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Random Walks Associated with Non-Divergence
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This paper is concerned with the study of the diffusion process associated with
a nondivergence form elliptic operator in d dimensions, d�2. The authors intro-
duce a new technique for studying the diffusion, based on the observation that
the probability of escape from a d&1 dimensional hyperplane can be explicitly
calculated. They use the method to estimate the probability of escape from d&1
dimensional manifolds which are C1, :, and also d&1 dimensional Lipschitz
manifolds. To implement their method the authors study various random walks
induced by the diffusion process, and compare them to the corresponding walks
induced by Brownian motion.
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random walks.

1. INTRODUCTION

In this paper we are concerned with random walks associated with an
elliptic operator L. The operator L acts on functions with domain Rd and
is defined by

L= :
d

i, j=1

aij (x)
�2

�xi �xj
, x=(x1 ,..., xd) # Rd (1.1)

The symmetric matrix A(x)=[aij (x)] is assumed to satisfy inequalities

*I�A(x)�4I, x # Rd (1.2)

for some constants *, 4 with 0<*<4<�.
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It is well known(12) that if A(x), x # Rd is a smooth function, then there
is a diffusion process XL(t) associated with the operator L of (1.1). The
goal of this paper is to compare the behavior of XL(t) to that of Brownian
motion. The comparison will be given in terms of the constants *, 4 only,
and therefore does not depend on the degree of oscillation of A(x). In
probabilistic language, we shall be studying the diffusion XL(t) using only
the knowledge that the local variance of the process is bounded above and
below.

Problems of this nature arise in finance. Consider the situation where
one wishes to estimate the Black-Scholes price(8) of a stock option, knowing
only that the volatility of the stock lies in an interval [_min , _max]. It has
been shown(1) that the Black-Scholes price is larger than the Black-Scholes
formula(8) at constant volatility _min , and less than the Black-Scholes
formula at constant volatility _max . For an option depending on two or
more stocks the problem is not exactly solvable. One has to estimate(11) the
solution of the parabolic equation associated with L, assuming only (1.2).
This in turn leads to the study of a Bellman equation, which in this case
is a fully nonlinear equation.(4)

Here we introduce a new technique for the study of the diffusion
XL(t), assuming only that the local variance matrix satisfies (1.2). We hope
that, with further development, this technique can be applied to the study
of the difficult problems mentioned in the previous paragraph. The basis of
our technique is the observation that the probability XL(t) escapes a d&1
dimensional hyperplane is the same as the corresponding probability for
Brownian motion. Thus, let S be a d&1 dimensional hyperplane and
x # Rd a point a distance r from S. Let p(x) be the probability that XL(t),
started at x, escapes to a distance R>r from S without hitting it. Then one
can easily see that p(x)=r�R.

We are able to generalise this fact to d&1 dimensional manifolds
which are C1, :, and even to Lipschitz manifolds S. In fact if S is C 1, : we
show in Section 3 that

inf[ p(x) : d(x, S )=r]�cr�R (1.3)

for some constant c>0 depending only on *, 4, d, :. In Section 4 we prove
an averaged version of (1.3) when S is a Lipschitz manifold. Thus if AvR

denotes average value over a length scale R, we prove that

AvR[ p(x) : d(x, S )=r]�
cr
R

exp[&C ln(R�r)1�2] (1.4)

for some constants c, C>0 depending only on *, 4, d and the Lipschitz
constant.
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We can use the inequality (1.3) to estimate the expected time the diffu-
sion XL(t) spends in a neighborhood of a d&1 dimensional C 1, : manifold.
Let f : Rd � R be a bounded function, R>0, and { be the first hitting time
on the sphere | y|=R for the diffusion XL(t) started at some point x,
|x|<R. Let u(x) be the expectation,

u(x)=Ex _|
{

0
f (XL(t)) dt& , |x|<R

where Ex denotes expectation value for the diffusion started at x. It is well
known(12) that u(x) solves the Dirichlet problem,

&Lu(x)= f (x), |x|<R
(1.5)

u(x)=0, |x|=R

Suppose now that f is the characteristic function of a neighborhood of a
d&1 dimensional C1, : manifold with radius r<R. We show in Section 3
that (1.3) implies that there is a constant C depending only on d and the
uniform ellipticity constants *, 4 of (1.2) such that

&u&��CRr (1.6)

It is interesting to compare (1.6) with the corresponding estimate given by
the Alexandroff, Bakelman, Pucci (ABP) inequality.(4, 10) This yields

&u&��CR2&1�dr1�d (1.7)

a significantly worse estimate than (1.6). On the other hand (1.7) continues
to hold for Lipschitz manifolds while we are unable to prove that (1.6)
holds for Lipschitz manifolds.

In the case of estimating the expected time the diffusion spends in a
neighbourhood of a zero dimensional manifold with radius r i.e. a ball of
radius r, the estimate we obtain is only slightly better than that given by
ABP. In fact ABP gives the inequality (1.6), while in Section 2 we obtain

&u&��CR1&=r1+= (1.8)

for some C, =>0 depending only on *, 4, d. Once can see from the
example of Pucci(10) that = can be arbitrarily small for appropriate choice
of *, 4.

To prove (1.3), (1.4) we consider various random walks induced by
the diffusion process XL , and show that they behave roughly like the
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corresponding walks induced by Brownian motion. The final section, Sec-
tion 5, is devoted to studying the detailed properties of such a walk. To
describe it, let S* be the d&1 dimensional hyperplane S*=[x=(x1 ,..., xd):
xd=*], * # R. Then we can define a walk on S0 as follows: Suppose at
integer time n, the walk is at the point Y(n) # S0 . Then Y(n+1) is the first
hitting point on S0 for the diffusion started at Y(n), after it hits S1 . In the
case of Brownian motion Y(n) is a Cauchy process. This continues to hold
in an approximate sense for the case of the diffusion generated by L.

There is a considerable literature on elliptic operators in non divergence
form. Much of this is concerned with the Harnack inequality.(9, 2) The
paper(3) makes strong use of the ABP inequality to prove existence of a
positive eigenfunction for the operator L, only assuming the conditions
(1.2). The paper(7) is concerned with boundary behavior of solutions to the
equation Lu=0. See Ref. 9 for a general review.

In the subsequent work we shall take dimension d=2. All arguments
can however be adapted to the case d>2 as stated in this introduction.

2. CIRCLES AND LINES

In this section we shall be interested in estimating the amount of time
the diffusion process spends in a disc of radius r and in an r neighborhood
of a line before going a distance R>r. First we consider the amount of
time taken to exit a disc of radius R.

Lemma 1. Let XL be the diffusion process in R2 with generator L
given by (1.1). For x # R2 with |x|<R, let {R be the time taken for XL to
exit the disc [ y : | y|<R]. If u(x)=Ex[{R], then there are constants c, C
depending only on *, 4 such that

c[R2&|x|2]�u(x)�C[R2&|x|2] (2.1)

Proof. Let v(x)=R2&|x| 2. Evidently, v(x)=0, |x|=R and

4*�&Lv(x)�44, |x|<R

Since u(x) satisfies the equation

&Lu(x)=1, |x|<R, u(x)=0, |x|=R

it follows by the maximum principle that (2.1) holds with C=1�4*,
c=1�44. QED
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Lemma 2.1 tells us that the amount of time taken for the diffusion
process to exit a disc of radius R is comparable to Brownian time. Next let
Dr be the disc of radius r, [ y : | y|<r] and for x with |x|<R, let ur(x) be
the time spent in Dr before exiting [ y : | y|<R]. Thus

&Lur(x)=/Dr
(x), |x|<R, ur(x)=0, |x|=R (2.2)

where /Dr
is the characteristic function of Dr . We can obtain an upper

bound on ur by comparison with the solution of a one dimensional
problem.

Lemma 2. There exists a constant C depending only on * such that
ur(x)�CrR, |x|<R.

Proof. Let vr(x1) be the solution of the one dimensional Dirichlet
problem,

&vr"(x1)=/(&r, r)(x1), |x1|<R, vr(R)=vr(&R)=0 (2.3)

where /(&r, r) is the characteristic function of the interval (&r, r). Hence
vr(x1) is the time one dimensional Brownian motion spends in the interval
(&r, r) before exiting the interval (&R, R). The function vr is given
explicitly by

vr(x1)=|
r

&r
G(x1 , z) dz

where the Green's function G(x1 , z) is defined by

G(x1 , z)={
1

2R
(R&x1)(R+z),

1
2R

(R+x1)(R&z)

&R<z<x1<R,

&R<x1<z<R

Now let wr(x1 , x2)=*&1vr(x1)&ur(x1 , x2). Evidently one has wr(x)�0,
|x|=R. In view of (2.3) it follows that &Lwr(x)�0, |x|<R. The result
follows from the maximum principle. QED

The upper bound in Lemma 2.2 can be much larger than the corre-
sponding Brownian time which is r2. We wish to obtain an improvement
on the bound in Lemma 2.2. To do this we shall first given an alternative
proof of Lemma 2.2. This is based on estimating the time spent in Dr by
r2 times the number of recurrences to the circle [ | y|=r] before hitting the
circle [ | y|=R].
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We can estimate recurrences by estimating exit probabilities from an
annulus as in Ref. 5. Thus consider the annulus AR=[x : R�2<|x|<2R].
Let u(x) be the solution of the Dirichlet problem,

Lu(x)=0, x # AR , u(x)=1, |x|=2R, u(x)=0, |x|=R�2 (2.4)

Thus u(x) is the probability that the diffusion process started at x # AR

exits the annulus through the outer boundary. Now for Brownian motion,
L is just the Laplacian and one can explicitly compute the solution of (2.4).
In particular u(x)=1�2 if |x|=R. We can get a lower bound on u(x) by
comparison with a one dimensional problem again.

Lemma 3. Let u(x) be the solution of (2.4). Then inf |x|=R u(x)�1�3.

Proof. Let v(x1) be the solution of the one dimensional Dirichlet
problem,

v"(x1)=0, R�2<x1<2R, v(2R)=1, v(R�2)=0

The function v(x1) is explicitly given by the formula v(x1)=
2(x1&R�2)�3R. Next let w(x1 , x2) be defined by w(x1 , x2)=u(x1 , x2)&
v(x1). It is easy to see that w(x)�0, x # �AR , and also that Lw(x)=0,
x # AR . Hence by the maximum principle w(x)�0, x # AR . In particular it
follows that u(R, 0)�1�3. The result is a consequence of this last inequality
since one can rotate any point x with |x|=R to the point (R, 0). QED

Remark. Observe the inequality in Lemma 2.3 depends only on the
ellipticity of L and not on the actual bounds *, 4.

We can use Lemmas 2.1 and 2.3 to give a new proof of Lemma 2.2 as
follows:

Proof of Lemma 2.2. For k=0, 1, 2,... we define radii rk=0, 1, 2,...
by rk=2kr and let M be the smallest integer such that rM�R. Let Sk ,
k=0, 1, 2,... be circles centered at the origin with radii rk . The diffusion
process then induces a random walk on the circles Sk . For x # Sk ,
0�k<M, let Nx be the number of recurrences of the random walk to S0

before it hits SM . Then, following the proof of Lemma 3.17 of Ref. 6, we
have from Lemma 2.3 that

E[Nx]�1+ :
M&1

j=1

2 j=2M&1
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For x # S0 let {x be the time taken for the diffusion process to reach the
circle S1 . In view of Lemma 2.1 we have the estimate

E[{x]�4Cr2 (2.5)

If we follow the proof of Lemma 3.11 of Ref. 6 and use these last two
estimates we conclude that the function ur(x) satisfies the inequality

ur(x)�4Cr2[2M&1]

The lemma follows from the inequality 2R>2Mr�R. QED

The advantage of our second proof of Lemma 2.2 is that we can
immediately deduce an improvement on Lemma 2.2 if we can obtain an
improvement on Lemma 2.3.

Lemma 4. Let u(x) be the solution of (2.4). Then there is a constant #,
1�3<#<1, depending only on *�4 such that inf |x|=R u(x)�#.

Proof. Let v=(x1 , x2), be the function,

v=(x1 , x2)=2(x1&R�2)�3R+
=

R2 [(2R&x1)(x1&R�2)+4x2
2 �*]

It is clear that for =>0, Lv=(x)�0, x # AR . Hence if we can show that
v=�0 on the circle [ |x|=R�2] and v=�1 on [ |x|=2R], the maximum
principle implies that u(x)�v=(x), x # AR . Taking x=(R, 0) in this
inequality, we conclude that u(R, 0)�1�3+=�2=#>1�3.

To show that v=�0 on the circle [ |x|=R�2] we need to prove that

2(x1&R�2)�3R+
=

R2 _(2R&x1)(x1&R�2)+
4
* \

R2

4
&x2

1+&
�0,

&R
2

�x1�
R
2

This is the same as showing that

2
3

+= \2&
x1

R +�
=4
* \1

2
+

x1

R + ,
&R

2
�x1�

R
2
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Evidently, this last inequality holds if we choose = to satisfy the inequality
0<=<2*�34. To show that v=�1 on the circle [ |x|=2R] we need to
prove that

2(x1&2R)�3R+
=

R2 _(2R&x1)(x1&R�2)+
4
*

(4R2&x2
1)&

�0, &2R�x1�2R

This is the same as showing that

2
3

�= \x1

R
&

1
2++

=4
* \2+

x1

R + , &2R�x1�2R

This last inequality holds if = satisfies 0<=<4*�334. The result follows on
taking #=1�3+2*�334. QED

Corollary 1. Let ur(x) be the solution of (2.2). Then there is a con-
stant C depending only on * and a constant $>0 depending only on *�4
such that

ur(x)�Cr1+$R1&$, |x|<R

Proof. We use the second proof of Lemma 2.2. In view of Lemma 2.4
we have that

E[Nx]�1+ :
M&1

j=1
\1&#

# +
j

�
1

1&2# \
1&#

# +
M

where we assume #<1�2. Taking #=min[ 2
5 , 1

3+2*�334], it is easy to see
that there is a universal constant k>0 such that

E[Nx]�5(R�r)1&k*�4

We conclude from this last inequality and (2.5) that

ur(x)�20Cr1+$R1&$

where $=k*�4. QED

Next we consider the problem of finding a lower bound on the func-
tion ur(x) defined by (2.2). We shall proceed in a similar manner to the
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second proof of Lemma 2.2. Hence we need an upper bound on the func-
tion u(x) defined by (2.4). The crucial observation is the following:

Lemma 5. Let w(x)=1�|x|d&2, d>2. Then for d sufficiently large,
depending on 4�*, one has Lw(x)�0, x{0.

Proof. We have that for x=(x1 , x2),

�2w
�x2

1

=
&(d&2)

|x|d +
d(d&2) x2

1

|x|d+2

�2w
�x1 �x2

=
d(d&2) x1 x2

|x| d+2

�2w
�x2

2

=
&(d&2)

|x|d +
d(d&2) x2

2

|x|d+2

Hence we have

Lw(x)=
d(d&2)
|x|d+2 (x, A(x) x) &

(d&2)
|x| d [a11(x)+a22(x)]

�
(d&2)

|x|d [d*&24]�0, provided d�
24
*

QED

Corollary 2. Let u(x) be the solution of (2.4). Then there exists a
constant #, 0<#<1, depending only on *, 4 such that inf |x|=R[1&u(x)]�#.

Proof. Let v(x) be the function,

v(x)=_\2R
|x|+

d&2

&1&<[4d&2&1]

It is clear that v(x)=0, |x|=2R, v(x)=1, |x|=R�2. From Lemma 2.5 we
have that Lv(x)�0, x{0, if d is sufficiently large. Hence by the maximum
principle 1&u(x)�v(x), R�2<|x|<2R, if d is large. The result follows on
taking |x|=R. QED

Corollary 3. Let ur(x) be the solution of (2.2). Then there is a con-
stant c>0 depending only on 4 and a constant :>0 depending only on
4�* such that

ur(x)�cr2[r�(r+|x| )]:, |x|�R�2
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Proof. For |x|�r�2 the result follows from Lemma 2.1. Suppose
|x|>r�2 and let px be the probability that the diffusion process started at
x hits the circle | y|=r�2 before it hits the circle | y|=R. In view of
Corollary 2.2 and Lemma 6.3 of Ref. 6 it follows that there is a constant
:>0 depending on 4�* such that

px�[r�(r+|x| )]:

The result follows now from this last inequality and Lemma 2.1. QED

We can see that the estimates in Corollaries 2.1 and 2.3 are in some
sense sharp by considering the example of Pucci.(10) Thus let M be the dif-
ferential operator,

M=
x2

1

|x|2

�2

�x2
1

+
2x1x2

|x|2

�2

�x1 �x2

+
x2

2

|x|2

�2

�x2
2

If w is just a function of |x| , w(x)=v( |x| ), then Mw(x)=v"( |x| ). For
&�<=<�, let L= be the operator L==2+=M. It is clear that L= is
uniformly elliptic if =>&1. Further, with w(x)=v( |x| ), we have

L=w(x)=(1+=) v"( |x| )+|x| &1 v$( |x| ) (2.6)

In view of this last identity we can explicitly compute the function u(x) of
(2.4) when L=L= , =>&1. It is given by the formula

u(x)=_1&\2 |x|
R +

=�(1+=)

&<[1&4=�(1+=)], R�2<|x|<2R

Evidently then,

u(x)=[1&2=�(1+=)]�[1&4=�(1+=)], |x|=R

It is clear now that by taking = sufficiently large that we can make
inf |x|=R u(x) come arbitrarily close to the value 1�3. This is consistent with
Lemma 2.4. We also have

1&u(x)=[2=�(1+=)&4=�(1+=)]�[1&4=�(1+=)]

=2=�(1+=)�[1+2=�(1+=)]

We see from this last formula that by choosing = sufficiently close to &1
we can make inf |x| =R[1&u(x)] come arbitrarily close to 0. This is consis-
tent with Corollary 2.2.
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We can also explicitly compute the function ur(x) defined by (2.2)
when L=L= . In fact we have

ur(x)=
(1+=) r(2+=)�(1+=)

=(2+=)
[R=�(1+=)&|x| =�(1+=)], r�|x|�R

If we let = become large in this last formula, we see that for |x|�R�2, ur(x)
is of order r1+$R1&$, where $>0 can be made arbitrarily small. This is
consistent with Corollary 2.1. If we let = get close to &1, we see that, for
|x|�R�2, ur(x) is of order r2[r�(r+|x| )]:, where :>0 can be made
arbitrarily large. This is consistent with Corollary 2.3.

The estimates of Corollaries 2.1 and 2.3 show that the time the diffu-
sion process spends in an r neighborhood of a point before exiting a disc
of radius R can be very different from the Brownian time. The next
proposition shows that the time the diffusion process spends in an r
neighborhood of a line before exiting a disc of radius R is comparable to
Brownian time.

For 0<r<R let wr be the solution of the Dirichlet problem,

&Lwr(x)=/ (&r, r)(x1), |x|<R, wr(x)=0, |x|=R

Thus wr(x) is the expected time the diffusion process started at x spends in
the strip [x : &r<x1<r] before exiting the disc |x|�R.

Proposition 1. There exist positive constants C, c depending only on
*, 4 such that

crR�wr(x)�CrR, |x|�R�2. (2.7)

Proof. The upper bound in (2.7) follows from the argument of
Lemma 2.2. To get the lower bound we show first that if vr is the function
defined by (2.3) then one has

vr(x1)&rx2
2 �R�0, |x|=R (2.8)

To prove (2.8) we consider first the case when r<x1<R. Then one
has

vr(x1)&rx2
2 �R=(R&x1) r&r(R2&x2

1)�R

= &(R&x1) rx1 �R<0
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For 0�x1�r, we have

vr(x1)&rx2
2�R=

(R&x1)
2R |

x1

&r
(R+z) dz+

(R+x1)
2R |

r

x1

(R&z) dz

&r(R2&x2
1)�R

=rx2
1 �R&

1
2

r2&
1
2

x2
1�x2

1&
1
2

r2&
1
2

x2
1

=
1
2

x2
1&

1
2

r2�0, since 0�x1�r

Now (2.8) follows for all x, |x|=R, by symmetry.
Consider next the function u#(x) given by

u#(x1 , x2)=vr(x1)&rx2
2 �R&#r[R2&x2

1&x2
2]�R, |x|<R (2.9)

where #>0 is a parameter. Evidently from (2.8) we have that u#(x)�0,
|x|=R. We also have

&Lu#(x1 , x2)=a11(x) /(&r, r)(x1)+2ra22(x)�R

&2#ra11(x)�R&2#ra22(x)�R

Hence if we choose # to satisfy #>(1+*�4)&1, then

&Lu#(x1 , x2)�a11(x) /(&r, r)(x1)

It follows therefore from the maximum principle that

wr(x)�4&1u#(x), |x|�R (2.10)

Observe next that for r<x1<R, we have u#(x1 , 0)=(R&x1) r&
#r[R2&x2

1]�R=(R&x1) r[1&#&#x1 �R]. Hence if we choose # to satisfy
1�2<#<1, then

u#(x1 , 0)� 1
4 (1&#) Rr, r�x1<(1&#) R�2#

For 0�x1�r, we have

u#(x1 , 0)=(1&#) rR&r2�2&(1&2#r�R) x2
1 �2

�(1&#) rR&r2� 1
4 (1&#) Rr, provided r�3(1&#) R�4
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We conclude from these last two inequalities that

u#(x1 , 0)� 1
4 (1&#) Rr, |x1|<(1&#) R�2#

provided r�3(1&#) R�4, 1
2<#<1. It easily follows from this last

inequality and (2.9) that

u#(x1 , x2)� 1
8 (1&#) Rr, |x1|<(1&#) R�2#, |x2 |�R�2 - 2

Hence from (2.10) we conclude that

wr(x)�
1

84
(1&#) Rr, |x|�(1&#) R�4#

subject to the restriction r�3(1&#) R�4, 1
2<#<1. Now for x satisfying

|x|�R�2, let px be the probability that the diffusion process started at x
hits the circle | y|=(1&#) R�4# before hitting the circle | y|=R. From
Corollary 2.2 and the proof of Corollary 2.3 we have that px�$>0, where
$ depends only on *�4. Hence we have

wr(x)�
$

84
(1&#) Rr, |x|�R�2 QED

3. C 1, : CURVES

In this section we shall prove the analogue of Proposition 2.1 for C1, :

curves. Let g: [&R, R] � R be a differentiable function satisfying g(0)=
g$(0)=0 whose derivative g$ is Holder continuous with exponent :. Thus
there is a constant M such that

| g$(x)& g$( y)|�M _ |x& y|
R &

:

, x, y # (&R, R) (3.1)

We consider the graph x2= g(x1), &R<x1<R, in the plane and for r>0
define an r neighborhood Ur of this graph by

Ur=[(x1 , x2): |x2& g(x1)|<r, &R<x1<R]

Let /Ur
be the characteristic function of Ur and wr(x) be the solution of the

Dirichlet problem,

&Lwr(x)=/Ur
(x), |x|<R, wr(x)=0, |x|=R
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Theorem 1. There exists positive constants C, c depending only on *,
4, M, : such that

crR�wr(x)�CrR, |x|�R�2

The proof of the theorem is a consequence of the following lemmas:

Lemma 1. Let D be the rectangle

D=[x=(x1 , x2) : |x2 |<R, |x1|<mR],

where m�1. Suppose u(x) is the solution of the Dirichlet problem,

Lu(x)=0, x # D; u(x)=0, |x2 |=R; u(x)=1, x1=mR

Then there are constants ;, #>0 depending only on *, 4 such that

exp[&#m]�u(0, 0)�exp[&;m] (3.2)

Proof. Consider the function w$(x1 , x2) given by

w$(x1 , x2)=_2&
x2

2

R2& cosh \$x1

R +<cosh $m

where $>0 is a parameter. It is easy to see that w$(x)�0, x # D, and
w$(\mR, x2)�1, |x2 |�R. We also have that

Lw$(x1 , x2)=a11(x)
$2

R2 _2&
x2

2

R2& cosh \$x1

R +<cosh $m

&a12(x) \4$
R2+\x2

R + sinh \$x1

R +<cosh $m

&a22(x) \ 2
R2+ cosh \$x1

R +<cosh $m�0, x # D

provided $ is sufficiently small. It follows then from the maximum principle
that u(x)�w$(x), x # D, provided $ is small. This proves the upper bound
in (3.2).

To get the lower bound we use Corollary 2.2 to construct a set of
paths in D starting at (0, 0) which exit D through the boundary x1=mR.
To see this suppose the diffusion process starts at the point (x1 , x2) where
|x2 |<R�2. Let S1 be the circle with center (x1+R�2, 0) and radius R�4.
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Similarly let S2 and S3 be circles concentric with S1 and radii R�- 2, R
respectively. Arguing as in Corollary 2.2, we see there is a number #>0
depending only on *, 4 such that a particle started on S2 exits the region
between S1 , and S3 through S1 with probability at least #. Hence the par-
ticle started at (x1 , x2) hits S1 before exiting D with probability at least #.
Since all points on S1 have |x2 |<R�2 we have shown that a particle in the
set |x2 |<R�2 jumps a distance at least R�4 to the right without exiting D
and landing again in the set |x2 |<R�2 with probability at least #. We
conclude that

u(0, 0)�#4(m+1) QED

We extend the function g(x) to all of R by setting g$(x)= g$(R), x>R,
g$(x)= g$(&R), x< &R. For k=0, 1, 2,..., let gk be the function gk(x)=
g(x)+r2k. We consider the diffusion as a random walk on the graphs
x2= gk(x1), k=0, 1, 2,... . For the diffusion started at a point (x1 , x2) on
the graph of g1 let pN(x1) be the probability that it hits the graph of gN

before hitting the graph of g0 .

Lemma 2. Suppose N is an integer satisfying N�2 and the inequality
r2N�KR, for some constant K. Then there are positive constants C, c
depending only on *, 4, M, :, K such that

c
2N�pN(x1)�

C
2N , x1 # R (3.3)

Proof. For k�1 and x1 # R let qk(x1) be the probability that the
diffusion started at the point (x1 , gk(x1)) hits the graph of gk+1 before
hitting the graph of g0 . Let Q be the rectangle

Q={( y1 , y2) : | y1&x1|<
1
M

2k&2r, &2k&2r< y2& gk(x1)<3 } 2k&1r=
It is easy to see from the fact that &g$&��M that the boundary y2&
gk(x1)=3 } 2k&1r of Q lies above the graph of gk+1 and the boundary
y2& gk(x1)=&2k&2r lies above the graph of g0 . Hence if pQ denotes the
probability that the diffusion process started at (x1 , gk(x1)) exits Q through
the boundary y2& gk(x1)=3 } 2k&1r then it follows that qk(x1)�pQ . We
can similarly define a second rectangle Q$ with the property that the
uppermost boundary lies below the graph of gk+1 and the lowermost
boundary lies below the graph of g0 . If qQ$ is the probability that the diffu-
sion started at (x1 , gk(x1)) exits Q$ through the lowermost boundary then
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we have 1&qk(x1)�qQ$ . Now by Lemma 3.1 there is a number #,
0<#<1, depending only on *, 4, M such that pQ , qQ$�#. We conclude
then that

#�qk(x1)�1&#, k=1, 2,..., x1 # R (3.4)

We can improve the inequality (3.4) when r2k<<R. Let N$ be the
largest integer such that r2N$<R. For k<N$ we let L be the tangent line
to the graph of g at the point x1 . Let L1 be the line parallel to L through
the point

(x1 , gk(x1)+r&2kr[1&2(k&N$) :�2])

Similarly let L2 be the line parallel to L through the point

(x1 , gk(x1)+2kr[1+2(k&N$) :�2])

Consider now the parallelogram Q consisting of points ( y1 , y2) lying in the
strip between L1 and L2 which satisfy | y1&x1|<(N$&k) 2kr. In view of
(3.1) there is a constant N0 depending only on M, : such that if
1�k�N$&N0 then the boundary of Q contained in L1 lies above the
graph of g0 and the boundary of Q contained in L2 lies above the graphs
of gk+1 . Hence if pQ denotes the probability that the diffusion started at
(x1 , gk(x)) exits Q through the boundary contained in L2 then it follows
that qk(x1)�pQ .

We can use the upper bound in Lemma 3.1 to estimate pQ from below.
Observe that if the diffusion is started at (x1 , gk(x1)) then the probability
it exits the strip between L1 and L2 through L2 is given by

[2kr[1&2(k&N$) :�2]&r]�[2kr[1&2(k&N$) :�2]

&r+2kr[1+2(k&N$) :�2]]

=[1&2(k&N$) :�2&2&k]�[2&2&k]

From Lemma 3.1 the probability of the diffusion started at (x1 , gk(x1)) of
exiting Q through the sides | y1&x1|=(N$&k) 2kr is bounded above by
2=(k&N$) for some positive constant = depending only on *, 4. We conclude
therefore that

qk(x1)�pQ�[1&2(k&N$) :�2&2&k]�[2&2&k]&2=(k&N$),

1�k�N$&N0
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By constructing a parallelogram Q$ such that the uppermost boundary lies
below the graph of gk+1 and the lowermost boundary below the graph of
g0 we can obtain a similar lower bound on 1&qk(x1). We conclude there-
fore that there are constants $, A>0 depending only on *, 4, M, : such
that

1
2&A[2&$k+2&$(N$&k)]�qk(x1)� 1

2+A[2&$k+2&$(N$&k)],

1�k�N$&N0 (3.5)

The result follows from (3.4), (3.5) in using the fact that

`
N&1

k=1

inf
x1

qk(x1)�pN(x1)� `
N&1

k=1

sup
x1

qk(x1) QED

Lemma 3. Let N be an integer, N�2, and suppose that S0 , S1 , SN

are Jordan curves in R2 with the property that S0 lies inside S1 which in
turn lies inside SN . Let X be a stochastic process in R2 with continuous
sample paths. For x # S1 let pN(x) be the probability that the process
started at x hits SN before S0 . Let W be a set inside S0 and suppose that
for y # S0 , {y is the time the process spends in W before hitting S1 , and T N

y

is the time the process spends in W before hitting SN . Assume pN satisfies
the inequality

c
2N�pN(x)�

C
2N , x # S1 (3.6)

and {y satisfies the inequality

c1r2�E[{y]�C1 r2, y # S0 (3.7)

where c, C, c1 , C1 are positive constants. Then T N
y satisfies the inequality

c1r2

C
2N�E[T N

y ]�
C1r2

c
2N, y # S0

Proof. For n=1, 2,... and x # S1 , y # S0 let kn(x, y) be the probability
density function for the process started at x on the n th hit of S0 . Let
\( y, x) be the first hitting probability density on S1 for the process started
at y. Then we have

E[T N
y ]=E[{y]+ :

�

n=1
|

S1

dx$ |
S0

dy$ \( y, x$) kn(x$, y$) E[{y$]
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From (3.6) it follows that

\1&
C
2N+

n

�|
S0

kn(x$, y$) dy$�\1&
c

2N+
n

, x$ # S1

The result follows from this last inequality, (3.7) and the obvious fact that

|
S1

\( y, x$) dx$=1, y # S0 QED

For k=0, 1, 2,... let gk* be defined analogously to gk by gk*(x1)=
g(x1)&r2k. The curves Sk , k=0, 1, 2,... are defined as the union of the
graphs of gk , gk*. The set W is the inside of S0 . With this definition we then
have the following:

Lemma 4. The inequality (3.7) holds.

Proof. We consider first the lower bound. Observe that for every x
on the graph of g, the disc [ y: | y&x|<=r] is contained in W provided =
is sufficiently small, depending on :, M. Lemma 2.1 then implies that
E[{x]�$r2 for some $>0 depending only on :, M, *, 4 if x is in the
graph of g. By Lemma 3.1 the diffusion started at y # S0 hits the graph of
g before hitting S1 with probability #>0 depending only on *, 4, M, :.
Hence E[{y]�#$r2, y # S0 .

To get the upper bound let x=(x1 , x2) be inside S1 and Q the rec-
tangle centered at x given by Q=[( y1 , y2) : | y1&x1|<r, | y2&x2 |<
2(M+4) r]. Clearly the uppermost boundary of Q lies above the graph of
g1 and the lowermost boundary below the graph of g1*. Let {*x be the time
taken for the diffusion started at x to exit Q. By Lemma 2.1 it follows that
E[{*x]�Kr2 for some constant K depending only on *, 4, M. Chebyshev's
inequality yields therefore

P({*x>mr2)�K�m, m>0

From Lemma 3.1 we have that the probability the diffusion started at x
exits Q through the boundary | y2&x2 |=2(M+4) r is bounded below by
#>0 depending only on *, 4, M. Hence

P({x<mr2)�P({*x<mr2)&[1&#]�#&
K
m

Hence for m�2K�# we have

P({x>mr2)�1&#�2, x inside S1
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We conclude from this that

E[{x]� :
�

k=0
\1&

#
2+

k

(k+1) mr2�Cr2

for any x inside S1 . QED

Proof of Theorem 3.1. The upper bound follows immediately from
Lemmas 3.2, 3.3, 3.4. We simply choose N so that the graphs of gN and g*N
lie outside the disc |x|<R. Evidently N can be chosen to satisfy 2N�
C(R�r), where C depends only on M.

To get the lower bound let N0 be the smallest integer such that 2N0r�
R. We consider N<<N0 . Observe first that by Lemmas 3.3, 3.4 there is a
constant C depending only on *, 4, M, : such that

E[T N
x ]�C2Nr2, x inside S1

whence by Chebyshev

P(T N
x >2C2Nr2)�1�2, x inside S1

Hence

E[T N
x ; T N

x >2C2Nr2m]� :
�

k=m

( 1
2)k 2C2Nr2(k+1)�C1 2&m�2 2Nr2

for any integer m�1. Again by Lemmas 3.3, 3.4 there is a constant C2>0
such that

E[T N
x ]�C2 2Nr2, x # S0

Hence from the last two inequalities we have

E[T N
x ; T N

x <2C2Nr2m]�2Nr2[C2&C1 2&m�2]

We also have for any $, 0<$<1,

E[T N
x ; T N

x <2C2Nr2m]�2C2Nr2m[$+P(T N
x >2C2Nr2m$)]

It follows from these last two inequalities that there is a constant =>0
depending only on *, 4, M, : such that

P(T N
x >2C2Nr2m$)>=, x # S0
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Let DN be the intersection of the interior of SN with the disc [ |x|<R]. For
x # S0 with |x|<R�2 let qN(x) be the probability that the diffusion started
at x exits DN through the boundary where | y|=R. By Lemma 3.1 we can
choose a constant K>0 depending only on *, 4, :, M such that if
N�N0&K then qN(x)<=�2, x # S0 , |x|<R�2. Hence

wr(x)�2C2Nr2m$[P(T N
x >2C2Nr2m$)&qN(x)]

�C2Nr2m$=, x # S0 , |x|<R�2

To complete the result we need just to observe that for any x with
|x|<R�2 the probability that the diffusion started at x hits S0 on
[ | y|<R�2] before exiting the disc [ | y|<R] is bounded below by #>0
depending only on *, 4. Hence we have

wr(x)�#C2Nr2m$=�crR, |x|<R�2 QED

4. ESCAPE PROBABILITY FROM A LIPSCHITZ CURVE

Our goal in this section is to obtain a generalization of the lower
bound in Lemma 3.2 to Lipschitz curves. Let g: (&�, �) � R be a dif-
ferentiable function satisfying &g$&��M. Let r satisfy 0<r<1 and for
k=0, 1, 2,... let gk denote the functions gk(x)= g(x)+r2k, x # R. As in Sec-
tion 3 we view the diffusion as a random walk on the graphs gk . For the
diffusion started at a point (x1 , x2) on the graph of g1 we again denote by
pN(x1) the probability that it hits the graph of gN before hitting the graph
of g0 .

Theorem 1. Suppose N is an integer satisfying N�2 and the
inequality r2N�K, for some constant K. Then there is a constant C
depending only an *, 4, M, K such that

|
1

0
pN(x1) dx1�

1
2N exp[&C - N]

The proof of Theorem 4.1 is based on the expansion of g$ in a Haar
basis. We write

g$(x)= :
�

j=0

�j (x), x # R (4.1)

The functions �j have the property that for any m # Z, �j is constant on
the interval (m2& j, (m+1) 2& j). In addition if j�1 and m is even then
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�j (x)=&�j (x$) for m2& j<x<(m+1) 2& j, (m+1) 2& j<x$<(m+2) 2& j.
It is clear that the �j form an orthogonal set and &�j &��&g$&��M.

Just as in Lemma 3.2 we consider the probabilities qk(x1). Thus qk(x1)
is the probability that the diffusion started at the point (x1 , gk(x1)) hits the
graph of gk+1 before hitting the graph of g0 . We shall bound qk below in
terms of the functions �j . The bound will be dominated by those �j with
jtN&k. The reason for this is as follows: Normalizing g so that g(0)=0
we have

g(x)= :
�

j=0
|

x

0
�j (x$) dx$

The function �j contributes therefore at most 2& j &�j&��M2& j to g if
j�1. In estimating qk the relevant length scale is r2k

tK2k&N. Hence if
j>>N&k the contribution of �j is much less than this length scale. For
j<N&k a different mechanism is at work. The contribution of �j is a func-
tion linear on a length scale 2& j. Since the addition of a linear function to
g does not alter the probability qk the contribution of �j to qk is again
small if j<<N&k.

To illustrate the differing mechanisms for estimating qk we shall first
consider the situation when g$ is given by a single function �j . The follow-
ing two lemmas enable us to get a lower bound on qk in the case when
j>N&k.

Lemma 1. Let (\, %) be polar co-ordinates in the (x1 , x2) plane,
\2=x2

1+x2
2 , x1=\ cos %. For 0<%0<?�2 let W(%0) be the wedge consist-

ing of points satisfying 0<%<%0 . Let u(x1 , x2) be the solution of the
Dirichlet problem Lu(x)=0, x # W(%0),

u=0 if %=0, u=1 if %=%0

Then there are constants C, c>0 depending only on *, 4 such that

c%
%0

�u(x)�
C%
%0

, x # W(%0) with polar coordinates (\, %) (4.2)

Proof. We consider functions w(x1 , x2) of the form w(x1 , x2)=
h(x2 �x1). Then

Lw(x)=
1

x2
1

[[a11(x) z2&2a12(x) z+a22(x)] h"(z)

+[2a11(x) z&2a12(x)] h$(z)]
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where z=x2 �x1 . If we take h(z) to be the function given by

h$(z)=
A

(z+- =)2+=
, h(0)=0

where A, =>0 are parameters, then it follows that

h"(z)=
&2(z+- =)

(z+- =)2+=
h$(z)

Hence with this choice of h, we have

Lw(x)�
1

x2
1

[*(z2+1) h"(z)+24(z+1) h$(z)]�0

if 0<z<- = and = is sufficiently small depending only on *, 4. Choosing
A so that h(- =)=1 it follows by the maximum principle that if %0 is
defined by tan %0=- = then u(x)�w(x), x # W(%0). The upper bound in
(4.2) follows then provided %0�80 , where 80>0 depends only on *, 4.
To get the bound for 80<%0<?�2 observe that if we denote by u%0

the
solution of the Dirichlet problem for the wedge W(%0) then u%0

(x)�u80
(x),

x # W(80).
To get the lower bound in (4.2) we choose h to be given by

h$(z)=Ae#z, h(0)=0

where A, #>0 are parameters. Hence with this choice of h, we have

Lw(x)�
1

x2
1

[*(z2+1) h"(z)&24(z+1) h$(z)]�0

for all z>0 provided # is chosen large enough, depending on *, 4. If
0<%0<?�4 we choose A to satisfy h(tan %0)=1. By the maximum prin-
ciple u(x)�w(x), x # W(%0), whence the lower bound follows if 0<%0<
?�4. To deal with the case ?�4<%0<?�2 let p be the infimum of the
probabilities that the diffusion started on the line segment %=?�4 exits
W(%0) through the boundary %=%0 . By Lemma 3.1 p is bounded below by
a positive constant depending only on *, 4. The lower bound (4.2) follows
now from the inequality u%0

(x)�pu?�4(x), x # W(?�4). QED

Lemma 2. Suppose the diffusion is started at the point (0, 1) in the
(x1 , x2) plane. For 0<=<1, let P= be the probability that it first hits the
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x1 axis in the interval &=<x1<=. Then there are constants C, :>0
depending only on *, 4 such that P=�C=:.

Proof. Let N be the largest integer such that 2&N�=. For m=
0, 1, 2,... let Sm be the circle centered at the origin with radius 2&m.

Suppose the diffusion starts at a point x # Sm . Then the probability
that it exits the annulus bounded by Sm&1 and Sm+1 without hitting the
x1 axis is bounded above by 1&$, where $>0 depends only on *, 4. This
follows from Lemma 3.1. Hence

P=�(1&$)N�C=:

for suitable constants C, : depending only on *, 4. QED

For x # R, m, j # Z, we define the interval I(x, m, j) by I(x, m, j)=
(x+m2& j, x+(m+1) 2& j).

Lemma 3. Suppose N is a given in the statement of Theorem 4.1 and
k, j are integers satisfying 1�k<N, j�N&k. Assume the representation
(4.1) for g$ has the simple form g$=�j . Let qk(x1) be the probability that
the diffusion started at (x1 , gk(x1)) hits the graph of gk+1 before hitting the
graph of g0 . Then there are positive constants #, C, c with 0<#<1,
depending only on *, 4, M such that

qk(x1)�1<_2+C2&k+C# j+k&N :
�

m=&�

e&c |m|AvI(x1 , m, N&k) |�j |&
Proof. Observe that the inequality (3.4) continues to hold for

Lipschitz curves. Hence it is sufficient to show that

qk(x1)� 1
2&C2&k&C# j+k&N :

�

m=&�

e&c |m|AvI(x1 , m, N&k) |�j | (4.3)

Wlog we shall assume x1=0 in (4.3), and that g(0)=0. Let P be the prob-
ability that the diffusion started at (0, 2kr) hits the graph of g0 and then
exits the strip [(x1 , x2) : 0<x2<2k+1r] through the boundary x2=2k+1r.

Similarly let Q be the probability that the diffusion started at (0, 2kr)
exits the strip [(x1 , x2) : 0<x2<2k+1r] through the boundary x2=2k+1r
but fails then to hit the graph of gk+1 before hitting the graph of g0 . It is
evident that

qk(0)� 1
2&P&Q (4.4)
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We shall obtain upper bounds on P and Q which will imply (4.3). First we
write P as a sum

P= :
�

m=&�

:
2 j+k&N

i=1

Pm, i

where Pm, i is the probability that the diffusion started at (0, 2kr) hits the
graph of g0 first in the interval m2k&N+(i&1) 2& j<x1<m2k&N+i2& j,
and then exits the strip [(x1 , x2) : 0<x2<2k+1r] through the boundary
x2=2k+1r.

Let !m, i be the probability that the diffusion started at (0, 2kr) hits the
graph of g0 first in the interval m2k&N+(i&1) 2& j<x1<m2k&N+i2& j

before exiting the strip 0<x2<2k+1r. Let `m, i be the supremum over x1 in
the interval m2k&N+(i&1) 2& j<x1<m2k&N+i2& j of the probability
that the diffusion started at (x1 , g0(x1)) exits the strip 0<x2<2k+1r
through the boundary x2=2k+1r. It is clear that Pm, i�!m, i `m, i . If x i

satisfies the inequality m2k&N+(i&1) 2& j<x1<m2k&N+i2& j then
g0(x1) is bounded by

| g0(x1)|�r+|
m2k&N+i2&j

m2k&N+(i&1) 2&j
|�j ( y1)| dy1

We conclude therefore that

`m, i�2&k&1+
2&k&1

r |
m2k&N+i2&j

m2k&N+(i&1) 2&j
|�j ( y1)| dy1 (4.5)

Let 'm be the probability that the diffusion started at (0, 2kr) exits the
rectangle [(x1 , x2) : |x1|<(|m|&1) 2k&N, 0<x2<2k+1r] through the
boundaries |x1|=( |m|&1) 2k&N. It is evident that

:
2 j+k&N

i=1

!m, i�'m (4.6)

Further, we have by Lemma 3.1 that 'm�exp[&c |m|] for some c>0
depending only on *, 4. Let \m, i be the supremum over x=(x1 , x2) on the
boundaries |x1|=(|m|&1) 2k&N, 0<x2<2k+1r, of the probability that
the diffusion started at x first hits the graph of g0 in the interval m2k&N+
(i&1) 2& j<x1<m2k&N+i2& j before exiting the strip 0<x2<2k+1r.
Then !m, i�'m\m, i . Observe now that the interval m2k&N+(i&1) 2& j<
x1<m2k&N+i2& j has length 2& j and the point x is a distance of order
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2k&N from the part of the graph of g0 corresponding to this interval. Hence
we may apply Lemma 4.2 with ==2& j�2k&N to obtain the inequality,
\m, i�# j+k&N for some #, 0<#<1, depending only on *, 4. Hence we
have the inequality

!m, i�# j+k&N exp[&c |m| ] (4.7)

From (4.5), (4.6), (4.7) we can estimate

:
2 j+k&N

i=1

Pm, i � :
2 j+k&N

i=1

!m, i `m, i

�{ :
2 j+k&N

i=1

!m, i= 2&k&1+# j+k&N

_exp[&c |m|]
2&k&1

r |
(m+1) 2k&N

m2k&N
|�j ( y1)| dy1

�2&k&1 exp[&c |m| ]+C# j+k&N

_exp[&c |m|] AvI(0, m, N&k) |�j | (4.8)

since rt2&N. Summing this last inequality with respect to m yields an
upper bound on P which is consistent with (4.4) and (4.3).

We bound Q in a similar way to the method we used for P. We write

Q= :
�

m=&�

:
2 j+k&N

i=1

Qm, i

where Qm, i is the probability that the diffusion started at (0, 2kr) exits the
strip [(x1 , x2) : 0<x2<2k+1r] through the line segment m2k&N+
(i&1) 2& j<x1<m2k&N+i2& j, x2=2k+1r, but fails then to hit the graph
of gk+1 before hitting the graph of g0 .

Let !m, i be the probability that the diffusion started at (0, 2kr) exits
the strip [(x1 , x2) : 0<x2<2k+1r] through the line segment m2k&N+
(i&1) 2& j<x1<m2k&N+i2& j, x2=2k+1r. Then !m, i satisfies the
inequalities (4.6), (4.7). Let `m, i be the supremum over x=(x1 , x2) in the
line segment m2k&N+(i&1) 2& j<x1<m2k&N+i2& j, x2=2k+1r of the
probability that the diffusion started at x hits the graph of g0 before hitting
the graph of gk+1 . It is clear that Qm, i�!m, i `m, i . Further, by Lemma 4.1,
we have the inequality,
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Probability [the diffusion started at x=(x1 , x2) with m2k&N+
(i&1) 2& j<x1<m2k&N+i2& j, x2=2k+1r of not exiting the rectangle

{( y1 , y2) : m2k&N+(i&2) 2& j< y<m2k&N+(i+1) 2& j

&2& j< y2&2k+1r<|
m2k&N+(i+1) 2&j

m2k&N(i&2) 2&j
|�j ( y)| dy=

through the boundary

y2&2k+1r=|
m2k&N+(i+1) 2&j

m2k&N+(i&2) 2&j
|�j ( y)| dy&

�C2 j |
m2k&N+(i+1) 2&j

m2k&N+(i&2) 2&j
|�j ( y)| dy

where C is a constant depending only on *, 4. It is also clear that
Probability [the diffusion started at x=(x1 , x2) with x2=2k+1r&2& j

of hitting the graph of g0 before hitting the graph of gk+1]�C2N&k& j,
where the constant C depends only on the Lipschitz constant M. From
these last two inequalities we obtain

`m, i�C2N&k |
m2k&N+(i+1) 2&j

m2k&N+(i&2) 2&j
|�j ( y)| dy

Since this last inequality is analogous to (4.5) we can obtain a bound on
�2 j+k&N

i=1 Qm, i which is similar to the estimate (4.8) on �2 j+k&N

i=1 Pm, i . Conse-
quently we obtain an upper bound on Q which is consistent with (4.4),
(4.3). QED

Lemma 4. Suppose N is as given in the statement of Theorem 4.1
and k, j are integers satisfying 1�k<N, 0� j<N&k. Assume the
representation (4.1) for g$ has the simple form g$=�j . For x # R let d(x, Z)
be the distance from x to the integers Z. Then there are positive constants
C, c depending only on *, 4, M such that

qk(x1)�1<_2+C2&k+C :
�

m=&�

exp[&c[ |m|+2N&k& j d(2 jx1 , Z)]]

_AvI(x1, m, N&k) |�j |& (4.9)
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Proof. Let us first assume that 0<x1<2& j&1, whence the nearest
point in Z to 2 jx1 is 0. We shall first assume that �j (x1)=0. Since g(0)=0
and �j is constant on the interval (0, 2& j) it follows that g( y1)=0,
0< y1<2& j. We proceed now in a similar way to Lemma 4.3. Let P be the
probability that the diffusion started at (x1 , 2kr) hits the graph of g0 and
then exits the strip [( y1 , y2) : r< y2<2k+1r] through the boundary
y2=2k+1r. Similarly Q is the probability that the diffusion started at
(x1 , 2kr) exits the strip [( y1 , y2) : r< y2<2k+1r] through the boundary
y2=2k+1r but fails then to hit the graph of gk+1 before hitting the graph
of g0 . It is clear that

qk(x1)�[2k&1]�[2k+1&1]&P&Q (4.10)

We write P as a sum

P= :
�

m=&�

Pm

where Pm is the probability that the diffusion started at (x1 , 2kr) hits the
graph of g0 first in the interval x1+m2k&N< y1<x1+(m+1) 2k&N

before exiting the strip through the boundary y2=2k+1r. Since the graph
of g0 coincides with the line y2=r in the region 0< y1<2& j we conclude
that

Pm=0, |m|<2N&k& jd(2 jx1 , Z)&1

Now for |m|>2N&k& jd(2 jx1 , Z)&1 let !m be the probability that the dif-
fusion started at (x1 , 2kr) hits the graph of g0 first in the interval x1+
m2k&N<y1<x1+(m+1) 2k&N before exiting the strip. Then there is a
constant c>0 depending only on *, 4 such that !m�exp[&c |m| ]. Let `m

be the supremum over y1 in the interval x1+m2k&N<y1<x1+
(m+1) 2k&N that the diffusion started at ( y1 , g0( y1)) exits the strip
through the boundary y2=2k+1r. We have

| g0( y1)&r|� :
|m$|�|m|

2k&NAvI(x1 , m$, N&k) |�j |

Hence

`m�
1

(2k+1&1) r
| g0( y1)&r|�C :

|m$|�|m|

AvI(x1 , m$, N&k) |�j |
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where C is a constant. In view of the fact that Pm�!m`m we conclude that

P� :
[ |m| >2N&k&jd(2 jx1 , Z)&1]

Pm

� :
[ |m| >2N&k&jd(2 jx1 , Z)&1]

exp[&c |m|] C :
|m$|� |m|

AvI(x1 , m$, N&k) |� j |

�C1 :
�

m=&�

exp[&c1[ |m|+2N&k& jd(2 jx1 , Z)]] AvI(x1 , m, N&k) |�j |

(4.11)

for suitable constants C1 , c1>0.
We can get a similar estimate to (4.11) on Q. The result follows then

from (4.10) in the case when 0<x1<2& j&1 and �j (x1)=0. To deal with
the case when �j (x1){0 observe that we can restrict ourselves to the situa-
tion where |�j (x1)|�= and =>0 is a small number depending only on the
Lipschitz constant M. Indeed if |�j (x1)|�= then (4.9) gives

qk(x1)� 1
2&C1 2&k&C2 exp[&c2N&k& jd(2 jx1 , Z)]

where C1 , C2>0 are bounded below. This inequality can be obtained from
the estimate

qk(x1)�[2k&1]�[2k+1&1]& p

where p is the probability that the diffusion started at (x1 , gk(x1)) exits the
region between the graphs of g0 and gk+1 and the lines y1=0, y1=2& j,
through the boundaries y1=0, y1=2& j. Since this region is a parallelo-
gram it follows from Lemma 3.1 that there is a constant c>0 depending
only on *, 4 such that

p�exp[&c2N&k& jd(2 jx1 , Z)]

Let us assume now that |�j (x1)|�= and = is sufficiently small so that
the graph of g is still Lipschitz when the axis is rotated so that g( y1)=0,
0< y1<2& j. The inequality (4.11) then becomes

P� :
[ |m| >2N&k&jd(2 jx1 , Z)&1]

exp[&c |m|] C

_ :
|m$| �|m|

AvI(x1 , m$, N&k)[|�j |+|�j (x1)|]

�C1 :
�

m=&�

exp[&c1[ |m|+2N&k& jd(2 jx1 , Z)]] AvI(x1 , m, N&k) |�j |
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as before. The result follows as before from (4.10) and a similar estimate
on Q. QED

Next we combine the method of Lemmas 4.3, 4.4 to obtain a lower
bound on qk(x1) for general g$ given by (4.1)

Proposition 1. Suppose N is as given in the statement of Theorem 4.1,
g$ is given by the representation (4.1) and k is an integer satisfying
1�k<N. Then there are positive constants C, c, # with 0<#<1, depending
only on *, 4, M such that

qk(x1)�1<_2+C2&k+C :
N&k

j=0

:
�

m=&�

_exp[&c[ |m|+2N&k& jd(2 jx1 , Z)]] AvI(x1 , m, N&k) |�j |

+C :
�

j=N&k+1

# j+k&N :
�

m=&�

e&c |m| AvI(x1 , m, N&k) |�j |&
Proof. We first consider the case where x1=0. We write g(x)=

g1(x)+g2(x), where

dg1(x)�dx= :
�

j=N&k+1

�j (x), g1(0)=0

We define a dyadic decomposition of R into intervals of length 2& j, j�
N&k where each interval has the form (m2& j, (m+1) 2& j), m # Z. Denote
by Ij an interval in this decomposition which has length |Ij |=2& j. Let =
satisfy 0<=<1. We define a function N1 ,

N1 : R � [ j # Z _ [�] : j�N&k+1]

by

(a) N1(x)=� if for all dyadic intervals Ij with j>N&k and
x # Ij/IN&k we have

|Ij |
1&= AvIj

|�j |�|IN&k |1&= sup
IN&k

| g2|�|IN&k |

(b) Otherwise 2&N1(x) is the length of the side of the largest dyadic
interval, Ij , j>N&k, x # Ij/IN&k with

|Ij |
1&= AvIj

|�j |>|IN&k |1&= sup
IN&k

| g2|�|IN&k |
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Observe that �j is constant on Ij whence AvIj
|�j | is just the absolute value

of this constant.
Next we define the set G1 to be G1=[x # R : N1(x)=�]. It is clear

there is a unique family F1 of disjoint dyadic intervals with the property
that

.
I # F1

I=R"G1

If F1 is nonempty we define a function N2 on R which is analogous to N1 .
Thus

(a) N2(x)=� if x # G1 .

(b) N2(x)=� if x # R"G1 and for any j $> j with x # Ij $/Ij # F1 we
have

|Ij $ |
1&= AvIj $

|�j $ |�|Ij |
1&= AvIj

|�j |

(c) Otherwise 2&N2(x) is the length of the side of the largest dyadic
interval Ij $ , x # Ij $/I j # F1 such that

|Ij $ |
1&= AvIj $

|�j $ |>|Ij |
1&= AvIj

|�j |

Evidently we have N2(x)�N1(x)+1, a.e. x # R. Now define G2 to be the
set G2=[x # R"G1 : N2(x)=�]. Then, as with N1 , there is a unique
family F2 of disjoint dyadic intervals with the property

.
I # F2

I=R"G1"G2

One can continue this procedure inductively to construct a sequence of
functions Nt , t�1, on R, a sequence of disjoint subsets Gt , t�1, of R, and
a sequence of families Ft , t�1, with the properties:

(a) ��
t=1Gt=R.

(b) Ft is a collection of disjoint dyadic intervals such that

.
I # Ft

I=R> .
t

t$=1

Gt$

(c) For any Ij $ # Ft , t�2, let Ij # Ft&1 be the unique dyadic interval
containing Ij $ . Then

|Ij $ |
1&= Avj $ |�j $ |>|Ij |

1&= AvIj
|�j |

(d) Nt(x)=� for x # � t
t$=1 Gt$ .
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Otherwise Nt(x) is defined by 2&Nt(x)=|I | where I is the unique interval in
Ft with x # I.

We have defined a Calderon�Zygmund decomposition just as was
done in Ref. 5. The purpose of this decomposition is to estimate the value
of g(x) in terms of the functions �j . To see this let us first consider x # G1 .
Hence

| g(x)|�| g2(x)|+ :
�

j=N&k+1

2& jAvIj
|�j |

where the Ij are the unique dyadic intervals of length 2& j with x # Ij . Since
x # G1 we have

| g(x)|�sup
IN&k

| g2|+sup
IN&k

| g2| :
�

j=N&k+1

2=(N&k& j)

=sup
IN&k

| g2|�[1&2&=]

Suppose next that x # G2 and that x # Ij # F1 where j>N&k. Then if
Ij/IN&k we have

| g(x)|�sup
IN&k

| g2|+ :
j&1

j $=N&k+1

2& j $AvIj $
|�j $ |+ :

�

j $= j

2& j $AvIj $
|�j $ |

�sup
IN&k

| g2|+sup
IN&k

| g2| :
j&1

j $=N&k+1

2=(N&k& j $)

+2& jAvIj
|�j | :

�

j $= j

2&=( j $& j)

�[sup
IN&k

| g2|+2& jAvIj
|�j |]�[1&2&=]

�2& jAvIj
|�j | [2=( j+k&N )+1]�[1&2&=]

More generally it is easy to see that for t�2, x # Gt with x # Ij # Ft&1 then

| g(x)|�2& jAvIj
|�j | 2=( j+k&N )�[1&2&=]2

We proceed now as in the proof of Lemma 4.3. Let P be the probabil-
ity that the diffusion started at (0, 2kr) hits the graph of g0 and then exits
the strip[(x1 , x2) : r<x2<2k+1r] through the boundary x2=2k+1r.
Similarly let Q be the probability that the diffusion started at (0, 2kr) exits
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the strip [(x1 , x2) : r<x2<2k+1r] through the boundary x2=2k+1r but
fails then to hit the graph of gk+1 before hitting the graph of g0 . It is clear
that we have as in (4.10),

qk(0)�[2k&1]�[2k+1&1]&P&Q (4.12)

We write P as a sum,

P= :
�

m=&�

Pm

where Pm is the probability that the diffusion started at (0, 2kr) hits the
graph of g0 first in the interval m2k&N<x1<(m+1) 2k&N before exiting
the strip through the boundary x2=2k+1r. We can further write

Pm= :
�

t=1

Pm, t

where Pm, t is the probability the diffusion hits the graph of g0 first in
the set (m2k&N, (m+1) 2k&N) & Gt before exiting through the boundary
x2=2k+1r. Arguing as in Lemma 4.3 it is clear that

2krPm, 1�C= e&c |m| sup
I(0, m, N&k)

| g2|

where the constant C= depends only on =>0. Similarly there is a constant #1 ,
0<#1<1, such that if t�2, then

2krPm, t�C=e&c |m| :
Ij # Ft&1

(#12=) j+k&N 2& jAvIj
|�j |

We can choose now =>0 to be sufficiently small so that #12==#<1. Since
the families Ft , t�1, are disjoint it follows then that

2krPm�C= e&c |m| {sup
IN&k

| g2|+ :
�

j=N&k+1

# j+k&N :
Ij/IN&k

2& jAvIj
|�j |=

If we use now the fact that

2N&k :
Ij/IN&k

2& jAv |�j |=AvIN&k
|� j |

(4.13)

sup
IN&k

| g2|= sup
I(0, m, N&k)

| g2|�2k&N :
N&k

j=0

:
|m$|<|m|+1

AvI(0, m$, N&k) |�j |
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we can conclude that

P�C :
N&k

j=0

:
�

m=&�

e&c |m|AvI(0, m, N&k) |�j |

+C :
�

j=N&k+1

# j+k&N :
�

m=&�

e&c |m|AvI(0, m, N&k) |�j | (4.14)

To estimate Q we slightly modify the Calderon�Zygmund decomposi-
tion we employed in the estimate of P. For Ij a dyadic interval, Ij=
(m2& j, (m+1) 2& j) for some m # Z, and : # Z, let Ij (:) be the translate of
Ij by a distance :2& j. Thus Ij (:)=((m+:) 2& j, (m+1+:) 2& j). Let a,
2>a>1 be a fixed number. For our new decomposition we define the
function N1 by

(a$) N1(x)=� if for all dyadic intervals Ij with j>N&k and
x # Ij/IN&k we have

|Ij |
1&= sup[AvIj (:) |�j | : |:|�2a j+k&N]

�|IN&k |1&= sup[ sup
IN&k(:)

| g2| : |:|�2]�|IN&k |

(b$) Otherwise 2&N1(x) is the length of the side of the largest dyadic
interval Ij , j>N&k, x # Ij/IN&k with

|Ij |
1&= sup[AvIj (:) |�j | : |:|�2a j+k&N]

>|IN&k |1&= sup[ sup
IN&k(:)

| g2| : |:|�2]�|IN&k |

Similarly to before we can define functions Nt , t�2, sets Gt and
families Ft , t�1 with the properties (a), (b), (d) as before but
with (c) replaced by

(c$) For any Ij $ # Ft , t�2, let Ij # Ft&1 be the unique dyadic interval
containing Ij $ . Then

|Ij $ |
1&= sup[AvIj $ (:) |�j $ | : |:|�2a j $+k&N]

>|Ij |
1&= sup[AvIj (:) |�j | : |:|�2a j+k&N]

We write Q as a sum, Q=��
m=&� Qm , where Qm is the probability

that the diffusion started at (0, 2kr) exits the strip [(x1 , x2) : r<x2<
2k+1r] through the boundary x2=2k+1r, m2k&N<x1<(m+1) 2k&N, but
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fails then to hit the graph of gk+1 before hitting the graph of g0 . We can
further decompose Qm as

Qm= :
�

t=1

Qm, t

where Qm, t is the probability it exits through the boundary x2=2k+1r,
[x1 # Gt : m2k&N<x1<(m+1) 2k&N] but fails to hit the graph of gk+1

before hitting the graph of g0 . Let `m, t(x1) be defined as the probability
that the diffusion started at (x1 , x2) with x2=2k+1r, x1 # Gt and m2k&N<
x1<(m+1) 2k&N, hits the graph of g0 before hitting the graph of gk+1 .
Evidently we have Qm, t�exp[&c |m|] sup `m, t for some constant c>0
depending only on *, 4.

We first estimate `m, 1 . We shall show that

sup `m, 1�C sup[ sup
IN&k (:)

| g2| : |:|�2]�|IN&k | (4.15)

for some constant C. We can assume without loss of generality that

sup[ sup
IN&k (:)

| g2| : |:|�2]=2& j

for some j>N&k. Suppose now x1 # G1 & IN&k and | y1&x1|<
[2a j+k&N&1] 2& j. Then

| g( y1)|�| g2( y1)|+ :
�

j $=N&k+1

2& j $AvIj
|�j $ |

�2& j+ :
j

j $=N&k+1

2&=( j $+k&N )2& j+M :
�

j $= j+1

2& j $�C2& j

(4.16)

where M is the Lipschitz constant for g. We can use a similar argument to
obtain a weaker estimate on g( y1) than in (4.16), but on a wider range of
values of y1 . To see this let a=2+ where 0<+<1. It is evident that for j $
satisfying j $>N&k, then

a( j $+k&N )�22&( j $+k&N )<a ( j"+k&N ) 2&( j"+k&N )

provided j" satisfies the inequality

j"+k&N<( j $+k&N )(1&+�2)�(1&+) (4.17)
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Hence if x1 # G1 & IN&k and | y1&x1|<a( j $+k&N )�2 2& j $, then one also has

| y1&x1|<a( j"+k&N ) 2& j"<[2a( j"+k&N )&1] 2& j"

provided j $+k&N is sufficiently large, depending only on a. Letting j" be
the largest integer satisfying (4.17) we conclude that for

| y1&x1|<a( j $+k&N )�22& j $

then

| g( y1)|�2& j :
j"

i=N&k

2&=(i+k&N )+M :
�

i= j"+1

2&i�C[2& j+2& j"]

whence

| g( y1)|�C2k&N[2&(1+$)( j $+k&N )+2&( j+k&N )],

| y1&x1|<a( j $+k&N )�2 2& j $ (4.18)

where $>0.
To estimate `m, 1(x1) we consider regions Rj $ , j $� j, defined as the

points ( y1 , y2) which lie between the graph of gk+1 and the line y2=
2k+1r&2& j $ and satisfy the inequality,

| y1&x1|< :
j

i= j $

(i+k&N )2 2&i

Evidently the Rj $ are an increasing set of regions with Rj being the smallest.
For j $� j let 'j $ be the probability that the diffusion started at (x1 , 2k+1r)
exits Ri through the boundary y2=2k+1r&2&i for i> j $ but exits Rj $

through the boundary

| y1&x1|= :
j

i= j $

(i+k&N )2 2&i

Then it is clear that

`m, 1(x1)� :
j

j $=N&k&l

'j $

provided l is chosen so that the graph of g0 lies above the line y2=
2k+1r&2&(N&k&l).

461Random Walks Associated with Non-Divergence Form Elliptic Equations



By Lemma 3.1 and (4.16) we have that 'j�e&c( j+k&N )2
, for some

constant c>0 depending only on *, 4, M. To estimate '$j for j $< j we shall
assume that

:
j

i= j"

(i+k&N )2 2&i<a( j"+k&N )�22& j", j $� j"� j

This inequality clearly holds if j $+k&N is bounded below by a sufficiently
large constant. Arguing then as in Lemma 3.2 we have from (4.18)

'j $ �e&c( j $+k&N )2
`

j

i= j $+1

[2&i+C2k&N[2&(1+$)(i+k&N )+2&( j+k&N )]]

�[2&i+1+C2k&N[2&(1+$)(i+k&N )+2&( j+k&N )]]

�C12&( j& j $)e&c( j $+k&N )2

for some constant C1 . We conclude that

`m, 1(x1)� :
j

j $=N&k&l

C12&( j& j $)e&c( j $+k&N )2
�C2 2&( j+k&N ) (4.19)

which yields the inequality (4.15).
Next we consider the case of `m, t with t�2. We shall show that

`m, t(x1)�2 (=&1)( j+k&N ) sup[AvIj (:) |�j | : |:|�2a j+k&N],

x1 # Ij & Gt , Ij # Ft&1 (4.20)

First we prove the inequality in the case when

sup[AvIj (:) |�j | : |:|�2a j+k&N]�c1>0 (4.21)

for some constant c1 . Define an integer j= as the largest integer such that

2(1&=)( j+k&N )>2 j=+k&N

Evidently we have j> j=>N&k. Suppose now y1 satisfies the inequality
| y1&x1|<[2a j=+k&N&1] 2& j=. Then, since x1 # Ij & Gt , Ij # Ft&1 , we have

| g( y1)|�M :
j=

i=N&k

2&(1&=)( j&i) 2&i+M :
�

i= j=+1

2&i

=M :
j=

i=N&k

2&=(i+k&N )2& j=+M :
�

i= j=+1

2&i

�2M2& j=�[1&2&=] (4.22)
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The inequality (4.22) is analogous to (4.16). We can similarly obtain an
inequality analogous to (4.18). In fact for N&k< j $< j= let j" be defined
by (4.17). Then if | y1&x1|<a( j $+k&N )�22& j $ we have the inequality

| g( y1)|�M :
j= 7 j"

i=N&k

2&(1&=)( j&i) 2&i+M :
�

i= j"+1

2&i

�C[2& j=+2& j"] (4.23)

We argue now exactly as before, replacing the inequalities (4.16), (4.18) by
(4.22), (4.23). The inequality corresponding to (4.19) is given by

`m, t(x1)�C2&( j=+k&N )�C2(=&1)( j+k&N ) (4.24)

which proves (4.20) in the case when (4.21) holds.
More generally we define j= as the largest integer such that

2&( j=+k&N )>2&(1&=)( j+k&N ) sup[AvIj (:) |�j | : |:|�2a j+k&N] (4.25)

It is now clearly possible to have j=< j or j=> j. In the case when j=< j we
can proceed in a similar manner to the derivation of (4.24). In fact the
analogue of the inequality (4.22) is given by

| g( y1)|� :
j=

i=N&k

2&(1&=)( j&i)2&i sup[AvIj (:) |�j | : |:|�2a j+k&N]

+M :
�

i= j=+1

2&i

provided

| y1&x1|<[2a j=+k&N&1] 2& j=

Using the definition (4.25) this yields the estimate | g( y1)|�C2& j= for some
constant C, which is the same as (4.22), up to a constant. In a similar way
we obtain (4.23). The inequality (4.24) then yields (4.20).

Consider next the case j=> j. Then

| g( y1)|� :
j

i=N&k

2&(1&=)( j&i)2&i sup[AvIj (:) |�j | : |:|�2a j+k&N]

+ :
j=

i= j+1

2(1&=)(i& j) 2&i sup[AvIj (:) |�j | : |:|�2a j+k&N]

+M :
�

i= j=+1

2&i
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provided

| y1&x1|<[2a j=+k&N&1] 2& j=

It is easy to see from the definition (4.25) again of j= that | g( y1)|�C2& j=

for some constant C. Similarly to before, one obtains the estimate (4.23)
again, whence (4.20) follows again from (4.24).

We use (4.15), (4.20) to bound Qm, t . Thus there exists #1 , 0<#1<1,
and a constant C such that for t�2,

Qm, t �exp[&c |m|] C :
[Ij # Ft&1 , Ij/I(0, m, N&k)]

# j+k&N
1

_sup[`m, t(x1) : x1 # Gt & Ij]

whence (4.20) yields

Qm, t �exp[&c |m|] C :
[Ij # Ft&1 , Ij/I(0, m, N&k)]

2&( j+k&N )

_(#12=) ( j+k&N ) sup[AvIj (:) |�j | : |:|�2a j+k&N]

Evidently (4.15) yields

Qm, 1�exp[&c |m|] C sup[ sup
IN&k (:)

| g2| : |:|�2]�|IN&k |

where IN&k=(m2k&N, (m+1) 2k&N). Choosing a>1 now to be sufficiently
small so that #=#1 2=a<1, we can conclude that

Q= :
�

m=&�

:
�

t=1

Qm, t

�C :
�

m=&�

e&c |m| 2N&k sup
I(0, m, N&k)

| g2|

+C :
�

m=&�

e&c |m| :
�

j=N&k+1

# j+k&NAvI(0, m, N&k) |�j | (4.26)

for suitable constants c, C>0. Using now the estimate (4.13) we see that
the previous estimate on Q yields an estimate of the same form as for P in
(4.14). These inequalities together with (4.12) yield the result of Proposi-
tion 4.1 in the case when x1=0.

If g2 is the integral of a single function �j , 0� j�N&k, then the
method of Lemma 4.4 combined with the inequalities (4.26) on Q and the
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corresponding inequality for P yield the result of the Proposition for
arbitrary x1 . More generally we shall show that P and Q satisfy the
inequality

P, Q�C :
�

m=&�

e&c |m| :
�

j=N&k+1

# j+k&NAvI(x1 , m, N&k) |�j |

+C :
|m|�m(x1)

e&c |m| 2N&k sup
I(x1 , m, N&k)

| g2|

+C :
m(x1)

m=1

e&cm sup
[| y1&x1|�m2k&N]

|dg2�dy1&dg2�dy1(x1+)| (4.27)

where m(x1) is defined as the smallest positive integer such that

m(x1) 2k&N>d(x1 , Z)

and

dg2�dy1(x1+)= lim
y1 � x1+

dg2�dy1( y1)

To see that (4.27) implies the result, observe that

dg2�dy1= :
N&k

j=0

�j ( y1)

whence

sup
| y1&x1|�m2k&N

|dg2�dy1&dg2�dy1(x1+)|

�2 :
N&k

j= j0+1

sup
| y1&x1|�m2k&N

|�j ( y1)|

where j0 is the largest integer such that

d(2 j0x1 , Z)�2 j0>m2k&N

To prove (4.27) first consider the case when dg2�dy1(x1+)=0. Then
the inequality follows in exactly the same way as (4.26). For the case when
dg2�dy1(x1+){0 we regard the line with slope dg2�dy1(x1+) as a new
axis. The argument then goes through as before. QED
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For the diffusion started at (x1 , x2) on the graph of g1 , we consider
only paths which hit the graph of gk before hitting the graph of g0 , k�2.
Let Xk, x1

be the random variable defined as the first hitting point on the
graph of gk is ( y1 , gk( y1)) where y1=Xk, x1

.

Lemma 5. There is a constant :, 0<:<1, depending only on *, 4,
M such that

P( |Xk, x1
&x1|>m2k&N)�:m, m=0, 1, 2,...

Proof. Let X n, n=2, 3,... be the random variable which has the
property that (X n, gn(X n)) is the first hitting position on the graph of gn .
Thus Xk, x1

=X k. Letting X 1=x1 we have for any =>0, the inequality

E[exp[=2N&k |Xk, x1
&x1|]]�E _exp {=2N&k :

k

n=2

|X n&X n&1|=&
(4.28)

It follows from Lemma 3.1 that there is a constant ;, 0<;<1, depending
only on *, 4, M such that

P( |X k&X k&1|>m2k&N | X 2,..., X k&1)�;m, m=0, 1, 2,...

It follows also by the same argument that for n=2,..., k

Puc( |X n&X n&1|>m2n&N | X 2,..., X n&1)�;m, m=0, 1, 2,...

where Puc denotes the unconditioned probability of paths starting at
(X n&1, gn&1(X n&1)) which are conditioned only on hitting the graph of gn

before the graph of g0 . Thus we drop the condition that the diffusion started
at (X n, gn(X n)) must hit the graph of gk before hitting the graph of g0 . It
is clear again from Lemma 3.1 that there is a number a>1, depending only
on *, 4, M such that

P( |X n&X n&1|>m2n&N | X 2,..., X n&1)

�ak&nPuc( |X n&X n&1|>m2n&N | X 2,..., X n&1), n=2,..., k

whence we have

P( |X n&X n&1|>m2n&N | X 2,..., X n&1)

�ak&n;m, n=2,..., k, m=0, 1, 2,... (4.29)
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We shall use the inequality (4.29) to bound the RHS of (4.28). Thus
applying (4.29) with n=k and using Bayes theorem we have

E _exp {=2N&k :
k

n=2

|X n&X n&1|=&
�_ :

�

m=0

e=(m+1);m& E _exp {=2N&k :
k&1

n=2

|X n&X n&1|=&
=e=[1&;e=]&1 E _exp {=2N&k :

k&1

n=2

|X n&X n&1|=&
provided =>0 is chosen sufficiently small so that ;e==$<1. For 2�n<k,
we have from (4.29),

E[exp[=2N&k |X n&X n&1|] | X 2,..., X n&1]

�exp[=2n&k(m0+1)]+ :
�

m=m0

exp[=2n&k(m+1)] ak&n;m

for any integer m0�0. Hence

E[exp[=2N&k |X n&X n&1|] | X 2,..., X n&1]

�exp[=2n&k(m0+1)][1+ak&n;m0�[1&; exp[=2n&k]]

Choosing m0=(n&k)2 we conclude that there is a constant C1 such that

E[exp[=2N&k |X n&X n&1|] | X 2,..., X n&1]

�1+C12(n&k)�2, n=2,..., k

It follows now from (4.28) that

E[exp[=2N&k |Xk, x1
&x1 |]]� `

k

n=2

[1+C12(n&k)�2]�C2

for some constant C2 . QED

Proof of Theorem 4.1. We define conditional probability measures
d+k

yk&1
( yk) for k=2, 3,... . Thus we consider the diffusion starting at the

point ( yk&1 , gk&1( yk&1)) on the graph of gk&1 and consider only paths
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which hit the graph of gk before hitting the graph of g0 . Then for any open
set O/R,

|
0

d+k
yk&1

( yk)=probability the diffusion first hits the graph of gk

at points (z, gk(z)) with z # O

It is clear now from the definition of the probabilities pN and qk , k=1, 2,...
that

pN( y1)=|
RN&1

q1( y1) d+2
y1

( y2) q2( y2)

_d+3
y2

( y3) } } } qN&1( yN&1) d+N
yN&1

( yN) (4.30)

Let ak , k=1,..., N&1 be functions such that

qk( yk)� 1
2 exp[&ak( yk)], yk # R

Then, upon using Jensen's inequality in (4.30), we have

2N&1pN( y1)�exp _&a1( y1)&|
R

a2( y2) d+2
y1

( y2)

&|
R 2

a3( y3) d+2
y1

( y2) d+3
y2

( y3) } } }

&|
R N&1

aN&1( yN&1) d+2
y1

( y2) d+3
y2

( y3) } } } d+N&1
yN&2

( yN&1)&
Using the random variables Xk, x1

, k=2, 3,... of Lemma 4.5 this last
inequality can be written as

2N&1pN(x1)�exp[&a1(x1)&E[a2(X2, x1
)]

&E[a3(X3, x1
)] } } } &E[aN&1(XN&1, x1

)]]

Using Jensen's inequality again we have that

2N&1 |
1

0
pN(x1) dx1 �exp _&|

1

0
a1(x1) dx1&|

1

0
E[a2(X2, x1

)] dx1 } } }

&|
1

0
E[aN&1(XN&1, x1

)] dx1& (4.31)
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From Proposition 4.1 we see that the functions ak are bounded by

ak(z)�C2&k+C :
N&k

j=0

:
�

m=&�

exp[&c[ |m|+2N&k& j d(2 jz, Z)]]

_AvI(z, m, N&k) |�j |+C :
�

j=N&k+1

# j+k&N

_ :
�

m=&�

e&c |m|AvI(z, m, N&k) |�j |, z # R

In view of Lemma 4.5 we have from the previous inequality

E[ak(Xk, x1
)]�C2&k+C :

N&k

j=0

:
�

m=&�

exp[&c [ |m|+2N&k& j d(2 jx1 , Z)]]

_AvI(x1 , m, N&k) |�j |+C :
�

j=N&k+1

# j+k&N

_ :
�

m=&�

e&c |m|AvI(x1 , m, N&k) |�j | (4.32)

for suitable constants C, c depending only on *, 4, M.
Observe now that

|
1

0
dx1 AvI(x1 , m, N&k) |�j |=2N&k |

1

0
dx1 |

2k&N

0
(4.33)

dy |�j | (x1+m2k&N+ y)�|
2

0
dz |�j | (z+m2k&N)

Next we wish to bound

|
1

0
dx1 exp[&c2N&k& j d(2 jx1 , Z)] AvI(x1 , m, N&k) |�j | (4.34)

where 0� j�N&k. Let n be the unique integer such that n2& j�
m2k&N<(n+1) 2& j. Then, in view of the fact that �j is constant on
intervals (n$2& j, (n$+1) 2& j ), n$ # Z, we have that the expression (4.34) is
bounded by

:
n+2 j+1

n$=n

2 j |
(n$+1) 2&j

n$ 2&j
|�j (z)| dz |

Un $

2N&k exp[&c2N&k& j d(2 jx1 , Z)] dx1 dy
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where Un$ is the set,

Un$ =[0<x1<1, 0< y<2k&N, n$2& j<x1+ y+m2k&N<(n$+1) 2& j]

It is easy to see that there is a constant C1 , depending only on c such that

|
Un$

2N&k exp[&c2N&k& jd(2 jx1 , Z)] dx1 dy�C1 2k&N

We conclude therefore that (4.34) is bounded by

C12k&N+ j |
n2&j+1+2&j+1

n2& j
|�j (z)| dz

�C12k&N+ j |
3

&3
dz |� j | (z+m2k&N)

It follows now from this last inequality, (4.32) and (4.33) that

|
1

0
dx1 E[ak(Xk, x1

)]

�C22&k+C2 :
N&k

j=0

2k&N+ j :
�

m=&�

e&c |m| |
3

&3
dz |�j | (z+m2k&N)

+C2 :
�

j=N&k+1

# j+k&N :
�

m=&�

e&c |m| |
3

&3
dz |�j | (z+m2k&N)

for some constant C2 depending only on *, 4, M. Hence from (4.31)

&ln _2N&1 |
1

0
pN(x1) dx1&

�C3+C3 :
N

j=0

:
�

m=&�

e&c |m| |
3

&3
dz |�j | (z+m2k&N)

+C3 :
�

j=N+1

# j&N :
�

m=&�

e&c |m| |
3

&3
dz |�j | (z+m2k&N) (4.35)

where C3>0, # satisfying 0<#<1 depend only on *, 4, M. We have now
from the Schwarz inequality that

:
N

j=0
|

3

&3
dz |�j | (z+m2k&N)�- 6N { :

N

j=0
|

3

&3
dz |�j |

2 (z+m2k&N)=
1�2
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Let n # Z be the unique integer such that n�m2k&N<n+1. Then

:
N

j=0
|

3

&3
dz |�j |

2 (z+m2k&N)� :
N

j=0
|

n+4

n&3
dz |�j |

2 (z)

�|
n+4

n&3
dz g$(z)2�7M2

where we have used the orthogonality of the representation (4.1). Using
also the fact that &�j &��M we conclude from (4.35) that

&ln _2N&1 |
1

0
pN(x1) dx1&

�C3+C3 M - 42N :
�

m=&�

e&c |m| +
6C3M#

1&#
:
�

m=&�

e&c |m|

�C4 - N

where the constant C4 depends only on *, 4, M. QED

5. RANDOM WALK ON A LINE

In Section 2 we saw that the expected time the diffusion process
generated by uniformly elliptic operator L spends in a neighborhood of a
line is comparable to the corresponding Brownian time. In this section we
shall see that this comparison goes beyond the expected time. Let (x, y)
denote co-ordinates in the plane R2, and O/R be an arbitrary open set.
We define a kernel k(x, x$), x, x$ # R by

|
O

k(x, x$) dx$=probability that the diffusion started at (x, 0)

first hits the line y=0 in the set [(z, 0) : z # O]

after hitting the line y=1 (5.1)

The kernel k induces a random walk on the line y=0 with transition prob-
ability given by k. Here we shall study this random walk for general
uniformly elliptic L and compare it to the corresponding walk when L#2.

It is possible to explicitly compute k in the case L#2. In fact k is
given by the well known formula for the Cauchy distribution,

k(x, x$)=
2
?

1
(x&x$)2+4

, x, x$ # R
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We denote the position of the walk by random variables Y(0), Y(1),
Y(2),..., in R, where (Y(n), 0) is the position of the walk on the n th hit of
the x axis. The kernel k(x, x$) is the probability density function for the
random variable Y(1) conditioned on Y(0)=x. Let kn(x, x$) be the prob-
ability density function for Y(n) conditioned on Y(0)=x. Then in the case
when L#2, kn is given by the formula,

k(x, x$)=
2
?

n
(x&x$)2+4n2 , x, x$ # R

It is clear that we have the following:

Lemma 1. Suppose L#2 and m, n are nonnegative integers with
n�1. Then

(a) There exists universal constants C, c>0 such that

c�2m�Px(n[2m&1]�|Y(n)&x|<n[2m+1&1])�C�2m

(b) For p>1 there exists a constant Cp depending only on p such
that

|
|x&x$|<n[2m+1&1]

kn(x, x$) p dx$�Cp �n p&12m(2p&1)

The inequality (a) tells us that the walk is spread out on a length scale n
at time n. The inequality (b) tells us that the fluctuations of the walk on
length scales smaller than n cannot be too large. We shall see in the following
that Lemma 5.1(a) generalizes to uniformly elliptic L but Lemma 5.1(b) does
not.

First we consider the analogue of Lemma 5.1(a). We have the following:

Theorem 1. Suppose L is uniformly elliptic and m, n are nonnegative
integers with n�1. Then there exists constants C, c>0 depending only on
*, 4 such that

c�2m�Px(n[2m&1]�|Y(n)&x|<n[2m+1&1])�C�2m

We prove Theorem 5.1 in a number of steps. First we consider the case
when n=1.
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Lemma 2. There exist constants c, C depending only on *, 4, such
that for m�0 an integer,

c�2m�Px(2m&1�|Y(1)&x|<2m+1&1)�C�2m

Proof. We first prove the lower bound. Let qx be the probability that
the diffusion started at (x, 0) first hits the line y=1 in the set [(z, 1) :
|z&x|<1] and then subsequently hits the lines y=2k, k=1,..., m, in the
sets

{(z, 2k) : |z&x|< :
k

j=1

(m+1& j)2 2 j=
before hitting the axis y=0 again. It follows from Lemma 3.1 and
Lemma 3.2 that there is a constant c1>0 depending only on *, 4 such that
qx�c1 �2m. Next let ! be the infimum of the probabilities that the diffusion
started at (z, 2m) with

|z&x|< :
m

j=1

(m+1& j)2 2 j (5.2)

first hits the axis y=0 in the set [(z, 0) : 2m&1�|z&x|<2m+1&1]. Since
the sum on the right in (5.2) is bounded by a constant times 2m it follows
from Lemma 3.1 that there is a constant c2>0 depending only on *, 4
such that !�c2 . Hence

Px(2m&1�|Y(1)&x|<2m+1&1)�!qx�c2 c1 �2m

We use Lemma 4.1 to obtain the upper bound. For the diffusion
started at (x, 0) let (Z, 1) be the first hitting position on the line y=1.
Then

Px(2m&1�|Y(1)&x|<2m+1&1)

�Px( |Z&x|>[2m&1]�2)+Px( |Y(1)&Z|>[2m&1]�2) (5.3)

Let W be the wedge with vertex at the point (x&[2m&1]�2, 1) and with
boundaries given by the two line segments L1=[(z, 1) : z>x&
[2m&1]�2], L2=[(x&[2m&1]�2, z) : z�1]. Similarly let W$ be the
wedge with vertex at the point (x+[2m&1]�2, 1) and with boundaries
given by the two line segments L$1=[(z, 1) : z<x+[2m&1]�2], L$2=
[(x+[2m&1]�2, z) : z�1]. Let p(W ) be the probability that the diffusion
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started at (x, 0) exits W through the boundary L2 . Similarly let p(W$) be
the probability that the diffusion started at (x, 0) exits W$ through the
boundary L$2 . Then we have

Px( |Z&x|>[2m&1]�2)�p(W )+ p(W$)

Now by Lemma 4.1 it follows that there is a constant C1 depending only
on *, 4 such that p(W ), p(W$)�C1 �2m. Hence the first term on the RHS
of (5.3) is bounded by 2C1 �2m. Since we can make an exactly similar argu-
ment for the second term on the RHS of (5.3) we have completed the proof
of the upper bound. QED

Next we consider the case of Theorem 5.1 when m=0.

Lemma 3. Let :>0. Then there is a constant c depending only on :,
*, 4, such that

Px( sup
0� j�n

|Y( j)&x|<:n)�c>0

Proof. We first show that by picking : large enough, depending only
on *, 4, c can be taken to be 1�4. To see this let q be the probability that
the diffusion started at (x, 0) hits one of the lines y=\4n before the
random walk Y hits the axis y=0 for the n th time. Now, for the diffusion
started on the line y=1, the probability it hits the line y=4n before hitting
the axis y=0 is 1�4n. Hence q�2n�4n=1�2. Thus the diffusion started at
(x, 0) stays within the strip | y|<4n up to the n th hit of Y with probability
at least 1�2. Observe next from Lemma 3.1 that there exists :>0, depending
only on *, 4, such that the diffusion started at (x, 0) exits the rectangle
[(z, y) : |z&x|<:n, | y|<4n] through the boundaries |z&x|=:n with
probability less than 1�4. We conclude then that

Px( sup
0� j�n

|Y( j)&x|<:n)� 1
2& 1

4= 1
4

We obtain the result of the lemma by modifying the above argument.
Let R:, ; be the rectangle [(z, y) : |z&x|<:n, | y|<;n]. Suppose the diffu-
sion starts at a point (x$, 0) with |x&x$|<:n�2. Then, by Lemma 3.1, we
can choose ; sufficiently small, depending only on :, *, 4, so that the prob-
ability the diffusion exits R:, ; through the boundaries |z&x|=:n is less
than 1�4. Next we choose =>0, depending only on ;, *, 4, such that the
probability the diffusion started at (x$, 0) with |x&x$|<:n�2 stays within
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the strip | y|<;n for the first =n steps of the walk Y exceeds 1�2. We
conclude therefore that

Prob[diffusion started at (x$, 0) with |x&x$|<:n�2, exits R:, ; through

the boundaries | y|=;n after at least =n steps of the walk Y]

� 1
2& 1

4= 1
4 (5.4)

We can assume that =<1 with 1�= an integer. Let q be defined by

q=inf[probability that the diffusion started at a point (z, y)

with |z&x|<:n, | y|=;n, first hits the axis y=0 in the segment

(x$, 0), |x&x$|<:n�2]

It follows from Lemma 3.1 that q>0 and depends only on :, ;, *, 4. In
view of (5.4) one has

Px( sup
0� j�n

|Y( j)&x|<:n)�(q�4)1�=

We have proved the lemma with c=(q�4)1�=. QED

The upper bound in Theorem 5.1 in the general case n�1, m�0
follows from:

Lemma 4. There is a constant C depending only on *, 4 such that

Prob(diffusion started at (x, 0) crosses one of lines (x\n2m, y), y # R,

before the n th step of the walk Y )�C�2m (5.5)

Proof. We first show how to obtain a slightly weaker inequality,
namely with the RHS of (5.5) replaced by Cm�2m. To see this let R: be the
rectangle R:=[(z, y) : |z&x|<n2m, | y|<:n2m�m]. By Lemma 3.1 we can
choose :>0 depending only on *, 4 such that

Prob[diffusion started at (x, 0) exits R: through the boundaries

|z&x|=n2m]�1�22m (5.6)

We also have just as in Lemma 5.3,

Prob[diffusion started at (x, 0) hits one of the lines y=\:n2m�m

before the n th step of the walk Y]�2n[m�:n2m]=2m�:2m (5.7)
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We conclude then from the previous two inequalities that

Prob[diffusion started at (x, 0) exits R:

before the n th step of the walk Y]�Cm�2m

where C depends only on :, *, 4. This last inequality evidently implies the
weaker version of (5.5).

To establish (5.5) we combine this with the estimate for the n=1 case
given in Lemma 5.2. Thus if j�1 and |Y( j&1)&x|<n2m then by the
argument of Lemma 5.2 we have

Prob(diffusion started at (Y( j&1), 0) crosses one of the lines

(x\n2m, y), y # R, before the j th step of the walk Y )

�C�[n2m+1&|Y( j&1)&x|]

where C is a constant depending only on *, 4. Hence

Prob(diffusion started at (x, 0) crosses one of lines (x\n2m, y), y # R,

before the n th step of the walk Y )

� :
n

j=1

CE[(n2m+1&|Y( j&1)&x| )&1; |Y( j&1)&x|<n2m] (5.8)

Let k be an integer, 1�k<m. We shall use the weak version of (5.5)
we have already proved to show that

Px[n(2k&1&1)�| |Y(n)&x|&n2m|<n(2k&1)]

�Cm1+'�2m+(m&k) ' (5.9)

where the constants C, '>0 depend only on *, 4. From this last inequality
it follows that

E[(n2m+1&|Y( j&1)&x| )&1; |Y( j&1)&x|<n2m]

�C1 :
m+r

k=1

(m+r)1+'

2(m+r)+(m+r&k) '

1
( j&1) 2k+

C2

n2m

on writing n=( j&1) 2r. It is clear the sum on the RHS of the last
inequality is bounded by C3 �n2m for some constant C3 depending only on
*, 4. The result of the lemma follows from this and (5.8).

We are left to prove (5.9). Let R: be the rectangle defined previously
with n replaced by n�2, such that (5.6) holds. For integer k$ satisfying
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1�k$<m, let qk$ be the supremum of the probabilities that the diffusion
started on one of the lines y=\:n2m�m first hits the axis y=0 in the set
[(z, 0) : n(2k$&1&1)�| |z&x|&n2m|<n(2k$&1)]. From Lemma 4.2 it
follows that there is a constant C1>0 depending only on *, 4, such that

qk$�C1[m�2m&k$]' (5.10)

for some '>0 depending only on *, 4. We also have from the weak version
of (5.5) that for any n*<n, 1�k<k$<m, the conditional probability,

Prob[n(2k&1&1)�| |Y(n)&x|&n2m|<n(2k&1) |

n(2k$&1&1)�| |Y(n*)&x|&n2m|<n(2k$&1)]�C2k$�2k$ (5.11)

Let qm be the supremum of the probabilities that the diffusion started on
one of the lines y=\:n2m�m first hits the axis y=0 in the set
[(z, 0) : | |z&x|&n2m|�n(2m&1&1)]. It is clear now from (5.6), (5.7),
(5.11) that

Px[n(2k&1&1)�| |Y(n)&x|&n2m|<n(2k&1)]

�1�22m+
2m
:2m _qk+ :

m

k$=k+1

C2qk$k$�2k$&
Now, using (5.10) in the above inequality and the obvious fact that qm�1,
we obtain (5.9). QED

Proof of Theorem 5.1. We have already observed that the upper
bound is a direct consequence of Lemma 5.4. To get the lower bound
observe that

Prob[diffusion started at (x, 0) hits the line y=n2m

before the n th step of the walk Y]

�1&\1&
1

n2m+
n

�
c1

2m

for some universal constant c1>0. In view of Lemma 5.4 it follows that
there is a constant #>0, depending only on *, 4 such that

Prob(diffusion started at (x, 0) hits the line y=n2m in the segment

(z, n2m), |z&x|<#n2m, before the n th step of the walk Y )

�c1 �2m+1
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Now by Lemma 3.1 there exists c2>0 depending only on *, 4 such that

Prob(diffusion started at a point (x, 0) in the line segment (z, n2m),

|z&x|<#n2m, first hits the axis y=0 in the line segment(z, 0),

n[2m&1]+n2m�5<z&x<n[2m&1]+3n2m�5]�c2

We conclude from these last two inequalities that

Px(n[2m&1]�|Y(n)&x|<n[2m+1&1])

�
c1 c2

2m+1 inf[Py( sup
0� j�n

|Y( j)& y|<n�5) : y # R]

where Py denotes the probability given Y(0)= y. The lower bound follows
now from Lemma 5.3. QED

Next we show that Lemma 5.1(b) does not hold for general uniformly
elliptic L.

Lemma 5. Suppose p>1. Then there exists uniformly elliptic L such
that the transition probability k(x, x$) defined by (5.1) satisfies

|
1

&1
k(0, x$) p dx$=�

Proof. We take L to be the operator L= as defined by (2.6). Let (r, %)
be the polar co-ordinates for a point (x, y) in the plan. Thus x=r cos %,
y=r sin %. Then from (2.6) it follows that for a function u of r, % one has

L=u=(1+=)
�2u
�r2 +

1
r

�u
�r

+
1
r2

�2u
�%2 (5.12)

If we put u(r, %)=r&: sin % with (1+=) :=1 it easily follows that L=u#0.
Let S$ be the curve consisting of points (x, 0) with |x|�$ and points with
polar co-ordinates (r, %) satisfying r=$, 0�%�?. Now for any point with
polar co-ordinates (r, %), r>$, 0<%<?, let q$(r, %) be the probability that
the diffusion started at this point first hits the set S$ in the semi-circle r=$,
0�%�?. It follows from the maximum principle that

q$(r, %)�\$
r+

:

sin %
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Now for z satisfying |z|<1, let p$(z) be the probability that the diffusion
started at the point (z, 1) first hits the axis y=0 in the set (x, 0) with
|x|<$. From Lemma 3.1 there is a constant c2>0, depending only on =
such that

p$(z)�c2 q$�2(r, %)

where (r, %) are the polar co-ordinates of the point (z, 1). Hence there is a
constant c3>0 depending only on = such that

p$(z)�c3$:, |z|�1

Using Lemma 3.1 again, it is easy to see that there is a constant c4>0
depending only on = such that

|
$

&$
k(0, x$) dx$�c4 inf

|z|�1
p$(z)

Combining these last two inequalities with Holder's inequality we obtain
the lower bound,

_|
1

1
k(0, x$) p dx$&

1�p

�
c3c4

21&1�p $:+1�p&1

Now we choose = sufficiently large so that :=(1+=)&1 satisfies :+1�p&
1<0. The result follows by letting $ � 0 in the last inequality. QED

In the previous lemma the operator L was chosen depending on p.
This is in fact not necessary.

Proposition 1. There exists uniformly elliptic L such that the trans-
ition probability defined by (5.1) satisfies

|
1

1
k(0, x$) p dx$=�, p>1

We prove proposition 5.1 in a sequence of lemmas. First we generalize
Lemma 5.5. For integer n, m with n�0, m�1 let Em, n be the set

Em, n=. [(k2&n&2&m&n, k2&n+2&m&n) : k # Z] (5.13)
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It is clear that the measure of Em, n & (&1, 1) is 2&m+2. Let : satisfy
0<:<1. In Lemma 5.5 we constructed a uniformly elliptic operator L0

and a positive constant c: , depending only on :, such that

|
(&1, 1) & Em, 0

k(0, x$) dx$�c:2&m:, m�1

Lemma 6. Let : satisfy 0<:<1. For n�0 there exists uniformly
elliptic operators Ln , with uniform ellipticity bounds *, 4 depending only
on :, and constants C: , c: depending only on :, such that

C:2&m:�|
(&1, 1) & Em, n

k(0, x$) dx$�c:2&m:, m�1

where k is the probability density (5.1) associated with the elliptic oper-
ator Ln .

Proof. Our definition of Ln is a generalization of the definition of L0 .
Suppose the point (x, y) # R2 is a distance less than 2&n&1 from the point
(k2&n, 0) where k # Z. Then we define Ln at (x, y) by the operator L= of
(5.12), where now the polar co-ordinates (r, %) are centered at the point
(k2&n, 0). If (x, y) is further than 2&n&1 from all points (k2&n, 0), k # Z,
we define Ln at (x, y) to be simply the Laplacian.

For k # Z let 0k be the set of points with polar co-ordinates (r, %)
centered at (k2&n, 0) satisfying 2&m&n&1<r<2&n&1, 0<%<?. Consider
the function u(r, %) on 0k defined by

u(r, %)=(2&m&n&1�r): sin %&2&m:(2n+1r)1&: (5.14)

Since (1+=) :=1 in (5.12) it follows that Lnu#0. It is easy to check
further that u�0 on [(r, %) : r=2&n&1, 0<%<?], and u�1 on
[(r, %) : r=2&m&n&1, 0<%<?]. We also have

u(r, %)�2&(m&1) :(- 2&1)�2, r=2&n&2,
?
4

<%<
3?
4

(5.15)

Suppose now the diffusion starts at (0, 0). By Lemma 3.1 it hits the line
y=1 in the interval &1<x<1 with probability larger than c1, : where
c1, :>0 depends only on :. Next suppose the diffusion starts at a point
(x, 1) with &1<x<1. Again by Lemma 3.1 it first hits the line y=2&n&1

in the interval &1�2<x<1�2 with probability larger than c2, : , where
c2, :>0 depends only on :. Finally suppose the diffusion starts at a point
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(x, 2&n&1) with &1�2<x<1�2. Lemma 3.1 implies that it hits one of the
circles centered at points (k2&n, 0), radius 2&n&2, k # Z, |k|<2n, in the arc
?�4<%<3?�4 before hitting the line y=0 with probability larger than c3, : ,
where c3, :>0 depends only on :. We have therefore shown that there is a
constant c:>0 depending only on : such that

Prob[diffusion started at (0, 0), after hitting the line y=1, hits one of

the circles centered at points (k2&n, 0), radius 2&n&2, k # Z,

|k|<2n, in the arc ?�4<%<3?�4 before hitting the line y=0]�c:

It follows from the last two inequalities that

|
(&1, 1) & Em, n

k(0, x$) dx$�c: 2&(m&1) :(- 2&1)�2

which is the lower bound of the lemma.
Next we turn to the upper bound. For k # Z let Dk be the set of points

with polar co-ordinates (r, %) centered at (k2&n, 0) satisfying 0<r<
2&n&1, 0<%<?. Let u satisfy the Dirichlet problem on Dk ,

Ln u(x, y)=0, (x, y) # Dk

u(x, 0)=1, |x&k2&n|<2&m&n

u(x, y)=0, (x, y) # �Dk"[(z, 0) : |z&k2&n|<2&m&n]

Evidently u(x, y) is the probability that the diffusion started at (x, y) # Dk

exits �Dk through the set �Dk & Em, n . We consider the values of u on the
semi circle r=2&m&n+1, 0<%<?. It follows from the maximum principle
that u�1 at all points on the semi circle. Let Ek be the semi circle centered
at the point r=2&m&n+1, %=0, with radius 2&m&n. It is clear that

Lnu(x, y)=0, (x, y) # Ek

u(x, y)�1, (x, y) # �Ek

u(x, 0)=0, (x, 0) # �Ek

Observe that the coefficients of the elliptic operator Ln are C � inside Ek .
It follows now by standard elliptic regularity theory that there is a constant
C: depending only on : such that

u(x, y)�C: 2m+ny
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if the point (x, y) lies within a distance 2&m&n&1 from the center of Ek . We
can similarly construct a semi circle Fk centered at the point r=2&m&n+1,
%=?, with radius 2&m&n. By the same argument as above we also have
that

u(x, y)�C: 2m+ny

if the point (x, y) lies within a distance 2&m&n&1, from the center of Fk .
Writing now u as a function of polar co-ordinates (r, %), it follows from the
previous two inequalities that there is a constant C: depending only on :
such that u(2&m&n+1, %)�C: sin %, 0<%<?. Hence by the maximum
principle

u(r, %)�C:(2m+n&1r)&: sin %, 0<%<?, 2&m&n+1<r<2&n&1

(5.16)

There exists a constant # depending only on : with 0<#<1 such that

Prob[diffusion started at a point in Dk with polar coordinates (r, %),

r=2&n&2, 0<%<?, exits Dk through the boundary r=2&n&1]�#
(5.17)

This follows from Lemma 3.1. Now from (5.16), (5.17) we have that

Prob[diffusion started on the line y=1 first hits the line y=0

in the set Em, n]� :
�

k=0

#kC:2&(m&3) :=C:2&(m&3) :�(1&#)

The upper bound follows immediately from this last inequality. QED

For n�0, m�1, j�0 we define sets Em, n, j by Em, n, 0=Em, n as in
(5.13) and for j�1,

Em, n, j =. [(2k2&n& jm&2&n&( j+1) m, 2k2&n& jm+2&n&( j+1) m) : k # Z]

& .
0� j $< j

Em, n, j $

It is easy to see that the measure of Em, n, j & (&1, 1) satisfies the inequality,

2&m+2�|Em, n, j & (&1, 1)|�2&m+2& j2&2m+2 (5.18)
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Lemma 7. Let : satisfy 0<:<1. For n�0, m�1 there exists
uniformly elliptic operators Ln, m , with uniform ellipticity bounds *, 4
depending only on :, and constant c:>0 depending only on :, such that

|
(&1, 1) & Em, n, j

k(0, x$) dx$�c:2&m:, j�c: 2m:, m�1 (5.19)

where k is the probability density of (5.1) associated with the elliptic
operator Ln, m .

Proof. Our definition of Ln, m generalizes the definition of Ln . Sup-
pose the point (x, y) # R2 is a distance less than 2&n&1 from the point
(k2&n, 0) where k # Z but also y>2&m&n. Then we define Ln, m at (x, y) by
the operator L= of (5.12), where now the polar co-ordinates (r, %) are
centered at the point (k2&n, 0). Suppose for some j�1, the point (x, y) is
a distance less than 2&n& jm from the point (2k2&n& jm, 0) # R2 where k # Z
but also y>2&n&( j+1) m. Then we define Ln, m at (x, y) by the operator L=

of (5.12), where now the polar co-ordinates (r, %) are centered at the point
(2k2&n& jm, 0). For all other points (x, y) we define Ln, m at (x, y) to be
simply the Laplacian.

We first show the inequality (5.19) holds for j=0. It is clear from
Lemma 3.1 that it follows immediately from the inequality,

Prob[diffusion started at a point (x, 1) # R2 with |x|<1, hits the line

y=2&n&m in the set [(z, 2&n&m) : |z|<1, z # Em, n, 0]]�c: 2&m:

Observe that (5.20) does not follow from the lower bound argument of
Lemma 5.6. In fact to prove it we need to combine both the upper and
lower bound arguments of Lemma 5.6. First consider a point (k2&n, 0) #
R2 with k # Z and let (r, %) be polar coordinates with respect to this point.
We consider the function u(r, %) defined by (5.14). It follows from the
definition of Ln, m that Ln, mu(r, %)=0 provided r<2&n&1 and r sin %>
2&m&n. Further, u�0 on the set [(r, % : r=2&n&1, 0<%<?]. We consider
the values of u on the line r sin %=2&m&n+1. It is clear from (5.14) that

u(r, %)�4&:(2&m&n+1�r)1+:, r sin %=2&m&n+1 (5.21)

For j=1, 2,... let pj (%) be the probability that the diffusion started at the
point with polar coordinates (2&n&2, %) first hits the line r sin %=2&m&n+1

in the set j2&m&n+1�r<( j+1) 2&m&n+1 while remaining in the disc
r<2&n&1. In view of (5.21) we have

:
�

j=1

4&:

j 1+: p j (%)�u(2&n&2, %), 0<%<?
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Hence from (5.15) and the previous inequality we conclude that

:
�

j=1

4&:

j 1+: p j (%)�2&(m&1) :(- 2&1)�2,
?
4

<%<
3?
4

(5.22)

Next we use the upper bound argument of Lemma 5.6 to show that
there exists J depending only on : such that

:
�

j=J

4&:

j 1+: p j (%)�2&(m&1) :(- 2&1)�4,
?
4

<%<
3?
4

(5.23)

To do this we show that there is a constant C: depending only on : such
that

pj (%)�C:( j2&m):�j, j�2m&10 (5.24)

The inequality (5.23) follows from (5.24) and the fact that

:
�

j=1

pj (%)�1,
?
4

<%<
3?
4

The bound (5.24) is proved exactly like the upper bound in Lemma 5.6. In
fact let S j be the union of the circular segment r= j2&m&n+2, 0<%<?,
r sin %>2&m&n+1, and the line segments r sin %=2&m&n+1, j2&m&n+2<
r<2&n&1. Let q j (%) be the probability that the diffusion started at the
point with polar co-ordinates (2&n&2, %) first hits Sj in the circular segment
while remaining in the disc r<2&n&1. By the upper bound argument of
Lemma 5.6 one has

qj (%)�C:, 1( j2&m):, j�2m&10

Next let Tj be the semi circle centered at the point r= j2&m&n+1, %=0
with radius j2&m&n. Then by elliptic regularity theory it follows there is
such a constant C:, 2 depending only on : such that

Prob[diffusion started at a point on Tj exits the region bounded

by the line r sin %=2&m&n+1 and the semi circle r= j2&m&n+2,

0<%<?, through the segment [(r, %) : r sin %=2&m&n+1,

j2&m&n+1�r<( j+1) 2&m&n+1]]�C:, 2 �j
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There is also a constant #<1 depending only on : such that

Prob[diffusion started at a point on Tj exits the region bounded

by the line r sin %=2&m&n+1 and the semi circle r= j2&m&n+2,

0<%<?, through the semicircle]�#

This is a consequence of Lemma 3.1. It follows now from the last three
inequalities that

pj (%)�qj (%) C:, 2 �j(1&#)

�C:, 1C:, 2( j2&m):�j(1&#)

The proof of (5.20) follows in a straight forward way from (5.22),
(5.23). In fact from these inequalities we have that there exists J depending
only on : such that

:
J

j=1

pj (%)�2&(m&1) :(- 2&1)�4,
?
4

<%<
3?
4

Now by Lemma 3.1 there exists C:>0 depending only on : such that

Prob[diffusion started at a point on the line segment r sin %=2&m&n+1,

2&m&n+1�r<(J+1) 2&m&n+1, first hits the line r sin %=2&m&n

in the set [(z, 2&n&m) # R2 : |z|<1, z # Em, n, 0]]�c:

The inequality (5.20) follows from these last two inequalities.
Next we prove an upper bound analogous to (5.20). We show there is

a constant C:>0 depending only on : such that

Prob[diffusion started at a point (x, 1) # R2 first hits the line

y= y0 in the set [(z, y0) : |z|<1, z # Em, n, 0]]

�C:2&m:, provided 0� y0�2&n&m (5.25)

To prove (5.25) we use (5.24) and Lemma 4.1. Thus we have chosen a
point (k2&n, 0) # R2, k # Z, and taken (r, %) to be polar co-ordinates with
respect to this point. Let Q(%) be the probability that the diffusion started
at the point with polar co-ordinates (2&n&2, %) first hits the line r sin %= y0

in the set [(z, y0) : |z|<1, z # Em, n, 0] while remaining in the disc r<2&n&1.
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By Lemma 4.1 it follows that there is a constant C1, :>0 depending only
on : such that

Q(%)� :
�

j=1

C1, : j &1p j (%)�C2, : 2&m:

by (5.24). Next observe that there exists #<1, depending only on : such
that

Prob[diffusion started at a point (2&n&2, %) exits the region bounded

by the line r sin %= y0 and the circle r=2&n&1,

through the circular boundary]�#

It follows from the last two inequalities that the LHS of (5.25) is bounded
above by C2, : 2&m:�(1&#).

We turn to the proof of (5.19) in the case j�1. Observe that the proof
of (5.25) directly generalizes to

Prob[diffusion started at a point (x, 1) # R2 first hits the line y= y0

in the set [(z, y0) : |z|<1, z # Em, n, j]]

�C: 2&m: provided 0� y0�2&m&( j+1) m

We conclude from this last inequality that

Prob _diffusion started at a point (x, 1) # R2 first hits the line

y=2&n& jm in the set {(z, 2&n& jm) : |z|<1, z # .
j&1

i=0

Em, n, i=&
�C:, 2 j2&m:

Observe next that the proof of (5.20) directly generalizes to

Prob _diffusion started at a point (x, 2&n& jm) # R2 with |x|<1,

x � .
j&1

i=0

Em, n, i first hits the line y=2&n&( j+1) m in the set

[(z, 2&n&( j+1) m) : |z|<1, z # Em, n, j]&�c:, 2 2&m:
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We conclude from these last two inequalities that

|
(&1, 1) & Em, n, j

k(0, x$) dx$�[ p:&C:, 2 j2&m:] c:, 22&m:q: (5.26)

where p: is the probability that the diffusion started at (0, 0) # R2, after hit-
ting the line y=1, hits the line y=2&n& jm in the set [(z, 2&n& jm) : |z|<1].
The quantity qa is a lower bound on the probability that the diffusion
started at a point (z, 2&n&( j+1) m) with z # (&1, 1) & Em, n, j first hits the
line y=0 in the set [(z, 0) : z # (&1, 1) & Em, n, j]. Evidently p: , q: are
bounded below by positive constants which depend only on :. The result
follows now from (5.26). QED

Proof of Proposition 5.1. It follows from Lemma 5.7, (5.18) and
Holder's inequality that for any p>1, one has

|
(&1, 1) & Em, n, j

k(0, x$) p dx$�c:2&mp:2m( p&1), j�c:2m:

where c:>0 depends only on :. Setting

Em= .
c� 2m:

j=0

(&1, 1) & Em, n, j

we conclude that

|
Em

k(0, x$) p dx$�c2
: 2m( p&1)(1&:)

Observe that this last inequality almost implies the result of the proposition
since we can take m � � while the uniform ellipticity bounds *, 4 depend
only on :. To construct a concrete operator L for which Proposition 5.1
holds let M�1 be a large integer. We define a sequence Jj , j�M, by

JM=[2M:�M2], Jj+1=Jj+[2( j+1) :�( j+1)2], j�M

Here [ ] denotes the integer part. We put JM&1=0, and define a new
sequence Ni , i�0, by N0=0 and

Ni=NJj
+(i&Jj)( j+1), Jj�i�Jj+1 , j�M&1

Evidently the Ni form an increasing sequence of integers. We define L now
analogously to the operator defined in Proposition 5.1. Suppose the point
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(x, y) # R2 is a distance less than 2&Ni from the point (2k2&Ni, 0) # R2

where k # Z but also y>2&Ni+1. Then we define L at (x, y) by the operator
L= of (5.12), where now the polar co-ordinates (r, %) are centered at the
point (2k2&Ni, 0). We do this for all i=0, 1, 2,... and assign L to be the
Laplacian at other points (x, y) # R2. For i=0, 1, 2,... let Ei be the set

Ei=. [(2k2Ni&2&Ni+1, 2k2&Ni+2&Ni+1) : k # Z]& .
0�i $<i

Ei $

It is easy to see that if M is sufficiently large, then the measure of
Ei & (&1, 1) satisfies

2Ni&Ni+1�|Ei & (&1, 1)|�2Ni&Ni+1&1

We also have by exactly the same argument as in Proposition 5.1 that

|
(&1, 1) & Ei

k(0, x$) dx$�c:2(Ni&Ni+1) :

for some constant c:>0 depending only on :. Hence Holder's inequality
implies from the last two inequalities that there is a constant C:>0
depending only on : such that

|
(&1, 1) & Ei

k(0, x$) p dx$�c:2 (Ni&Ni+1) p:2 (Ni+1&Ni)( p&1)

We conclude therefore that

|
(&1, 1) & Ei

k(0, x$) p dx$� :
�

i=0

c:2(Ni&Ni+1) p: 2(Ni+1&Ni)( p&1)

�c:, 1 :
�

m=M

2m( p&1)(1&:)�m2=�
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