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1. Introduction

Range safety regulations require mostly a rather accurate prediction
of the impact area of the debris of unguided rockets (as are most sounding
rockets). The usual way to meet this requirement is to establish some nominal
impact point by calculation of the rocket trajectory for ideal circumstances and
defining some area around this point to account for the generally unknown dif-
ferences between the actual and the ideal trajectory. The magnitude of this
area is determined by the maximum expected deviation of the actual impact
point and is called the dispersion area.

This report originated from a search in the available literature for
a simple method for dispersion calculation and impact prediction. This objective
could not be met, because many different methods are currently in use for these
calculations, all of which have in common extensive calculation schemes which
make the use of an electronic computer a necessity.

Due to the limited time available for this project this study was
stopped with no result except for a better understanding of dispersion and of
the characteristic properties of the methods reviewed. In view of a possible
later continuation of this study it was felt worthwhile to lay down these experi-
ences in writing, which is done in this report. All mathematics and equations
used for the different methods were left out on purpose, as these can be readily
looked up in the references themselves. Instead the emphasis was laid on the
considerations and assumptions, which underlie the methods,as well as on their

physical meaning.

2. Dispersion
The main causes for the deviation of the actual point of impact from

its nominal location, which will be considered in this report, are

a. winds
b. thrust misalignments

c. structural misalignments

Other causes which give deviations of the point of impact but which

are not explicitly included in the following treatment are:



e

errors in the burnout speed
errors in the launch angle
errors in the angle of attack at ignition of later stages

stage separation disturbances

5 0 e O

disturbances due to the launcher (tipoff effects)

These last causes usually do not change the overall dispersion in an
appreciable way, partly because they are implicitly taken into account (d, e, f)
partly because the disturbances are in general very small (g, h).

For a well constructed rocket, it turns out that winds on the trajectory
cause the largest deviation of the impact point as compared with the impact point
calculated for no wind. This led to the present practice of taking the winds into
account in the determination of the nominal impact point. This is done either
by calculating different impact points for different wind models or by calculating
for different wind models the launch angle compensation required to make all
nominal impact points coincide. In both cases there will remain a small dis-
persion due to winds as a result of differences between the wind model used in
the calculations and the actual winds at launch. This last dispersion is deter-
mined in the same way that the dispersion is calculated in general, namely by
calculating the deviation of the impact point due to an estimated maximum error
(in the wind in this case), the magnitude of which is dependent on the accuracy
with which the model used for the calculation of the nominal impact point
corresponds to the actual situation at launch.

By far the largest part of the deviation of the impact point due to the
winds and misalignments is originated during the burning time of the rocket.
This is readily understood if one takes a better lock at how dispersion is
caused. In a quiet atmosphere the only forces which determine the trajectory
of a stable rocket without misalignment are the gravity force, the thrust and the
drag. Due to the stability of the rocket and usual slow pitch rate during the
first part of the trajectory of a sounding rocket, the longitudinal axis will be
tangent to the trajectory as will be the thrust and the drag. This changes in
the case of a wind as a stable rocket will tend to weathercock into the direction
of the relative air velocity. This weathercocking for a rocket with finite
inertia will be accompanied by aerodynamic moments and forces perpendicular
to the trajectory, the main effect during burning however will be that the
longitudinal axis and hence the thrust will be no longer tangent to the trajectory

and will get a component perpendicular to the flight path. This thrust component
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affects the local slope of the trajectory and hence the final location of the
impact point. The displacement of the impact point due to this effect will be
such that the range of the rocket is extended in the direction from which the
wind comes. In the case of structural misalignments (also called fin misalign-
ments) a similar phenomenon occurs as a stable rocket will tend to make an
angle with the trajectory equal to the equivalent trim angle.

After burnout and during coasting the axis of the rocket will still make
an angle with the trajectory in the case of winds or structural misalignments.
The perpendicular thrust component will not be present anymore and the only
forces affecting the trajectory besides the gravity force will be the much smaller
forces of aerodynamic origin. The effect of these in case of a wind will be in
general a displacement of the impact point in the direction in which the wind
is blowing and hence a diminution of the extension of the range caused by the
wind from the same direction during burning. The effect however will be
relatively small.as is easily understood once one considers the trajectory of
the rocket in a frame -moving with the wind velocity. In this frame there will
be either none or only oscillating aerodynamic forces perpendicular to the
trajectory as a stable rocket will tend to align itself with the incoming air
velocity. The range of this trajectory will be enlarged in the direction opposite
to the motion of the moving frame as the horizontal velocity of the rocket seems
to be larger in this direction, by an amount approximately equal to the wind
velocity. The displacement of the impact point in the fixed frame will be the
difference between this extension of the range of the trajectory in the moving
frame and the displacement of the moving frame in the same time, which
difference is obviously very small.

Most of the dispersion due to the winds during burning is caused in the
lowest few thousand feet as the velocity of the rocket is still small. (The
smaller the velocity the larger the dispersion.) The influence of the winds
decreases thereafter rapidly with increasing height and in general some height.
(50, 000 - 100, 000 ft) can be established above which the winds have practically
no influence.

The dispersion due to misalignments can be greatly reduced by giving
the rocket a small roll rate. Caution in determining this roll rate is needed,
however, as the coincidence of the roll frequency and the natural yaw or pitch
frequency can lead to resonance effects and unacceptably large yaw and pitch
angles. By a careful choice this difficulty can be overcome as discussed in
reference 1.
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As a final introductory remark it should be mentioned that the picture
of dispersion causes sketched so far becomes much more complicated if
various parts (booster, first stage) of the sounding rockets are considered.
This is due to the fact that these parts after stage separation will have com-
pletely different and often unknown aerodynamic and inertial characteristics.
Each case has therefore to be considered separately. Of interest in this con-
text is reference 12 in which the attempts are discussed to predict the impact
point of the booster of the Aerobee 150 sounding rocket. The calculated tra-
jectories showed a summit altitude of 10, 000 ft after launcher from 4000 ft.
The predicted impact distances for five flights turned out to have an error,
which varied from 405 to 719 ft, while the azimuth predictions yielded errors
in between 24. 0° and 85. 0°. Dispersion calculations in contrast herewith gave

only a dispersion radius of about 200 ft!

3. Review of some dispersion calculation methods
from the literature

Most important for the accuracy of dispersion calculations is the method
used for the trajectory calculation. Different trajectory calculations are dis-
cussed in references 2, 3, 4, 5 and 6. (Reference 1 discusses the method des-
cribed in reference 5 and 8, but does not give any details.) From these the
first three treat also the determination of the dispersion. Reference 8 deals
exclusively with the launch angle compensation to correct for the winds at
launch, while reference 7 discusses in detail the complete setup of another
approach to launch angle compensation. A short review of the basic features
of the methods described in these references will be given here below. For
details the references themselves should be consulted.

Reference 2 is one of the first and also one of the most extensive treat-
ments of dispersion. It gives a good survey of the sources of dispersion and
their relative merit. The rockets considered are artillery- and aircraft-rockets
for which reasons the examples treated in detail are not significant for sounding
rockets. The underlying theory is thorough and can be easily applied for
sounding rocket calculations. The discussion of the dispersion due to winds is
unfortunately rather brief.

The assumptions made for the determination of the trajectory are the

following:



the rocket is fairly symmetrical about its longitudinal axis, as well

in aerodynamic as in inertial aspect.

the rocket is not spinning or only slow spinning, so that gyroscopic

and aerodynamic effects dependent on the spin can be neglected.

only small misalignments, which are dependent on the orientation of

the rocket, and only small yaw angles are considered.

the trajectories are such that the gravitational acceleration can be

considered constant.

The reference frame considered consists of a vertical plane and a
cylindrical plane perpendicular to this, and the planes intersect each other along
the "average' trajectory. The actual trajectory is oscillating around this average
trajectory. The reason for choosing this reference frame is that in this way the
yawing motion in the two perpendicular planes can be considered to be independent.

The resulting equations of motion are two sets of three simultaneous
equations in the perpendicular planes (two translations and one rotation). From
these sets the first equations regarding the motion along the average trajectory
are the same. (There is noequation for the rolling motion, which can be
chosen arbitrarily.) By introducing complex variables both sets of equations
can be combined to reduce the total number of equations to three.

A large part of the reference is devoted to solving these three equations
analytically after several appropriate assumptions. This turns out to be a
very complicated matter, which complexity is only slightly reduced by the
introduction of so-called rocket functions, which are given in tabulated form.

The final conclusion on this reference is that the described method,
although it has its value as analytical solution, is very complicated for hand
calculation, whereas later methods which are more accurate by having no
analytical solutions are perhaps easier to work with when a modern computer
is available. Another objection to this method for use with sounding rockets
is that too little attention is paid to the dispersion caused by winds encountered
on the trajectory.

Reference 3 gives one of the earliest and simplest methods to calculate
the dispersion of sounding rockets due to winds. A clear description is given
of the usual approach towards the calculation of the dispersion due to winds.

This includes the following steps:



a. the atmosphere is divided into horizontal strata where the wind is
constant in magnitude and direction.

b. the constant winds in the strata are weighted with windweighting
factors to yield a so-called ballistic wind, which has per definition the same
effect on the trajectory as the actual wind.

c. a unit wind effect or ballistic factor is calculated which is the dis-
persion caused by a wind of unit strength blowing out of one direction during
the whole trajectory.

d. the total dispersion of the actual wind at launch is assumed to be

equal to the product of the ballistic wind times the unit wind effect.

-This approach is used, in principle, in nearly all methods for calculation
of the dispersion due to winds. The main differences between the methods lie
in the way the windweighting factors are determined as functions of altitude.

Reference 3 defines the windweighting factors for some altitudes as the
ratio of the displacement caused by a unit wind up to that altitude and the dis-
placement caused by a unit wind over the whole trajectory (unit wind effect).
According to this scheme the winds in the mentioned horizontal strata are to
be multiplied by the differences between the windweighting factors at the upper
and lower limits of the strata.

The windweighting factor curves are determined by trajectory calcula-
tions. The trajectory calculation method discussed in reference 3 is well
known and is referred to in the literature as the ""Lewis method' after its
author. The assumptions on whichthis method is based are the following:

- the rocket is fired vertically or nearly vertically so that the vertical

velocities can be considered unchanged by the horizontal winds.

- the only forces acting on the rocket are the thrust, the drag and the

gravity forces.

- the rocket weathercocks instantaneously in the direction of the

relative air velocity (infinite stability!).

The reference system in which the motion of the rocket is considered consists
of two vertical planes on which the trajectory is projected and which are moving
with the wind velocity. The mentioned assumptions yield the possibility of
using the vertical velocity-time functions as the solution of the equation of
motion in the vertical direction. The horizontal directions the solutions of the
equations of motion are found from the assumption that the only force perpen-

dicular to the flight path in the moving frame is the gravity force. This results
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in a simple analytical solution for the horizontal velocity for each layer, which
can be integrated over the known time to yield the horizontal displacement.

The final conclusion about this method may be formulated as follows.

A means is given to calculate in a very simple way the vertical velocity vs time
relation is the only information required) the approximate displacement of the
impact point caused by the winds on the trajectory for a large class of sounding
rockets. Not for all sounding rockets,as the assumption of instantaneous weather-
cocking prohibits the use of this method without additional assumptions for
rockets launched from a zero length launcher.

It should be noted that reference 3 besides the above discussed method
also treats the effect of a launch angle change and the effect of the rotation of
the earth. This last effect can by good approximation be calculated separately
as is done in nearly all the trajectory calculations which will be reviewed.

Reference 4, which is one of a whole series of reports (ref. 9-12) by

the same author on this subject, treats the calculation of the dispersion due to
winds as well as the dispersion due to structural and thrust misalignments.
Moreover results are given of calculations of dispersion due to those other
causes mentioned in the introduction.

The approach to the calculation of dispersion due to winds is exactly the
same as given in ref. 3,which means that a windweighting factor curve and a .
unit wind effect are calculated,which are used respectively to determine the
equivalent ballistic wind from the actual winds at launch and the total displace-
ment of the impact point due to these winds,which is assumed to be equal to the
product of the ballistic wind and the unit wind effect. The trajectory calculation
used for the determination of the windweighting factors and the unit wind effect
differs from the one discussed in ref. 3 in that the finite stability of the rocket
is taken into account.

The main assumptions made for the general equations of motion, which
in their general form yield the possibility of taking the misalignments into

account, are:

- the pitch and yaw motions are independent, so that the trajectory
can be treated as the sum of two two-dimensional trajectories

(projections) in two perpendicular planes of an earth fixed frame.

- winds can be introduced in these equations as changes in the effective
angle of attack, leaving the velocity of the rocket with respect to

the air unchanged.



- misalignments can be introduced in the equations as extra normal

forces proportional to the resulting trim angle.

The equations of motion obtained under these assumptions are in prin-
ciple the same as those derived in ref. 2 and consist of three rather simple
simultaneous equations (two translations and one rotation) in each of the
reference planes, which can be solved by a numerical step-by-step integration.
The range is found by integrating the horizontal velocity over the total flight
time.

The conclusion about this method can be that the dispersion calculation
is rather simple and fits very well to the likewise simple numerical methods
presently in use to calculate the standard trajectories of sounding rockets. The
method is made reasonably accurate by taking inertia into account for which
reasonit canalsobe applied tolaunchings from zero length launchers (slight
modifications have to be introduced for the first part of the trajectory as the
effective angles of attack due to the wind for low vehicle velocities may be too
large to assume the lift proportional to the angle of attack). The method is
slightly in error by its assumption of independency of the yaw and pitch motions
as will be discussed in the review of ref. 8.

Besides the above discussed method itself the reference gives some cal-
culated results for dispersion, which are of interest as they show the relative
merit of the different sources of dispersion. The rocket considered was the
Aerobee-300, a boosted two-stage sounding rocket which is launched from a
120 ft. high launch tower. The following main trajectory data apply:

launch angle = 89°

138, 000 ft (24. 9 mi)

it

burnout height
(2nd stage)

it

burnout velocity 9400 ft/sec

(2nd stage)

burnout time = H3.D sec
(2nd stage)

0 sec
305 mi

H

time coasting

it

summit altitude



The dispersion calculations in this case yield

0.2 rev/sec 2.0 rev/sec
roll rate at roll rate at
Non-rolling burnout 1st  burnout 1lst

Source Vehicle (mi) stage (mi) stage (mi)

Error in ballistic wind (2mph) - 27.4 27.4 27.4
Thrust misalignment of 1st stage

and booster (0. 125°) 53.5 16.17 13.8
Thrust misalignment of 2nd stage

(0. 1259) 26.7 19.8 1.2
Structural misalignments

(trim angle 0.059) 26. 2 8.2 6.2
Error in angle of attack at ignition 1.6 1.6 1.6

2nd stage (49)
Separation disturbance 3.0 3.0 3.0
Total dispersion (from sum of root 71 39 32

mean squares)

Reference 5 deals only with trajectory determination taking into account

thrust- and fin-misalignments and arbitrary winds. The setup of the equations
of motion follows closely the lines of the aircraft flight mechanics of the motion
of a rigid body with six degrees of freedom.

The assumptions made for the derivation of the equations are the following:

- The rocket is a rigid body with six degrees of freedom.

- The vehicle is symmetric in inertial sense with respect to
some plane through the longitudinal axis.

- The vehicle has aerodynamic symmetry in roll except for
small asymmetric misalignments.

- The aerodynamic forces and moments are assumed to be
functions of the Mach number and nonlinear with the angle
of attack.

- The acceleration of gravity is constant.(This assumption is

not essential for the method and can easily be removed. )

The reference system consists of two Cartesian axes.systems, one fixed
to the flat non-rotating earth at the launching point, the other fixed in the center
of gravity of the rocket. The orientation of this last reference system with
respect to the first is given by the coordinates of the origin and by the Euler

angles commonly used to fix aircraft altitudes.
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The resulting equations of motion are the six well known Euler type
equations commonly used to describe the motion of aircraft. The structural
and thrust misalignments are introduced in these equations as forces and
moments which magnitudes are determined by the geometry of the misalign-
ments. The wind influence is brought in by changes in the aerodynamic forces
due to changes in the angle of attack and changes in the relative velocity with
respect to the air.

It may be concluded that this method for trajectory determination is
basic as well as straight-forward. The accuracy will depend only on the inputs.
The only disadvantage of the method is that a rather extensive computer program
is needed to solve the complete equations as is a well known fact from aircraft
flight mechanics.

It may be noted that the above method was setup to calculate launch angle
compensations to be discussed in ref. 8. For this purpose a non-rotating earth
and a constant acceleration of gravity could be assumed as only the first part of
the trajectory had to be considered. For an actual trajectory calculation these
assumptions should be removed.

Reference 6 also deals with determination of sounding rocket trajectories

in which only the winds are taken into account. The setup of the equations of
motion resembles very much that of ref. 2, however, no analytical solution is
being sought. In comparison with the trajectory determination in ref. 2, this
method is much more accurate taking into account the rolling motion of the
rocket, the influence of the winds and the variation of the gravity force and the
rotation of the earth. Moreover the aerodynamic forces and moments are
introduced as arbitrary functions of the Mach number and angle of attack.
However, no effort is made to calculate for the influence of misalignments.

The assumptions made are:

- The rocket is a rigid body with six degrees of freedom.
- The vehicle is axially symmetric in aerodynamic and in
inertial respect.

- The thrust of the rocket is perfectly aligned.

The reference system used resembles that of ref. 5, one orthogonal
system fixed to the earth, another fixed to the center of gravity of the rocket,
which moves with the rocket, however, does not roll with it. The orientation
of this reference system with respect to the earth-fixed system is given by the

coordinates of the origin and by the direction cosines of the axes.

-10-



The resulting equations of motion are not simple as they contain many
trigonometric functions as a result of the vector approach, which is used.
There are six differential equations of the second order in the coordinates of
the origin and the direction cosine angles.

Quite an extensive computer program is needed (as stated by the author
himself) to calculate one trajectory exactly. However, several simplifications
can be made to cope with this in most cases and furthermore perturbation equa-
tions are given, which can be used for similar trajectories once one is calculated
in full.

These remarks may be concluded by stating that a very accurate means
is given for the calculation of trajectories. The influence of the wind is taken
well into account and for misalignments slight changes will suffice. The objection
to this method is primarily the same as for the method of ref. 5, namely, that
an extensive computer program is needed. Moreover, unlike the method of
ref. 5 this method is less simple and straightforward and, although this is not
a real objection, does not appeal so well to people used to the classical mechanical
approach in flight mechanics.

Reference 7 differs from the foregoing references, as it does not deal

with a specific method for calculation of the impact point and the launch angle
compensation. The main subject instead is the computer setup of a procedure
to perform such calculations in the field before an actual launching. The method
of impact prediction, which underlies the procedure is in principle a refinement
of the one discussed in ref. 2 making use of the assumption, that the deviation
of the impact point due to winds can be found as the product of the ballistic wind
and the unit wind effect.

The procedure supposes, that the no wind range, the windweighting
factors and the unit wind effect for the rocket in question were calculated as
functions of the launch angle well before the launch date. Asthe windweighting
factors are not too sensitive for the launch angle, the ballistic wind can be
calculated from the wind measurements before launch for a guessed value of
the launch angle. This is done in steps in such a way that,after the bulk of
the calculations are done, use can still be made of the latest data on the wind
velocities in the most important lower altitude layers. With the ballistic wind,
the precalculated tables for the no wind range and the unit wind effect,the impact
point for each launch-and azimuth-angle can be calculated rapidly and plotted on
a map. From these plots the required launch and azimuth angle are easily

determined as those angles for which the predicted impact point will lie in
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the designated impact area. In practice an iteration procedure will be necessary
to find the accurate values for these angles.

The description of the procedure in the reference is of much interest as
it shows a glimpse of the practical aspects of a rather simple impact prediction
method. The procedure is general in the sense that it can be used with different
methods for impact prediction, provided the wind weighting procedure is
similar to the one discussed in ref. 2. The accuracy of the eventual results
will of course be dependent on these methods. A disadvantage of the launch
angle compensation scheme is that an iteration procedure has to be performed
shortly before launch. '

Reference 8 describes a method for launch angle compensation, which

differs substantially from the methods reviewed so far. For a standard tra-
.jectory two graphs are developed from which for each ballistic wind the launch-
and azimuth-angles, which yield the same impact point with wind as the standard
trajectory, can be read off directly. In the method several ideas are incor-
porated, which are helpful for the understanding of the wind problem. These
will be discussed in more detail.

The main assumption in this method is that the bulk of the dispersion
due to the winds is caused during the first part of the trajectory when the rocket
is burning and that for this reason a height can be established above which the
influence of the winds can be neglected completely. To obtain the same trajectory
as in the no wind case it will then suffice, when such launch and azimuth angle
corrections are determined and applied, that the direction of the trajectory at
this height is the same as in the no wind case.

To apply the method a three-dimensional trajectory calculation method
is needed, in which the non-linear behavior of the aerodynamic coefficients
can be taken into account. (In ref. 8 use is made of the method described in
ref. 5, other three-dimensional methods can be used as well.) By this choice
of trajectory calculation two commonly used assumptions for launch angle

compensation calculations, which may cause large errors are removed, i.e.:

1. the pitch and yaw motions of the vehicle are independent (which
is commonly assumed in order to use a simple two-dimensional analysis)

2. the aerodynamic forces and moments are linearly proportional to
the angle of attack (which is certainly not true for the large angles of attack

which may occur directly after a launch from a zero length launcher).
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The unique way in which the launch angle compensation graphs are developed,

removes two other common assumptions, which can cause large errors, to wit:

3. the launch angle correction is equal to the launch angle change which
yields in the no wind case the same dispersion in opposite direction as the one
caused by the winds.

4., the azimuth angle correction can be calculated independently of
the elevation angle.

In some methods the third assumption is removed by an iteration pro-
cedure. The fourth assumption is of special interest as this is related with
the interdependency of the pitch and the yaw motion. The error made by this
assumption becomes clear by a consideration of the effect of a pure side wind.
With the assumption of independence of the pitch and the yaw motion, the pitch
motion will not be affected by this side wind. What actually happens however
is that, when the rocket yaws into the wind, this wind gets a component in the
new pitch plane, which certainly will affect the pitch motion and eventually
will produce a dispersion in the pitch plane. By removing this assumption the
launch angle compensation method will be more accurate than previous methods.

The method to compose the launch and azimuth angle compensation
graphs is relatively simple as it consists in principle of merely a cross-plotting
of the results of trajectory.calculations (up to the height above which the wind
influence is assumed to be negligible) for several wind strength models out
of different directions. Use is made of linearly increasing winds, which are
fractional multiples of some standard wind profile, in order to get a better
approximation of practical situations. This profile choice affects the wind-
weighting technique, which is of interest for its procedure. It should be noted
that this windweighting technique is not essential for the launch angle compensa-
tion method, although the use thereof will yield more accurate results.

As a consequence of the choice of a linearly increasing wind instead of
a constant wind for the trajectory calculations the ballistic wind has to be de-
fined as that linearly increasing wind, which is a fractional multiple of the
standard profile which has the same effect on the trajectory as the actual
winds at launch. To compute the ballistic wind from actual wind measurement
data use is made of a wind sensitivity curve, which is determined in an
analogous way as the wind weighting factor curve. In this case the sensitivity
at some height is defined as the relative effect on the dispersion of a constant

side wind, which is entered at this height and is assumed to be present up to
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the altitude above which the wind influence is neglected. From these sensitivity
curves the limits are defined of 20 layers, of which each contributes 5% to the
total wind effect. These limits then are drawn in a graph which shows the
standard wind profile and some fractional multiples thereof as a function of

the logarithm of the altitude. Due to the use of a logarithmic scale the layers
so obtained will not differ too much in thickness in the graph as the thin layers
at lower altitude (large wind influence) appear thicker, while the thick layers
at higher altitudes appear thinner. The measured wind velocities and direction
can be plotted in the so prepared graph. By suitable averaging of the wind
velocities in each layer and expressing the result in terms as a fractional
multiple of the standard wind in the same layer, the ballistic wind strength can
be found by weighting these results further on in the ordinary way. The wind
direction can be weighted directly in the ordinary way.

Except for the above reviewed launch angle compensation method and
wind weighting technique ref. 8 also discusses the ways in which the accuracy
of the method could be established. Results with the method are discussed in
ref. 1.

As conclusion it can be stated that the method described in ref. 8 has
several big advantages for which reason this method should be preferred above
the earlier discussed methods, the main advantages being:

a. greater accuracy

b. simplicity of the graph preparation

c. simplicity of use before an actual launching
A disadvantage of the method is the use of the rather complicated trajectory
analysis of ref. 5. It should be noted however that this last method is easilty
adapted to yield valuable information for structural and stability analysis. If
such information is also wanted, there is of course no objection against the
use of this trajectory calculation method. In other cases, when only the knowledge
of the dispersion is needed, it might be worthwhile to use a simpler method for
the calculation of the trajectory, which takes the interdependence of the pitch
and the yaw motion under the influence of the wind into account. A possible
tentative setup of equations for such a method is given in the appendix. These
equations may also serve as an illustration of the kind of equations in use for

dispersion calculations.
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Appendix

As discussed in the conclusion of the foregoing review of the launch

angle compensation method of ref. 8, it might be of value to use a simple

method for trajectory calculation together with this compensation method.

A requirement for the trajectory calculation method is in principle only that

the interrelation of the pitch- and yaw-motion of the rocket as affected by winds

be taken into account.

In this appendix equations for such a method are given tentatively. (No

effort was made yet to solve and check them.) They are an extension of the

equations used in ref. 4, which are in turn based on equations derived in ref. 2.

launching point.

The assumptions for the equations are the following:

- the rocket is a rigid body, which is axial symmetric in inertial
respect.

- the rocket has aerodynamic symmetry in roll except for asymmetric
misalignments.

- the rocket is not spinning or only slowly spinning; so that gyroscopic
and aerodynamic effects dependent on spin can be neglected.

- the angles between the rocket axis and the trajectory remain small
during the powered part of the trajectory.

- the angles of attack will be small so that normal aerodynamic force
coefficient can be considered to vary linearly with the angle of attack
and the drag coefficient can be considered constant.

- the pitching motion in the vertical plane through the instantaneous
velocity is independent of the yawing motion perpendicular to this
plane.

- the range of the nearly vertical fired rocket is such that the earth
can be considered flat and non-rotating. The gravity force is assumed
to have a constant direction and to vary in magnitude as an inverse
square force, such as in the case of a perfect vertical trajectory.
It is further assumed that the effect of the earth's rotation on the

trajectory can be calculated separately.

The reference system is an orthogonal frame fixed to the earth at the

The direction of the trajectory is given by the angle ¥ between

the instantaneous velocity and its projection on the horizontal plane and the

azimuth angle ¢ between this projection and some fixed direction (North
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direction) in the horizontal plane. (Fig. 1) The orientation of the rocket axis
with respect to the trajectory is given by the angle « in the vertical plane
through the instantaneous velocity and the yaw angle § in the plane through
the instantaneous velocity perpendicular to the vertical plane.

With above assumptions the equations of motion of a sounding rocket
in this reference system can be written as follows (see also notation list and

fig. 1 and 2 at the end of this appendix):
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The equations for this trajectory calculation, which was announced as
simple, do not look very simple at first sight and by a further look they are
even more complicated as several symbols stand for functions of time. It
should be mentioned, however, that these equations are given in full and that
for special cases simplifications are possible. In general, the aid of an electronic
computer will be a necessity, especially when more trajectories are to be cal-
culated. If this is the case, it would be worthwhile to consider the removal of
the assumption of linear behavior of the normal aerodynamic force with the
angle of attack, which removal probably can be done quite easily.

As conclusion of the discussion of this tentative method for trajectory
calculation it may be of interest to list the needed information on the rocket,

which includes

thrust vs. time

mass vs. time

moment of inertia vs. time

center of gravity vs. time

center of pressure (for the different misalignments) vs. Mach number
drag coefficient vs. Mach number

lift coefficient slope vs. Mach number

D@ e a0 TP

moment coefficient for the misalignments vs. Mach number

-

center of pressure of aerodynamic damping vs. Mach number

It turns out that this list is rather typical for this kind of trajectory calculation..
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Notations

A -cross sectional area of rocket
C

D -drag coefficient

V7A

[N
voN' o

M
——%——— -maximum moment coefficient due to fin-misalignments for

C. =
M, Vo5 A r

zero angle of attack

N

CN = e - normal aerodynamic force coefficient
z FVo.A
CN = dCN - slope of normal aerodynamic force coefficient
o da

c.g - center of gravity

c.p - center of pressure

F - thrust

g - acceleration of gravity at earth surface

h - altitude

I - inertia moment of rocket

L4 - distance between c. g and c.p of the aerodynamic forces
(Ld 0 if c.p behind c. g)

LV - distance between c. g and c. p of the aerodynamic damping
forces (LV 0 if c. p behind c. g)

Re - earth radius

r - radius of rocket

re - distance of rocket motor exit from c. g

ry - distance of rocket motor throat from c. g

u - wind velocity

\4 - velocity of rocket

\ - weight of rocket

a - angle between the rocket axis and the trajectory in the vertical
plane

B - angle between the rocket axis and the trajectory in a plane per-
pendicular to the pitch plane

r - angle between the velocity and the horizontal plane

P ¢ - maximum zero lift angle due to fin misalignments

ds - maximum thrust misalignment angle
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N - direction of wind
f - air density
r

b = j $ dt - roll angle

b, - initial roll angle of plane belonging to Sf

¢>m - initial roll angle of plane belonging to CMf

b - initial roll angle of plane belonging to &t

¥ - azimuth angle of projection of V on horizontal plane

a dot above a variable indicates —cclit—

2
. .. d
two dots above a variable indicates —5;2—
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Fig. 2a. Angles in the pitch plane.

Fig. 2b. Angles in the yaw plane.
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