THE UNIVERSITY OF MICHIGAN
COMPUTING RESEARCH LABORATORY!

PDS USERS’ MANUAL: INTRODUCTION

Edward Delp

CRL-TR-1583

MARCH 1983

Room 1079, East Engineering Building
Ann Arbor, Michigan 48109

USA

Tel: (313) 763-8000

1Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the
authors.

M'Iu

VME 1015

pds/intro(1) UNIX Programmer's Manual pds/intro (1)
PDS USERS' MANUAL: INTRODUCTION

University of Michigan
Computer and Image Processing Research Network
March 1983

A software picture processing system (PPS) has been developed to aid
research in image processing and pattern recognition. Most of the documenta-
tion is listed under PDS for Picture Data Structure which was the original
name used for the picture data format. The system was designed at Purdue
University to achieve the following goals: (a) provide users with an efficient set
of programming tools for developing image processing algorithms, (b) provide
easy access to special image peripherals and (c) make available a library of
standard image processing functions.

PDS programs are called Image Processing Modules (IPM's). They may all be
used as filters and have a special PDS syntax for specifying parameters. Much
of the flexibility of IPM's arise from the way file names may be specified; it is
strongly recommended that the file-names section of the documentation is read
before attempting to use the system. A very useful program is display which
enables image data to be written to an image display device with a minimum of
effort.

Image Data Format

Image data in the PPS system may be formatted or unformatted. Unformat-
ted data is simply a raw data file; the user must explicitly specify the format
with the file name when processing this data with an IPM.

Formatted data has a header block of 512 bytes which precedes the raw
data. The format of the data is specified by five integers in the header block:

x: X dimension (width)

y: y dimension (height)

h: number of bits per pixel

n: number of channels (for multispectral data)
f: format number (pixel format)

The header also contains two character strings of descriptive information
called the title and the description. The title may be changed by an IPM but the
description is always passed unchanged. Many IPM's use the command charac-
ter string for the new title. In this way, it is often possible to see what opera-
tions have been applied to a processed image by printing the title. The descrip-
tion may contain any information which the user would like to have maintained
with the data. This information will then be available with any processed
image file which is derived from the original annotated image file. Other infor-
mation maintained in the header includes a PDS file identifier, which permits

7th Edition U of M - Ciprnet 1

pds/intro (1) UNIX Programmer's Manual pds/intro (1)

IPM's to check for formatted data files; the creator identifier and the creation
date. Some formats for other systems, e.g. the NATO format, may contain a
longer header with additional information. This information is stored after
the data section of the PDS file when it is read from tape with an IPM, but it is
not passed to any processed files. For details of the PDS header see
/usr/include/pds.h.

Many data formats are available from single bitplane to multispectral float-
ing point data, however IPM's usually only support one or two formats (8 bit
unsigned character is the most common). To alleviate this problem, some for-
mat converting IPM's are available. New formats may be easily added to the sys-
tem by allocating a new format number.

Implementation

The system was originally written in C (version 7 UNIX) for the PDP-11. It was
converted to run on the VAX 11/780.

Programming Tools

IPM’'s may be written in either Fortran or C. The programming tools are
available in both languages. PPS data files may be accessed either directly,
which is the usual mdde for Fortran and C programs, or with run-time param-
eter checking which aids error detection and program development.

For direct data access, procedures for opening the data files and parsing
the argument character string are available. The output header is created and
structures containing the header information for all files are made available.
It is the responsibility of the programmer to perform all format compatibility
checks and to manage the 1/0 and data processing.

In the error checking scheme all access to image data is made through
PPS run-time library functions. - Routines are available for reading and writing
a pixel, a row, a column or a block of data. Each routine requires the x and y
location, size and format of the data to be specified with each call and these
parameters are checked at run-time. This error checking may be a significant
part of the processing time if 170 is done at the pixel level but is usually very
small for the other access modes. The "-lp” library must be linked. See the
runtime-lib section for details.

Many image processing algorithms involve a computation over the local
neighborhood of a pixel. A special PPS program has been written which effi-
ciently scans an image and makes the local neighborhood available at each pixel
position. The size of the window may be specified as an IPM parameter. To pro-
gram a new window IPM only the algorithm which processes the local neighbor-
hood and the format of the data needs to be specified, the rest is already pro-
grammed. New simple window functions can be programmed and installed in
the system as an IPM in just a few minutes. The "-lpw" library must be linked.
See the window lib section for details.

7th Edition U of M - Ciprnet 2

pds/intro (1) UNIX Programmer's Manual pds/intro (1)

Acknowledgements

Prof. Anthony P. Reeves of Purdue University (now associated with Cornell
University) is the "father” of the concept of PPS/PDS. Many other people have
been involved in writing IPM's. Some of the major contributions at Purdue have
been made by Jim Besemer, John Bruner, Mike Zuhl, Mark Fisher, Luciano Dal-
leore and Doug Kimber. George Gobel and Bill Croft developed the network
system at Purdue which enabled distributed processing to be achieved. At the
University of Michigan the major contributors were Arlan Martin, Gil McGraft,
Doug Kimber, and Jim Poje. Other programmers have also made contributions,
the documentation indicates the author's name where possible.

If you have any IPM programs which may be of use to others, please communi-
cate them (with documentation) to Prof. Edward J. Delp (login "ed") and they will
be distributed.

7th Edition U of M - Ciprnet : 3

contents(1)

UNIX Programmer's Manual

Introduction

File-Names

tile-names

- Miscellaneous information about PDS files

Image Processing Programs

bptobyte
bytetobp
combine
compare
display -
embed
enhance
enlarge
extract
fix
fmap
hift
hist
insert
pdshc
reduce
resample
reshape
shrink
stretch
trans
trim
vp
window
ccs
lthin
mean
median
meddev

7th Edition

convert from bit-plane to byte format
convert from byte to bit-plane format
Combine many files into 1 multispectral file
Compare two images

Puts a picture on the Ramtek or DeAnza
Embed an PDS file onto another PDS file

- deblur a picture

Expand a PDS picture by an integral factor
Take a subset of a multi-channel PDS file
convert the input data to byte format

Map a picture according to a function map
tft on the rows of an image -

histogram plotting program

Insert a PDS file into another PDS file

put a picture on Printronix line-printer
Reduce image by an integral factor, uses mean
Change image size by bilinear interpoation
Change the size of a picture by ANY factor
Shrink a PDS picture by an integral factor
stretch an image to fill range from 0 to 255
Transpose a PDS picture on any of the 3 axes
extract a portion of a pds image

Put a picture on the Benson-Varian plotter
(local window programs)

Robert's cross gradient program

performs a line thinning algorithm
computes the local mean

computes the local median

computes median deviation from the median

U of M - Ciprnet

contents (1)

contents (1)

sdev
sobel
cmedian
gmedian
cfl

cf2

cf3

UNIX Programmer's Manual contents(1)

computes the local standard deviation

sobel edge detection program

leaves pixel or replaces with median if outside range
performs median filtering within a percentage

full Frei-Chen edge detection

Frei-Chen isotropic gradient edge detection
Frei-Chen Laplacian edge detection

Arithmetic programs

add
and
div
invert
mul
or

add two image files

bitwise and two images, one may be a bit-plane
divide one image by another

bitwise invert an image

multiply two image files together

bitwise or two images

PDS header manipulation programs:

pdsedit
list
mkpds
raw
title

Edit a PDS picture header

Prints PDS file header on the terminal
Creates header for making PDS files
Remove the header from a PDS file
Replace the title in a PDS file header

PDS runtime library routines:

runtime-lib

window-lib

Information about PDS runtime library
Information about window runtime library

LARS Multi-channel Analysis programs:

clasity
cluster
hist
laread
stat

(not available at this time)

Run a maximum likelihood clasification

Perform an iterative clustering

Generate histograms for multi-spectral data files
Generate a PDS file from a LARS "MIST" type file
Compile various statistics about a "clasify” run

Nato format:
(not available at this time)

natocat
natoread

7th Edition

catalog a nato format tape
generate a pds file from a nato format tape

U of M - Ciprnet 5

contents(1) UNIX Programmer's Manual contents (1)

natowrite - generate a nato format tape from a pds file

7th Edition U of M - Ciprnet 6

file-names (1) UNIX Programmer's Manual file-names (1)

NAME
file-names - PDS file name syntax
SYNOPSIS
(tile][,raw][,read][,n][.x=n][,y=n][.z=n][,c=n][.f=n][,t="title"]
DESCRIPTION

The PDS utility programs (e.g., shrink, trans) take as input and produce as
output picture files that have a 512 byte header known (strangely enough) as
the PDS header. This header contains information about the data, including
picture size, format, bits per pixel, number of channels, and title. (This
information may be listed by "list".) To add flexibility, modifiers are allowed
after the file name separated by commas. These modifiers replace or alter
the PDS header. In particular, their use allows these PDS routines to read and
produce non-PDS format files.

If the file name is null, then standard input or output is assumed, depending
on whether the file is being used for input or output. If there are no modifiers
the file is assumed to be in PDS format and (for the read case) the header is
read in, and in the write case a header is produced. -

The RAMTEK and DEANZA must be treated specially by the PDS programs
because no header block should be read from or written to it. Therefore, refer-
ences to these two devices are recognized and handled correctly. In addition,
file names of "0", "1", "2", and "3" are abbreviations for "/dev/deaQ",
"/dev/deal”, "/dev/deal"”, and "/dev/image', respectively.

If present, modifiers replace or alter the header. In any case, a header with all
the information is generated and used internally to the program. Modifiers are
of the form:

,<modifier>
i.e., separated from themselves and the file name by a comma. This means that
a file name may not contain a comma. The modifiers may be any of the follow-
ing, and in the case of conflicts the most recently used take precedence.

read (read access files only) causes the header to be read and following
options to override it. Must occur before any other options.

raw (write access files only) causes new file NOT to havé a header.

nnn where "nnn" is a number. This sets both the X and Y sizes to be "nnn".
X=n where 'n’ is a number. Sets the X size to '"'n".

y=n Sets the Y size to "'n".

f=n set format type to “n" (an integer).

z=n set Z size (bits per pixel).

7th Edition 7

file-names(1) UNIX Programmer's Manual file-names (1)

c=n sets number of channels.

t=""title" sets title as indicated. Defaults to command line. Note that title
may not contain a comma and any funny characters must be escaped.
The title is ended by a comma or a zero char. In the write case where
there is no title specified, the command line is reproduced the same
way that "ps"” does and used for a title.

DEFAULTS

When the header is not read and not all of the possible modifiers have been
mentioned, those parameters that require values are assigned the default
values. These are the defaults, although they may be overridden by some
routines.

PARAMETER DEFAULT VALUE
X size (x=) 51
Y size (y=) 512
format (f=) 1 ("data”)
bits per pixel (z=) 8
number of channels (c=) 1
EXAMPLE

BUGS

7th Edition U of M - Ciprnet

Suppose that we want to use file "/pix/usc/girl” as input to a PDS program,

but that that file is not in PDS format. Since the file is 256x2586,
/pix/usc/girl,256

would describe it entirely.

Note that by virtue of the defaults, a non-PDS picture of the size 512x512 may
be referred to by simply appending a comma (,) to its name.

All PDS programs will not accept temporary files beginning with the # symbol.

proc/bptobyte (1) UNIX Programmer's Manual proc/bptobyte (1)

NAME
bptobyte - change from bit-plane to byte format

AUTHOR
Doug Kimber

DATE WRITTEN
6/80

SOURCE LANGUAGE
C

SYNOPSIS
bptobyte if=infile of=outfile [-ms]

DESCRIPTION
This program takes the input file infile in bit-plane format and converts it to
byte format in the output file. If there are less than eight planes in the input file
(specified by the zsize of the input file) then the most significant bits of each
byte will be zero filled to create B bit pixels. The -ms option ¢auses the least sig-
nificant bits to be zero filled instead of the most significant to create eight bit
pixels.

BUGS

7th Edition U of M - Ciprnet 9

proc/bytetobp (1) UNIX Programmer's Manual proc/bytetobp (1)

NAME
bytetobp - convert from byte data to bit-plane format

AUTHOR
Doug Kimber

DATE WRITTEN
6/80

SOURCE LANGUAGE
C

SYNOPSIS
bytetobp if=infile of=outfile [-cp]

DESCRIPTION
This program takes the input image file and converts it from byte to bit-plane
format. If the -cp option is specified the program will calculate how many of the
most significant planes are entirely zero, and output only the other planes,
beginning with the most significant non-zero plane.

BUGS

7th Edition U of M - Ciprnet 10

proc/combine (1) UNIX Programmer's Manual proc /combine (1)

NAME
combine - many files into 1 multispectral file

AUTHOR
Doug Kimber

DATE WRITTEN
7/80

SOURCE LANGUAGE
C

SYNOPSIS
combine il =filel iR=fileR i3=file3 ... of=outfile

DESCRIPTION
The current version of combine will accept up to ten input files and combine
them into one multispectral file. Each file will be mapped to the channel number
that is the same as the file number, eg. - i3 will be mapped to channel 3.

BUGS

7th Edition U of M - Ciprnet 11

proc/compare (1) UNIX Programmer's Manual proc/compare (1)

NAME
compare - compare two images
Doug Kimber

DATE WRITTEN
7/80

SOURCE LANGUAGE
C

SYNOPSIS
compare if=filel ig=file2 of=outfile [-dif] [-sdif] [-ivdif]

DESCRIPTION
This program will compare two input files on a pixel by pixel basis. If the -dif
option is specified then the absolute value of the difference of the two images
will be generated. The -sdif option will cause the absolute difference of the
squares, divided by 255, to be generated. The -ivdif option will cause the abso-
lute value of 255 minus the difference of the two input images to be generated.

BUGS

7th Edition U of M - Ciprnet 12

proc/display (1) UNIX Programmer’s Manual proc/display (1)

NAME

display - display a picture

AUTHOR

Mike Zuhl

DATE WRITTEN

8/77

SOURCE LANGUAGE

C

SYNOPSIS

display [-vfr] file [commands ...]

DESCRIPTION

Display, among other things, puts a picture on the RAMTEK or DEANZA. The
program itself doesn't dirty its hands by playing with actual pictures, rather it
invokes various PDS utilities to do its bidding.

The "v" flag causes all of its actions to be displayed. The commands are
displayed in almost identical manner as they would be input to the shell, except
for the normalizing (see below). File deletions are shown as "rm filename".

The "f" flag causes display to use temporary files instead of pipes. In addi-
tion, specifying the "f" flag causes all the programs to run serially, rather than
in parallel, and should take longer. The "f" should seldom be used because the
generated files are usually very large and run a serious risk of overflowing
some device, for which there is no check. The only reason that the "f" flag was
implemented was because we were having troubles with pipes for a while. Now,
about the only reason to specify the "f" flag is when you are reading and writing
on the same image. Note: if you interrupt display (e.g., via the "delete” key)
it will clean up all the scratch files.

The 'r" flag causes display to instruct all size changes to be done in floating
point ("'real") mode. This makes the pictures more pleasing to look at, but you
can't see the individual expanded pixels (a slight loss, sometimes) and it takes
longer. Compare it both ways to see which you prefer.

An input file is required. If the file name is "-", standard input is used. If
the input file is not in standard PDS format, the user is prompted to supply its
size. There is no such recovery for pipes. If you want to pipe a non-PDS pic-
ture, use a null file name and PDS modifiers.

Special care must be taken when reading from devices, because although
display does not process pictures, it does attempt to read the PDS header if
there should be one. In particular, if you try to read a PDS format file from
tape with rewind disabled, at the very least you will lose the first line and it
probably won't work at all (and not tell you why). (See "help pds/file-names").

The following keyword commands are processed in order. If the last

7th Edition U of M - Ciprnet 13

proc/display (1) UNIX Programmer's Manual proc/display (1)

parameter is not an output file name, the cutput is written onto the RAMTEK
image.
part <position> <size>

Extracts the part of the picture whose upper corner is <position>
and whose size is <size>. <position> is in the form of npn, where
the "n"'s are integers indicating, respectively, X and Y coordinates
in pixels. The <size> parameter of a similar format, except that
instead of a "p” for a separator, an "x" is used. <position> and
<size> may be interchanged or defaulted. <position> defaults to
centering the picture and <size> defaults to 256x256.

section <position> <size>
Identical to "part”, above.

trans Or "transpose”. Transpose picture along the diagonal. For large pic-
tures, this can be slow.

vtrans Or "transv" or "vt”. Transpose along the vertical axis.
htrans Or "transh" or "ht". Transpose along the horizontal axis.

into <position> <file>
Or "insert”. Inserts a picture into an already existing picture, with
its upper left corner at <position>. See "part”, above. If <file> is
missing, it defaults to the RAMTEK. <position> defaults to center-
ing the picture.

center <file>
Or '"center”. Center the picture (strangely enough). <file>
defaults to the RAMTEK

size <size> A
Change the size of the picture to <size>. See "part”, above, for a
description of <size>. The aspect ratio of the picture is preserved by
filling the top and bottom, or left and right, by zero background. If
no <size> is specified, this command is ignored.

shape <size>
Or "reshape”. Similar to "size"”, above, except that it does allow the
aspect ratio to change.

<file> A parameter not recognizable as one of the above keywords is
considered to be a file name and the current picture is written to it.
Note that this is a PDS file name and as such can have any of the
PDS modifiers. If there are commands following they will then use
this file as input. This allows intermediate pictures to be saved.

7th Edition Uof M - Ciprnet 14

proc/display (1) UNIX Programmer's Manual proc/display{ 1)

Commands that take a <file> (i.e., "into" and "center') do not check to see if
the parameter is a keyword. If it's there, they take it.

EXAMPLES

The command
display myfile O

will cause "myfile” to have its size adjusted to fill the screen and placed on
the DEANZA image 0.

In the following examples, the images are displayed on the Ramtek.

Suppose we want to take the file "myfile”, shrink it down to 50x50, and put it
into Ramtek at 450p35.

display myfile size 50x50 into 450p35

Now we want to do the same thing, only elongate the inserted picture twice in
the X direction.

display myfile shape 100x50 into 450p50

Notice the use of "shape" rather than "size". If "size" had been used, there
would have been a black box to either side of the embedded image.

SEE ALSO

FILES

BUGS

7th Edition U of M - Ciprnet

reshape
trim

trans
insert
embed
file-names

/tmp/display.[a-z][0-9]* scratch files with "-f"

If something goes wrong in the middle of a command, display doesn't know
and thus can propagate a messed up file.

15

proc/embed (1) UNIX Programmer'’s Manual proc/embed (1)

NAME
embed - embed one pds format file within another

DATE WRITTEN
7/77

SOURCE LANGUAGE
C

SYNOPSIS :
embed [-c] +x,y if=infile ef=embedfile of=outfile

DESCRIPTION
Embed takes an embedfile and "overlays” it over the background of infile. The
upper lefthand corner will be at "+x,y". The default positioning is to center the
picture.

The "-c” (center) flag causes all zeros to be used instead of reading the "if="
input file. This feature replaces the "center” program which would center a pic-
ture on the RAMTEK or DEANZA.

SEE ALSO
pds/tile-names

BUGS

7th Edition U of M - Ciprnet 16

enhance (1) UNIX Programmer's Manual enhance (1)

NAME
enhance - deblur a picture

AUTHOR
Tim Rinker

DATE WRITTEN
6/81

SOURCE LANGUAGE
C

SYNOPSIS
enhance [-c] if=infile of=outfile [wd=[5, 9]]

DESCRIPTION
Enhance uses the laplacian operator to deblur an image. The -c option will print
out the number of enhanced pixels with value greater than 255 that were set to
255 and the number of enhanced pixels with value less than 0 that were set to 0.
The user may specify a window with a weight of 5 in the center, -1 at the 4
nearest neighbors and a 0 at the other neighbors. This is the default window.
The other window has a weight of 9 in the center and and -1 at the 8 neighbors.

EXAMPLES
enhance -c if=pix1 of=pix2

enhance if=pixl of=pix2 wd=9

BUGS

7th Edition U of M - Ciprnet 17

proc/enlarge(1) UNIX Programmer's Manual proc/enlarge (1)

NAME
enlarge - expand a PDS format picture by a given factor

AUTHOR
Mike Zuhl

DATE WRITTEN
/77

SOURCE LANGUAGE
C

SYNOPSIS
expand [+x,y] if=infile of=outfile

DESCRIPTION .
This program expands a PDS-formatted picture by an integral factor, denoted
by “+x,y". The default expansion size is 2 in both the X and Y dimensions._

BUGS

7th Edition Uof M - Ciprnet 18

proc/extract (1) UNIX Programmer's Manual proc/extract (1)

NAME
extract - extract channel(s) from a multi-channel PDS file

AUTHOR
Mike Zuhl

DATE WRITTEN
B8/77

SOURCE LANGUAGE
C

SYNOPSIS
extract ch=n,n,... if=infile of =outfile

DESCRIPTION
The program takes a multi-channel PDS file as input and writes a subset of
the channels as a PDS output file. Infile defaults to standard input and outfile
defaults to standard output.) .

The "ch=" parameter is a list of channels from one to the number of channels
on the input. The channels may be in any order and may be repeated. For
instance

extract ch=1,1,1 if=in of=out

will replicate channel 1 three times. The channel selection defaults to "ch=1".

EXAMPLE
Suppose we have a three channel file, “zap", and we want to reverse the order of
the channels.
extract ch=3,2,1 if=zap of=zip

will do the trick.

7th Edition Uof M - Ciprnet ‘ 19

proc/fix(1) UNIX Programmer's Manual A proc/fix (1)

NAME
fix - change format of input file to byte

AUTHOR
Doug Kimber

DATE WRITTEN
7/80

SOURCE LANGUAGE
C

SYNOPSIS
fix if=infile of=outfile [-s]

DESCRIPTION
This program takes infile in integer, 32 bit floating point, or 84 bit floating point
and converts it to byte format. The -s option will cause the output not to be
scaled. :

BUGS

7th Edition U of M - Ciprnet 20

proc/fmap (1) UNIX Programmer's Manual proc/fmap (1)
NAME
fmap - map image using function memory map of the Ramtek

AUTHOR
Jim Besemer and Mike Zuhl!

DATE WRITTEN
/77

SOURCE LANGUAGE

C
SYNOPSIS
fmap [if=...] [of=...] [fm=...]
options:
if=xxx use file xxx for input instead of /dev/image
of=yyy use yyy for output file (default = standard output)
fm=zzz use zzz for function memory file (instead of RAMTEK lookup
table).
DESCRIPTION

Fmap copies a file, translating the gray-levels according to some Ramtek func-
tion memory mapping. The defaults are set up so that the input (both image
and mapping) is from the Ramtek, and the output is a file. It may be used, how-
ever, to apply an arbitrary mapping to any file.

EXAMPLES
7% fmap of =xxx _ copy image from /dev/image and put it into file xxx
and map through RAMTEK lookup table

% tmap if=yyy of=2zz copy file yyy to zzz using the mapping present in RAM-
TEK lookup table

7% fmap if=yyy of=zzz fm={ff
copy yyy to z2zz using mapping in file fff.

SEE ALSO
fmem

7th Edition U of M - Ciprnet 21

proc/hfft (1) UNIX Programmer's Manual proc/hfft (1)

NAME
hfft - fft on the rows of an image

AUTHOR
A. P. Reeves

DATE WRITTEN
10/78

SOURCE LANGUAGE
C

SYNOPSIS
hfft [-i] [-m] if=infile of=outfile

DESCRIPTION
This program will perform the fft or the inverse fft on the rows of an image. The
-1 option specifies the inverse transform. The -m option inhibits the automatic
modulation of -1*#i*j. This routine can deal with pipes.

BUGS

7th Edition U of M - Ciprnet 22

proc/hist (1)

NAME

UNIX Programmer's Manual proc/hist(1)

hist - plot distribution of pixel values

AUTHOR
Dave Olander

DATE WRITTEN
July 1981

SOURCE LANGUAGE
C

SYNOPSIS

hist if=infile [arguments]

DESCRIPTION

This program plots a graph of pixel values vs. the number of pixels with those
values, for the input image. The graph may be displayed on various graphic dev-
ices. The following options are available to modify the graph:

P

of=outfile

-n

g

-r

-z

7th Edition

The plot is written out to a file 'graph’. This file can then be
written out to the Versatec using GP or to the Printronix line
printer using GPLP. This is the default source of the plot.

Same as -p except the graph is written out to standard output.
This is helpful if the '-i’ option is used with GP and GPLP.

The file that the plot is saved in using the -p option is changed
to 'outfile’.

Display the plot on the Ramtek's graphic overlay n, where n
can be 0 or 1. The default value is 0.

Display the plot on a Ramtek graphic overlay.
Display the plot on a Ramtek image.

Display the plot on a Tektronix 4010 or 4014 display.
Display the plot on the HP plotter.

The display device is not blanked before plotting. This has no
effect on the HP plotter.

A bar graph is plotted instead of connecting points with a

U of M - Ciprnet 23

proc/hist (1)

-C

-e

SEE ALSO
gp. gplp

BUGS

UNIX Programmer's Manual proc/hist(1)

straight line.

Plot the cumulative distribution of the pixel values instead of
the normal plot.

Calculate the entropy of the plot. The entropy value is
displayed with the plot and is printed to standard output.

List the pixel distribution (i.e. pixel value and number of pixels
with that value) on standard output.

Scale the plot between 0 and 1.

At present, it is not possible to display plots on the HP plotter.

7th Edition

U of M - Ciprnet 24

proc/insert (1) UNIX Programmer's Manual proc/insert (1)

NAME
insert - insert a picture into an existing picture

AUTHOR
Mike Zuhl

DATE WRITTEN
8/77

SYNOPSIS
insert [-XpY] if=infile of=outfile

DESCRIPTION
This program inserts a file in another. It is similar to embed, except that it

puts infile into outfile rather than creating a third file. It is used mostly for
the RAMTEK and DEANZA.

XpY is the position of the upper left corner in outfile to insert infile. It defaults
to centering the picture.

BUGS

7th Edition U of M - Ciprnet 25

pdshe () UNIX Programmer’s Manual pdshe ()

NAME
pdshc - print pds file on printronix

AUTHOR
Mark Diamond and Gilbert McGrath (University of Michigan)

DATE WRITTEN
8/81

SYNOPSIS
pdshc if=infile [l=table] [-m]

DESCRIPTION
This program takes any input image and reshapes it to a 256x25 image maintain-
ing the aspect ratio and prints the image on the printronix.

The program by default lightens the image by a non-linear transformation map-
ping the pixel values 0-255 into a range of 0-15.

The [-m] option maps the pixel values 0-255 into the range 0-15 linearly.

An optional look up table may be inputed [I=table] if the user desires to create a
different mapping. The table must be 256 short integers in the range 0-15, 0
being the darkest and 15 the lightest.

SEE ALSO
reshape

7th Edition 26

proc/reduce (1) UNIX Programmer's Manual proc/reduce (1)

NAME
reduce - reduce an image by an integral factor

AUTHOR
D. A. Kimber

DATE WRITTEN
7/80

SOURCE LANGUAGE
C

SYNOPSIS
reduce if=infile of=outfile [xs=nnn] [ys=nnn]

DESCRIPTION
This program takes the the input image and reduces it by an integral factor in
both the x and y dimensions. The output image is created by taking the mean of
a window of size nnn by nnn. nnn is the factor by which the image is to be
reduced in the corresponding dimension. The default reduction is 2 in each
direction. It is an error if the factor does not divide the dimension evenly.

BUGS

SEE ALSO
shrink

7th Edition U of M - Ciprnet _27

proc/resample (1) UNIX Programmer’s Manual proc/resample (1)

NAME
resample — reduce (enlarge) an image to a specified size

AUTHOR
D. A. Kimber

DATE WRITTEN
7/80

SYNOPSIS
resample if=infile of=outfile [xs=nnn] [ys=nnn]

DESCRIPTION
This program will change the size of the input image to be the size specified by
the parameters xs=nnn and ys=nnn. Default is square if only one of xs or ys is
specified. At least one must be specified. The output is generated from the
input using a bi-linear interpolation algorithm.

BUGS

7th Edition U of M - Ciprnet 28

proc/reshape(1) UNIX Programmer's Manual proc/reshape (1)

NAME
reshape - Change picture to arbitrary size.

AUTHOR
Mike Zuhl

DATE WRITTEN
August 1977

SOURCE LANGUAGE
Cc

SYNOPSIS
reshape [-a][-f] if=infile of=outfile

DESCRIPTION
Reshape changes the size of a picture to any other size. It differs from the
programs shrink and expand in that reshape allows you to change the size by
any factor while shrink and expand are limited to integral factors. Also,
reshape will allow multi channel files and some other funny types (like fortran
complex) to be manipulated.

If the "-f" option is supplied, reshape uses floating point interpolation rather
than dropping or repeating pixel values. This means that 1) pictures look
more realistic, and 2) it takes about twice aslong. The default, integer mode is
much faster and therefore usually preferable.

The output size is determined by the PDS modifiers put on the output file.
Note that when writing to the RAMTEK or DEANZA these modifiers are magically
supplied for you. If the input size is the same as the output size, a straight
copy is done.

Ordinarily, reshape preserves the aspect ratio by providing a black (Q0) back-
ground either at the top and bottom, or the left and right. That is,

7% reshape if=a,x=100,y=50 of=b,x=200,y=200

would cause file b to contain a 200x200 picture with a 50 pixel wide black
stripe on the left and the right. This is to keep from inadvertently distorting
the picture. The "-a" option overrides this feature and causes the output pic-
ture to fill the image, hang the aspect ratio. Very funny pictures can be made
this way.

Infile defaults to standard input and outfile defaults to standard output, as you
would expect. If infile is specified, you can drop if "if=" and/or the "of=" prefix.

SEE ALSO
enlarge
shrink
resample

9
7th Edition U of M - Ciprnet 2

proc/reshape (1) UNIX Programmer's Manual

reduce

BUGS
Slow, in floating point mode.
Very small images (e.g., 2x2) come out real funny.

7th Edition U of M - Ciprnet

proc/reshape (1)

30

proc/shrink (1) UNIX Programmer's Manual proc/shrink (1)

NAME

shrink - shrink PDS format pictures

AUTHOR

Mike Zuhl

DATE WRITTEN

/77

SOURCE LANGUAGE

C

SYNOPSIS

shrink [+x,y] if=infile of=outfile [-max][-min][-mean][-rand]

DESCRIPTION

P!

Shrink is used to make a picture smaller by an integral factor. "x" and "y"
are the X and Y shrink factors, respectively. If "x" is specified and "y" is
omitted then both X and Y shrink factors are set to that value. The default is
H+2H'

"Infile” and "outfile" are the PDS format input and output files, respectively.
They default to standard input and standard output. The four options max, min,
mean, and rand determine how the output file will be generated. Max takes the
maximum pixle in the window, min the minimum pixle, mean an average value,
and rand a random pixle from the window. If none of these four options are
specified the upper left pixle of each window will be chosen.

SEE ALSO

BUGS

reduce

7th Edition U of M - Ciprnet 31

proc/stretch (1) UNIX Programmer's Manual proc/stretch(1)

NAME
stretch -- pixel values to cover range from 0 to 255

AUTHOR
Doug Kimber

DATE WRITTEN
10/80

SOURCE LANGUAGE
C

SYNOPSIS
stretch if=infile of=outfile [ch=channel]

DESCRIPTION

This program normalizes the pixels in the specified channel of the input image
to fill the range from 0 to 255 by subtracting the minimum, multiplying by 255,
and then dividing by the difference of the max and min. "infile” and "outfile" are
the input and output files, respectively, with optional modifiers. If the channel
is not specified then channel 1 is assumed (a message to this effect is printed to
alleviate the possibility of accidentally omitting the channel when 1 is not the
desired channel).

BUGS

7th Edition U of M - Ciprnet 32

proc/trans{1) UNIX Programmer’s Manual proc/trans (1)

NAME
trans - transpose PDS picture files

AUTHOR
Mike Zuhl

DATE WRITTEN
8/77

SOURCE LANGUAGE
C

SYNOPSIS
trans [-v] [-h] [if=infile] [of=outfile]

DESCRIPTION
This program transposes PDS-formatted picture files. By default the tran-
spose is done on the diagonal axis, but it can also be done on the vertical ("-v"
option) or the horizontal ("'-h” option) axis.

"Infile” and "outfile” default to standard input and standard output, respec-
tively. Since some of the operations may require seeks on a file temp files will
be made if necessary.

/tmp/trans.* temp files when used with pipes

BUGS

7th Edition U of M - Ciprnet 33

proc/trim (1) UNIX Programmer's Manual proc/trim (1)

NAME
trim - extract a portion of a PDS picture

AUTHOR
Mike Zuhl

DATE WRITTEN
/77

SOURCE LANGUAGE
C

SYNOPSIS
trim [-x,y] [xy=x.y] [+x,y] if=infile of=outfile

DESCRIPTION
Trim extracts a portion of a picture from another PDS format picture. The
upper lefthand corner of the picture extract is denoted by "+x,y", or by
"xy=x.y"'. The resultant picture size is normally specified as a modifier to the
output file, but may also be specified as "-x,y". This defaults to trimming
out the center. The size of the output picture is determined by the modifiers to
the output file.

BUGS

7th Edition U of M - Ciprnet 34

proc/vp (1) UNIX Programmer's Manual proc/vp(1)

NAME
vp — print a PDS picture on the Benson-Varian.

SYNOPSIS
vp [—n] [1=levelfile] if=infile

DESCRIPTION
Vp read a PDS format picture file and generates a 17 graylevel picture to be out-
put on the spooler’s output device: the benson varian. A pixel is represented by
a 4 by 4 square of dots. The graylevels are produced by turning on from zero to
16 dots, for a total of 17 levels. Since there are a total of 2112 dots per line on
the device, the maximum picture width is 528. Wider pictures are silently trun-
cated.
By default, vp chooses a uniform mapping of the possible 256 input graylevels to
the representable 17 output graylevels. However, this mapping is seldom ideal,
so the "l=" parameter allows the user to specify his own mapping. "Levelfile",
selected by the "I=" parameter, si a file containing 256 binary integers (words)
in the range zero to 16 (integers outside this range will be noisily mapped into
the range). The ith entry in the table contains the level to which the input level i
is to be mapped. This is similar to the way in which the RAMTEK function
memory works, and is the same format as produced by copying from
/dev/fmem.
If "infile"” is not specified, then it defaults to standard input. Since the input is a
PDS file, modifiers can be used.
The "-n'"" option causes the negative of the picture to be produced.

FILES .
vp is a csh script which feeds the output of the "nvp" program into "sp -rv".
/usr/spool/spool/loops*
/usr/ece/nvp
/usr/src/ece/cmd/spool/xxx
/usr/adm/spool log

BUGS
17 levels aren't alot.

SEE ALSO '
spdrop(1), sphold(1), spst(1), spq(1), sprm(1), bp(1)

EXAMPLES

Try "vp if=/pix/usc/monkey,512". Be patient.

7th Edition UofM - Ciprnet 35

proc/window (1)

NAME

UNIX Programmer's Manual proc/window (1)

local window IPM's

SYNOPSIS

<program name> [if=inputfile] [of=outputfile] [xs=xnn] [ys=ynn]{d] [-str]

(help]

DESCRIPTION OF PARAMETERS

inputfile:
outputfile:

Xnn:

str:

help:

GENERAL DESCRIPTION

the file the input is to be taken from
the file the output is to be put on

the size of the window in the x direction Defaults to dsizex in
window program. .

the size of the window in the y direction Defaults to dsizey in
window program.

set debug flag to help debug program. Used by support func-
tions and may also be used in window programs to aid debug-

ging.

any user defined string. The use of the specified options is pro-

gram dependent.

will invoke the printing of help information from the window pro-
gram. This usually describes the syntax for the input command
and contains a brief description of what the program does. Use
of the help option inhibits actual execution of the window pro-
gram and only prints the help string.

These local window IPMs are a set of routines for efficient local window scan-
ning. Local window IPMs involve a common set of support subroutines, and are,
in general, very simple to write and use the above syntax. The following IPMs are
currently available:

1) ccs

2) 1thin

3) mean

4) median

5) meddev
8) sdev

7) sobel

8) cmedian
9) qmedian

7th Edition

-computes the Robert's cross gradient

-computes a line thinning algorithm

-computes the local mean

-computes the local median

-computes median deviation from median

-computes the local standard deviation

-computes the Sobel function, isotropic or euclidean
-leaves pixel or repiaces with median if outside range
-performs median filtering within a percentage

Uof M - Ciprnet 36

proc/window (1) UNIX Programmer's Manual proc/window (1)

10) cf? -full Frei-Chen edge detection
11) cf2 -Frei-Chen isotropic gradient edge detection
1R) cf3 -Frei-Chen Laplacian edge detection

These existing programs are for one data type- byte data, but may be easily
modified by a simple source program edit. See "how to write a window program"
for details.

DESCRIPTION OF AVAILABLE IPMS
ccs

ccs performs the Robert’s cross gradient function on the input file by using the
formula p[i,j]= |p[i.j] - pli+1.j+1]] + |p[i+1.j] - p(i.j+1]]. The default window size is
2x2, since other window sizes are nonsensical. The current program does not
check to see if the size has been changed to other than 2x2. If the window goes
outside the edges of the input data then all values outside the border are
assumed zero. There is a possibility of overflow for a given pixel as the result for
very sharp edges could require 9 bits to represent. No overflow check is made,
and the overflow bit will be ignored.

1thin

lthin performs a line thinning algorithm by considering the 3 basic conditions
for eliminating a pixel in all the possible rotations, in terms of the requirements
for O's. This is done by testing if there is a 0 in a position of the window. If a logi-
cal "1" is found, then all the combinations that cannot be realized are masked
out. The basic conditions are shown here, with d=don't care, considered "1". The
X is the pixel that will be removed.

dod d00 00d
1x11x0 Ox1
111111 111

By using the "-nn"” option the logic "1" pixel value may be selected. The logic
"1" default value is 64. :

The default window size is 3x3, since this is the only window size that makes any
sense. The current program does not check to see if the size has been changed
from 3x3. If the window goes beyond the edges of the input data then all values
outside the data border are assumed zero.

mean

mean computes the local mean of the given window. The default window size is
2xR. If only one of xs or ys is specified the window defaults to a square of the size

7th Edition U of M - Ciprnet 37

proc/window(1) UNIX Programmer's Manual proc/window (1)

specified. If the window goes beyond the edges of the input data then all values
outside the data border are assumed zero.

median

median computes the local median of the input window. Median defaults to a
3x3 window if xs and ys are unspecified. If only one is specified then the window
defaults to a square of the size specified. If the window should overlap past the
edges of the input data then all values beyond the data border are assumed to
be zero.

meddev

meddev computes the median deviation from the median of the pixels in the
window and sets the center pixel to that value. The window size defaults to a
3x3. If only one of xs or ys is specified then the window defaults to a square of
that size. If the window overlaps the edges of the input data then all values
beyond the data border are assumed zero.

sdev

sdev computes the local standard deviation of the input window. The window
size defaults to 3x3. If only one of xs or ys is specified the window defaults to a
square of the size specified. If the window overlaps beyond the edges ot the
input data then all values beyond the data border are assumed to be zero.

sobel

sobel computes the sobel edge detection function. Use of the"-i" option will
select the isotropic computation, while use of the "-e” option will select the
euclidean norm computation. The default window size is 3x3. If only one of Xs or
ys is specified the window defaults to a square of the size specified. If the window
overlaps the edges of the input data all values beyond the data border are
assumed to be zero. The possibility of overflow does exist, as the result might
require 9 bits to fully represent it. Currently, no overflow check is made, and the
overflow bit will be ignored.

cmedian

This program selectively replaces the center pixel in the window with the
median of the window, or its original value. The -nn option specifies that if the
pixel falls within nn/27% of the median for that window then the pixel is left alone.
Otherwise it is replaced by the median for that window. The default value for nn
is 30%. (15% either side of the median).

7th Edition U of M - Ciprnet 38

proc/window (1) UNIX Programmer’s Manual proc/window (1)

gmedian

gmedian computes the local median of the input window. It defaults to a 3 x 3
window if X's and y's are unspecified. The center of the window is replaced by
the median if it does not fall within a certain percentage. Default percentage is
30.
cfl

cfl computes the Frei-Chen edge detection using the eight window transforms.
Window size is 3 X 3. A threshold value is specified. Default threshold is 2.
cfl

cf2 computes the Frei-Chen edge detection using only the isotropic gradient
transforms. Window size is 3 x 3. A threshold value is specified. Default threshold
is 2.
cf3

cf3 computes the Frei-Chen edge detection using only the Laplacian transform.
Window size is 3 X 3. A threshold value is specified. Default threshold is 2.

7th Edition U of M - Ciprnet 39

arithmetic/add (1) UNIX Programmer’s Manual arithmetic/add (1)

NAME
add - add two image files

AUTHOR
Doug Kimber

DATE WRITTEN
6/80

SOURCE LANGUAGE
C

SYNOPSIS
add if=infilel ig=infile2 of=outfile [-xn]

DESCRIPTION
This program takes the two input images and adds them with optional modifiers.
If the -xn option is selected then elements of infile2 are multiplied by n.

BUGS

7th Edition U of M - Ciprnet 40

arithmetic/and (1) UNIX Programmer’s Manual arithmetic/and (1)

NAME
and - bytewise and two images

AUTHOR
Doug Kimber

DATE WRITTEN
8/80

SOURCE LANGUAGE
C

SYNOPSIS
and if=infilel ig=infile2 of=outfile [-bin]

DESCRIPTION
This program takes the two input images and does a logical and of their
corresponding bytes. The -bin option specifies that all non-zero bytes of infile2
are to be taken as FF base 16. This is useful for anding a binary image with a
regular byte image.

BUGS

7th Edition U of M - Ciprnet 41

arithmetic/div(1) UNIX Programmer's Manual arithmetic/div(1)

NAME
div - divide one image by another

AUTHOR
A. P. Reeves

DATE WRITTEN
11/78

SOURCE LANGUAGE
C

SYNOPSIS
div if=infilel ig=infile2 of=outfile

DESCRIPTION
This program divides the image of infilel by the image in infile2 and puts the
result in outfile.

BUGS

7th Edition U of M - Ciprnet 42

arithmetic/dive (1) UNIX Programmer's Manual arithmetic/dive (1)

NAME
dive - divide one complex image by another

AUTHOR
A. P. Reeves

DATE WRITTEN
1/79

SOURCE LANGUAGE
C

SYNOPSIS
dive if=infilel ig=infile2 of=outfile [-s]

DESCRIPTION
This program divides complex infilel by complex infile2 and writes the result to
outfile. The -s option is to give a result in the case of divide by 0. Otherwise a
fatal error may occur.

BUGS

7th Edition U of M - Ciprnet 43

arithmetic/invert(1) UNIX Programmer's Manual arithmetic/invert(1)

NAME
invert - take the ones complement of an image

AUTHOR
Doug Kimber

DATE WRITTEN
8/80

SOURCE LANGUAGE
C

SYNOPSIS
invert if=infile of=outfile

DESCRIPTION
This program takes the ones complement of each pixel of the input file and
writes it to the output file.

BUGS

7th Edition U of M Ciprnet 4

arithmetic/mul(1) UNIX Programmer's Manual arithmetic/mul (1)

NAME
mul - multiply one image by another

AUTHOR
Doug Kimber

DATE WRITTEN:
7/80

SOURCE LANGUAGE
C

SYNOPSIS
mul if=infilel ig=infileR of=outfile

DESCRIPTION
This program will multiply the image in infilel by the image in infile2 and place
the result in outfile. Multiplication is performed on a pixel by pixel basis.

BUGS

7th Edition U of M - Ciprnet 45

arithmetic/or (1) UNIX Programmer's Manual arithmetic/or (1)

NAME
or - bytewise or two images

AUTHOR
Doug Kimber

DATE WRITTEN
8/80

SOURCE LANGUAGE
C

SYNOPSIS
or if=infilel ig=infile? of=outfile

DESCRIPTION
This program takes the two input images and does a logical or of their
corresponding bytes.

7th Edition U of M - Ciprnet 47

header/list(1) UNIX Programmer's Manual header/list(1)

NAME
list - list PDS header information about an image

AUTHORS
Jim Besemer and Doug Kimber

DATE WRITTEN
3/30/78

SOURCE LANGUAGE
C

SYNOPSIS
list pdsfile

DESCRIPTION
list will print out all the pertinent information that is contained in the header of
a normal PDS file. This includes the size of the image, title, description, creation
date, creator, PDS format, the number of channels, and any extended descrip-
tion that may follow the data.

DIAGNOSTICS
Usual messages that file is not in valid PDS format.

IMPLEMENTATION DESCRIPTION
list uses the format capabilities of printf to print out the information in the PDS
header. The description is blank filled on the left, so if there was no description
information, only 128 blanks will be printed.

7th Edition U of M - Ciprnet 48

header/mkpds (1) UNIX Programmer's Manual header/mkpds{1)

NAME
mkpds - make a PDS file from a raw data file

AUTHORS
Jim Besemer, Doug Kimber, and Arlan Martin

DATE WRITTEN
3/30/78

SOURCE LANGUAGE
c

SYNOPSIS
mkpds [the program will prompt for all data]

DESCRIPTION
mkpds will create a new PDS image file by prompting for the necessary header
data. It requests the file name, number of data channels, the size of the image,
the PDS format (this can be an integer or string naming the type), the number
of bits per pixel, and a 40 character title. mkpds will then ask if there are any
other comments about the image.

FILES USED
/tmp/mkpdsxXXXXX temporary file
/usr/lib/pds/file.formats valid PDS file formats
BUGS

None known, except that it may leave files around if it is interrupted.

7th Edition U of M - Ciprnet 49

header/pdsedit{1) UNIX Programmer's Manual header/pdsedit(1)

NAME
pdsedit -- edit a PDS file header

PROGRAM AUTHORS
Jim Besemer, Doug Kimber, and Arlan Martin

DATE WRITTEN
Unknown

SOURCE LANGUAGE
C

SYNOPSIS
pdsedit pdsfile [program prompts for parameters]

DESCRIPTION.
pdsedit allows the information contained in the header of a PDS file to be
altered. It can be useful during PDS program development, when the exact
usage of header information is subject to change, and it is undesirable to regen-
erate the data files.)

When the program is run, it prints an information message, and then waits for
commands. If any error is detected by edit, it will ighore the rest of the line
which caused the error. pdsedit is used interactively.

BUGS

7th Edition U of M - Ciprnet 50

header/raw (1) UNIX Programmer's Manual header/raw(1)

NAME
raw - remove the PDS header from a PDS file

AUTHOR
Jim Besemer

DATE WRITTEN
Unknown

SOURCE LANGUAGE
shell file

SYNOPSIS
raw if=infile of=outfile

DESCRIPTION
Raw removes the PDS header from a file. It does this by merely copying the file
but omitting the first block. -

IMPLEMENTATION DESCRIPTION
The entire shell file is as follows:

dd 81 82 skip=1

BUGS

7th Edition U of M - Ciprnet 51

header/title(1) UNIX Programmer's Manual header/title (1)

NAME
title - put (new) title in PDS picture header

AUTHOR
Mike Zuhl

DATE WRITTEN
8/77

SOURCE LANGUAGE
C

SYNOPSIS
title "title" file(s)

DESCRIPTION
Title replaces the title in an already existing PDE file with the title specified.
This is useful for re-commenting a file. Titles are also set by using the ",t=... "

modifier when creating a file. If this option is not specified, the default is the
command line that created the file.

By placing modifiers on the files mentioned on the title command, you can
also change some of the other information in the PDS header. Note that these
changes affect only the header and do not touch the picture data itself.

BUGS

7th Edition U of M - Ciprnet 52

run/runtime-intro(1) UNIX Programmer's Manual run/runtime-intro (1)

NAME
pds runtime routines

DESCRIPTION

Following is a summary of routines available in the PDS runtime library system.
All the following routines (with the exception of those marked "internal use
only") are available. Where necessary, the subroutine names have been trun-
cated to 8 characters. The runtime library is linked using "-lp". Parsing of argu-
ments is accomplished through the use of mparse as described in (A) below.
Routines for direct access to files using UNIX file descriptors are described in
section (B). Routines with run-time error checking, described in (C), use user
specified unit numbers 0-15 to identify files (a concept similar to fortran unit
numbers).

CONTENTS
(A) Parameter parsing

mparse - parses the parameter string

(B) Direct file access

opnpds - opens a pds file
popnpds - opens a pds file to work with pipes
clspds - closes a pds file, necessary when using popndps

(C) Error checking access routines

getblk - read an arbitrary piece of a picture
putblk - write an arbitrary piece of a picture
blkio - (internal routine)

blkxfer - (internal routine)

readall - (internal routine)

pdsclose - clean-up and close a pds file
pdsexit - close all pds files and exit

getcol - get a column from a pix

putcol - put a column into a pix

getfmt - read format information from file header
putimt - change or initialize file header
getttl - get pds title from header

putttl - change or initialize file header

itoa - convert integer to ascii

getline - get a line from pix

putline - put a line into pix

pdslpos - (internal routine)

pdsuok - (internal routine)

pdshok - (internal routine)

7th Edition U of M - Ciprnet 53

run/runtime-intro (1) UNIX Programmer's Manual run/runtime-intro(1)

pdsbok - (internal routine)
pdsopen - open pds descriptor file
getpixel - get a pixel

putpixel - put a pixel

pdsppos - (internal use)

viyfmt - verify pds format name

7th Edition U of M - Ciprnet 54

run/mparse (1) UNIX Programmer's Manual run/mparse (1)

NAME
mparse

SYNTAX
mparse(argc,argv,par)

DESCRIPTION :
This routine is passed the argument count (-arge-), the parameter list (-argv-),
and an array of structures (-par-) and returns with the structure elements filled
as specified.

The argument count and argument list are the same as is passed to the main
routine by the system, and the format of the structure is {char *match; char
*val {.
Parsing is done by examining each parameter in order and trying to match its
initial substring to the supplied pattern for each structure not already matched.
When a match occurs a pointer to the next character in the input line after the
initial matched substring is set in the structure.
The array is ended by a zero match pointer. The number of matched arguments
is returned as the value of the function.
The pointers to the matched string are cleared before parsing. Multiple
occurrences of the same match string are allowed and will be filled in order of
occurrence. A pointer to a null character (i.e. " ") will match anything.
This is useful for pulling off up to a fixed number of file names, for instance.
As an example, for the following array:
struct §{ char *m, *val,

Jpar(]t

"if=”, 0'

"Of—_-“. 0-

lef=u' 0|

" IP’ 0'

0, 04;
and a command line of:

a.out if=infile of=outfile xf=23 -q

mparse would return with a pointer to the string "infile" in par[0].val, a pointer
to the string "outfile" in par{1].val, a pointer to the character string "23" in
par[2].val, and a pointer to the string '-q" in par[3].val. Normally par[3].val (for
the given array) would be checked, and if non-zero an error message indicating
an unrecognized parameter printed. Note that this must be done by the calling
program.

7th Edition U of M - Ciprnet

55

run/clspds(1) UNIX Programmer’s Manual run/clspds (1)

NAME
clspds

SYNTAX
clspds(fd,name,access)

DESCRIPTION
This routine is necessary whenever popnpds is used to open a file with WANDSK

access (4). The reason for this is that the contents of any temporary output file
that may be created by popnpds must be copied into the pipe after execution. fd
is the file descriptor of the file that was returned by popnpds, and name is a
pointer to the name which the file was opened with. (Usually name will be an ele-
ment of the array par used by mparse to parse the input line). The name itself
is used only to check for null file names; if the file pointer is 0, or the contents
of name are " " or '\" then the output is assumed to be to a pipe and any tem-
porary files copied to standard output.

7th Edition U of M - Ciprnet 58

run/opnpds (1) UNIX Programmer's Manual run/opnpds (1)

NAME

opnpds

SYNTAX

fd = opnpds(name, header,access)

DESCRIPTION

This routine is internal to the system PDS utility programs and handles the
opening of files that may or may not be in PDS format. The call is:

fd = opnpds(name, header, access)

Where:

fd the file descriptor for this file if >= 0.
the error code if < 0.

name a pointer to the string containing the (optional)file name
and (optional) modifiers

header pointer to the PDS header structure

access read = 0; write = 1, read & write = 2;

A file name of the form "#2" (pound-sign followed by a number) specifies that
that file descriptor is to be used (assumed to already be open).

If the file name is null, then standard input or output is assumed, depending on
the access code. If there are no modifiers the file is assumed to be in PDS for-
mat and (for the read case) the header is read in. In the write case the element
"modified” in the header structure is set to one (zero otherwise). This means
that the header should be written on output only if this flag is non-zero.

If present, modifiers replace or alter the header. In any case, a header with all
the information is generated. Modifiers are of the form:

,<modifier> '
i.e., separated from themselves and the file name by a comma. This means that
a file name may not contain a comma. The modifiers may be any of the follow-
ing, and in the case of conflicts the most recently used take precedence.

read (read access files only) causes the header to be read and
following options to override it. Must occur before any other
options.

raw (write access files only) causes new file NOT to have a
header.

nnn where "nnn" is a number. This sets both the X and Y sizes to
be "nnn".

X=n where 'n’' is a number. Sets the X size to "n".

7th Edition U of M - Ciprnet 57

run/opnpds (1)

t="title"

7th Edition

UNIX Programmer's Manual run/opnpds (1)

sets the Y size to "n".

set format type to "n" (an integer).
set Z size (bits per pixel).

sets number of channels.

sets title as indicated. Defaults to command line. Note that
title may not contain a comma and any funny characters
must be escaped. The title is ended by a comma or a zero
char.

U of M - Ciprnet 58

run/popnpds (1) UNIX Programmer's Manual run/popnpds{1)

NAME
popnpds
SYNTAX
popnpds(name, header, access)

DESCRIPTION
This routine is exactly the same as opnpds except that the access code may
also be a 3 for read and seek, or a 4 for write and seek. If called with access 3 or
4 popnpds will create temporary files if the input (output) is coming from (going
into) a pipe, so that the calling program may seek its input and output even if
the program itself is part of a pipe.

7th Edition U of M - Ciprnet 59

run/blkio (1) UNIX Programmer'’s Manual run/blkio(1)

NAME .
blkio -- common code for get/put - blk/col
(only used internally)

SYNOPSIS
int unit;
short int ix,iy;
short int ixw,iyw;
int rw; /#» 01 or 02 for READ or WRITE
char*buf[BSIZE];

blkio("routine”, unit, rw, ix, iy, ixw, iyw, buf, BSIZE);

run/blkxfer (1) UNIX Programmer's Manual

NAME
blkxfer -- transfer a chunk of data -- internal use only

SYNOPSIS
int fd; /* file descriptor
int rw; /* read/write flag
char *buf; /* buffer address
int cnt; /* number bytes to xfer

blkxfer(fd, rw, buf, cnt);

returns:
0 for operation successful
1 for 1/0 error

7th Edition U of M - Ciprnet

run/blkxfer (1)

61

run/getblk (1) UNIX Programmer's Manual run/getblk (1)

NAME
getblk/putblk -- read/write an arbitrary chunk of a picture

SYNOPSIS
int unit; /* unit number
short int ix, iy; /* upper left corner of chunk to be selected
short int ixw, iyw; /* x and y width of chunk
char buf[BUFSIZE] /* buffer; BSIZE must be >= ixw*iyw

getblk(unit, ix, iy, ixw, iyw, buf, BSIZE);
putblk(unit, ix, iy, ixw, iyw, buf, BSIZE);

returns:
0 on successful operation
1 if buffer header bad
2 if buffer too small or lines out of range
3 if segment exceeds pix size
4 if file positioning error
5if 170 error

7th Edition U of M - Ciprnet

62

run/getcol (1) UNIX Programmer's Manual run/getcol (1)

NAME
getcol/putcol -- get or put a column of a pix.
SYNOPSIS
int unit,; /* pds unit number
short int cnum; /* column number

char *buf[BSIZE];, /* buffer and size

getcol(unit,cnum,buf,BSIZE);
putcol(unit,cnum,buf,BSIZE);

returns:

0 for successful transfer
n>0 for any error (same as getblk/putblk)

7th Edition U of M - Ciprnet 63

run/getfmt (1)

NAME

UNIX Programmer's Manual

getfmt -- read format info from header
putfmt -- initialize or change PDS header

SYNOPSIS
int unit;
short int fmt;
short int ix;
short int iy;
short int iz;
short int nc;

getfmt(unit, fmt, &ix, &iy, &iz, &nc)
putfmt(unit, fmt, ix, iy, iz, nc)

returns:

/* unit number to read
/* format of file

/* number pixels per line
/* number lines per pix
/* number bits per pixel
/* number channels

0) if all values returned ok
1) if unit # invalid or if unit doesn't correspond to an open file
) if illegal argument values passed

7th Edition

Uof M- Ciprnet

/* note pointers used
/* pointers NOT used

run/getfmt (1)

64

run/getline (1) UNIX Programmer's Manual run/getline (1)

NAME
getline /putline -- basic PDS 1/0 routines

SYNOPSIS
int unit; /* unit #
short int lnum; /* number of line to read or write

char buf[BSIZE]; /* buffer and size

getline(unit,lnum,buf, BSIZE); /* read line
putline(unit,lnum,buf,BSIZE); /* write line
returns:

0 if transfer ok;
n, n>0 if error:

1) bad PDS header

2) bad buffer (too small)
3) can't position to line
4) read or write 170 error

note:
The picture dimensions are specified by the pds header (stored internally),
so the BSIZE parameter is redundant. However, it is included to allow addi-
tional error checking, to ensure that the programmer realizes how long the
lines should be.
Small buffers are considered errors, while large ones are only filled as
much as necessary. Only one line is transferred in any case.

7th Edition U of M - Ciprnet 65

run/getttl (1) UNIX Programmer's Manual

NAME
getttl -- get PDS title from header
putttl -- initialize /modify PDS title

SYNOPSIS
int unit; /* unit #
char tit[40]; /* 40 character array for title.

getttl(unit, tit);
putttl(unit, tit);

returns:

0 if successful
1 if header bad

7th Edition U of M - Ciprnet

run/getttl (1)

68

run/itoa (1) UNIX Programmer’s Manual

NAME
itoa -- integer to ascii conversion (internal use)

SYNOPSIS
int num,
char buf[];
itoa(buf,num);

7th Edition U of M - Ciprnet

run/itoa(1)

69

run/pdsbok (1) UNIX Programmer's Manual

NAME
pdsbok -- verify for buffer I/0 --internal use only

SYNOPSIS
int unit; /* unit number
short int lnum; /* requested line number
int bsize; /* target buffer size (max)
char *routine; /* name of calling routine

pdsbok(unit,lnum,bsize,routine)

1) see that line number is legal
) see that buffer is large enough

Unit number must already been checked!!

returns 0 <==> everything ok.

7th Edition U of M -Ciprnet

run/pdsbok (1)

70

run/pdsclose { 1) UNIX Programmer’s Manual run/pdsclose (1)

NAME
pdsclose -- clean-up and close a PDS file

SYNOPSIS
int unit;
int access;
pdsclose(unit,access);

returns:
0 for successful close
n, n>0 for error as below:

1) unit # %Zd out of rang

2) unit # Zd already closed

3) can't write header on unit %d
4) <any other PDS 1/0 errors>

7th Edition U of M - Ciprnet 71

run/pdsexit (1) UNIX Programmer's Manual run/pdsexit(1)

NAME
pdsexit -- close all PDS structures and exit.

SYNOPSIS
pdsexit();

BUGS
pdsexit should not be used if any pds files were opened with access = 4.

7th Edition U of M - Ciprnet (¢

run/pdshok (1) UNIX Programmer's Manual

NAME
pdshok -- check that header is valid -- internal use only

SYNOPSIS
int unit,; /* unit number
char *routine; /* name of calling routine

pdshok(unit, routine);

returns 0 <==> header ok.

7th Edition U of M - Ciprnet

run/pdshok (1)

74

run/pdslpos(1) UNIX Programmer's Manual

NAME
pdslpos -- position file for I/0 of 1 line -- internal use only

SYNOPSIS
pdslpos{unit,line)

BUGS
all header checking must have already been done...

7th Edition U of M - Ciprnet

run/pdslpos (1)

74

run/pdsopen(1) UNIX Programmer's Manual run/pdsopen(1)

NAME
pdsopen -- open PDS descriptor file

SYNOPSIS
int unit,; /* unit # to use

char name(]; /* name of PDS file

int access; /* access mode to open file with
(same as for popnpds)
pdsopen(unit, name, access)

DESCRIPTION
This routine calls popnpds to do the actual file opening for it, so the access is
exactly the same as that for popnpds. pdsopen also checks for correct unit
numbers and allocates space for a new header each time it is called success-
fully.

returns:
0 for successful open
n, n>0 for each of the following errors:

1) open called with bad unit #

2) unit # already opened

3) error returned from popnpds
4) cannot get memory for header

7th Edition U of M - Ciprnet 75.

run/pdsppos (1) UNIX Programmer's Manual

NAME
pdsppos -- pixel position -- internal use only

SYNOPSIS
int unit; /* unit number
short int ix, iy; /* position of pixel (ix, iy) in pix

pdsppos(unit, ix, iy);

returns 0 <=> positioning successful

7th Edition U of M - Clprnet

run/pdsppos(1)

76

run/pdsuok (1) UNIX Programmer's Manual run/pdsuok (1)

NAME

pdsuok -- check unit # is ok - internal use only
SYNOPSIS

int unit; /* unit number

char *routine; /* name of calling routine

pdsuok(unit, routine);

returns 0 <==> unit ok.

7th Edition ‘ U of M - Ciprnet 77

run/viyfmt (1) UNIX Programmer's Manual

NAME
viyfmt -- verify PDS format name (internal use only)

SYNOPSIS
int unit;
char *buf,;
viyfmt(unit,buf);

7th Edition U of M - Ciprnet

run/viyfmt (1)

78

run/window-intro (1) UNIX Programmer's Manual run/window-intro (1)

NAME

Window Library Routines

AUTHORS

L. Dalle Ore and D. A. Kimber

DATE WRITTEN

5/80

SOURCE LANGUAGE

C

HOW TO WRITE A WINDOW PROGRAM

7th Edition U of M - Ciprnet

The first thing that should be included in any window program should be a
#include <window.h> to set up all the necessary definitions for the window pro-
gram and support routines. Then the default window size can be set by:

char *dsizex = "dxn";

char *dsizey = "dyn";
where dxn and dyn are the default size of the x and y coordinates respectively.
Next, the help information should be put in helpstr[]. This ought to include the
syntax for the input command line and a description of what the program does.
If the input data is not in byte form, then the following steps need to be taken:

1) changing "#define pix char" and "#define nbits 8" in window.h to appropriate
values for the new data type.

2) changing the mask of "&0377" to fit the new data wherever the mask occurs in
the above programs.

This should be taken care of by introducing a "#define mask"” in the programs to
facilitate changing data types.

Now the main program, main(argc,argv) can begin. After defining all variables
local to the window program, and before any executable statements, the call to
initw(arge,argv,3,1); needs to be made to parse the input line so that any neces-
sary files may be opened and required buffers allocated. This will also set up the
pointers to any option strings. If OPTN is true, (non-zero) then an option was
specified on the input line, and OPTN will be a pointer to the option string.
Finally, the program itself may be written. When scanning the input in a window
program the scanning should be done from left to right and from top to bottom,
as this will result in the most efficient program. The x dimension should change
faster than the y dimension. There are four main support functions for window
programs; initw - parses the input line and opens files, getw -gets a window cen-
tered where specified, putp -outputs a pixel, and exitw -flushes all buffers and
then exits. A complete listing of all the window support functions is in the appen-
dix, along with complete descriptions of each.

The window library is linked using "-lpw".

run/window-intro (1) UNIX Programmer's Manual run/window-intro (1)

To help clarify some of the rougher points here is an example window program

that computes the local mean of the input window:
#include <window.h> /* window definitions */

char *dsizex = "2"; /* x dimension default size */
char *dsizey = "2"; /*y dimension default size */

char *helpstr[] = §
"mean if=infile of=ofile [xs=xsize] [ys=ysize]", /* command syntax */
"computes the local mean”, /* description of program */
"default window size is 2x2",
NULL {;

main(arge, argv)
int argec;
char **argv;

¢

/* local variables */

PIX cmean;

float mean;

extern struct wndw win;
extern struct nwnd wout;
int ij,iw,jw;

PIX s#»*ibuf;

initw(arge,argv,3,1); /* parse input, open files, allocate buffers */

/* perform the actual computation of the mean »/
for(j = 0; j < win.h.ysize ;j++)}
for (i= 0;i < winh.xsize; i++) {
ibuf = getw(&win,i,j); /* getw gets a window, centered at i,j */
mean = 0;
for (jw=0; jw< win.ys; jw++) {
for (iw=0; iw<win.xs; iw++){
mean = mean + (ibuf(jw][iw] & 0377);
J
J

cmean = mean /(win.xs * win.ys);
putp(&wout,&cmean,i,j); /* putp writes an output pixel */

!

exitw(); /* exitw flushes buffers, closes files, and exits */

7th Edition U of M - Ciprnet

80

run/window-intro (1) UNIX Programmer's Manual run/window-intro (1)

APPENDIX
For single input and single output (e.g. UNIX filter) window programs initw deals
with the opening of files. For multi input and multi output window programs the
user must write their own initialization routine.

Outline of available window support functions:

clearw -clears an area of the buffer

exitw -flushes all buffers still open, then exits

fillbw -fills window for given file structure

flushnw -flushes the output buffer

getw -returns pointer to 2d array containing requested window
getxw -reads a block into buffer from a file

initw -parses input line, opens files and -allocate buffers
opnwin " -open an input window file and allocate buffers
opnwout -open an output window file and allocate buffers
printw -prints a window for debugging purposes

putp -puts a pixel on the output file

putx -put an array on the output file

setbnw -sets up the output buffer

setbw -sets up the proper window

set-edge -sets the picture edges to a specific value

NOTE
Integer arguments used in calling the above library routines must be declared
"short".

7th Edition Uof M - Ciprnet 81

run/clearw (1) UNIX Programmer's Manual run/clearw (1)

NAME
clearw

SYNTAX
clearw(w,x,y,nx,ny)

DESCRIPTION
clearw clears an area of the buffer. The array "clear” is used to skip over lines
that are already clear.
Arguments are:

w address of the window structure

X x position of ulhc of area to be cleared
y y position of ulhc of area to be cleared
nx x dimension of area to be cleared

ny y dimension of area to be cleared

7th Edition U of M - Ciprnet 82

run/exitw (1) UNIX Programmer's Manual run/exitw(1)

NAME
exitw

SYNTAX
exitw()

DESCRIPTION
exitw merely provides a nice exit by flushing all the buffers that are still open
and then exiting.

7th Edition U of M - Ciprnet 83

run/fillbw (1) UNIX Programmer's Manual run/fillbw(1)

NAME
fillbw

SYNTAX
fillbw(w,xc,yc)

DESCRIPTION
fillbw fills up a window fopr the given file structure.
Arguments are:

w address of the window structure

Xc x position of the ulhc of window
yc y position of the ulhc of window

If the window is outside bounds the resulting elements will be cleared.

7th Edition U of M - Ciprnet

84

run/flushnw (1) UNIX Programmer'é Manual run/flushnw (1)

NAME
flushnw

SYNTAX
flushnw(w)

DESCRIPTION
flushnw flushes the output buffer.

Arguments are:
w address of the window structure

Will return a 0 on success, a 1 on error.

7th Edition U of M - Ciprnet 85

run/getw (1) UNIX Programmer's Manual run/getw(1)

NAME
getw
SYNTAX
getw(w,xc,yc)
DESCRIPTION
getw returns a window from the input file. Arguments are:
w address of window structure (nwn)
Xc X position of center pixel
yc y position of center pixel

Will return a pointer to a 2 dimensional array containing the requested window.
Null returned on error.

7th Edition U of M - Ciprnet 86

run/getxw (1) UNIX Programmer's Manual run/getxw(1)

NAME
getxw

SYNTAX
getxw(w,x,y,nx,ny,px.py)

DESCRIPTION
getxw will read a block into a specified position of the buffer from a given posi-
tion in the file. Arguments are:

w address of the window structure
X,y X,y position on the file

nx.ny block size on file

px.py ulhc position in buffer

7th Edition U of M - Ciprnet 87

run/initw (1) UNIX Programmer’s Manual run/initw (1)

NAME
initw

SYNTAX
initw(arge,argv,inaccs,outaccs)

DESCRIPTION
This is the initialization function for filter type window programs, i.e. those win-
dow programs with one input file and one output file.

Argc and argv are the same as those used by the main program. inaces and
outaccs are the access modes for the input and output files - those are used by
popnpds to determine what to do for the case of pipes.
Access:
read = 0, write = 1

read and write = 2
read and seek = 3

7th Edition U of M - Ciprnet 38

run/opnwin (1) UNIX Programmer's Manual run/opnwin{ 1)

NAME
opnwin

SYNTAX
opnwin(inaccs, wsizex, wsizey, name)

DESCRIPTION
This function opens an input window file, allocates the window header and neces-
sary input buffers and pointers. Arguments are:

inaccs access mode for the input file- the same as usedby
popnpds; O=read, 2=read and write, 3=read and seek

wsizex the x dimension of the input window

wsizey the y dimension of the input window

name a pointer to the string containing the inp\it file name

opnwin returns a pointer to the window header for a properly opened window
file. '

7th Edition U of M - Ciprnet 39

run/opnwout (1)

NAME
opnwout

SYNTAX

UNIX Programmer's Manual run/opnwout (1)

opnwout{outaccs, wsizex, wsizey, xs, ys, nchan, name)

DESCRIPTION

This routine opens an output window file and allocates the window header as well
as the necessary input buffers and pointers. It returns a pointer to the window
header for a properly opened window.

Arguments are:
outaccs

wsizex

wsizey
XS

ys
nchan
name

7th Edition

-access mode with which the output file is to be opened,
=write, 2=read/write 4=write and seek

-the x size of the window, this is used to allocate the output
buffer correctly

-the y size of the window

-the x dimension of the output image

-the y dimension of the output image

-the number of channels in the output image

-a pointer to the string containing the name of the output
file

U of M - Ciprnet 90

run/printw(1) UNIX Programmer's Manual run/printw(1)

NAME

printw

SYNTAX

printw(file,buf,wn)

DESCRIPTION

This function prints out a window for debugging purposes. Note: this function will"
work only for character data!
Arguments are:

file pointer to output file
buf pointer to pointers to window rows
wd window in use

To help explain the use of the functions opnwin and opnwout the following pro-
gram is presented. It uses opnwin and opnwout instead of initw. For the calcula-
tion of the mean there is no advantage to using opnwin and opnwout, but for any
programs requiring more than one input or output file they are a necessity. This
program is strictly for use as an example.

#include <window.h>
/* This program calculates the mean of the pixels in the

. window and outputs it to the center pixel position.

» The difference between this program and "mean" is that
* this program does not use initw- instead it utilizes

. opnwin and opnwout to open the input and output window
» buffers and files. '

*/

char *DSIZEX = "2";

char *DSIZEY = "2";

char *helpstr[] = §{
"mean if=infile of=ofile [xs=xsize] [ys=ysize]",
"performs the mean value measurement"”,
NULL §;

/* command line parameters array */
struct prs par[] =¢§

"if=", 0,
"ot=", 0,
"xs=", 0,
"ys=", 0,
"d", Q,
"-", 0,
"help”, 0,
" I" 0'
G, 0,

i

7th Edition U of M - Ciprnet 91

run/printw(1) UNIX Programmer's Manual run/printw (1)

#define IVAL par[0].val
#define OVAL par[1].val
#define WSIZEX par[R].val
#define WSIZEY par[3].val
#define HELP par[8].val
#define ERRFLAG par[7].val

char *DFLAG; /* DFLAG must be specified so the window
functions can use it for debugging if
necessary */

struct nwnd *wout;

struct wndw *win;

main(arge, argv)
int argc;
char ** argv;

¢

char nxspec = FALSE,; /* no x widow size flag */

extern char _sobuf[]; /* used by setbuf to set up stack */
PIX cmean;

float mean;

int ijiw,jw;

PIX »»*ibuf;

PIX #*getw();

setbuf(stdout, _sobuf); /*set up stack for error recovery */

mparse{arge, argv, par); /* parse command line */

/* check for command line options and errors */
if(HELP)§
for(i=0;helpstr[i] = NULL; i++)
fprintf(stdout,”"%s0;helpstr(i]);
exit(1);

J

if(ERRFLAG){
fprintf(stderr,"unrecognized parameter %s0,ERRFLAG);
exit(1);

/* calculate the window dimensions */
if('WSIZEX)
nxspec = TRUE;
if('WSIZEY)
WSIZEX = DSIZEX;
else
WSIZEX = WSIZEY,

if(IWSIZEY)§
if(nxspec)

7th Edition U of M - Ciprnet 92

run/printw(1) UNIX Programmer's Manual run/printw (1)

WSIZEY = DSIZEY;,
else
WSIZEY = WSIZEX;

i

/* set the debug flag to "d" in the command line */
DFLAG = par[4].val;

/* open the input and output window files and headers */

win = opnwin(3,atoi(WSIZEX), atoi(WSIZEY), IVAL):

wout = opnwout(1, atoi(WSIZEX), atoi(WSIZEY),
win->h.xsize, win->h.ysize, 1, OVAL);

/* calculate the mean */
for(j = 0; j < win->h.ysize ;j++){
for (i= 0;i< win->h.xsize ; i++) {
if(!(ibuf = getw(win,i,j)))¢
printf("error in getting window0);
fflush();
exit(1);
J
mean = 0;
for(jw=0; jw<win->ys; jw++){
for (iw=0; iw<win->xs; iw++)}{
mean = mean + (float){ctfmt(ibuf[jw][iw])):
}

J
cmean = iw = mean / (win->xs * win->ys);
putp(wout,&cmean,i,j);

!
/»* flush any data left in the output buffer to the output file */

flushnw(wout);

When using opnwin and opnwout the programmer must do several things that
weren't required of him with initw. The first of these is the specification of the
parameter array to be used by mparse. The flag DFLAG must also be defined for
use by the library routines for debugging purposes. If it is a null pointer, the no
debug messages will be printed. Note that in the above program DFLAG is set to
par[4].val, the array element corresponding to the string "d". Thus, if d is typed
on the command line, the debug option will be selected. The user must also now
check for the help option and unrecognized parameter errors after return from
mparse. The programmer must also set up the default x and y window dimen-
sions for opnwin and opnwout.

One thing to be extra careful about is the fact that win and wout are now
pointers to window headers, NOT the names of the headers. This means that
items in the headers must be accessed via the win->xxx operator instead of the
win.xxx operator. (The compiler will not always catch it if these are switched).

7th Edition U of M - Ciprnet 93

run/printw (1) UNIX Programmer's Manual run/printw(1)

Finally, the use of flushnw for each output window assures that there is no data
left in the buffers that hasn't been written to the corresponding output file.

7th Edition U of M - Ciprnet 94

run/putp (1) UNIX Programmer's Manual run/putp (1)

NAME
putp

SYNTAX
putp(w,fp,xpos,ypos)

DESCRIPTION
This function puts a pixel on the output file.
Arguments are:

\ address of the window structure (nwn)
fp pix pointer to pixel

Xpos X position of pixel

ypos y position of pixel

Will return 0 on success, a 1 on error.

7th Edition U of M - Ciprnet 95

run/putx (1) UNIX Programmer's Manual _ run/putx (1)

NAME
putx
SYNTAX
putx(w,x,y,nx,ny,buf)
DESCRIPTION
This routine was taken from trans.c and modified to write an arbitrary array on
the output file.
Arguments are:
w address of the window structure
X x position of ulhc
y y position of ulhc
nx,ny number of lines to be written out
buf buffer

7th Edition U of M - Ciprnet 96

run/set-edge (1) UNIX Programmer's Manual ' run/set-edge (1)

NAME
set-edge

SYNTAX
set-edge(value)

DESCRIPTION
Set-edge will set all of the edges of picture to the value specified in (what else?)
"value'. This only works on byte pictures.

Arguments are:
value data value (int)

‘7th Edition U of M - Ciprnet 97

run/setbnw(1) UNIX Programmer's Manual

NAME
setbnw

SYNTAX
setbnw(w,name,accs,wxs,wys)

DESCRIPTION
This function sets up the output buffer.
Arguments are:

\ address of the window structure
name string containing file name for window
accs mode of access (read or write)

WXS X size of window

Wwys y size of window

7th Edition U of M - Ciprnet

run/setbnw (1)

98

run/setbw (1) UNIX Programmer's Manual

NAME
setbw

SYNTAX
setbw(w,name,accs, wxs, wys)

DESCRIPTION
This function sets up a proper window.
Arguments are:

w address of the window structure
name string containing file name for window
accs mode of access (rd, read or wr, write)
WXS X size of window

wys y size of window

7th Edition U of M - Ciprnet

run/setbw (1)

99

\IHIHlli\HIIIHIIIHHHIMIHIIIUHIHNHIHIIIHINHHI

3 9015 02654 0305

