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Abstract. Inthis paper, we consider how a company that has the flexibility to produce two substitutable products
would determine optimal capacity levels and prices for these products in a single-period problem. We first consider
the case where the firmis a price taker but can determine optimal capacity levels for both products. We then consider
the case where the firm can set the price for one product and the optimal capacity level for the other. Finally, we
consider the case where capacity is fixed for both products, but the firm can set prices. For each case, we examine
the sensitivity of optimal prices and capacities to the problem parameters. Finally, we consider the case where
each product is managed by a product manager trying to maximize individual product profits rather than overall
firm profits and analyze how optimal price and capacity decisions are affected.
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1. Introduction

Firms must continuously make pricing and capacity decisions to respond to market forces.
Facing uncertain demand, firms must balance pricing and production decisions to respond to
the market. Many firms produce a variety of products, some of which may be substitutable
by consumers. Product substitutability makes pricing and capacity decisions more difficult
due to the firm’s needs to consider the effect that a change in the price of one productis going
to have on the demand level for another. A good example is in electronics manufacturing,
where a firm might produce a variety of chips. The price of a faster chip affects the demand
for a slower chip as well, since, if the prices for the two types of chips are sufficiently close,
many customers might opt for the faster chip, thereby significantly decreasing demand for
the slower chip.

In this paper, we study single-period pricing and capacity-setting decisions for a firm
that has the flexibility to produce two substitutable products. We assume that this firm
produces these products on two separate production lines. Furthermore, we do not assume
that these products are perfect substitutes for each other. Thatis, we consider the case where
customers have preferences for one product or the other, but this preference is affected by
the price levels of both products. (For example, even a dedicated beef eater might switch
to chicken if the price of beef becomes considerably more expensive than chicken.)

Due to the difference in prices, we assume, however, that shortages in one product do not
necessarily lead customers to immediately select the other. As an example, consider the case
ofindividuals deciding what type of car to buy. If the Toyota Motor Company fixes the prices
of its Lexus LS400 to be the same (or only slight above) the Camry, it is likely that many
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customers will switch to buying the Lexus. On the other hand, with a price difference of
nearly $30,000 right now, rarely do shortages in Camries suddenly convince many potential
Camry buyers to buy a Lexus LS400 instead. We therefore consider substitutability due to
price differential and not due to shortages in one product line. Our aim is to build intuition
on how pricing and capacity decisions change as a function of costs, demand functions,
and preexisting capacity levels; we therefore focus on simple single-period models. This
also enables us to contrast our results with the famous news vendor problem, which is a
single-period problem where the capacity (production level) for only a single product is
chosen.

We also focus on the issue of centralized versus decentralized decision making and
how this affects the nature of the decisions. Many firms assign a product manager to each
product the firm produces. The product manager’s role is to maximize the profits made by
that product. If all products are produced on separate production lines and the products are
not substitutable, the decisions made by each product manager trying to maximize product
profits correspond to decisions made by a centralized controller maximizing systemwide
profits. The more interesting case is when products are substitutable; in that case, we analyze
when the system-optimal decisions are the same as the individual product-optimal decisions.

The classic problem where price is known and capacity is uncertain is the news vendor
problem. Many extensions of this classic problem have been made. For example, Ismail
and Louderback (1979), Lau (1980), and Kabak and Schiff (1978) studied a one prod-
uct news vendor problem where the probability of achieving a predetermined profit level
is maximized. Ismail and Louderback (1979), Sankarasubramanian and Kumaraswamy
(1983), and Lau and Lau (1988) studied a single product news vendor problem where the
demand level is dependent on the price set. Therefore, both optimal price and optimal order
quantity are determined. Li, Lau, and Lau (1990) focused on a two product news vendor
problem where the probability of achieving a profit target is maximized.

A variety of attempts have been made to introduce the effects of capacity constraints on
the price and production decisions in the news vendor problem. Kreps and Scheinkman
(1983) examined a problem where two identical firms compete with products that are perfect
substitutes. The demand for each product is a function of its own price. The two firms
enter into a two-stage competition, where they set capacities in the first stage and make
pricing decisions independently in the second stage. Staiger and Wolak (1992) focused on
two firms that produce the same product and have the same capacity costs. They analyzed
an infinitely repeated game where prices are adjusted periodically and examine the effects
of having excess capacity. Lippman and McCardle (1997) considered a market for a single
commodity-type product where the demand is allocated to each competitor under various
allocation schemes.

Examples of research involving substitutable products include Ignall and Veinott (1969),
who examine the optimality of myopic policies with several products; Bassok, Anupindi,
and Akella (1993), Bitran and Dasu (1992), Hsu and Bassok (1994), and Gerchak, Tripathy,
and Wang (1996) studied ordering policies with substitutable products; while Carmon and
Nahmias (1994) examined lot-sizing decisions in semiconductor manufacturing where the
products are substitutable. In this line of research, it is assumed that the manufacturer is a
price taker for all of its products.
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We study the case of a firm producing two products with price-dependent demands, where
the firm has the ability to make pricing or capacity decisions for one or both of its products.
We begin in Section 2 by discussing the case where a firm is a price taker for both of its
products but has control over the amount of capacity to install for each product. In Section 3,
we analyze the situation of a firm that needs to decide on the amount of capacity to install
for one of its products and the price to set for the other product. This is a situation facing
firms that introduce a new or improved product with the potential to cannibalize sales from
its existing product and where the firm has only a limited amount of capacity on-line for this
new product. An example of this would be a microchip manufacturer launching the next
generation of microchip after its existing product has been cloned. In Section 4, we examine
the case where both products have a given capacity constraint and the firm sets prices for
both products. This situation is commonplace for firms that have no ability to increase
capacity in the near term but can control sales and profits only by adjusting their prices.

We end in Section 5 with a discussion on how the decisions made in the previous sections
differ when decisions regarding price or capacity are made sequentially instead of simulta-
neously. These situations can arise when a firm has different brand managers making deci-
sions to maximize each product’s profit independently rather than maximizing systemwide
profits. Porteus and Whang (1991) discuss incentive strategies to induce manufacturing
managers and product managers to act in the best interest of a company as a whole. Whang
(1995) notes that the research to date in cross-functional coordination of manufacturing and
marketing has focused on the coordination between manufacturing and marketing for either
a single product or multiple independent products. In our paper, we will examine the case
where the demand for both products is dependent.

We use the following notation throughout the paper:

P, = price of productA,;
P, = price of productB;
C, = production capacity for produd;
Cyp, = production capacity for produd;
0. = per unit variable cost of produé;
Ob = per unit variable cost of produ@;
ia = cost of adding one unit of dedicated capacity for prodiict
iy, = cost of adding one unit of dedicated capacity for prodsict
Ua(Pa, Py) = mean demand for produét;
Up(Ps, Py,) = mean demand for produét.

For analytical simplicity, we assume throughout the paper that

1. The demands for produdtandB are distributed uniformly over the intervalg [ P;, Py)
— 1, Ua(Py, Py) +r]and [up(Pa, Po) — S, uy(Pa, Py) + 8], wherer ands are the ranges
of realizable demands above and below their respective means.

We assume further that

2. The unitinvestment costs plus variable production costs do not exceed the product price:
ia+0a < Paandip+ 0y < Py withia, Ga, ip, o > 0.
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3. The mean demand of produét u,(P,, Py), is decreasing i, and increasing irP,
and the mean demand of produgis increasing inP, and decreasing if,.
Note that assumption 3 follows immediately from the fact that the products are substi-
tutable. We finally define the variable profit function for produtandB to be

Ca

7(,) = (Pa—0a) - Xa - fa(Pa, Po, Xa) 0%
Ua (Pa, Po)—r

Ua (Pa, Py)+r
+(Pa—Ga) - Ca- / fa(Pay P, %) A
Ca

Ch

+ (Po—0p) - Xp - fo(Pa, Po, Xp) dXo
Ub(Pa,Pb)*S
Ua(Pa, Py)+s
+(Pb—Qb)-Cb~/ fo(Pa, Po, Xp) dXy
Ch

where

fa(Pa, Py, Xa) = 1/2r andx, is the demand for produd;
fo(Pa, Py, Xp) = 1/2s andxy is the demand for produd.

2. Capacity decisions for a price-taking firm

We begin our discussion with a firm that manufactures two products and must decide on

the amount of capacity to install to manufacture each product. In this situation, the firm

is a price taker in both of the markets in which it competes. For this situation, Lau and

Lau (1988) provide a solution procedure for determining the optimal capacities to achieve

a given probability of obtaining a profit target. In our model, we maximize the expected

profit and derive the sensitivity of the optimal capacities to changes in key parameters.
The firm’s profit function is defined as

R(Ca, Cp) = (Ca, Cp) —iq-Ca —ip- Cp. (1)
We first show that a unique set of capacities exists that maximizes equation (1).

Proposition 1. If P, > g4 > 0and R > g, > 0, then there exists a unique maximum of
(1) over G, > 0and G, > 0. The optimal capacities are

Ca = [Ua(Pa, Py 1] — 212" ang

(Pa—0a)
2~ib-S

Co = [Up(Ps. _2lbS
b = [Up(Pa, Py) + 9] P
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Proof: Toensure thata unique maximum exists for positive valu€ ahdCy, a solution
must exist to the first order conditions and all second order conditions must be satisfied.
The first order conditions are

IR(Cq, Cp) i Ca- (Pa—0a) n [Ua(Pa, Py) +r] - (Pa—0a) —0
3Ca  ° 2r 2r -
0RCaCo) _ Co (B —0h)  [Un(Pa, Pb)+]- (P =) _
aC, P 25 25 -
Rearranging these terms, we obtain
Cr = [ua(P, Pb)+r]—2'iia'r>2r[1—i7a] @)
a e (Pa—0a) — (Pa—0a)
2-ib-S ib
C: = Py, +s]—-——>2s({1— ———|, 3
o = [P P8l = (g 2 S[ (Pb—qw} ©

which are positive by assumption 2 that some profit can be earned on each product.
The sufficient conditions for the existence of a maximum are

32R(Ca, Cp) (Pa—0a)
—_— L = = <0
aC2 2r
9%2R(Ca, Cp) ) 9%2R(Ca, Cp) _ 9?R(Ca, Cp) ]? _ (Pa—0a)(Py, — ) -0
aC2 aC2 39Cyp B 4rs ’
which both hold by assumption 2, completing the proof. O

We now turn our attention to how the optimal capacity decisions vary with changes in
the key parameters of the model.

Proposition 2. The changes in the optimal capacity mix due to changes in the parameters
are

L. If P, increasesthen G decreases ifsfeR)| > Z1aL; and G, increases

If P, increasesthen G, increases and Cdecreases ifaub‘apgb’ P > (Sb'ibq'bs)z;

If g4 increasesthen G, decreases andgoes not change

If gp increasesthen G, does not change and,@lecreases

If i4 increasesthen G decreases andydoes not change

If iy increasesthen G does not change and,@lecreases

If rincreases then G, increases if§ < (P, — g,)/2 and G, does not change

If s increasesthen G, does not change andyGncreases ifj < (P, — gp)/2.

©ONoORrWN

Proof: We show the methodology for change 1. The proofs of the other cases are similar.
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From Eq. (2), we know that

2-ig-r

Ca=[ua(Pa, Pp) +r] — ———.
a [ a( a Pb) ] (Pa _ qa)
Taking the derivative with respect ¥, we obtain

aCa _ BUa(Pa, Pb) 2'ia'r
9P 9P (Pa — 0a)?

Since M=% < 0 by assumption 3, we therefore conclude tBatwill decrease if
| 2aPaufb)| > (sa'f'a')z whenP; increases.
Similarly, from Eq. (3), we know that

2- ib -S
Cp =[Up(Pa, Py) +5] — ———
= [Un(Fa W

and thus

dCp  Up(Pa, Pp)

=—" >0

3 Pa 3 Pa

by assumption 3.
Therefore, we conclude th&, always will increase aB, increases. a

Parts 1 and 2 of Proposition 2 point to an interesting phenomenon; namely, that an
expectation of a price increase in a product that will result in a decrease in the mean demand
for that product does not necessarily result in the firm decreasing the available capacity for
that product. Essentially, the condition in part 1 shows that, if the mean decrease in demand
is not fast enough and the cost of capacity is not too expensive, in some cases, it may
be more profitable to increase capacity for that product. This is because, even though on
average there is less demand for that product, the unit profit may be higher and therefore
more capacity might be profitable. The following example shows the possible behaviors
for C, mentioned previously.

In the following examples, we assume both demands are uniformly distributed. The
mean demand for produét is defined asC — ¢; P, + ¢, P, andr is the range of possible
demand values. For produBt the mean demand is defined@s- d; P, + d, P, andsis
the range of possible demand values.

Example 1, Case A.£and G, both increase with anincrease in P Inthis case, lefl, = 3,
0» =2, C =2000,c; =60,c, =50,r =400,D =3000,d; =100,d, =19,s=250,i,=1,
ipb=1, P,=6, andP, =10. Here, the optimal solution G, =227333,C, =23015, and
R(C,, Cp) = 1859258,

If we increaseP, from 6 to 7, we observe th&, increases to 228, increases to
2320.5 andR(C,, Cyp) increases to 20652.25.
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Example 1, Case B. {decreases and (Cincreases with an increase in,P For this
example, supposg = 3,q, =2,C =2000,c; = 60,c, =50,r =400,D =3000,d; =100,
d,=19,5s=250,i,=1,ip,=1, P, =10, andP, =10. In this case, the optimal solution is
C,=218571,C, =23775, andR(C,, Cy) =2616839.

By increasingP; to 11, we find that the optimal, decreases to 2140, the optin@
increases to 2396.5, alRl{C,, Cp) increases to 27774.25.

Similarly, parts 7 and 8 of Proposition 2 show that an increase in the variability of demand
for a product may result in an increase or a decrease of the capacity for that product. If
the ranges of demand increase, the firm will choose to purchase more capacity, provided
the per unit investment cost for capacity is less than half the variable per unit profit made
on the product. However, changes in variable production or capacity costs always have
monotonic consequences on optimal capacity levels. As the production or investment costs
for a product increase, the product’s profit margin clearly is reduced and so the optimal
strategy will be to reduce amount of capacity kept on hand to produce that product.

3. Setting the price ofA and the capacity level ofB

In this section, we suppose that a firm currently has fixed (limited) capacity for a new
product it is introducing but must decide how much capacity to maintain for its existing
product. For example, in electronics manufacturing, when a firm first introduces a new
product the capacity is extremely limited due to low yields for the new product and the
necessary time for the factory to ramp up for production (e.g., building a new faster chip).
On the other hand, the older product that the firm produces may already be a stable product
in a market with active competition. For the older product, the firm might have the option
to change its capacity; however, it is a price taker for it. Therefore, the firm faces the joint
problem of setting a capacity level for one product and a price level for the other.

In this situation, the firm’s profit function is defined as

R(Pa, Cp) =7 (Pa, Cp) —ip - Cp.

In this section and the next, we assume linear mean demand functions. In particular, we
assume that

4. The mean demand of produkt u,(P,, Py) =C — ¢ Pa + ¢ Py > 0 andup(Py, Py) =
D—-dPy+dP, > 0.

The use of such linear functions to model product demands is widespread in the eco-
nomics literature (see Bulow, 1982; Stokey, 1981). We also assume that

5. C1>C2>0,d1>d2>0,C1>d2>0,andd1>Cz>0.

Note that these assumptions are reasonable for the following reasons:
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e The assumption that; >c, and d; >d, means that the demand function for
product A is more sensitive to changes in the price of prod&dhan changes in
the price of producB (and similarly for the demand function for produs}.

e The assumption thay > d, (andd; > ¢) ensures that an increase in the price of
a product cannot increase overall demand, since for example, increasing the price of
product A would decrease the mean demand Aomore than it would increase the
mean demand foB (i.e., one cannot create extra demand by increasing the prices of
both products).

We also note that, in this section and the next, it is easy to show that an optimal policy
always will set prices (for products for which prices are being set and capacity is fixed) in
such a way that the minimum realizable demand is always less than or equal to the capacity
for that product. To see this, note that, if the reverse were true, increasing prices to the level
where the minimum realizable demand equals capacity increases per unit revenue without
affecting actual realized sales for that product, while increasing the demand for the other
product.

Proposition 3.  Under assumptionkthrough5, the function RP;,, Cyp) achieves a unique
maximum over P> g, > 0and G, > 0.

Proof: See Appendix A. O

Once again, we are interested in how the optimal decisions change as a function of the
optimal parameters.

Proposition 4. Assuming the conditions in Propositi8n

If g4 increasesthen R increases and gincreases

If gp increasesthen R decreases and {decreases

If ip increasesthen R decreases and decreases

If C increasesthen R increases and gincreases

If ¢, increasesthen R decreases and{decreases

If ;> increasesthen R increases and gincreases

If D increasesthen R does not change and,increases
If d; increasesthen R does not change andy@lecreases
If d> increasesthen R increases and gincreases

If C4 increases P, and G, decrease.

CLoxNok~wNhE

[

Proof: See Appendix B for the proof of part 1. The proofs for parts 2 through 9 are
analagous to the proof of part 1. In the case of part 10, where we indigage have four
potential cases: (&), andC,, increase, (b, increases an@, decreases, (&, decreases
andC, increases, (dP, andCy, decrease.

Cases (a) and (b) are not possible, since given the added capacity, one would never
increase price. 1P, increases, then demand will decrease for produand increase for
productB. If this strategy improved profits in case a, it would have been done at the lower
level of capacity for produch. In case (b), if the price oA increased, we would not
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decrease the capacity of produgt since it would be in greater demand. We also may
discard (c) as a plausible outcome, given that, wRgudecreases, demand for prodit

also will decrease. Hence, we would not want to increase the capacity of pddutt

this strategy would improve the overall profits, it would have been implemented under the
initial capacity level ofA. Therefore, we are left with the conclusion thaiGsincreases,

P, andC;, decrease. O

We now present an example showing the various potential behaviors that can occur when
P, changes.

Example 2. When P, is changed, we may observe different behaviors in the decision
variables. We now provide examples of the three possible behaviors that can occur when
we increase?,.

Example 2, Case A.jPand G, increase. In this case letC; =500, g, =2, g, =2,
C =2000,c; =100,c, =99,r =420,D =3000,d; =100,d, =10,s=1000,i, =1, and
P, =5. Here, the optimal solution B, =1824,C, = 30158, andR(P,, Cp,) =122188.

If we increaseP, from 5 to 6, we observe thd, increases to 19.1&;, increases to
3091.628, andR(P,, Cp) increases to 15006.61.

Example 2, Case B.;increases and gdecreases. For this example, suppo§g = 500,
Ja=2, gp=2, C=2000,c; = 350, c;=18, r =420, D =3000, d; =100, d, =99,
s=1000,i, =1, andP, = 15. We obtain an optimal solution &, =5.29, C, = 286944,
andR(P,, Cp) =2451026.

By increasingP, to 16, we find that the optimdP, increases to 5.34, the optim@l,
decreases to 2785.52, aRdP,, Cy) increases to 25312.3.

Example 2, Case C.;Rlecreases andgincreases. Inthis example, le€; =500,q, = 2,

gp =2,C =2000,c; =350,c, =99,r =420,D =3000,d; =100,d, =5,5s=1000,i, =1,

andP, = 3. The optimal solution i®; =5.36,C, = 1726814, andR(P,, Cp) =1181003.
By increasingP, to 3.3, we see thaP, decreases to &y, increases to 2156.558, and

R(P,, Cp) increases to 1867.28.

In Proposition 4, we discover that, when a firm has control over the price of one of
its products and the capacity level of the other, changes in the production costs of either
product have an impact on both decision variables. If the production cost of the product
over which we have price control increases, then we should raise the price on this product
and also increase the capacity of the other product. In this circumstance, the profit margin
of the product over which we have price control (prodayhas decreased. Consequently,
to counter the erosion of the profit margin, we raise the price for proéluathich in turn
increases the mean demand for prodBioivhich leads us to increase the amount of capacity
purchased for that product.

In essence, the firm is shifting some of its customer demand from prédogiroductB.

On the other hand, if the production cost increases on the product whose price we cannot
control, it is best to decrease its capacity and decrease the price of the other product. In this
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case, the firm essentially is dropping its price of prod¢d entice customers away from
productB, which has become relatively less profitable now that its production costs have
increased. This reasoning also explains why we decrease the price of pfodudtthe
capacity of producB when the capacity investment costs for prodBdhcrease. We also
discover that we will increase the price of prodécaind the capacity of produ@ if the

mean demand for produétincreases by a constant (i.e., the mean demand shifts upward).
In this situation, the market for produét essentially has increased and the firm is able to
gain additional profits by increasing its price and still sell more units. At the same time, the
increased price of produét entices some of the customers to buy prodaite., the mean
demand for producB increases) and thus the firm invests in more capacity for pra8uct

to meet the additional expected demand.

If the mean demand for produBtchanges in the same fashion, however, we will keep the
price of productA the same and increase the capacity for pro@ucthe additional demand
for product B clearly will lead to increasing the investment in capacity for prodBct
However, since the firm has no control over the price of prodicthe increase in the
demand for producB has no impact on the demand for prodédcand consequently the
firm has no reason to change its price for prodact Whenc,, which is a measure of
the price elasticity of demand for produ&t increases, we will decrease both the price of
product A and the capacity level for produ@&. In this case, the demand for produkt
becomes more sensitive to changes in the pricA,ado the firm optimally decreases its
price, which in turn leads to a decrease in the mean demand for pa@unct consequently
causes a decrease in the capacity level for proBuct

Whend; increases, however, we will not change the price of produtiut we will
decrease the capacity for prod@:tin this situation, the demand for prodighas become
more sensitive to the price of produBt and since the price of produBtis not controll-
able, the mean demand f& decreases and hence the capacity for pro®udecreases.
The price of producA remains unchanged because the demand parameters for pBbduct
have no impact on the demand or profitability of prodAdtecause the price & cannot
be changed.

If either c; or dy (which are related to cross-price elasticities) increases, we should
increases both the price of produttand the capacity for produ@; the reasoning in this
situation is the same as when there is an increase in the demand for pfodisciussed
earlier. When the capacity for produétis increased, then the price of producaind the
capacity for producB will decrease. In this case, the firm lowers its price of proditd
take advantage of the added available capacity, which in turn entices customers away from
productB and leads to a decrease in the optimal capacity of proBudl/e also observe
that, when the price of the product in the market in which a firm is a price taker increases,
the firm’s optimal strategy will differ depending on the relative sizes;0t;, d;, andds,
as shown in Example 2.

4. Pricing decisions: Two products with capacity constraints

We now examine the case where both products being manufactured have a given capacity
constraint and the firm must set prices for both of its products. The situation modeled here
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reflects the situation where the high investment costs for new capacity makes it unprofitable
to build new capacity (e.g., because it is forecast that the products are at the end of their
life cycles and therefore it is not possible to recoup the costs of new investment); therefore,
the firm can exercise only pricing control. We again will assume that the demands for
productsA andB are distributed uniformly and that the mean demands are linear in prices.
The profit function is now defined as

R(Pa, Pb) =7 (Pa, Pp).

Proposition 5.  Under assumption$ through5, the function RP,, P,) is concave in P
and R,.

Proof: The proof of concavity foR(P,, Py,) is similar to the proof of Proposition 3 shown
in Appendix A. O

Proposition 6. Under the assumptions of Propositién
1. If C increasesthen R and R, increase

2. If ¢ increasesthen R and R, decrease

3. If ¢y increasesthen R and R, increase.
Given the symmetry of the problethe parameters Dd;, and @ will exhibit the same
behavior as their counterparts previously.

Proof: The proofs of parts 1 through 3 are similar to the proof of Proposition 4 shown in
Appendix B. O

We now illustrate the different cases that are possible when the capagitgf changes.
Example 3. If C, increases, then any of the following cases are possible.

Example 3, Case A. Pand R, decrease. In this example, lelC; = 1000, C, = 1000,
0a=2, gb=2, C=2000, ¢; =50, c, =35, r =400, D =3000, d; =50, d, =35, and
s=>500. In this case the optimal solution B, =98.03, P, =10928, andR(P;, P,) =
174435.5.

If we increaseC, from 1000 to 1001, we observe that, with the preceding set of para-
meters,P, decreases to 9&, decreases to 109.27, aR{P,, P,) increases to 174474.30.

Example 3, Case B. Pand R, increase. In this case, suppogg, = 1000, C, = 1000,
0a=2, gb=2, C=2000,c; =1000,c, =18, r =400, D=3000,d; =21,d,=19, and
s=100Q In this case, the optimal solution B, =2.24, P,=90.91, andR(Py, P,) =
72452.92.

In this case, increasinG, to 1001, we find that the optima?, increases to 3.14, the
optimal P, increases to 92.22, ari(P,, P,) increases to 73461.97.
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Example 3, Case C. Rlecreases andFncreases. For this example, le€C, = 1000,
C,=1000,0,=2, g, =2, C=2000, ¢c; =60, c, =50, r =400, D = 3000, d; = 1000,
d, =19, ands=250. In this case, the optimal solution B, =2171, B,=2.86, and
R(Ps, Py) =1629395.

By increasingC, to 1001, we see thd®, decreases to 21.7@;, increases to 2.860694,
andR(P,, Py) increases to 16299.87.

Note that the case wheie, increases andP, decreases is not possible because this
strategy would adversely affect the amount of produbeing sold and thus would not help
the firm take advantage of the additional capacity. In fact, if the firm were able to improve
its profits using this strategy, it would have done so before adding more capacity. Since our
problem is symmetric irA and B, we see tha€y, can also exhibit the same behavior.

Example 4. When the production costs of the products change, we have more than one
potential outcome. We next show examples of how changggaffect our optimal pricing
strategy. Given the symmetry of the problem, the same outcomes can ocqgir for

As the product cost of produét (g,) increases, we have the following possible cases.

Example 4, Case A Rnd R increase. Inthisexample, le€, = 1000,C, = 1000,g, = 2,
0p =2, C =2000,c; =50, c, =35,r =400, D =3000,d; =50, d, =35, ands=500. In
this case, the optimal solution B, =98.03, P, = 10928, andR(P,, P,) = 174435.5.

If we increasey, from 2 to 3, we observe tha®, increases to 98.193, increases to
109.35, andR(P,, Py) decreases to 173578.5.

Example 4, Case B. HAncreases and jPdecreases. For this example, le€C, = 1000,
Cp,=500,0,=2,0,=1,C =2000,c; =50,c, =49,r =400,D =1000,d; =51,d, =49,
ands = 250. In this case, the optimal solutioni® = 58841, P, = 57696, andR(P,, P,) =
696029.8.

In this case, increasing, to 3, we find that the optimalP, increases to 588.42, the
optimal P, decreases to 576.95, aRiP,, P,) decreases to 695218.8.

It is clear that the case where both prices decrease is not possible, since it only would
adversely affect the profitability of both products. The case wiigrdecreases ang,
increases alsois not possible, since this strategy would have been pursued before the increase
in production costs if it were possible to increase the profit function’s value.

From Proposition 6, we discover that changes in the tegnd (related to price elasticity
of demand),c,, andd, (related to cross-price elasticities) have different effects on the
optimal pricing strategy. When a product’'s demand becomes more sensitive to changes in
its price, the optimal strategy is to decrease the price of both products. In this situation,
since the demand for the given product is more sensitive to the price of that product, the firm
will decrease the price of the product, which in turn reduces the mean demand of the other
product. However, to counter this drop in demand and overall profits, the firm also will drop
the price of the other product. On the other hand, if the cross-price elasticity for one of the
products increases, the optimal prices of both products increase. The intuition of this result
essentially is the opposite of the reasoning used to explain the case where price elasticities
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are increasing. When the available capacity for either product changes, the optimal pricing
scheme will be different, depending on the parameters of the mean demand functions. As
shown in Example 3, the values for the price elasticities, cross-price elasticities, and the
ranges of demand determine the optimal strategy that should be implemented. Similarly,
when production costs increase, a firm will either increase the price of the product whose
cost has increased and decrease the price of the other or increase both products’ prices.
Example 4 illustrates that the optimal strategy depends not only on the price elasticities,
cross-price elasticities, and ranges of demand but also on the available capacity and the
production costs for both products.

5. Individual-product optimal decisions

In the previous sections, we examined cases where a firm makes decisions about both of
its products’ capacities and prices simultaneously. We also assumed that the firm was
trying to maximize overall profits (from both product lines). However, often, firms have
separate brand managers for each product line and these brand managers are evaluated
based on the profitability of their product line alone. In that case, the brand manager
will make decisions to maximize profits of his or her own product line alone rather than
to maximize overall profits for the firm. In this section, we analyze how each of the
decisions analyzed in Sections 2—4 would be changed by the fact that they are made by
managers trying to maximize individual-product optimal decisions rather than globally
optimal decisions maximizing the sum of the profits from the two product lines. We therefore
differentiate between thglobally optimaldecisions in Sections 2—4 and timglividually
optimaldecisions in this section.

We also note that, in this section, we pay attention todiftker in which decisions are
made and announced. We show that this order is significant when both managers can make
only pricing decisions but the order does not affect the eventual decisions otherwise. We
explore various assumptions about the managers’ behavior as in the classical Bertrand,
Stackelberg, and collusion models of duopoly.

5.1. Capacity decisions

We return to the case in Section 2 where the firm determines the optimal capacities for
both of its products; however, we now assume that proddietsd B have their own brand
managers. Regardless of whether manager B makes its capacity decision first; the
profit function for the manager of produétis

Ca

Rl(Ca) = (Pa - Qa) ' Xa - fa(Pav va Xa) dXa
Ua(Pa, Po)—r

Ua(Pa, Po)+r .
+(Pa_Qa)'Ca'f fa(Pa, Po, Xa) 0% —ia-Ca
Ca

where f3(Pa, Py, Xa) = 1/2r andx, is the demand for produd.
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Similarly, productB’s profit function is defined as

Cp
Ro(Cp) = (Pb—p) - Xp - fo(Pa, Po, Xp) dXg
Up(Pa, Py)—s
Ua(Pa, Py)+s )
+<Pb—qb)-cb-/ fo(Pa. Py, %) 0% — ip - Cp
Cp

where fy(Py, Py, Xp) = 1/2s andx, is the demand for produd.

Proposition 7. The individually optimal @ and G, are the same as the globally optimal
C, and G, of Propositionl.

Proof: The result directly follows from the fact that the first order conditionsGgand
Cyp are the same as those in Section 2. O

Proposition 7 states that if brand managers can make only capacity decisions, even if they
make individually optimal decisions, they will end up maximizing global profits, as one
manager’s capacity decision does not affect the other’s decision. In the next subsections,
however, we show that when pricing decisions are involved (which affect the other product’s
demand as well), individually optimal decisions differ from globally optimal decisions.

5.2. Deciding on the price of A and the capacity level of B

We now examine the case where the optimal pricdoP;, and the optimal capacity for
B, C;, are determined.
The manager maximizing produéts profits has the following objective function:

Ca

Ri(Pa) = (Pa—0a) - Xa - Ta(Pa, Pp, Xa) 0Xa
Ua(Pa, Po)—r

Ua(Pa, Po)+r
+(Pa—Ga) - Ca- / a(Pa, P, Xa) da
Ca

where f3(Py, Py, Xa) = 1/2r andx, is the demand for produd@.

Note that the manager of produatdoes not care about the decision that the manager
of productB makes about the capacity for prodig:t However, the manager of produst
does care about the price of proddgtas this affects the demand for prod@ctTherefore,
the optimalCy, is a function of the optimaP, obtained by solving the previous first order
condition. ProductB’s profit function is defined the same &5(Cp) in the previous
subsection.

The first order condition oR.(P,) is

IR (Pa)  [CZ— (Ua(Pa, Pb)—r)z]+<Pa—qa)-[ca—(ua<Pa, Po) —1)]
Py 4r 2r

. dUa(Pa, Py) + Ca - [Ua(Pa, Po) +1 — Cq]
BPa 2r

=0.
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Rearranging terms and substituting in the functionsufaiP,, P,) andu,(P,, Py), we
can obtain the optimal value &.

Comparing the optimaP; in this case with the optimd?, derived in Section 3, we clearly
see that the optimal pricing strategy for prodéctliffers depending on whether individu-
ally optimal or globally optimal decisions are being made. The following example shows
globally optimal price and capacity levels can be significantly different than individually
optimal levels.

Example 5. Suppose tha€, = 1700,09, = 3,9, = 2, C = 2000,¢; = 60, c; = 50,
r = 400,D = 3000,d; = 55,d, = 40,s = 250,i, = 1, andR, = 77.98. We obtain a
globally optimal solution ofP, = 76.38, C, = 2002886, andR(P,, Cp,) = 22876118.
ProductA’s profits in this case are 94560.83. For the same parameters, the individually
optimal solutions areP, = 68.82 with a profit for productA of R(P;) = 10570113,
and consequentl€, = 1707.557 with R(Cy) = 11122407, resulting in a total profit of
216925.20. We see in this case that the manager of préduant improve the profitability of
productA alone by decreasing its price compared to the globally optimal price of préguct
however, this decreases the sum of the profits from both products.

Interestingly, in general, it is not true that the price of Proddeiways will be higher
and the capacity foB always will be higher when decisions are made centrally for both
capacity and price at the same time. The ordering of the solutions will differ based on the
values ofc,, ¢,, dq, dy, the profit margin oB, and the capacity of.

5.3. Pricing decisions

In Section 4, we discussed the case where a firm simultaneously sets the prices for both its
products. We now examine the case where managers for produans B set prices to
optimize individual product profits. Let us assume that the price of produstset first.

The profit function for produci will be the same as in the previous subsectiBn,P,).
However, as we can see, the optimal price Aodepends on what price will be chosen for
productB. Since we assume that all pricing and capacity information is known, the decision
maker for the price of produd can predict what produd’s optimal pricing strategy will

be after the decision is made regarding the pricA.oProductB’s profit function is defined

as

Ch
Ro(Py) = (P — O) - Xp - To(Pa, Po, Xp) dXp
Ub(PavPb)_s
Ua(Pa, Po)+s .
+<Pb—qb)-cb-/ fo(Pa. Po. o) d% — ip - Cp
Cp

where f,(P,, Py, Xp) = 1/2s and x, is the demand for produd8. Therefore, before
determining producf’s optimal price, we solve produ@'’s problem.
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The first order condition oRx(Py) is

IRy(Py)  [Ch— (Up(Pa, Po) —9)%] L (P =) [Co = Un(Pa, Py —9)]
P, 4s 2s
~0up(Pa, Py) . Cp - [up(Pa, Py) + 5 — Cy]
0Py 2s

=0.

From this equation, we can obtain an expression for the optimal price for pr&juct
which then may be used to find the optimal price for Productio find the optimal price
for ProductA, three different approaches are available: the Bertrand model, the Stackelberg
model, and the collusion model. In the Bertrand model, each product manager assumes that
the price of her or his product does not affect the price of the other. In the Stackelberg, one
manager follows the other’s lead in setting price. In the collusion model, both managers
act together to establish best prices for overall profit.

Bertrand model. In this approach, the manager of prodécassumes an optimal price of
productB, P}, as a parameter in the first order conditionRaf P,) to obtain

dR1(P)  [CZ— (Ua(Pa. P) —1)?]  (Pa—0a)-[Ca— (Ua(Pa, P¥) —1)]
= +
a Pa 4r 2r
9Ua(Pa, P) N Ca-[Ua(Pa, PY) +1 —Ca]
aPa 2r -

0.

The optimal solutionP;, was shown in Section 5.2, wheRg now is substituted with
Pz. The manager of produd follows the same procedure to obtain a price withas a
parameter. Solving the simultaneous equations for the two prices produces the result.

Stackelberg model. For this approach, the manager of proddetssumes that the manager
of productB is the price setter. We substitute the optirRglas a function of Rdirectly
into the functionR,(P;) to obtain

Ca

Ri(Pa) = (Pa—0a) - Xa - fa(Pa, PJ, Xa) dXa 4+ (Pa — 0a) - Ca
Ua(Pa, Py)—r

Ua(Pa, Po)+r
- / fa(Pa, P Xa) O

The first order condition for this function clearly differs from the Bertrand approach
shown previously sinc®; is dependent of?,. Therefore, the optimal price fok differs
from the price obtained in the Bertrand model.

We now illustrate these approaches. For analytical simplicity, we examine the case where
both products have unlimited capacity and the mean demand functions for Précartis
B areuy(Py, Py) = C — 1 P; + ¢oPy anduy(P,, Py) = D — d1 Py + d2 P, respectively,
and wherec; > ¢, d; > do, ¢; > dy, andd; > Co.
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Comparison.

Bertrand model. We begin by finding the optimal price of produBt In this case, prod-
uct B's profit function is defined as

R2(Py) = (Po — Ob) - Up(Pa, Pp).
The first order condition is

dUp(Pa, Py)
P, -

Ub(Pa, Po) + (Po — Op) - 0.

Rearranging terms, we obtain

D+ dzPa + qbdl

Ry = 2d;

We now solve for the optimal price for produét The profit function for producA is

R1(Pa) = (Pa — da) - Ua(Pa, Py).
The first order condition then is

dua(Pa, PY)
P, -

Ua(Pa, Py) + (Pa — Ga) - 0.

SubstitutingP;* into this equation and solving fd?,, we obtain the optimal price oA
to be

P — Dcy 4+ 2Cdy + 2¢1010a + C2010p
- 4c¢,d; — codo '

Stackelberg model. We again begin by finding the optimal price of prodi&ctThe profit
function for productB is the same as in the Bertrand model and hence the optimal price of
B, Py, will be the same expression.

The profit function for Producé is now defined as

Rl(Pa) = (Pa - qa) ' Ua(Pa, Pf,k)

SubstitutingP, into the profit function and solving fd, in the first order condition, we
now have the optimal price ¢k to be

p* _ Dc, +2Cd; + 2C1d1qa + CZdlqb — Czdzqa .
a 4C1d]_ — 2C2d2
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Setting both prices simultaneously (collusion)We now return to the model presented in
Section 4, where the product managers agree to set both prices simultaneously. In other
words, there is collusion in setting the prices for both products to optimize systemwide
profits. We present the optimal prices for the products where both products have no capacity
constraints.

The profit function in this case is

R(Pa, Py) = (Pa — 0a) - Ua(Pa, Po) + (Py — Op) - Up(Pa, Py).

The first order conditions are

a a Pas

Ua(Pa, Pb)+(Pa—qa>-%Pb) -0
a Pa’

Uo(Pa, P) + (P —qb>-—“t’(8pb ) _o.

Solving the equations fdP, and P,, we obtain

_ C + C10a — b0y

Pa* 2¢,
N (C2 + d2) - [2€1(D — Ca0a + diGp) + (C2 + d2)(C + C10a — d20p)]
2¢;[4cydy — (G2 + d2)7]
R = (C2+ ) - [2€1(D — Co0a + d1Gp) + (C2 + d2)(C + C1Ga — doho)].

4ci0h — (C + dp)?

Fromthe expressions inthe three models, we observe that the optimal prices obtained from
the model depend on the price elasticity and cost parameters. We next provide examples
where the optimal prices are different relative to each other based on these parameters.

Example 6. Collusion prices Stackelberg prices- Bertrand prices. Suppose), = 2,
0o = 2,C = 2000,¢c; = 60,c, = 30, D = 2000,d; = 60, andd, = 20. In this case we
obtain the following results:

Collusion Stackelberg Bertrand
P 29.63 24 23.04
Py 29.51 21.67 21.51

Example 7. Stackelberg prices Bertrand prices> collusion prices. In this case, let
0. = 100,q, = 2,C = 2500,¢; = 10,¢c, = 2, D = 2000,d; = 79, andd, = 10. The
resulting prices are
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Collusion Stackelberg Bertrand
P, 167.09 177.99 177.49
Py 20.89 24.92 24.89

Example 8. (Collusion price of A> Bertrand price of A> Stackelberg price of Aand

(Bertrand price of B> Stackelberg price of B- collusion price of B. For this example,
letg, = 2,q, = 70,C = 2500,c; = 60, ¢, = 50, D = 3000,d; = 55, andd, = 40. The
optimal prices are

Collusion Stackelberg Bertrand
P, 63.64 51.40 62.14
P, 71 80.96 84.87

From these examples, we may conclude that the timing of pricing decisions, the opti-
mization of individual versus systemwide profits, along with the relative sizes of the price
elasticities and costs can have different impacts on a firm’s optimal pricing strategy.

6. Conclusions and further research

In this paper, we address joint capacity and price decisions for substitutable products. We
show that pricing and capacity decisions are affected greatly by the actual parameters that the
decision makers can control as well as whether decision makers are optimizing systemwide
or individual channel profits. The analytical results we show are based on the assumption
of demands being uniformly distributed. These same conclusions also hold if we substitute
the bivariate normal distribution, provided the parameters used in the model satisfy the first
and second order conditions for concavity. However, further research should focus on more
general demand distributions.

Many research questions on pricing and capacity setting for substitutable products remain
open. For example, returning to the model in Section 2, an interesting model would be one
that assumes that produétis the higher priced product and that, if there is demand in
excess of the available capacity f8¢ a fraction &) of the excess demand will shift to
productB. In terms of filling orders for produdB, we assume that the firm will first meet
the demand for produds, and if there is any excess capacity, it will be used to fulfill as
much of the fraction of excess demand for prodéiets possible that has shifted overBo

In this case, the firm’s profit function is

Ca

R/(Ca, Cb) = (Pa - Qa) . Xa - fa(Pa, Pb, Xa) dxa+ (Pa - Qa) : Ca
Ua(Pa, Pp)—r

Ua(Pa, Po)+r
: / fa(Pa, Po, Xa) dXa + (Py — Op)
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Sb

Co Min[ S22 1 ¢, ua(Py. o)+ ]
Ub(Pa, Pb)_s a

X a(Xa — Ca) fa(Pa, Po, Xa) an:| fo(Pa, Po, Xp) dXy

Ua(Pa, Pp)+s

+<Pb—qb)~cb~/ fo(Pay Py Xb) 0% — ia - Ca — ib - Co
Co

Initial research has shown that this extension to the model in Section 2 requires several
conditions to ensure that the conditions for concavity hold. Another interesting case to
explore is where a firm has control over both products’ prices and capacities. (Preliminary
research shows these problems to be extremely challenging.) Furthermore, we consider
only a single period problem in this paper. Further research should also consider multiple
period problems.

Appendix A. Proof of concavity for R(P,, Cp)
Itis sufficient, as in Proposition 1, to show existence of a solution to the first order conditions

and to show that the HessiaH, of R(P;, Cy) is negative definite ovelP, > g, > 0 and
P, > gy > 0. The first order conditions are

OR(Pa, Cb) _ [C2 — (Ua(Pa, Py) —1)?] . Ca'[Ua(P, Py +1 —Cd]

0P, 4y 2r
n (Pa — 0a) - [Ca — (Ua(Pa, Py) —1)] ) 0Ua(Pa, Pp)
2r 8Pa
(Po —p) - [Co — (Up(Pa, Pb) —S)] dup(Pa, Py)
+ 2s TN 0 “)
IR(Pa, Cp) . [Up(Pa, Pp) +s—Cp] - (P — )
e, C —ip+ 7S =0. (5)

Solving these equations, we can obtain the optimal valueB.fandC,. For the second
order conditions, the terms &f are

Hoi — 32R(Paa Cv) _ [Ca— (Ua(Pa, Py) —1)] ) 0Ua(Pa, Py)
ST -V I r P,

(Pa— ) [(aua(Pa, Pb)

2
) —[Ca — (Ua(Pa, Py) = 1))

2r 0P,

9%Ua(Pa, Pp)
KL

2
) —[Cb — (Up(Pa, Py) —9))

2s 0Py

_ (Po— ) | (9up(Pa, P)
P2

92Uy (P, Pb)i|
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9°R(Pa,Cp) (P, — ) ~0up(Pa, Py)
aP,0C, ~ 2s P,
9’R(Pa,Cp) _ (Po— )
acz 2s

Ho; = Hpp =

Hoo =

The sufficient conditions for concavity are

f111 <0
H22 <0 (6)
HiiHao — HY > 0 (7)

For Hy;, notice thatdu, (Pa, Py)/0P; < 0 by assumption 3 and the capacity Afis
greater than the minimum realizable demand. The first term, therefore, is negative. The
second derivative elements in the next two termsHef vanish, so that two terms both
become negative and yield;; < 0. ForHy,, negativity follows by assumption 2.

Inequality (7) follows by first noting that thé % . 24Pe.?)12 terms fromH;; Hp, and
HZ, cancel. The remaining terms are ’

HiiHz — H2 = |:[Ca — (Ua(Pa, Pb) —1)]  9Ua(Pa, Pb)} . [_ (P — Qb)}

r P, 2s
. [<Pa — Ga) [aua(Pa, Pb)ﬂz' [_ (P —qb)}

2r aPa 2s

which is the sum of two positives by our previous arguments in the proof of (6). The result
follows.

Appendix B. Proof of sensitivity of P, and Cy, to a change ing,

The goal here is to identify the effect of changes in one parameter on the optimal solution
of the first order conditions in (4) and (5). To reflect changes in parameters other than the
decision variables, we add extra terms to the definitidR 86 thatR(P,, Cy) also is written
asR(Py, Cp, g2) when we explicitly consider changesdg.

In this case, the first order conditions in (4) and (5) are

va,Pa R(Pa» Cba Qa) = 07

whereVg, p, refers to the partial derivatives with respectGgpand P, alone. We suppose
the solution to (4) and (5) i&C;;, P;) whenda = q3.
In the following, we use the notatith)iy/Z for the partial differential operator given by

52
X0z
52
dyoz
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We next consider changes fraito g, = g3 + 8q,. The solutions of (4) and (5) then are
Pa = P + ép, andCyp = C}} + 8¢,. We wish to find the sign ofp, andéc, givensy > 0.

First, using the first order properties, implicit function theorem, and ¥, R(P;,
C¢, q2) = 0, we must have

O = VCb,Pa R( Pa, va qa)
= Vc,.p./p. R(Py, Cy, G3)3p, + Ve, /0, R(PS, Cp, A2)dc,
+ Ve,.p./a. R(PS, Cp, 02)dq, + €p,dp, + €c,dc, + €q.0q,

whereep,, €c,, andeq, all approach 0 ag,, approaches 0. For small changig, we
therefore seekp, andsc, to solve

Ve,.pa/Pa R(Py. Gy, 02)8p, 4 Ve,.pyc, R(Py, Gy, G2)dc,
=~ VCb»Pa/qa R(P*’ C;’ q;)BQa'
To simplify the notation, let

Hg, = [V, p,R(Pa, Cb. Ga)]

3?R(P,,Cp) 3?R(P,,Cp)

apP2 3P29Cp
®R(Pa,Cp)  3%R(Pa,Cp)
dP29Ch aC2

It is straightforward to show that the determinant of the malttix has the same sign as
the Hessian oR(P,, Cp) in the proof of Proposition 3, since the only addition has ben
to the P, terms of that matrix.

Therefore, we have

[ _s. 9R(PaCo)  9°R(Pa.Cp)

det Oa ~ 3P,00, 9P29Cp

€ _§, PR(PaCp)  ?R(P.Cp)
s |~ %% 3Cho0a aC2
Py =
detHg, > 0
_8 [[Ca—(ua(Pa~Pb)—r)] . 3Ua(Paan)] (Po—0p) . dup(Pa,Py)
Ga o 9P, 2s dPa
det 0
0 _ (Po—)

L 2s

detHg, > 0

Sincedu,(Ps, Py)/0Pa < 0, the preceding numerator always will be positive. Therefore,
asq, increasesP; increases.
The change iy, is

PRPuCY) g 0°R(PaCy)
aP2 Oa  9P,00
det| , )
PR(PLCp) 5 “R(Pa.Ch)
dP,0Cy Oa~ 9Cpdga

detHg, > 0
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™ [Ca—(Ua(Pa.P)—1)]  9Ua(Pa.Pb)

r BN

_ (Pa—Ga) ( 3Ua(Pa.Ph) 2 k) [Ca—(Ua(Pa,Ph)—1)] | dUa(Pa,Ph)
o 9P, Ga 2r " 9P,

det )

_(P—) (aub(Pa,Pw)

2s 9P,
(Po—0p) . 3Up(Pa,Pp) 0
_ L 2s P, ]
detHg, >0

Sincedu,(P,, Py)/dP,y < 0 andau,(Ps, Py)/dP, > 0, the preceding numerator again
is positive by assumption 3. Therefore,qgancreasesCy, increases.
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