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Abstract

Estimating the motion parameters of moving objects in temporal sequences
of images is an important problem in time-varying imagery. Because of its com-
putational simplicity, the method of linear least squares is attractive for the
case of two-dimensional motion with scale change i.e. rigid objects moving in a
plane parallel to the image plane plus zooming. The use of least squares for
parameter estimation is not limited to a spatial gradient based motion detector.
Two other pixel based motion detectors are shown to be equivalent to the spatial
gradient based detector for this application. Since such motion involves four
parameters, the least squares method entails inversion of a 4 x 4 matrix. We
show that the scale change parameter may be decoupled from the others thus
decomposing the problem into a one-dimensional and a three-dimensional esti-
mation problem. Both computation speed and accuracy are enhanced by this
decomposition.



1. Introduction

The method of linear least squares has been applied to the problem of
estimating motion parameters for the case of two-dimensional motion plus scale
change [3],[12],[14].[15]. The object(s) to be tracked may translate and rotate
in a plane parallel to the image plane and translate along an axis perpendicular
to the image plane (scale change or zooming). The latter three of the above

references discuss the use of a spatial-gradient based motion detector to obtain
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local velocity information. We show that two other motion detectors, the

operator of Marr and Ullman [10], and difference pictures, are mathematically
similar to spatial-gradient detectors with respect to the information they fur-
nish regarding the local velocity field. The least squares method of estimating
the four motion parameters proceeds in identical fashion regardless of the

specific motion detector used.

We furthermore show that the scale change parameter may be decoupled
from the other three parameters. Thus the four dimensional linear least
squares problem‘ may be decomposed into the one dimensional problem of
estimating the scale change and the three dimensional problem of finding the
parameters of transvlation and rotation in the plaﬁe. This result has important

implications regarding the speed and accuracy of the calculations.

II. Linear Least Squares Motion Estimation

In this section we develop the equations of motion. It will be seen that they
are linear in the motion parameters, thus facilitating the use of the method of
least squares. The reader is referred to [16] for an alternative, but equivalent,

development based on the affine transform or to [8] for another approach.
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When a rigid object is constrained to move in a plane, the velocity at any
point of the object may be decomposed into a translational component, V;, and

an angular component, &, such that:

NE) = % + ox7 (1)
where 17, = (V,z.ng,O). @ is the axis of rotation (perpendicular to the image
plane), 7 is a vector from the intersection of this axis with the image plane to
the point z = (x,y), and "x" denotes a vector cross product [1]. Without loss of

generality, we may take the axis of rotation to pass through the origin, so that 7

is now identically the positional vector z.

Zooming, or change of scale, is a result of translation along the coordinate
axis perpendicular to the image plane. Depending on sign, such motion contri-
butes a radial velocity component at each point of the object that is propor-
tional t6 both the scale change coefficient, «, and the distance of the point from
the origin, |Z| This radial component is directed toward the origin for motion

away from the camera and vice versa:

V, = of (2)

Here, positive a indicates a positive scale change or motion toward the camera.

Thus, the net velocity at a point in the image plane is given by:

WZ) = Vi + &x2 + az (3)
Three types of motion detectors are common in the literature, one based

on the spatial gradient, another based on the diit-VzG operator, and the third on

difference pictures, do not completely specify the velocity field 17(5) at every

point, z, in the image. Rather, they yield only scalar quantities, We show that
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for all three, the detector output is actually the inner product of the velocity
field with some other vector field. The magnitude and direction of this other
field may be estimated, however, enabling the motion parameters to be

estimated using the method of linear least squares.

The first of the motion detectors considered here is based on the spatial
gradient. When the interframe change in pixel intensity at a point Z is expanded
in a Taylor series involving the spatial derivatives of the image intensity function
f (), and only the first term of the series is retained, the resulting approxima-

L.on may be stated in vector notation as [2].[8],[11]:

IF>

Af(Z) = -V(z) - Vf(Z) (4)
where V(Z) is the local velocity at £, f (%) is the image intensity function, Vf ()
is the spatial gradient of the intensity function, and Af (Z) is the change in the

intensity between frames. Dividing Equation (4) by the magnitude of the gra-

dient we have:

-

voa o= Af()
Ven = VI (5)

where 7 is a unit vector in the direction of the gradient. The direction as well as
the magnitude of the gradient may be estimated by a gradient operator such as
the Sobel Operator, and since Af is easily found by subtraction, Equation (5)
may be used to infer the component of the local velocity vector in the direction
1, whose direction cosines are known. Note that Equation (5) does not com-

pletely specify the magnitude and direction of V at the point z [17].

The %VZG motion detector of Marr and Ullman [10] is based on the V?G

static edge detector of Marr and Hildreth [9]. When an image is convolved with

the V®G operator mask, the contours of zero-crossings of the resulting image
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correspond to edges in the original image. Because of the monotonic nature of

the convolution output at the zero-crossing, the sign of the time derivative,

(—% (VRG#*f), (where * denotes convolution) unambiguously specifies the direction

of motion, i.e. whether the contour is moving to its "right" or "left". The time
derivative may be approximated by subtracting a pair of convolved images of a

temporal sequence.

The magnitude of the time derivative along with knowledge of the slope of
the convolved image at the zero-crossing can be used to infer, to a first order
approximation, the component of velocity normal to the zero-crossing contour

much like the case of the spatial gradient technique:

d
—(VRG »
RPN AL (®)

m

where gt—(VQG * f) is estimated as indicated above and m is the slope of the

convolved image perpendicular to the zero-crossing contour. As in the case of
the spatial derivative case [17], the complete velocity field cannot be specified
by this method, a situation referred to by Marr and Ullman as the aperture

effect [10].

Difference pictures may also be used as a motion detector. When two
frames of a temporal sequence are subtracted, pixel by pixel, and the resultant
difference image is thresholded, non-zero difference regions are generated at
the boundaries of moving, high contrast objects [7]. The "width" of such regions
is related to the velocity component normal to the high contrast boundary. That
is, where the local velocity vector is perpendicular to a high contrast edge, the
resulting difference region is of greatest width. If the velocity vector is tangent

to the edge, no difference region appears ( i.e. it is of zero width). Thus, the
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difference region width is proportional to 17(5:' ) - where 7 is a unit vector nor-
mal to the edge at Z. As with the other two motion detectors, difference pic-
tures provide information about the component of velocity in some direction
(the normal to the boundary) and we can estimate that direction from the orien-

tation of surrounding elements of the boundary [3].

From the above, it is evident that all three motion detectors yield the same
information concerning the velocity field, namely the inner product of the velo-
city with some unit vector whose direction is known. Letting 7 denote this unit

vector, the component of velocity along 7 is, using Equation (3):

- -
>

V-m = V,n + OXZ -1 + aZ ‘71 (7)

Expanding this equation, we see that:

d = (ngV, +my V) + (nyz —mpy)o + (nez + nyy)a (8)

Here, d ='I7 -n is the detector output, n = (nz,ny,0) the direction of the local

vector quantity obtained from the motion detector, & = (0,0,0), IZ = (V,z.ng.O),

and z = (x,y.0). When the motion detector is based on the gradient,
2 2

_ Lo -1 _larl L lar ] 4 2

N, 7] oz and n, V71 3y where |Vf| rrd oy | for the dtVG

operator, 7 is a unit vector normal to the zero-crossing contour; and for the

difference pictures, 7 is normal to the difference region boundary.
We observe that Equation (8) is linear in the four unknowns [V, ng. ©, a]

and may be readily solved knowing the detector output for four or more image
points. Let ¥ be a column vector of the parameters we wish to estimate: ¥ =

(%, %, @ «]T. For four or more image points, z; = (z;%;); i=1,2,...,n, with

corresponding motion detector outputs, d;, and unit vector direction cosines,
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ng, and ny,, we form the set of equations:

d =47 (9)
where d = [d, dy...d,]7 and the rows of 4 are (from Equation (8)): 4 = [n,‘

ny, (NyZi—nzy:) (nzzi+nyy:)]. The linear least squares estimate of the

parameter vector ¥ is then given by:

g = (ATA) 4T d (10)

Computationally, more accurate numerical answers can be achieved using the
Moore-Penrose generalized inverse of A rather than Equation (10). This
approach is furthermore necessary when ATA is singular [13]. As discussed in
[18], the actual motion parameters of the object itself may only be determined

to within a common scale factor except for the rotation parameter.

It may be noted in passing that although the three detectors discussed here
are equivalent from the standpeint of finding local velocity components, they
are not equal with regard to computational complexity and accuracy. The first
two are accurate only where the interframe displacements of moving objects are
small because of the first order approximation to the' Taylor series. Exactly the
opposite is true of difference pictures which can tolerate large displacements,
but small movements suffer from spatial quantizing error. Spatial gradient
based motion detectors have serious drawbacks where multiple moving objects
are present [4]. The other two,'however, can be used to partially segment the
image before parameter estimation is attempted, greatly facilitating the task of

tracking multiple objects. See [3] for a discussion of these ideas.
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III. Decoupling the Scale Change Parameter

In this section we show that, given the motion parameter estimation prob-
lem of Section II, it is possible to solve for the scale change parameter, a,
independently of the other three parameters which may be found using linear

least square estimation.

Using the Divergence Theorem (or Gauss' Theorem), we have:

[[[aV-Fdr = [[sFAda (11)

where 17" is a vector field and the surface integral is performed over the surface
S defining the volume R. Equation (11) is true as long as F and its partial
derivatives are continuous in # and on S and if S is piecewise smooth [5]. If the
vector field ./7‘ has no components in the direction of the z axis, we have a similar

result in one less dimension:

[[4V-Fdzdy = [oFnAdi (12)
where C is the closed boundary of region A.

The velocity field, f’, of the image plane satisfies the requirements for Equa-

tion (12) to hold. To see this, we have from Equation (3):
V=V +dxE + af
= (%z—my+ax)f+ (Vtv«i-wx+ay)f + 0k (13)

AP T . . > .
Since ng. V,v. », and a are constants, V(z) is continuous at every point z in the

image plane. Furthermore, the first partial derivatives of v are:

$

vV _ ~ ~
- Attt el



= —w1l + aj (14)

All higher order partials are zero. Finally, V clearly has no z-axis component.

Now, since VR s precisely the motion detector output, it follows that a
detector’s output integrated about a closed contour equals the divergence of %

integrated over the interior of that contour. Taking the divergence of Equation

(13):

+
¢
+

-

~ 0 -~
V-V = 1.2 + 7.
b oz J

~

+ k-

IQ)

9V
dz

[o%}
<

= 2« (15)

Substituting Equation (15) into (12) we obtain the result:

[eVndl = 2a ff,dzdy

= 2a(4rea) (18)

The scale change parameter may therefore be estimated by integrating the
motion detector's output around a closed contour and dividing by twice the

enclosed area. For discrete images, this integration is replaced by a summation

over all points of the boundary. Where the %VZG operator motion detector is

used, such integration paths arise naturally since the VG static operator gen-
erally gives rise to closed zero-crossing contours. Spatial gradient based motion
detectors may be used in a two-step process to identify an object’s boundary (a

closed contour) and then to evaluate V-7 around that boundary.

Difference picture based motion detection is particularly well suited to a
rapid estimation of a using Equation (16). As noted in the previous Section, the
"width" of a difference region is equal to the component of velocity normal to

the boundary. Figure la illustrates that fl}-ﬁdl along a straight boundary
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segment is therefore exactly equal to the area of the difference region. This is
not quite true for curved boundaries as shown in Figure 1b. For this section of
boundary of constant curvature (radius of curvature = R) subtending a central
angle of ¢, we make a change of variables to polar coordinates: dl = rd¥ and

evaluate:

= ¢ R« (17)
But the area of the difference region is:
2
b = o= (MaR+R)P-TR?) = g R* (a+ %) (18)

Comparing Equations (17) and (18), the difference region area is a good approxi-
mation of the line integral when a is small, even for curved boundaries. Thus, a
may be estimated by merely summing the areas of the difference regions (with
opposite signs for newly covered and uncovered regions), and dividing by twice
the area enclosed by the boundary. Furthermore, it will be noted that summing
the difference regions in the above mannér is the same as finding the change in
area, AA, of the object area, A. Thus:
Y (areas of dif ference regions) _

AA
= - 4 19
@ 24 24 (19)

a result which could be used with other motion detectors as well.

Once a is estimated, we can remove its contribution to the motion detector

output (using Equation (8)):

d - (nzz +nyy)a = (nthz +nthy) + (nyx -nyy)w (20)
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for three or more points and solve for [V,g.V,’v.w] in usual fashion with three

dimensional linear least squares.

IV. An Example

The use of this technique for estimating the motion parameters of moving
objects in real scenes is illustrated in Figure 2. In this example, the motion
detector used is the difference picture detector described in [3]. A’I‘he principal
difference between that example and this one is the way in which the scale
change parameter is estimated. In this case, the parameter is estimated using
Equation (119) instead of the four-dimensional linear least squares method. The

newer method results in significantly faster execution.

Figures 2a and 2b are taken from a sequence of images in which the two
prominent foreground objects are translating, rotating, and moving toward the
camera. These movements are synthetically produced so that the precise
motion parameters are known. At the image plane, the motion from frame 2a to
2b corresponds to a 5.0 pixel translation to the right, 3.0 pixel translation down,
a counterclockwise rotation of 0.05 radians. -and a scale change of +0.07. Figure
R2c is the difference image produced from the two sequence frames. The motion
parameters are then estimated from this difference image using Equations (19)
and (20), and the resulting parameter estimates are 4,54 pixels to the right, 2.45

pixels down, rotation of 0.052 radians (ccw), and scale change of +0.071.

The accuracy of these estimates is illustrated in Figure 2d. The first frame
of the sequence is synthetically moved according to the estimated parameters
and the resulting predicted second frame is subtracted from the actual second
frame (Figure 2d). This difference picture indicates the discrepancy between
the actual velocity field at every point and the velocity field predicted from the

estimated parameters. Since the. difference regions of Figure 2d are at the
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most one pixel in width, we see that the velocity field is being estimated very

accurately at every point of the i mage.

V. Conclusions

Three pixel-based motion de tectors have been shown to be equivalent to the
problem of least squares estima tion of motion parameters for the case of two-

dimensional motion with scale (change. They are: the spatial gradient based

detector, the 'c-i[it V?G operator, ¢ind difference pictures. Furthermore, the four

parameter estimation problem :can be decomposed into two parts. The scale
change parameter may be rapid ly estimated independently of the rotation and
translation parameters by inte;zrating the motion detector output around a
closed path (e.g'. the target objiect’'s boundary). In the case of the difference
picture motion detector, this niay be approximated by merely summing the
areas of the difference regions. Having estimated the scale change parameter
in this way, the other three parameters are then estimated by a three-

dimensional linear least squares projection.
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Figure la: [ V- dl along a straight
boundary.

Figure 1b: f¢ Vn dl along a curve
of constant radius.



Figure 2:(a) Upper Left: First frame of the seqence. (b) Upper
Right: Second frame of the sequence. (¢) Lower Left: Difference
image between above two frames. (d) Lower Right: Difference
image between actual motion and estimated motion.
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