RSD-TR-1-84

THE USE OF THE DEANZA 1IP6400 IMAGE PROCESSOR
FOR LOCAL WINDOW OPERATIONS

Edward J. Del
Nirwan Ansari

Department of Electrical and Computer Engineering
The University of Michigan

Ann Arbor, Michigan 48109-1109

January 1984

CENTER FOR ROBOTICS AND INTEGRATED MANUFACTUR

Robot Systems Division
COLLEGE OF ENGINEERING
THE UNIVERSITY OF MICHIGAN

ANN ARBOR, MICHIGAN 48109-1109

N ‘aq,"\

—————e

U RO T

RSD-TR-1-84

ABSTRACT

This report discusses the use of the DeAnza IP6400° image processor for high speed local window
operations. A system overview of the image processor and its important features are first intro-

duced. Algorithms for linear and non-linear window operators are then presented.

*IP6400 is an image processing system manufactured by Gould Inc., DeAnsa Imaging and Graphics Division.

DeAnza IP6400 Image Processor 1

2.1

2.2.

3.1.

3.2.

33.

3.4.

The DeAnza. IP6400

TABLE OF CONTENTS

--

Digital Video Processor (DVP)cocoeuiriimunsnnienesenisnsisssnnennsesesassessnssnenne

3X 3 Window OPerationccceveererericnsersnnsnessassaniosssssssssnosesssassasesearsesssans

nXm local window Operationcc.ccecccirinesiuirinennnninneinninneiennsieassesennane

3X 3 Median Filter

n X m median filter

12

13

19

RSD-TR-1-84

1. Introduction

Most image processing operations take a large amount of memory space and cpu time. Gen-
eral purpose computers are not usually equipped with features necessary for high speed image pro-
cessing operations. Nowadays, high speed image processing is desirable in many industrial and
medical applications. The DeAnza IP6400 is used for its special features that make real time pro-
cessing feasible. This report will first introduce an overview of the IP6400, and its most important
option, the digital video processor (DVP), which provides facilities for various processing opera-
tions. Algorithms using the IP6400 to perform general 3X 3 local window operations, nXm local

window operations, 3 X3 median filtering, and n X m median filtering are then presented.

2. System Overview

2.1. The DeAnza IP6400

The IP6400 Series Image Array Processor contains many features which make it a power-
ful imaging system. It can be used solely as a display system which provides high resolution
color, pseudo color, and multiple monochrome image display. Coupled with other options, real
time image processing can be achieved using the [P6400. Among the options acquired in our
system are a video signal digitizer and control, alphanumeric overlay generator, graphic overlay
channel, trackball cursor generator and control, joystick cursor generator and control, external
synchronous source input, video output controller, and, most of all, the digital video processor
arithmetic unit which makes window operations feasible. Our system also contains four 512x512

8-bit memory planes and four video cards with 8 bit DAC’s. It is interfaced with a VAX 11/780

host computer running UNIX** (4.1bsd). Figure 1 shows an overview of the IP6400 system.

**UNIX is a Trademark of Bell Laboratories.

DeAnza IP6400 Image Processor 2

acwm=~2zZc

RSD-TR-1-84

Figure 1. Overview of the DeAnza IP6400°***
2.2. Digital Video Processor (DVP)

The importance of the DVP is due to its ability to handle operations on a large amount of

image data in one video frame time(33 ms). The data paths of the DVP are shown in Figure 2.

The DVP has two arithmetic/logic units (ALU) which allows the conditional outputs from
the test ALU to determine swapping of the two operation codes of the operational ALU. In

other words, the results of a test on an individual pixel can be used to determine the operation

***The block diagram is taken from the IP6400 Programmer’s Manualll].

3 DeAnza [P6400 Image Processor

SYNC ——>
ALPHANUMERIC ——>————
—-*_—.
-——+—..
<
Y
!
IMAGE IMAGE
REFRESH (>T—>— ITT T3 ARRAY P T food>T>|MUX|—>— VIDEO
MEMORY PROCESSOR
| v AY AY A
i
L4 ' Ul L pve Bypass [voc | |
BYPASS BYPASS

RSD-TR-1-84

ke — _
f —1 Input
277 A Al > A2
oP MS
— 7T A Byte
AUX L - of -
U g Shifter [T
Array
A P _
! —| Input B1 p >»— B2 >+
2 - B P
'3.‘ _‘ [
Ak
B 4 ~
1stant K1 -
Y Write
ch g _ Enable
L — Input
3 Ft
LS
z"o A
Analog LsB Test ff’ v
Camera A > C2 > Shifter
L Array
U
L g _
! -] Input
> D D1 >
3
§ Write
' Enable Write
tant K2 - Enable

_9‘ Bit
Plane

Mask

tg

cho

Bit

Plane
Mask

on that pixel through the operational ALU.

Figure 2. Data Path of the DVP****

chi

n 2N

Bit
Plane
Mask
ch2

"'J Bit |

Plane

chs

v—)(

N
W

Inputs to the ALU’s are determined by the Input Data Paths Registers (INPDP) by means

of multiplexors and selectors. It can select data from any of the four image refresh memory

#¢**The block diagram is taken from the [P6§400 Programmer’s Manuallll.

DeAnza IP6400 Image Processor

RSD-TR-1-84

channels directly or through the Intensity Transformation Tables (ITT) under control of the
Memory Port Control register (MEMPC). The INPDP also allows data acquisition from the
camera A/D, and constant values from constant register or auxiliary input. Users can also

make use of it to achieve compound operations such as 16-bit arithmetic operations.

Under the control of the Output Data Paths and Shift Control register (ODPSH) , output
data from the ALU’s can be shifted or rotated as either two independent 8-bit data values or a
combined 16-bit data value to each image memory channel including the graphic overlay. The
Bit Plane Mask register (BPM) controls the output writing to any single bit or combination of

bits of each image memory channel.

The Destination registers (DEST) may be used to scroll data output from the DVP to the
target memories in multiples of 16 pixels. This is convenient for arithmetic operations on two
memory channels. For arbitrary offsets, rather than restricted by multiples of 16 pixels, there
are scroll registers associated with each memory to scroll, zoom, and selectively inhibit data
from the source memories. Thus, arithmetic operations can readily be done by appropriate

manipulation of these registers.

The rest of the paper will discuss the philosophy of using the IP6400 to perform local win-
dow operations including median filtering. The mnemonics, virtual addresses and function of

the DVP registers and other registers which are used for window operations are found in Appen-

dix Altl,

3. Local Window Operations

st image operation is the local window operation. These operations take a
great deal of time if done on a general purpose computer because the operations are usually
performed pixel by pixel. Using the IP6400 image processor one can speed up the operation

tremendously. It takes only one video frame time (33 msec) for one DVP operation on the

5 DeAnza [P6400 Image Processor

RSD-TR-1-84

whole image (512x512). A DVP operation is a simple arithmetic or logic operation on an image
through the DVP. A series of programs have been written to perform operations using the
DVP. These programs mainly set up correct communication between the host computer and
the IP6400 by loading and synchronizing the registers and operations of the [P6400. Manual

entries for the various programs can be found in Appendix B to G.

3.1. 3X3 Window Operation

A 3X3 local linear window operation on an image can be thought of as a convolution of a

3% 3 window with the image. Consider the following weighted window:

W w us
Wy w5 U

w oug

As the window moves across the image, the pixel value in the center of the window at that
instant is replaced by the sum of the products of the window coefficients and the corresponding
pixel values of the image. In a global sense, the operation can be perceived as the result of the
sum of nine image planes, in which each plane is the scrolled image multiplied by one of the
window coefficients, i.e. wy X (original image scrolled one pixel left and up) + wyX (original
image scrolled one pixel up) + w3 X (original image scrolled one pixel right and up) + wyX
(original image scrolled one pixel left) + wsX (original image) + wgX (original image scrolled
one pixel right) + wy X (original image scrolled one pixel left and down) + wgX (original image
scrolled one pixel down) + wy X (original image scrolled one pixel right and down). The versa-
tility of the DVP comes into play for such operation. Each multiplication 6f one coefficient
with the whole scrolled image takes only one video frame time (one DVP operation). The
overall operation would take only nine video frame times if no modification is needed after the
nine mentioned operations are completed. However, since image gray levels range from 0 to
255, there is always a chance of overflow and underflow if there are both positive and negative

window coefficients. It takes another two DVP operations to take care. of underflows and

DeAnza [P6400 Image Processor 6

RSD-TR-1-84

overflows. This timing calculation does not include interface timing between the IP6400 and the
host computer, which is usually small. To be exact timing for communication between the
IP6400 and the host computer should also be considered. This timing depends on the speed of
the host computer and the number of tasks being performed by the host computer. Another
aspect that should be considered in using the DVP is that the two ALU’s are unsigned 8-bit
ALU’s which are not capable of performing multiplication or division directly. In order to get
around this, the Intensity Transformation Table (ITT) associated with each memory plane must
be employed as a look-up table multiplication. Algorithms that require logarithmic or linear
tables can also be implemented. The logarithmic table has the advantage of taking care of both
positive and negative values, but it loses one bit of accuracy because both »positive and negative
values are represented by 8-bit data. The linear table is likely overloaded if the window coeffi-
cient is large. Hence, a scaling factor is necessary to avoid overloading the Intensity Transfor-
mation Table. The linear table is preferred in this operation since it can be implemented easier
without the complication of the sign. To multiply a memory plane with a coefficient, the ITT
associated with that plane is loaded with 256 bytes of data corresponding to values of the pro-
ducts of the absolute value of the coefficient and gray levels ranging from 0 to 255. The ITT is
then used for indexing the pixel intensity. For the 3X3 window operation, the result can be
accumulated in one memory plane by summing each of the nine scrolled images (scrolled
according to each window position) through its associated ITT which was loaded with indices
(products of the absolute value of the coefficient and the gray levels from 0 to 255) correspond-
ing to gray levels from 0 to 255. If a coefficient is negative, the ALU performs subtraction.
Synchronization is very crucial for programs that involve DVP operations. Any necessary cal-
culations for the next DVP operation should be done in the host computer as soon as the
APGO bit (initiating the DVP operation) of the Control and Status register (CSR, see Appen-
dix A) has been set. Only when the APR bit (ready bit) of the Control and Status register
becomes set (indicating the completion of a DVP operation), should the required IP6400 regis-
ters be loaded for next DVP operation. In this way, no registers are loaded during the DVP

operation. Synchronization is thus ensured.

7 DeAnza [P6400 Image Processor

RSD-TR-1-84

The 3X3 window operation software is written in the C programming language using a
VAX11/780 host computer running UNIX. Three memory planes of the IP6400 are used for the
operations. The original image to be processed is assumed to be in memory plane 0, and the
result is placed in memory plane 1. Memory plane 2 is used to hold the information of over-
flows and underflows. Both memory plane 1 and 2 should be cleared before the operation. The

algorithm consists of the following steps:
(1) read in nine window coefficients.
(2) do step 3 to step 5 for each window coefficient (i.e., 9 times).

(3) load ittd with indices corresponding to products of the scaled coefficient (each coefficient

is divided by the scaling factor) and image gray levels ranging from 0 to 255.

(4) set memory 2 as the input to the Operational ALU, and memories 1 and 0 as inputs to
the test ALU. Note that data from memory O is scrolled accordingly before the input to

the test ALU is set.

(5) if a coefficient is negative, perform subtraction in the test ALU (memory 1 - memory 0),
and place the result in memory 1 (accumulating the result in memory 1). At the same
time, decrement the input of the operational ALU (decrement memory 2 which stores
underflows and overflows information), and place the result in memory 2. Otherwise, per-
form addition in the test ALU and increment the input of the operational ALU. Succes-
sive results are therefore accumulated in memory 1, while the information about overflows

and underflows is accumulated in memory 2.

The result in memory 1 would be correct if there are no underflows or overflows and the scaling
factor mentioned before is 1. If the indication that a pixel in memory 2 is an underflow, the
corresponding pixel in memory 1 (accumulated result) is actually a negative number. But the
ALU’s of the DVP are unsigned and image gray level values cannot be negative. It is logical, to
set to zero or take the absolute value of those pixels which are underflows. If a pixel is found to
be an overflowed value, that pixel is set to 255. >From 2's complement arithmetic, an under-

flow occurs when a borrow is needed and an overflow when there is a carry bit. Pixels of

DeAnza IP6400 Image Processor 8

RSD-TR-1-84

memory 2 which holds the overflow and underflow information should have a value of zero if
there is no overflows or underflows. They should have values close to ff (hex) if there is under-
flows and values from 1 to 8 if there is overflows. >From this information overflows and
underflows can be corrected using the swapping ability of the DVP’s ALU’s. The following steps

are used for correcting the underflows and overflows:

(6) do step 7 to step 8 twice.

(7) place memory 1 as input to the operational ALU, and memory 2 as input to the test ALU.
(8) perform addition (memory 2 + constant) in the test ALU.

(a) zero underflows: let the constant be 80 (hex), if there is carry bit from the test ALU,
set output of the operational ALU to zero (80 hex plus an underflow indicator of
value close to ff hex would produce a carry bit), or otherwise, pass input of the
operational ALU as the output (pixels not underflowed are passed unchanged). Place
output of the test ALU back into memory 2 which now holds the sum of previous
values and the constant. Place output of the operational ALU in memory 1 which

now holds the result of having corrected underflows.

set overflows: let the constant be 7f(hex), if there is a carry bit from the test ALU,
set output of the operational ALU to ff(hex) (7f hex plus the sum of an overflow
indicator with value from 1 to 8 and 80 hex (previously done) would produce a
carry), or otherwise, pass the input of the operational ALU as the output. Place out-
put of the test ALU back in memory 2, and output of the operational ALU in
memory 1 which now holds the correct result with both underflows and overflows

taken care of.

If complementing underflows (taking absolute values) is desired, step (8b) should be taken

instead of (8a):

(b) underflows: let the constant be O1(hex), perform complementation of the input of
the operational ALU if there is a carry bit from the test ALU (this will complement

those underflows with actual values between -1 and -255, because the underflow

9 DeAnza IP6400 Image Processor

RSD-TR-1-84

indicator would have value ff(hex), excessive underflows and overflows (more than
once) are taken care of at the same time in the next step). Place output from the
test ALU in memory 2, and the output from the operational ALU in memory 1

(which now holds the result with the underflows corrected).

overflows: excessive underflows and overflows can be corrected like step (8a), except
that the constant becomes fe(hex). .Set output of the operational ALU to 255 if there
is a carry bit from the test ALU, or otherwise pass the input unchanged (summing
fe(hex), O1(hex) (previous operation) and the overflow indicator would not produce
carry bit if and only if the indicator is zero, in other words, there is neither over-

flows nor underflows). Place output from the operational ALU in memory 1.

Finally, the result in memory 1 should be scaled (multiplied) by the scaling factor. As
mentioned earlier, the scaling factor is used to avoid overloading the ITT. Since partial results
are accumulating in memory 1, severe truncation inaccuracy will result if the ITT is overloaded
when it is loaded as a multiplication table. This truncation error would be accumulated and
thus is undesirable. As a rule of thumb, the scaling factor which is determined by the user is

usually chosen as the absolute value of the largest window coefficient provided that the

(lﬂ',O)‘*r--__-- —--= - == —(1fe,0) ————— one pixel left and up
(0,11f) —. —e-(11,111) —~ --unscrolled
(l,lfe).\-ﬂ_ e — g —-'(O,He) - one pixel right and down

| |
[})
| o]
| |
| l
) |
l I
00 L _ (110)
W) <& ’
e e e I

cmn

Figure 3. Scroll Position Diagram

DeAnza [P6400 Image Processor 10

RSD-TR-1-84

magnitude of the chosen coefficient is greater than one. It would be one if magnitudes of all the
window coefficients are less than one. Since the result is scaled by the scaling factor, the win-

dow coefficients are never affected by this scaling factor. The final step is:

(9) scale the result in memory 1 by the same scaling factor through the ITT of memory 1.

Place the result back into memory 1. The final result is then found in memory 1.

The video pixels are organized as a 512x512 array. Columns are numbered in the x-
direction (from left to right) from 0 to 511. Rows are numbered in y-direction (from bottom to
top) from O to 511. Pixel location (0, 511) is then the upper left hand corner of the video
display. The 3X3 window operation requires 9 different scrolling positions for the convolution.
For example, the scrolling positions for wl (one pixel left and up) is scrx=1ff(hex) and
scry=0(hex) where scrx and scry are the scroll registers corresponding to x and y directions(see
Figure 3). For 3X3 window operations the scrolling positions corresponding to the window

positions w1l to w9 would be as follows:

window positions | scrx (hex) | scry (hex)

wy 1 0

wy 0 0

Wy 1 0

v, 1t 1t
We 0 1ff
Wy 1 1t
wy 1t 1fe
wy 1fe
Wy 1 1fe

The overall 3X3 window operation takes n+3 DVP operations, where n is the number of
non-zero window coefficients. There exists some inaccuracy using the IP6400 due to the round-
off errors caused by the Intensity Transformation Table and the fact that the ALU’s of the
DVP are only 8bit ALU’s. There is however a tremendous gain in speed. There is little visible
difference between most linear window operations done on the IP6400 and window operations

done on a general purpose computer.

11 DeAnza IP6400 Image Processor

RSD-TR-1-84

3.2. nXm local window operation

The philosophy of using the IP6400 to perform n X m local linear window operation is very
similar to that of 3X3 local window operation. In fact, all the necessary DVP operations are of
the same type. It takes nm+3-z (z is the number of zero coefficients) DVP operations for a
nXm local window operation, nm-z DVP operations for accumulating the sum of the products
of each window coefficient and its correspondingly scrolled image, and 2 DVP operations
(exactly the same operations described for 3X3 window operation) for correcting underflows
and overflows, and 1 DVP operation to scale the result by the same scaling factor mentioned
before. One point that should be mentioned here is the evaluation of the scrolling positions for

different window size. Consider the following window:

w(0,0) | w(1,0) | ... | w(m,0)
w(0,1) ... | w(m,1)
w((;,n) w(;n,n)

Since the upper left corner of the video display is positioned by scrx=0 and scry=1ff(hex), the
scrolling positions (specified by scrx and scry registers associated with each memory channel,

see Appendix A) can be related to the window coefficients by the following equations.

For window position w(i,j):

serad] = (807’20——'2?- +1) & mask
serylj] = (scry‘o+-g- -j) & mask

where scrzo =0
seryo = 1ff(hez)

mask = 01ff(hez)

DeAnza IP6400 Image Processor 12

RSD-TR-1-84
8 is the logical operation AND

The mask (1ff, hex) is used to mask out bits that are not used for scrolling position (see Appen-
dix A). Note that the way the scrolling positions is evaluated has restricted m and n to be odd

integers.

3.3. 3X3 Medlan Filter

Using the IP6400 for two-dimensional median filtering is challenging. Median filtering is a

non-linear window operator and consists of a great number of sorting operationslz]ls]. One of

the best known properties of median filtering is that of noise reduction with edge intensity

being preservedla]. For a 3X3 window the median is the 5th largest pixel value within the win-
dow. The algorithm to determine whether a given pixel is a median value within 2 window is
to count the number of other pixels within the window having values less than, and the number
equal to the specified pixel. If there are four pixels within the window having values less than a
particular pixel, that pixel is the median of the window. If there are more than four pixels
within the window having values less than the pixel, the pixel cannot be the median. When
there are less than four pixels having values less than the particular pixel, that pixel can still be
the median depending on how many pixels within the window have gray value equal to the

pixel.. The conditions for a pixel being the median within the window can be summarized as

follows:
Conditions
no. less | minimum no. equal | median
0 4 yes
1 3 yes
2 2 yes
3 1 yes
4 0 yes
5 - no
6 - no
7 - no
8 - no

13 DeAnza IP6400 Image Processor

RSD-TR-1-84

Table 1 - Conditions for a pixel being the median within the window

A program for 3 X3 median filtering using the [P6400 was written in the C programming
language running UNIX on the host processor. The algorithm requires the four memory planes
of the IP6400. The original image to be processed is assumed to be in memory 0, and the final
result is placed in memory 2. Memory 1 is used for comparison, and hence contains the same
image. Memory 3 is used to accumulate the conditions for each pixel such that it is the possible

median of its 3 X3 window. The algorithm consists of the following steps:
(1) copy original image in memory 0 to memory 1.

(2) clear memory 2 and 3.

(3) do step 4 to step 8 for each window position (9 times).

(4) find the number of pixels within every 3X3 window that have values less than that speci-
fied by the window position. This takes eight comparisons. Accumulate this information

in memory 3
(5) mask out the impossible choices that cannot be medians.

(6) find the number of pixels within every 3X3 window that have values equal to that speci-
fied by the window position. This takes another eight comparisons. Accumulate this infor-

mation with that of step 4 in memory 3.

(7) Using the information in memory 3, possible pixels specified by that window position that

are medians are determined. The result is accumulated in memory 2.

(8) clear memory 3 so that it is ready to store the conditions for pixels specified by next win-

dow position as possible medians.

The DVP must have the capability of comparison to carry out the above steps. Com-
parisons can be done through the two ALU’s by performing one’s complement subtraction in
the test ALU whose carry output bit in turn determines the swapping of the two operation
codes of the operational ALU. Comparisons are done memory plane by memory plane. Consider

the following window:

DeAnza IP6400 Image Processor 14

RSD-TR-1-84

w(0,0) | w(1,0) | w(2,0)
w(0,1) | w(1,1) | w(2,1)
w(0,2) | w(1,2) | w(2,2)

where w(i,j) indicates window position

Comparing pixels specified by w(0,0) with the rest of pixels specified by other window positions
is done by comparing properly scrolled images corresponding to their relative positions to w(0,0)
with pixels specified by w(0,0). For example, pixels specified by w(0,0) are compared to those of
w(1,0) by comparing original image with the original image scrolled one pixel left, to those of
w(1,1) with the image scrolled one pixel left and up, and so on. Since the upper left corner of
the unscrolled image is positioned by scrx=0 and scry=1ff(hex), the corresponding upper left
corner of the image scrolled one pixel left is then positioned by scrx=1ff(hex) and
scry=1{f(hex) (see Figure 3). The scrolling positions for comparing window position w(k, 1) with

respect to w(i, j) are related as follows:

scrz = (scrzo+(i-k)) & mask

scry = (scryo+(lj)) & mask

where scrz and scry are values for scroll registers z and y (see Appendiz A)

scrzo = 0

seryo = 1ff{he2)

mask = 1ff{hez)

& is the logical operator AND

For the sake of programming, scrolling positions with respect to the center of the window
(assume the center positions: scrx=0,scry=1ff) are first evaluated. Then scrolling positions for
comparisons with respect to each specified position can be evaluated in a loop without concern

for the relative indices of the window. The number of pixels having values less than that speci-

15 DeAnza [P6400 Image Processor

RSD-TR-1-84

fied by a window position can be found through the operation of the two ALU’s as follows:

(1) perform step 2 to step 3 for each window position within the window with respect to the
specified window position (there are eight window positions with respect to the specified

position, i.e. eight comparisons).

(2) perform one’s complement subtraction in the test ALU (C-D-1) with the inputs of the ori-
ginal image represented by D, and the scrolled image (different scrolling for each com-
pared position) represented by C (see Figure 2). The test ALU would produce a carry bit
if and only if C is greater than D, i.e. the compared pixel has value less than that speci-

fied by the window position within its 3 X3 neighborhood.

(3) set memory plane 3, which stores conditions of pixels that are possible medians, as the
input to the operational ALU. Set up the operation codes such that the input is incre-
mented if there is a carry bit from the test ALU, otherwise the input is passed unchanged.

Accumulate the output in memory 3.

After eight comparisons for each window position, memory plane 3 holds information on the
number of compared pixels being less than the center pixel of the window. As discussed above,
numbers ranging from 5 to 8 are impossible choices of medians. To mask out those impossible

choices, the ALU’s are employed again as follows:

(1) add 7b(hex) to memory 3. Memory 3 consists of values ranging from 7b(hex) to 83(hex) in

which 80(hex) to 83(hex) become impossible choices.

(2) mask out 80(hex) to 83(hex). Note that adding 80(hex) to a number greater than or equal
to 80(hex) would produce a carry bit. Therefore, add memory 3 to a constant (80 hex) in
the test ALU. Set memory 3 as the input to the operational ALU. Pass the input

unchanged if there is no carry bit from the test ALU. Otherwise, set output to zero.

Memory 3 consists of zeroes and values from 7b to 7f corresponding to pixels in the image that
are possible medians. Next, the number of pixels having values equal to that specified by the
window position are determined and accumulated in memory 3. This is done in the following

steps:

DeAnza IP6400 Image Processor 16

RSD-TR-1-84

(1)

(2)

(3)

perform step 2 to step 3 for each window position within the window with respect to the
specified window position.

perform one’s complement subtraction (C-D-1) in the test ALU with the inputs of the
scrolled image (compared position) as C, and the unscrolled image (specified window posi-
tion) as D. Thus, there is a carry out if and only if C is greater than D. Set REQ and
RCC of the tstop (test ALU register) to 1. Hence, the conditional operation code of the
operational ALU is carried out if and only if there is no carry out and C=D. But, there is
no carry out from the test ALU if C is less than or equal to D. Thus, the conditional
operation code of the operational ALU is carried if and only if C=D, i.e. pixels compared

are equal.

set memory 3 as the input to the operational ALU. Increment the input of the operational
ALU if the condition for the conditional operation code of the operational ALU is met, i.e.
compared pixels are equal. Otherwise, pass the input unchanged. Place the output of the

operational ALU in memory 3.

Memory 3 then contains conditions for corresponding pixels of the specified window position

that are medians. As mentioned above, a pixel is a median if it meets the conditions listed in

Table 1. Through the above operations, impossible choices have been masked out, and thus a

pixel specified by the window position is a median if the corresponding p.ixel in memory 3 has a

value greater than or equal to 7f. Finally, medians can be accumulated in memory 2 for each

specified window position as follows:

(1)

(2)

17

set the operation code of the test ALU with addition (C+D), and the inputs of memory 3
(scrolled according to window position, see explanation below) as C, and a constant,
81(hex) as D. Hence, a carry bit occurs only if a pixel value in memory 3 is greater than

or equal to 7f, in other words, the corresponding pixel in the original image is the median.

set the inputs of the operational ALU with memory 2 (accumulated result) as A, and the
original image (scrolled according to window position, see explanation below) as B. Pass B

unchanged as output to memory 2 if there is a carry out from the test ALU. Otherwise,

DeAnza IP6400 Image Processor

RSD-TR-1-84

pass A unchanged. Thus, pixels determined to be medians for each window position are

accumulated in memory 2.

If a pixel is determined to be the median, the center of the neighborhood should be replaced by
this pixel. For a specified window position, say w(0,0), a pixel determined to be the median
should be scrolled one pixel right and down replacing the center pixel. That is why memory 3
and the original image mentioned above must be scrolled according to the specified window
position as inputs to the ALU’s. These scrolling positions are related to their window positions

by the following:
For w(i,j):

scrafi] = (scrzo+1-i) & mask

scrylj] = (scryo-1+5) & mask

where scrz{i] and scryj] are values of scroll register z and y

(to specify a scrolled position)

scrzo =0

scryo = 1ff{hez)

mask = 1{f{ hez)

& is the logical operator AND

The mask (1ff) is used for the same reason mentioned earlier.

The 3X3 median filtering takes altogether 182 DVP operations. It requires 1 DVP opera-
tion to preblank memory 2 and 3 and 1 DVP operation to copy the original image into memory
1. For each window position (there are nine) it requires 8 DVP operations to find out the
number of pixels having values less than a particular pixel for every pixel in the 3X 3 window,

another 8 DVP operations for finding number of pixels having values equal, 2 DVP operations

DeAnza IP6400 Image Processor 18

RSD-TR-1-84

to mask out impossible choices of medians, 1 DVP operation to accumulate medians, and 1
DVP operation to clear memory 3. There is a tremendous gain in speed when compared to
median filtering done on a general purpose computer. It takes only 144 comparisons between
image planes (up to 512x512) for the above operation. If done on a general purpose computer,
8 comparisons for each pixel of a 512x512 image (2097152 comparisons)are required. Since the
operation does not involve the ITT's, there is no loss of accuracy such as the truncation inaccu-

racy mentioned in Section 3.1 and 3.2

3.4. nX m median fllter

The algorithm for nXm (n is number of rows, m is number of columns) median filtering

follows the same approach as of that 3X 3 median filtering. The median of the nX m window is

the (m +1)th largest value within the window. Only slight modification has to be done

on the evaluation of the scrolling positions.

For window position w(i,j):

seraf] = (scrzo+—’2f- -i) & mask
serylj] = (scryo—% +j) & mask
where scrz{i] and scryls] are values of the scroll registers
(to specify a scrolled position)
scrzo =0
scryo = 1ff(hez)

mask = 1ff{hez)

19 DeAnza [P6400 Image Processor

RSD-TR-1-84

& is the logical operator AND

The mask is used for the same reason mentioned earlier. Note that n and m must be odd
numbers. Modification also has to be made to the constant added in memory 3 (step 1 of mask-
ing out impossible choices of the previous section) to mask out impossible choices so that condi-
tions for following operations to determine the medians remain the same. Since the constant

added for a 3X3 window is 7b(hex), 80(hex)-5(hex), the constant added for nXm window is

then 80(hex)-(ﬁ<2—m-) +1)(hex). In this way, a pixel of an image is the median of its nXm
neighborhood if the corresponding pixel in memory 3, which holds conditions for possible medi-

ans, is greater than or equal to 7f(hex), the same conditions for 3 X3 median filtering.

The whole operation takes (2am(nm+1)+2) DVP operations. It requires 2 DVP operations for
copying the original image‘ to memor); 1, preblanking memory 2 and 3, and, for each window
position (there are nm), 2(nm-1)+2 DVP operations for finding conditions(number less, mask
out choices, number equal) of possible medians, 1 DVP operation for accumulating the result,
and 1 DVP operation clearing memory 3 to set ready to store conditions of the next window
position. It takes 2nm(nm-1) comparisons to perform the filtering using the IP6400 and

512x512x(nm-1) comparisons when using a general purpose computer.

DeAnza IP6400 Image Processor 20

RSD-TR-1-84

4. Discussion

The advantage of using the IP6400 for window operations lies in the capability of process-
ing up to one megabyte of image data in a single video frame time. Various image processing
operations can be implemented through the IP6400 to achieve high speed. The sobel operator
(edge detector), for example, can be implemented using two 3X3 window operations, and one
frame addition, a total of 25 DVP operations as follows (see Appendix B to G):

(1) place original image in memory 0

(2) execute dwin3_3-1-2-10001 21 2 ac (detect vertical edge, result is placed in memory
1)

(3) execute dmove 1 3 (move result into memory 3)

(4) execute dwin3_3-101-202-101 2 a c (detect horizontal edge, result is placed in

memory 1)

(5) execute dadd 1 3 2 (add both horizontal and vertical edges and place result in memory 2)

The Laplacian operator for edge enhancement can be performed in 8 DVP operations. Tremen-
dous gain in speed is the major significance in using the [IP6400 for various image processing

operations.

5. References

(1] IP6400 Programmer’s Manual, DeAnza Systems, Inc., September, 1981.

[2] T.S. Huang, G. T. Yang, and G. Y. Yang, A Fast Two-dimensional Median Filtering
Algorithm,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP. 27, pp.13-18,

Feb 1979.

21 DeAnza [P6400 Image Processor

RSD-TR-1-84

[3] T.S.Huang Two-Dimensional Digital Signal Processing Il New York: Springer, 1981.

DeAnza IP6400 Image Processor 22

RSD-TR-1-84

Appendix A - IP6400 registers

-23~

RSD-TR-1-84

Appendix A - IP6400 registers

-23~

RSD-TR-1-84

MEMORY PORT CONTROL REGISTER

Mnemonic IMEMPC, Virtual Address 117424 octal

15114 13 12|11 10 9 8 7 6 5 4 3 2 1 0
i I I I P P P P \'4 v v v
NOT USED 3 2 1 0 3 2 1 0 3 2 1 0
Memory thru
ITU to video
Memory thru ITU ta array
‘processor

0 disables and

Bit

0-3

Vo
Vi
V2
V3

4-7

PO
P1
P2
P3

8-11

I0

11

I2
I3

Label

Vo-v3

Memory:

Memory
Memory
Memory

PO-P3

Memory
Memory
Memory
Memory

I0-I3

Memory
Memory
Memory

Memory thru ITU to optional port

1 enables as described.

Function

Enable data from the
through the ITU to v

Channel 0 thru ITU to
Channel 1 thru ITU to
Channel 2 thru ITU to
Channel 3 thru ITU to

Enable data from the
through the ITU to t

Channel 0 thru ITU to
Channel 1 thru ITU to
Channel 2 thru ITU to
Channel 3 thru ITU to

Enable optional port
Channel 0 thru ITU to

Channel 1 thru ITU to
Channel 2 thru ITU to

memory channels to pass
ideo

video
video
video
video

memory channels to pass
he Array Processor

Array Processor
Array Processor
Array Processor
Array Processor

Optional Port
Optional Port
Optional Port

Memory Channel 3 thru ITU to Optional Port

0 disables and 1 enables as described.

-25-

RSD-TR-1-84

Image Scroll and Zoom Registers -~ 12 Bits

MNEMONIC VIRTUAL ADDRESS CHANNEL
ISCRX0, ISCRYO 117460, 117462 octal 0
ISCRX1, ISCRY1 117464, 117466 octal 1
ISCRX2, ISCRY2 117470, 117472 octal 2
ISCRX3, ISCRY3 117474, 117476 octal 3
ISCRX4, ISCRY4 117514, 117516 octal 4 overlay
X Scroll and Zoom Register
15/ 14 13 12}11 10 9 8 7 6 S 4 3 2 1 0
NOT USED BL|{BE|SE|E8 E7 E6 E5 E4 E3 E2 E1 EO
Starting Element (Horizontal)
Element Sign Bit
Scroll with Black Enable Horizontally
Scroll with Black Enable Vertically
BIT LABEL FUNCTION
0-8 EO-ES8 Specify starting element in horizontal direction
9 SE Element sign bit
0 Data zeroed after horizontal wrap around
if BE is 1
1 Data zeroed before horizontal wrap around
if BE is 1
10 BE Scroll with Black Enable Horizontally - Element
0 No data is zeroed
1 Enable data to be zeroed with horizontali
- wrap around
11 BL Scroll with Black Enable Vertically -« Line

0 No data zeroed

1 Fnable data to be 2zeroed with vertical.
wrap around

-26-

Y Scroll and Zoom Register

1514 13 12|11 10 9 | 8 7 6 |5 4 3 2

NOT USED | DD | Z1 20 |SL| E8 E7 E6 ES5 E4 E3 E2

Starting Line (Vertical)

Line Sign Bit

Zoom
Sss——————

Disable writing to imagg'memory by the DVP

BIT LABEL FUNCTION

0-8 LO-L8 Specify starting line in vertical directi
‘ to 0 octal is top to bottom)

9 SL Line sign bit

0 Data zeroced after vertical wrap
if BL is 1(top part of video disg
black)

1 Data zeroed before vertical wrap
if BL is 1 (bottom part of video d
is black)

10-11 Z20-21 Zoom control bits
Z1 20
0 01 to 1 (No zoom)
0 1 2 to 1l Zoom
1 0 4 to 1 Zoom
1 18 to 1l Zoom
12 DD Disable DVP writing to image memory channel

0- Enable writing to memory channel by DVP
1- Disable

-27=

RSD-TR-1-84

DESTINATION REGISTERS

Mnemonic Virtual Address Function
IDESTX 117420 Destination X - element
IDESTY 117422 Destination Y - line
Destination X Register
151 121110987-6543[210
S . S . X X X X X
NOT USED 1 0 8 7 6 5 4 NOT USED
Starting Element Position
Shift Code for output from digitizer A/D converter
Bit Label Function
4-8 S4-S8 Starting Element Position in image
memory for data from the DVP. Must
be multiples of 16.
10,11 S1 SO Direction and number of bits
to shift the output of the
digitizers A/D converter before Bits zero on input
input to the array processor. the array proces:
6 bit 8 bit
Digitizer Digitize
0 O Normal « no shift. Accept output 2 MSB's None .
from the A/D converter.
0 1 Shift right 1 bit - divide 3 MSB's MSB
A/D converter output by 2
1 0 Shift left 1 bit - multiply MSB, LSB LSB
A/D Converter output by 2
1 1 Shift left 2 bits - multiply 2 LSBs 2 LSB

A/D converter output by 4

-28=

RSD-TR-1-84

Destination Y Register

15 9 8 7 6 5 4 3 2 1
Y Y Y Y Y Y Y Y
NOT USED 8 7 8 5 4 3 2 1
Starting Line Position
Bit Label Function
0-8 YO-Y3 Starting Line Position in image memory for d:

from DVP.

~-29-

RSD-TR-1-84

DVP Bit Plane Mask Registers

Mnemonic ’ Virtual Address Function
IBPMA 117440 Bit plane mask A
IBPMB 117442 Bit plane mask B

15{ 14 13 12|11 10 9|8 7 6|5 4 3[2 1 o0
M M M M M M M M M M M M M M. M M
15 14 13 12 11 10 9 8 7 6 S 4 3 2 1 0
Bit plane mask bits Bit plane mask bits
0 - Do not write to bit plane (Disable)
1 - Write to bit plane (Enable)
Bit Plane Mask
Bits Label Register Memory channel
0-7 MO -M7 A 0
8-15 M8-M15 A 1
0-7 MO-M7 B 2
8-15 M8-M15 B 3

-30-

RSD-TR-1-84

Constants Register
MNEMONIC - ICONST

VIRTUAL ADDRESS 117444

>
W
[V)
-
o

151 14 13 12’ 11 10 9|8 7

6
K K K K K K K K |cCc ¢
7 6 5 4 3 2 1 o0l|l7 =6

K1 Constant - Operation ALU K2 Constant - Test ALU
Bit Label Function
0-7 C0-C7 K2 Constant - alternate input B of Test ALU

8-15 K0-K7 K1 Constant - alternate input D of Operational
Constant value range is 0 to 377 octal.

Arithmetic is performed as 1l's complement.

All values are positive and considered as intensities.

31~

RSD-TR-1-84

DVP Input Data Path

MNEMONIC - INPDP

VIRTUAL ADDRESS 117446 OCTAL

15114 13 12111 10 9 8 7 6 5 4 3 2 1 0
T |4 14 A D | K]|[B B [z2z|[]c|]C ¢C |[T]|K {D D
0 X 1 0 I 1 1 0 0 I 1 0 S 2 1 0
A input B input C input D input
memory memory memory memory
channel channel channel channel
select select select ‘ select
Auxiliary MS Camera A/D LS
{input | Constant Constant

Test ALU output

Select D input

Force LS to O

A Input Control

B Input Control

C Input Control

Operational ALU

INPUT Name

O O w >

ALU
Operational
Operational
Test ALU
Test ALU

32

Test ALU

ALU
ALU

D input control

0-Test ALU to shifte
1-B input to shifte:

OUTPUT Name

MS Byte of SHIFTER

MS Byte of SHIFTER

LS Byte of SHIFTER

LS Byte of SHIFTER

RSD-TR-1-84

Output Data Paths and Shift Control Register
MNEMONIC - IODPSH

VIRTUAL ADDRESS 117454 OCTAL

15114 13 12|11 '10 9 8 7 6 | S 4 3 2 1 0
0 O

o o o O }|v VIR R |D |8 B8 S

NOT USED 3 2 1 0 g L |0 L 2 1 0

of Bits and
direction of
shift

Byte/Word mode

Rotate (end around) or
shift (zero £ill)

Overflow (Left)-all bits set to 1

Selects memory channel: O-Lower byte of Shifter
Output data path 1-Upper byte of Shifter

Shift control bits

Upper Byte -« MS byte, output of Operational ALU
Lower Byte - LS byte, output of Tet ALU (or Bl selector)

Bits Label Function
0-2 S0-S2 Shift Code - specifies the direction and number of
shifts
S2 S1 80 Action
0 0 0 Nene
0 0 1 Leit 1
0 1 0 Lett 2
0 1 1 Left 3
1 0 0 Right 4
1 0 1 Right 3
1 1 0 Right 2

«33~

RSD-TR-1-84

Test ALU Operational Code Register
MNEMONIC - ITSTOP

VIRTUAL ADDRESS 117450 OCTAL

1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0
' w W |R |R
(of (o c (o P P E E | C E Cc S S S S
3 2 1 0 I 1 1 0 Cc Q M Cc 3 2 1 0
Condition Select one of
code for 16 operations
counter to be
incremented Complement of Carry
0-Carry, 1-No Carry
Porce S0-S3 to 0 Select Arithmetic or
if LSB of C input Logical Operation
is O
Determine one of 48
If£ CC is set (=1) operations to perform
Porce Bit 0 of data
in shifter to O Inputs A = B condition code
Write - enable region: Complement carry condition code
anywhere, cursor defined,
or overlay defined 2 bit condition code field for
OP ALU code.
Bit Label Function
0-3 S0-S3 Test ALU operational codes. See Table
1.2.11.F.
4 CccC Complement of Carry

0 - Carry enabled
1 - Carry disabled

-34-

Test Operational Code Table

ARITHMETIC FUNCTIONS

RSD-TR-1-84

Operational Code Output Based on Complement Carr
INPUTS |[M CC S3 S2 S1 S0 CC=0 CC =
cC, D 0 X O 0O 0 O C+1 C '
Cc, D O X o o 0 1 (CorD) +1 (Cor D)
Cc, D 0 X 0 0 1 0 |(CorD) +1 (C or D)
Cc, D 0 X O 0 1 1 |0 - 377 octal _
cC, D 0 X O 1 0 O C+ (Cand D) + 1 C + (C and D)
c, D 0O X 0. 1 0 1 (C or D)+(C and D) + 1 (C or D)+(C an«
C, D 0 X O 1 1 0 C-D_ C-D~-1
cC, D 0 X O 1 1 1 C and D C and D -1
c, D 0 X 1 c 0 0 C+ (Cand D) + 1 C + (C and D)
C, D 0 X 1 0 01 C+D=+1 C+D_
c, D 0 X 1 0 1 0 |(C or D)+(C and D)+ 1 (C or D)+(C anc
C, D 0 X 1 0 1 1 (C and D) (C and D) -1
c, D 0 X 1 1 0o o C+C+1 c+C
.C, D 0 X 1 1 0 1 (Cor D) +C + 1 (CorD) +c¢
C,D [0 X1 1 1 0 {(CorD) +C+1 (Cor D) +C
cC, D 0 X 1 1 1 1 (o cC-1
LOGICAL FUNCTIONS
Operational Code Output Based on Complement Carry
INPUTS M CC S3 82 S1 SO (CC = DON'T CARE)
c, D 1 X 0 0 0 0 C
c, D 1 X O 0O 0 1 CorD
c, D 1 X o 0O 1 0 C and D
Cc, D 1 X O 0O 1 1 0
c. D 1 X 0 1 0 0 |Cand D
c, D 1 X O 1 0 1 D
c, D 1 X O 1 1 0 |C exclusive or D
c, D 1 X O 1 1 1 C and D
c, D 1 X1 0 0 0 |{CorbD
C, D 1 X 1 0 0 1 C exclusive or D
c, D 1 X 1 0 1.0 D
Cc, D 1 X 1 o 1 1 C and D
c, D 1 X 1 1 0 0 |377 octal, 2ll bits set
c, D 1 X 1 1 0 1 CorD
cC, D 1 X 1 1 1 0 CorD
c, D 1 X 1 1 1 1 o}

Test Operational Code Table

-35-

RSD-TR-1-84

Operational Code Register
MNEMONIC - IOPOP

VIRTUAL ADDRESS 117452

15§14 13 12})11 10 9 [8 7 6 S5 4 3 2 1 0
c|s s s s cls s s s
L M C 3 2 1 0 L M C 3 2 1 0
OP ALU Codes
Default OP ALU ‘Used 1if Test ALU
codes codes match
Complement O-Force carxy Complement O-Force ca
of carry 1-No carry of carry 1-No carry
O-Arithmetic O-Arithmetic
Mode: l-Logical Mode: 1l-Logical
Enable writing to memories Enable writing to memories
Default OP ALU codes Conditional OP ALU codes
Bits Latel Function
0-3,8-11 S0-S3 Operational ALU operation codes
4,12 cc Complement of Force Carry

0 -« Force Carry
1 « No Carry

5,13 w Enable writing to memory channels

0 - Disable writing to memories
1 - Enable writing to memories

0=-7 Conditional Operational ALU op code

8-13 Default Operational ALU op code

-36-

Operational Code Table

ARITHMETIC FUNCTIONS

RSD-TR-1-84

Operational Code Output Based on Complement Carry
INPUTS M CC S3 S2 S1 SO cCC=20 CC = 1]
A, B 0O X O 0 0 O A+ 1 A
A, B 0O X O 0 0 1 (Aor B) +1 (A or B)
A, B 0 X o0 0o 1 0 (AorB) +1 (A or B)

A, B 0 X O 0 1 1 0 - 377 octal __
A, B 0 X O 1 0 O A+ (A and B) + 1 A + (A and B) -
A, B [0 X O 1 0 1 (A or B)+(A and B) + 1 (A or B)+(A and B
A, B 0O X o 1 1 0 A - B _ A-B-1
A, B 0O X O 1 1 1 A and B A and B -1
A, B 0 X 1 0 0 O A+ (Aand B) + 1 A + (A and B)
A, B 0 X 1 0 0 1 A+B=+1 A+B _

A, B 0 X 1 0O 1 o0 (A or B)+(A and B)+ 1 (A or B)+(A and B
A, B 0 X 1 0 1 1 (A and B) (A and B) -1
A, B 0 X 1 1 0 O A+ A+ 1 A+ A
A, B 0O X 1 1 0 1 (AorB +A+1 (Aor B) + A
A, B 0 X 1 1 1 0 (AorB) + A+ 1 (A orB) + A
A, B 0 X 1 1 1 1 A : A -1
LCGICAL FUNCTIONS
Operational Code Output Based on Complement Carry
(CC = DON'T CARE)
INPUTS M CC S3 S2 S1 SO
A, B 1 X 0 0 0.0 (&
A, B 1 X 0 0O 0 1 Aor 33
A, B 1 X O 0O 1 0O A and B
A, B 1 X O o 1 1 0
A, B 1 X O 1 0 0O | Aand B
A, B 1 X O 1 0 1 B
A, B 1 X O 1 1 0 | A exclusive or B
A, B 1 X O 1 1 1 A and B
A, B 1 X 1 0O 0 O dor B
A, B 1 X 1 0.0 1 A exclusive or B
A, B 1 X 1 0 1 O B
A, B 1 X 1 o 1 1 A and B
A, B 1 X 1 1 0 O 377 octal, all bits set
A, B 1 X 1 1 0 1 A or B
A, B 1 X 1 1 1 O Aor B
A, B 1 X 1 1 1 1 A

-37-

RSD-TR-1-84

Appendix B - 3 X3 linear window operation

-38-

Appendix (B)

NAME

RSD-TR-1-84

UNIX Programmer’s Manual Appendix (B)

dwin3_3 - 3X 3 window operation

SYNOPSIS

(1) dwin3_3 [w1] [w2] [w3] [w4] [w5] [w6] [w7] [w8] [w9] [s] [a] [c]
(2) dwin3_3 [f] datafile

DESCRIPTION

Three memory planes are used for this operation. The image to be processed should be in
memory plane 0. The result is located in memory plane 1. Memory plane 2 is used for the over-

flow indicators.

The parameters include the nine window coefficients, a scaling factor, underflow complement
option, and memory 1 & 2 preblank option described as follows:

wl to w9

window coefficients arranged in the order of wl to w3 as first row of the win-
dow, w4 to w6 as second row of the window, w7 to w9 as third row of the win-
dow. All coefficients must be numerical values.

scaling factor. It is a numerical value, usually selected to prevent overflow of
the lookup table (ITT) of DeAnza. As a rule of thumb, when absolute values
of some coefficients are larger than one, the absolute value of the largest coef-
ficient should be the scaling factor. This scaling factor scales down the coeffi-
cients for arithmetic manipulation in DVP of DeAnza, and then scales up the
result. Hence, the scaling factor does not affect the coefficients on the whole
window operation. Yet, it is necessary to prevent overflow of the ITT of

‘DeAnza for arithmetic manipulation.

This option ‘complements, instead of zeroes underflow. Default would zero
underflow.

This option preblanks memory 1 and memory 2. Default would not preblank
the memory planes.

Parameters can be input from a datafile by typing f before the datafile.

AUTHOR
N. Ansari (7/7/83)

FILES
/dev/deanza

[usr/include/sys/iz.h

SEE ALSO

[P 6400 Programmer’s Manual, DeAnza Syste

7th Edition

-39~

RSD-TR-1-84

Appendix C - n X m linear window operation

-40=

Appendix (C)

NAME

RSD-TR-1-84

UNIX Programmer’s Manual Appendix (C)

dvwin - n'X n window operation

SYNOPSIS

(1) dvwin [n] [m] [w[1] ... [w[um]] [s] [a] [c]
(2) dvwin [f] datafile

DESCRIPTION

Three memory planes are used for this operation. The image to be processed should be in
memory plane 0. The result is located in memory plane 1. Memory plane 2 is used for the over-

flow indicators.

The parameters include the size of the window, the window coefficients, a scaling factor, under-
flow complement option, and memory 1 & 2 preblank option described as follows:

n
m

w(1] to w[nm]

width, number of rows of the window.
length, number of columns of the window.

window coefficients arranged in the order of row by row basis. All coefficients
must be numerical values.

scaling factor. It is a numerical value, usually selected to prevent overflow of
the lookup table (ITT) of DeAnza. As a rule of thumb, when absolute values
of some coefficients are larger than one, the absolute value of the largest coef-
ficient should be the scaling factor. This scaling factor scales down the coeffi-
cients for arithmetic manipulation in DVP of DeAnza, and then scales up the
result. Hence, the scaling factor does not affect the coefficients on the whole
window operation. Yet, it is necessary to prevent overflow of the ITT of
DeAnza for arithmetic manipulation. '

This option complements, instead of zeroes underflow. Default would zero
underflow.

This option preblanks memory 1 and memory 2. Default would not preblank
the memory planes.

Parameters can be input from a datafile by typing f before the datafile.

AUTHOR

N. Ansari (7/14/83)

FILES
/dev /deanza

[usr/include/sys/iz.h

SEE ALSO

IP 6400 Programmer’s Manual, DeAnza Systems, Inc.

7th Edition

-41-

RSD-TR-1-84

Appendix D - nX m median filtering

-42-

RSD-TR-1-84

Appendix (D) UNIX Programmer’'s Manual Appendix (D)

NAME
dvmedian - median filtering

SYNOPSIS
dvmedian [n] [m]

DESCRIPTION
dvmedian performs two-dimensional median filtering using the DeAnza [P6400. The default win-
dow size is 3X3. The maximum window size is 25X 25. Four memory planes are used for this
operation. The image to be processed should be in memory plane 0. The result is located in
memory plane 2. Memory planes 1 and 3 are used for intermediate processes.

The only parameters are to specify window size.

n width, number of rows of the window.
m length, number of columns of the window.
AUTHOR

N. Anpsari (7/23/83)

FILES
/dev/deanza
[usr finclude/sys/iz.h

SEE ALSO
[P 6400 Programmer’s Manuai, DeAnza Systems, Inc.

-43-

7th Edition

RSD-TR-1-84

Appendix E - denhance

-44-

RSD-TR-1-84

Appendix (E) UNIX Programmer’s Manual Appendix (E)

NAME
denhance' - deblur a picture

SYNOPSIS
denhance

DESCRIPTION
denhance is a deanza version unsharp masking. It uses a Laplacian operator to deblur a picture. It
is 2 3x3 window operation with a weight of 5 at the center, -1 at the nearest neighbors, and a 0 at
other neighbors. The picture to be processed should be placed in memory plane 0, and the result
is placed in memory plane 1. '

DIAGNOSTICS
None

AUTHOR
N. Ansari (7/7/83)

FILES
/dev/deanza [ust/include/sys/iz.h

SEE ALSO
[P 6400 Programmer’s Manual, DeAnza Systems, Inc.

-45-
7th Edition

RSD-TR-1-84

Appendix F - dadd

-46-

RSD-TR-1-84

Appendix (F) UNIX Programmer’s Manual Appendix (F)

NAME
dadd - adds two images from Deanza.

SYNOPSIS
dadd chanl chan?2 chan3

DESCRIPTION
dadd will add the images stored in chanl and chan2 together,and stores the result in chan3.

chanl, chan2, chan3 can be any of the four channels: 0,1,2 or 3.

DIAGNOSTICS
Bad flags are ignored.

AUTHOR
Nancy Cam (3/08/83)

FILES
/dev/deanza

BUGS
No known bugs.

7th Edition -47-

RSD-TR-1-84

Appendix G - dmove

-48~

RSD-TR-1-84

Appendix (G) ’ UNIX Programmer’s Manuai Appendix (G)

NAME
dmove

SYNOPSIS
dmove [chanX] [chanY]

DESCRIPTION

This routine allows the user to move an image from chanX to chanY, where chanX and chanY
can be from 0 to 3.

DIAGNOSTICS
Synopsis will be given upon detecting illegal parameters.

AUTHOR
N. Ansari (7/7/83)

FILES
/dev/deanza [usr/include/sys/iz.h

SEE ALSO
IP 6400 Programmer’s Manual, DeAnza Systems, Inc.

7th Edition -49-

