we locate solutions satisfying 

min max[w1 t7 (4) + W2Sffe(~, 6)] = max min[wl t7 (4) + W2SO-e(~, 6)]. 

Unfortunately, in numerical studies we have found that the optimal design 
is usually not a saddle point. We develop another method for solving 
minimax problems whose exact solution may not be a saddle point based 
on Ref. 22. This method is called the sequential iterating search method. 
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4.1. Sequential Iterating Search Method. The basic idea of  this 
method is to approximate the whole admissible space of the fault parame- 
ter 6 by a finite number of  different admissible values of 8. Therefore, the 
optimization in the space of  8 is transformed into a finite search for the 
worst performance degradation associated with admissible values of  6. Let 
8 k, k = 1, 2 . . . . .  represent admissible values of 8 and let 7( k represent a set 
containing k different values of  6. The iteration starts with an arbitrary 
value of  6 as 81, i.e., 7( k = (J 1} for k = I. In each iteration, we include in 
7( k a new value 8 k§ 1, k = 1, 2, .  , . ,  of  concern. The computation of  6 k§ is 
discussed below. In the kth iteration, let the set of  different values of  the 
fault parameters 6 of  concern be ~k = {61, 82 . . . . .  8k}. Let 

E~ :=rain max [Wl t~ (4) + w2sO~(~, 8)], 
~ k  - 1 

and let the solution for ~ be r Let 

E~  .'= max[w1 t~ ( 0  + w2sffe(r 6)], 
6 c A  

and let the solution for 8 be 6 ~. Let the exact solution of 

min max[w1 t~ (~) + WESffe(r 6)1 
8 ,~eA 

be represented by E. From Ref. 22, we have the following facts as the basis 
of  this method. 

Fact 4.1. For any k, we have E~' _ E _< E~.  

Fact 4.2. If  for some k we have E~ = Eb u ,  the optimal design is ~k 
and the worst faulty mode is j k. 

Fact 4.3. E~ is a monotonic increasing sequence. 

Fact 4.4. The sequences E~', Eft  both converge to E. 

Based on these facts, the iteration procedure is convergent. As a termina- 
tion criterion, the relative accuracy E d, which is defined as ( E ~ -  E~')/E~, 
must be less than a specified value. When the termination criterion is 
satisfied at iteration k, the optimal design corresponds to the design 
variable ~k and the fault index is E~,  with the worst faulty mode 6 k. Note 
that 

min max [wl t7 ( 0  + W2SCe(~, 8)] 

= min max{[wl t~ (0. + w2SOe(~, 61)], . . . ,  [Wl t~ (~) + w2SOe(~, 6 k- 1)]}. 

(34) 
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By introducing a variable 2, we can transform (34) into an equivalent 
scalar minimization problem as follows: 

min 2, 

subject to 

[w~ t~ (4) + w2s~(~, 6~)] < ,~, 
The overall algorithm is as follows. 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

i = 1 , 2  . . . .  , k - 1 .  

Begin with a reasonable baseline design value for the struc- 
tural design vector ~ ,  set k = 1, find E~ and 61, and set 
~k = {~}. 

k = k + 1. Solve the optimization problem to find E~ and ~k. 

For ~k, f indE~ and t} k+l. 

If Ek d = ( E ~ -  E~')/E~ is less than the required accuracy, 
stop. Otherwise, set ]~k+l ~ ~ktd{6k+l}, and go to Step 2. 

From our numerical studies, we have observed that this procedure gener- 
ally converges in fewer than eight iterations. 

To summarize this section, the minimax problem (33) is usually not 
easy to solve, especially when the objective function is not smooth. How- 
ever, with the sequential iterating search method, we can solve the problem 
efficiently. Furthermore, with the closed-form expressions of the general- 
ized gradient of the objective functions,' it is relatively easy to apply 

necessary and sufficient conditions. 

5. Numerical Example 

In this section, we illustrate the multicriterion design problem by 
designing the flexible appendages of the spacecraft described schematically 
in Fig. 1. This is accomplished by adjusting their cross section. The 
appendages are Z-beams as shown in Fig. 2. Our goal is to obtain the 
optimal flange depth distribution of the appendages, assuming that the 
width of the web flange and the thickness of the web and flange are 
constant. The flange depth is symmetric about a central line passing 
through the cross section. We use two spline polynomials as the assumed 
shape functions to describe the half flange depth, 

f r  + ~2(x/L) + ~3(x/L) 2 + ~4(x/L) 3, 0 _ x _ L/2, 
h ( x )  = " l h ( L / 2 )  + h " ( L / 2 ) ( x  - L/2) + ~ 5 ( x  - L / 2 ) 2 / L  2 + ~6(x  - L/Z)3/L 3, 

L/2<x<L,  (35) 
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where ~i, i = 1, 2 . . . . .  6, are the design variables.  F o r  pract ical  reasons,  
h(x) and dh(x)/dx must  be cont inuous  at  x = L/2. Each o f  the two sub- 
domains  for  the po lynomia l  is discretized into 15 elements in the finite- 
e lement  analysis.  

Suppose  that  there is d imension error  6(x), 0 < x < L, in the flange 
depth o f  the appendage.  Fo r  simplicity, we assume that  the d imension error  
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6(x) is the same in all appendages. Let ~(x) be locally bounded between the 
lower bound _6(x) and the upper bound 6(x). Then, the fault index is 

FI(~) = max 0-e(~, 6(x)), (36a) 

subject to 

~_(x) < 6(x) < g(x), 0 < x < L, (36b) 

fo 'l (x)l_ A, (36c) dx 

where A is a given datum. We represent the distributed function 6(x) using 
the same type of assumed functions as in the design of  the appendages. 
Consequently the error distribution is specified by 

~ (~1 -t-(~2(X/L) "-bt~3(x/L)2 q-t~4(x/L) 3, O<_x <L/2 ,  
6(x) = ~6(L/2) + 6'(L/2)(x - L/2) + 65(x - L/2)2/L 2 + ~6(x - -  L/2)3/L 3, 

L L / 2 < x < L ,  (37) 

where 6i, i = l, 2 . . . . .  6, are the fault parameters. For a value of structural 
design variables and the fault parameters, the performance degradation 
function 0-e(~, 6) is obtained by (17). 

Table 1. Spacecraft data and design constraints. 

Appendage material density 
Appendage material elasticity 
Radius  of  the rigid central body 
Mass  of the rigid central body 
Length of  one appendage 
Max imum torque available 
Width  of  the web 
Thickness of  the web 
Thickness of  the flange 
Distributed payload mass  
Concentrated payload mass  M at x = L 

Design constraints: 
resource constraint  of  two appendages 
minimal flange depth 
maximal  flange depth 

Constraints  on the fault parameters: 
6(x) = - 0 . 2  era, 6(x) = 0.2 crn, A = 0.75(L. 0.2 cm) 

p = 1880.00 kg/m 3 
E = 2.76el i  N / m  2 
R = 12.00 m 
4500.00 kg 
L = 30.00 m 
V* = 6.0e04 N m  
b = 5.00 crn 
t~ = 1.75 cm 
t 2 = 0.75 cm 
d m =  9.00 kg/m 
None 

450.0 kg 
2.00 cm 
12.00 cm 
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Consider the single-maneuver case with specified maneuver angle 
90 deg for a spacecraft with two identical flexible appendages. The ap- 
pendages are made of a single uniform material. The spacecraft data are 
listed in Table 1. In the design for optimal maneuverability, the postmaneu- 
ver spillover from uncontrolled flexible modes should be within a specified 
bound. This constraint is achieved by retaining an appropriate number of 
flexible modes in the control design model. The formulation of the control 
design model is briefly outlined in Ref. 15. Assume that the error from the 
maximum postmaneuver spillover is limited to 0.1 deg error in attitude of 
the central body. Accordingly, three flexible modes should be retained in  
the control design model (see Ref. 15, Appendix B). Other constraints are 
also listed in Table 1. 

To understand qualitatively the behavior of the performance degrada- 
tion as a function of the design variables, we examine the performance 
degradation function with a fixed fault for some designs of spacecraft. 
Consider the designs of the spacecraft with constant flange depth between 
2.5 cm and 9.0 cm. Suppose that the dimension error is a constant under- 
sizing of flange depth of 0.4 cm, i.e., 6(x) = -0 .4cm.  The performance 
degradation and the maneuver time for these designs of spacecraft are 
shown simultaneously in Fig. 3. 

The performance degradation is typically much more sensitive to 
design changes than the maneuver time. As shown in Fig. 3, the worst 
performance degradation (0.18rad) is more than 6 times the best one 
(0.027 rad). However, the difference of maneuver time between the smallest 
and the largest values is only about 10%. Consequently, it is possible to 

Fig. 3. 
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improve fault tolerance of the system substantially with relative little 
sacrifice of maneuverability, and a fault-tolerant design need not necessar- 
ily be one with low maneuverability. 

We examine three cases of design with different weighting for the two 
objectives. The results are as follows. 

Case 1. Design of optimal maneuverability, i.e., wl = 1.0, w2 =0 .  
Here, the only objective is to minimize the maneuver time. The flange depth 
distribution of the optimal design is shown in Fig. 4. The natural frequen- 
cies of the first three flexible modes are 1.35786, 5.00003, and 12.5944 rad/ 

s ec .  The optimal maneuver time is 9.91915 sec. The fault index of this 
design is obtained as 2.60572e - 0 2  rad. The comparison of the maneuver 
trajectories between the faultless spacecraft and that in the worst faulty 
mode is shown in Fig. 5. 

Case 2. Design for optimal fault tolerance, i.e., w I =0 ,  w2~--1.0. 
Here, we only take into account the fault tolerance without considering the 
primary objective, the maneuverability. This extreme case is not realistic in 
application. However, the result is useful for comparison. 

We use the sequential iterating search method outlined in Section 4 
to solve the problem. We begin with the baseline design for optimal 
maneuverability obtained from Case 1. The fault parameter for the worst 
performance degradation associated with this design is 61, and 7( k = {6 ~}, 
k - - 1 .  From Case 1, we have that the fault index associated with this 
design is 2.60572e- 02. Thus, E ~ - - 2 . 6 0 5 7 2 e -  02 for the first iteration. 
After four iterations, we obtain a design with E~' = 7.90757e- 03 and 
E~ = 7.908236e - 03, k = 4; thus E a = 5.075e - 3%. We accept this design 
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as the solution for optimal fault tolerance. Therefore, the fault index 
is Eft  = 7 .90757e-03 rad. The optimal maneuver time of this design 
is 9.92519 sec. The flange depth distribution of this design is shown in 
Fig. 6, and the worst dimension error distribution is shown in Fig. 7. The 
comparison of the maneuver trajectories between the faultless spacecraft 
and that in the worst faulty mode is shown in Fig. 8. 
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Comparing Case 2 with Case 1, it appears that a reduction of about 
60% in fault sensitivity costs only 1% in maneuver time. 

Case 3. Multicriterion design for optimal maneuverability and 
fault tolerance, i.e., wl--0.5,  s = 1.0e3, w2 = 0.5. The weighting factors 
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wl and w~ have equal value for this example. The design of optimal fault 
tolerance from Case 2 is the baseline design. The fault parameter for 
the worst performance degradation associated with this design is 6a; 
and 7~k={6~},k= 1. After six iterations, we obtain a design with 
E~' = 7.88475e- 03. For this design, we obtain Eft = 7.92497e - 0 3 ,  thus 
E d = 5.075e - 01%. We accept this design as the solution for optimal fault 
tolerance. Therefore, the fault index is E~ = 7.90757e- 03 rad. The opti- 
mal maneuver time of this design is 9.924508 sec. The flange depth distribu- 
tion of this design is shown in Fig. 9, and the worst dimension error 
distribution is shown in Fig. 10. Note that the design in Case 3 is very 
similar to that in Case 2, both in optimal maneuver time and fault index. 
The comparison of the maneuver trajectories between the faultless space- 
craft and that in the worst faulty mode is shown in Fig. 11. 

The results of these cases are summarized in Table 2. 
It is observed from Table 2 that we can actually improve the fault 

tolerance substantially with relatively little sacrifice of the primary objec- 
tive, the maneuverability. The fault index of Case 1 is about 3 times its 
value for Case 37, while the difference of maneuver time between them is 
only 1%. 

6. Conclusions and Future Work 

The multicriterion design problem for optimal maneuverability and 
fault tolerance of flexible spacecraft has been considered. We have devel- 



248 JOTA: VOL. 82, NO. 2, AUGUST 1994 

m 
E 

m 

a 

Fig. 10. 

I I I I I 
-0.001 ~ 

0 Nominal stage (without fault) 

-0.001 ~ Failure mode: 
~mension error distribution 

mole02 

o I I I I I 
0 5 10 15 20 25 30 

Position along the appendage (m) 

Distribution of dimension error of the worst failure mode for the optimal design 
(Case 3). 

100 

~ , . . ,  80 
._~ ~ 

,'->, 60 
" "  " 0  

~ ' ~  40 

20 

Fig. 11. 

I I I I 

90 degree 

Faultless spacecraft J "  

I i I I 0 0 2 4 6 8 10 
Time (sec) 

Comparison of maneuver trajectory between the faultless spacecraft and one with 
the worst faulty mode (Case 3). 

oped a theoretical and practical framework for solving this problem. The 
main results of the present work are: 

(i) The problem formulation for fault tolerance is a minimax 
problem. 
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(ii) The multicriterion design problem is shown to possess a solu- 
tion. 

(iii) The performance degradation and the fault index are shown to 
be locally Lipschitz functions of the fault parameters and the 
structural design variables respectively. 

(iv) A closed-form expression of the generalized gradient of the 
performance degradation function with respect to the fault 
parameters or the structural design variables is obtained. 

(v) The generalized gradient of a marginal maximization function is 
obtained by the implicit function theorem. 

(vi) Necessary conditions and sufficient conditions to find the worst 
performance degradation are obtained. 

(vii) Approximate methods which solve the minimax problem with 
relatively little computational difficulties have been introduced. 

The problem-solving procedure developed in the present paper can be 
applied to general designs of flexible spacecraft. Numerical examples 
suggest that it is possible to improve the fault tolerance substantially with 
relatively little loss in the primary objective, that is, the maneuverability. 

It is well known that feedback control strategy can provide robustness 
(Ref. 8); traditionally, the robustness of a system has been achieved by 
designing the feedback control system while leaving its plant unmodified. 
However, it is clear that, if we can modify the plant simultaneously, the 
control design can be improved and the cost of implementation can be 
reduced. This is justified simply because robustness is actually a coupled 
function of the controller and the plant. For example, we can improve the 
fault tolerance substantially with relatively little loss in the maneuverability. 
This study should therefore be viewed as a preliminary work in the 
direction of combined design of control and plant for robustness. 

Table  2. S u m m a r y  o f  results. 

Case Performance index Optimal maneuver time Fault index 

1 Design of optimal maneuverability, 9.91915 sec 2.60572e - 02 rad 
w 1 = 1.0, w 2 = 0. ( 1.493 deg) 

2 Design of optimal fault tolerance, 9.92519 sec 7.90757e - 03 rad 
w I = 0, w 2 = 1.0. (0.453 deg) 

Multicriterion design of  optimal 
maneuverability and fault tolerance, 
wl = 0.5, w2 = 0.5. 

9.924508 sec 7.92497e - 03 rad 
(0.454 deg) 
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It would be of interest to model the effects of other sources of error, 
such as unmodeled nonlinear structural factors (e.g., joint stiffness, varia- 
tions in support stiffness), and possibly discrete forms of damage such as 
cracks. Also, for a fully integrated treatment, the control design variables 
should be taken into account in the design problem. In this work, the set 
of  admissible fault parameters is independent of  the structural design. It is 
worth investigating problems without this constraint. The extension of the 
present work to discrete faults which induce discontinuous responses of the 
system is also indicated for future study. 
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