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ABSTRACT

Four special cases of a quasi-geostrophic model are investigated to bring
out the way in which the baroclinic stability properties of wave disturbances
are affected by (a) the vertical wind shear, (b) the variation of the Coriolis
parameter with latitude (P effect), and (c) the static stability. It is found
that the vertical wind shear tends to make the waves unstable whereas the B
effect and the static stability tend to stabilize the very long and very short
waves, respectively. In addition the vertical structure of the wave disturbances
is discussed for each of the four cases,

A baroclinic stability analysis is also made for each of three special
cases of a model based on the primitive equations. By comparing the results
obtained with these three cases, it is found that the vertical wind shear and
the B effect play essentially the same role as in the quasi-geostrophic models;
the role of the static stability, on the other hand, is not investigated for
the non-geostrophic model. It is also found that the non-geostrophic effects
included in the model stabilize the very short waves. In addition to the solu-
tions corresponding to Rossby waves, solutions are also obtained for gravity
and inertia waves and the.effects of the vertical wind shear and the B term
on these waves are discussed.

The energy transformations taking place during the growth or decay of a
disturbance in a guasi-geostrophic model are then considered in an attempt to
throw some light on the nature of the physical processes responsible for baro-
clinic instability.

Treatments of model atmospheres similar to those discussed in this report
already appear in the meteorological literature, but here for the first time,
to the authors' knowledge, the various models are brought together and presented
in a unified manner. In the non-geostrophic cases there is the additional dif-
ference that we consider compressible and vertically infinite atmospheres.
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1. INTRODUCTION

The problem of determining the stability properties of a baroclinic at-
mosphere hag been extensively investigated in the past two decades. Charney
(1947) was the first investigator to show theoretically that a large horizontal
temperature gradient (or, equivalently, a large vertical wind shear) in the at-
mosphere could be responsible for the growth of wave disturbances. The inves-
tigations which followed Charney's study are so numerous that no attempt will
be made to summarize them here but the following short list of papers should
prove useful as a source of further references: Eady (1949); Fjdrtoft (1950),
Kuo (1952, 1953), Holmboe (1959), Burger (1962), ‘'Arnason (1963), Barcilon
(1964), Miles (196k4a,b,c),Huppert and Miles (1965), Pedlosky (1965), and
Bretherton (1966a,b).

Our main purpose in this report is to present in a unified manner a se-
ries of special cases of baroclinic instability which already appear in the
literature, The cases that we have chosen are those which can be solved analy-
tically in terms of elementary functions, using methods which are familiar to
the student taking a first course in Dynamic Meteorology. We hope, therefore,
that this report can be of some pedagogical value in helping the student bridge
the gap between the brief treatments offered in the standard texts of meteorol-
ogy and the detailed and often complex treatments given in the many papers on
the subject.

The cases which we have gselected fall in two main classes: (1) those based
on a quasi-geostrophic model (Chapter 2), and (2) those based on a "primitive
equations” model (Chapter 3). Using the quasi-geostrophic model we investigate
separately the effects of the vertical wind shear, the Beta term and the static
stability on the behavior of the perturbations. In resume, we find that the
vertical wind shear tends to make the perturbations unstable while the Beta
term and the static stability tend to stabilize the long and short waves, re-
spectively. In Chapter 2 we also make a special effort to help the student
visualize the perturbations by presenting a number of diagrams showing the am-
plitude and phase of the waves as functions of pressure along with vertical
cross-sections of the waves.

Within the framework of the primitive-equations model we study the effect
of the Beta term and find that it stabilizes the long waves, Jjust as it does
in the quasi-geostrophic model. In addition, we find that the ageostrophic
component of the wind tends to stabilize the short waves.

For all cases we assume that the perturbations consist of troughs and
ridges of infinite North-South extent. In the quasi-geostrophic model this
assumption is introduced only as a matter of convenience since the mathemati-
cal analysis could also be carried out without it but, as will become apparent



in the following chapter, this assumption introduces no loss in generality. In
the primitive-equations model, on the other hand, we make use of this assump-
tion in order to be able to solve the system of partial differential equations
by the method of separation of variables. As was pointed out by Phillips
(196L4), by neglecting the meridional variation of the perturbations we are prob-
ably neglecting some important non-geostrophic effects but, as we shall see in
Chapter 3, our simplified model can still demonstrate some features of non-geo-
strophic flow.

Finally in Chapter 4 we discuss briefly the energetics of our quasi-geo-
strophic model. More precisely, we derive the equations describing the time
rate of change of the perturbation kinetic and available potential energies
and discuss the general nature of the atmospheric motions taking place during
the growth or decay of a disturbance.



2. BAROCLINIC INSTABILITY IN A QUASI-GEOSTROPHIC MODEL

2.1 THE GENERAL EIGEN-VALUE PROBLEM

The model that we use in this chapter is based on the following simple,
but consistent, form of the vorticity equation:

g%+_\7-v(g+f) = fog-‘-; (2.1)

and the thermodynamic equation for adiabatic flow in the form
o AV L7 Ny L, O
(=) +V.v(&) +=w = 0 (2.2)
dt ‘dp v’ f

where t is the time, p the pressure, ¥ the stream function, f the Coriolis par-

ameter (fo a standard value), 3 = k x V¥ the horizontal wind vector, k the unit

vertical vector, ¢ =Vey = d2¥/dx2 + 32Y/3dy2 the relative vorticity, o = dp/dt,

0 = - @ dln 8/dp a measure of the static stability, a being the specific volume

and © the potential temperature. In our Cartesian coordinate system x increases
to the east and y to the north.

In (2.1) we have neglected the vertical advection of vorticity and the
terms expressing the turning of the vortex tubes (tilting-twisting terms),
which is equivalent to neglecting the vertical advection of momentum (w du/dp,
® Ov/dp) in the two equations of motion from which (2.1) is derived. On the
right-hand side of (2.1) we have also assumed the relative vorticity to be
negligibly small as compared to f and, for consistency (Wiin-Nielsen, 1959), we
have adopted a constant value of f. In (2.2) we have introduced the further
approximation that

g_% = fo% (2.3)

Where ¢ is the geopotential. The nature of this approximation was discussed
by Phillips (1958). Finally, it should be noticed that we have omitted all
reference to diabatic heating and friction.

In the following we assume that the flow consists of small perturbations
superimposed on a basic zonal current. The perturbations are assumed to be
periodic in both the east-west direction and time but independent of the y co-
ordinate, while the speed of the basic zonal current U is assumed to be a func-
tion of pressure alone. We can therefore write the stream function for the



total flow as

ve (pr) + V! (X;P)t) (2.&)

W(X)y:P;t)

1]

-U (p) ¥y + V' (%,p,t) (2.5)

where V° is the stream function for the basic flow and V' that for the per-
turbation.

Substituting (2.5) into (2.1) and (2.2) and neglecting products of per-
turbation quantities we obtain

2' 21 1 !
3 (¥ O (3 g L s W (2.6)

o ) + U LA
3t ox2 3 dx° 3x ° 3p

and

O () 4 po_ (v, _duov

: + 9w =0 (2.7)
ot dp ox Jp dp ox £

where B = df/dy is taken to be a constant. We notice that (2.6) and (2.7) are
linear partial differential equations containing only two unknowns, V' and w'.
Using the method os separation of variables we assume that the solutions have
the form

V' (x,p,t) ¥(p)ethl(x-ct)

I

(2.8)

(]

w' (X)P:t) Q(p)eik(x_Ct)

where ¢ is the phase speed, k = 2n/L is the zonal wave number and L is the wave-
length.

Substituting (2.8) into (2.6)and (2.7) we obtain

ik[k2(c-U) +plY - & = 0 (2.9)
and k(e-n) ok T v+ 9g - 0 (2.10)
dp dp fo



from which we can easily eliminate ¥ to arrive at the following differential
equation for §:

2
(c-U) (c-U + ) a8y [2(c-U) + B_jau at
k®  dp2 k% dp dp
2 2
S Eeu+B) o -0 (2.11)
fo K

For convenience we nondimensionalize the independent variable by sub-
stituting
P = P, P (0 < p, <1, p, = 1000 mb )

(2.12)
into (2.11) which then takes the form

2

(c-0) (c-u+E5) &2 4 Po(ey) + B 2
- k= dp, k= dpydpy
2 2
k=op 2
- 20 (c-U + B0 = o. (2.13)
fy k2

Equation (2.13) together with the boundary conditons
@ = Oforp = 0 and p, = 1 (2.13)
constitutes the general eigenvalue problem for Q and c.

We should recall at this point that the perturbations have been assumed
to be independent of the y coordinate, As mentioned in the introduction, this
was done only as a matter of convenience gince we could also have carried out
the analysis by assuming the perturbations to be periodic in the north-south
direction as well as in the east-west direction. In fact, it is easy to show
that if we had assumed the perturbations to be of the form

Y(p)ei(kx + Iy - ket)

Ilf'(X,y,p,‘t)

o' (X,¥,D,t) a(p)el(Ex + &y - ket)



where [ is the north-south waye number, then (2.13) would have taken the same
form except that the factor k= would have been replaced by (k2 + £2).

Neglecting the y dependence of the perturbations, our task will then con-
sist in finding the expressions for () and ¢ which satisfy both the differential
equation (2.13) and the boundary conditions (2.14). Since the speed of the
basic zonal wind, U, appears in the coefficients of (2.13), it follows that
we must know the analytic expression relating U to py. In the following sec-
tions we shall assume two different vertical wind profiles. In section 2.2
we consider the case where the basic zonal wind speed does not vary with pres-
sure (i.e., U = constant) which is tantamount, of course, to saying that the
basic state is barotropic. We emphasize, however,that even though the basic
flow 1s barotropic the perturbations can still be baroclinic.

After our investigation of the wave disturbances in a barotropic basic
state we proceed to an investigation of the wave disturbances in a baroclinic
basic flow, that is, one in which the basic zonal wind varies with pressure.
In view of the complexity of (2.13) we restrict our study to an atmosphere where
U varies linearly with pressure. Even with this simple linear relationship
between U and p,, however, (2.13) is so complex that no exact analytical solu-
tion has been found for it. Because of this we proceed by considering special
(solvable) cases of (2.13) in an attempt to gain some insight into the behav-
ior of the distrubances. .In section 2.3 we assume that U varies linearly with
pressure and that B = 0 = 0. This case is not a realistic one from the atmos-
pheric point of view but it serves a useful purpose as a basis of comparison
for the subsequent, more realistic cases. In section 2.4 we ingestigate the
effects of the B term on the characteristics of the disturbances. We do this
by essentially repeating our analysis of the previous section except that in
section 2.4 we gg take the B effect into account. Similarly, in section 2.5
we investigate the effect of the static stability on the disturbances by do-
ing an analysis similar to the one in section 2.3 except that in section 2.5
we include the o terms in our equations.

2.2 THE CASE U = CONST. > 0, o = CONST. > O, B = CONST. > 0O

Our treatment of the case where the basic zonal current has no vertical
shear and the static stability parameter, o, is constant follows the one given
by Wiin-Nielsen (1962) and differs only slightly from the given by 'Arnason
(1961) and Fleagle (1965).

The differential equation for {

2

d8 4,490 = o0 (2.15)

2
dp*



Wwhere q = - . (2,16)

is obtained by simply setting dU/dp, equal to zero in (2.13).
Considering first the case where
q >0,
corresponding to the inequality
2
U-B/x" <c<U, (2.17)

we can then write the solution of (2.15) in the form

Q = A sin @fa p,) + B cos Ofa p*) (2.18)

%)
where A and B are constants.
Using the boundary conditions (2,14) we then find that B = O and
Vo = mt, - m=+1,+2, ... (2.19)
so‘that (2.18) becomes
Q = A sin (mrpy) m o= +1,+2, ... . (2.20)
Turning now to the case where

qg<o0

we write the solution to (2.15) in the form

QO = Ae_\[-q Py + &' "9 Py (2.21)

The upper boundary conditdon gives
A+B = 0 (2.22)

while the lower boundary condition gives

P R R (2.23)



To satisfy (2.22) and (2.23) simultaneously we must then have
sinhvN-¢ = 0

which cannot be satisfied for any g < O, so that there is no solution to (2.15)
satisfying the boundary conditions when g is negative.

Finally, considering the case
q = 0 (2.24)
we can write the solution to (2.15) as

Q

1]

Ap* + B.

Using the boundary conditions we then find that A = B = O so that in this case
the solution is

Q = 0. (2.25)

The complete solution to (2.15), obtained by combining (2.25) for the
case q¢ = 0 and (2.20) for the case ¢ > 0, can then be written in the form

Q = A sin (mrp,), m = 0, +1, +2, ... (2.26)

which is merely (2.20) plus the case m = O.
Weisee from (2.19) and (2.24) that the possible values of q are given by
Vo = mx, mo= 0, +1, +2, ... (2.27)

Substituting (2,27) into (2.16) we then obtain the following expression for
the phase speed:

B /K"

2

c = U -
2 2
m-x fo

m = 0, +1, +2 .., (2.28)
1 +

pgkga

In Figure 1 the phase speed is given as a function of the wavelength, L =
Qﬂ/k, for the vertical modes m = O, 1 and 2. We emphasize that for the mode
m = O we have w = O but that for the modes m = 1 and 2, w has a sinusoidal
variation with pressure (see 2.26). By the equation of continuity,

@u oV AW

.——+_—=____,

ox Oy op
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Figure 1. Phase speed as a function of the wavelength for the vertical modes
m=0, 1and 2, Parameters: U = 15 m sec™l, ¢ = 2MI'S units, B = 16 x 10-12
m-1 sec-1,



this means that the horizontal divergence du/dx + dv/dy is identically zero
for m = O but not for m = 1, 2. As can be seen from Figure 1, the very short
waves travel at about the same speed for all modes but the ultra-long waves,
on the other hand, do not. For the nondivergent mode (m = 0) the ultra-long
waves travel westward very rapidly whereas for the divergent modes they are
found to travel eastward somewhat more slowly than the basic current.

Turning now to the structure of the waves, we note from (2.26) and (2.8)
1
that

ik(x-ct) (2.29)

w(x,pyst) = A sin (mrpy)e
so that op(x,0,,t) = A sin (mrp,) cos k(x-ct). (2.30)

In (2.30) and the following equations we use the subscripts r and i to denote
the real and imaginary parts, respectively, of a complex quantity.

By substituting o from (2.29) and c from (2.28) into (2.9) we then find
the following expression for ¥(p,):

Y(p*) = -1i D cos (mnp*) (2.31)
where
2.2
Afomn ( pok o ) ( )
D = —mm— (1 + -5 2.%2

Combining (2.31) and (2.8) we then find that the real part of the stream func-
tion is given by

Wr(x,p*,t) = D cos (mmp,) sin k (x-ct). (2.33)

We see from (2.30) and (2.33) that both the vertical velocity and the stream
function waves have amplitudes which vary with pressure but not with time so
that the disturbances are neutral.2 In addition we notice that the two waves

1. From now on we will omit the primes on w(x,p*,t) and w(x,p*,t).

2. As is commonly done in the meteorological literature, we use the terms
"stable" and "neutral" synonymously to characterize waves whose amplitudes
are independent of time.

10



have ridge (or trough) lines which are displaced horizontally from each other
by half a wavelength. As an example, the case for which m = 1 is depicted in
Figure 2 in the form of a vertical cross-section.

So far we have seen that when the speed of the basic zonal wind is constant
all the waves are stable and propagate with a speed which depends on both the
vertical mode and the wavelength. In the remaining sections of this chapter
we shall investigate the stability and structure of wave disturbances in an
atmosphere where U is no longer a constant but rather varies linearly with pres-
sure.

2.3 THE CASE dU/dp, = CONST, <0, 0 =8 =0
2.5.1 The Stability Analysis

As a first step in our study of wave disturbances in an atmosphere where
the basic zonal wind varies linearly with pressure, we shall consider a very
simple model in which the basic state has a dry adiabatic lapsé rate (i.e. 0 =
0) and in which the variation of the Coriolis parameter with latitude is neg-
lected (i.e. B = 0). We know from earlier investigations of similar models
by Fiprtoft (1950) and 'Arnason (1963) that the case we are about to present
is unrealistic from the atmospheric point of view. We shall nevertheless in-
vestigate it in some detail, considering it as a control case to be used as
a basis of comparison for the subsequent, .more realistic cases.

For the present case the differential equation relating the amplitude of
the w wave to the pressure, obtained by setting 0 and B equal to zero in (2.13),
takes the form

(c-U) —= + 2 —— = = 0. (2.34)

If we now assume that the variation of the basic zonal wind with pressure is
given by
U(p,) = Uy +Up (1-0p,) (2.35)

*

where Uy i1s the constant value of the zonal wind speed at the lower boundary
and

Up = - @ constant, (2.36)
dp,

we can then rewrite (2.34) as

11



Figure 2(a). Cross-section showing o as a function of py and x for the mode
m =1. The values have been normalized so that the maximum is 1. Parameters:
¢ = 2MIS units, B = 16 x 10712 m-1 sec-l.

[Iﬁ*jI

/)

(b)

o
o
T

Figure 2(b). Cross-section showing ¥ as a function of P, and x for the mode
m = 1. The values have been normalized so that the maximum is 1. Parameters:
o = 2MIS units, B = 16 x 10712 m-1 sec-l,
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(p, -1 +c,) -2=— =0 (2.37)
* * dgg dp,
c—UO
where cy = T (2.38)
T
The solution of (2.37) is easily found to be
ap,) = Alp, -1+c)’ +B (2.39)

where A and B are constants. Using the boundary conditions (2.14) we then
obtain the system

(2.40)

which has non-trivial solutions provided that the determinant of the coef-
ficients is equal to zero, that is, provided that

or

= %“i i\[g. (2.41)

If we then eliminate c, between (2.38) and (2.41) we find that the phase speed
is given by

T o= Uyt UTii*[%UT : (2.42)
Alternately we can rewrite (2.42) as
c— = U(1/2) +i\[:5~_- Up (2.43)
- 6
since by (2.35)
1,
U *5Up = u(1/2)

13



When c is complex, as in (2.43), we can write w as

ik(x-ct)

o(x,p,,t) = p,) e =

[a(p,) ekeyty . elk(x-cyt) (2. 4k)

which shows that the disturbance travels in the x direction at a speed given
by cy and undergoes a change in amplitude at a rate determined by kci. We
note from (2.43) that for the very simple case treated in this section all

waves travel at a speed given by U(l/2), the speed of the basic zonal current
at p, = 1/2 (p = 500 mb).

In discussing unstable waves, we will use the "e-folding" time T, defined
as the time required for the amplitude of the wave to change by a factor e, as
a convenient measure of the instability. We see from the expression within
the square brackets in (2.44) that

T o= _iz (2.45)
ke
i
+
which, after substitution for c; from (2.43), takes the form

2V
kUT

(2.46)

Using the hydrostatic equation we can express Up as

du p. dU

UT = - = 2 (2)4—7)

dp gp dZ

*

where g is the acceleration of gravity (9.8 m sec=2),p is the density and Z

is the height above ground. If we use a constant representative value of 0.5 x

1070 t w for p and take py = 1000 mb, (2.47) can thenbe written in the sim-
ple form

du

= av 2.48
Uz 2odZ (2.48)

where Up is in m sec™l and du/dZ is in m sec~l km~L, Finally, substituting
(2.48) into (2.46) we obtain
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CLU 0.32 L
dz Td

(2.49)

where Ty is the e-folding time in days and [ is the wavelength in thousands
of km,

Figure 3 is the usual stability diagram showing the graph of (2.49) for
various values of the e-folding time T. We note that all waves are unstable
but for a given wind shear the short waves are the most unstable. In addition
we see that the greater the wind shear the greater the instability. This
model is obviously not realistic from the atmospheric point of view since it
shows that the e-folding time approaches zero as the wavelength approaches zero,
indicating that even with a very small wind shear the short waves would amplify
with an extreme rapidity (the so-called "ultraviolet catastrophe"). As we shall
see in sections 2.5 and 3.4, this "ultraviolet catastrophe" can be removed by
considering an atmosphere which is either statically stable (0 > 0) or not quasi-
geostrophic,.

L S H R /8 B B B B B my I
- T=1/8 Day .
8 - T=1/4Day _
« F " T=1/2 Da -
E y
s g
l8 i |
£ T=1Da
- 4+ y —]
2N
oo | —
T=2 Days
2 - -
0 = R SN N U S N N NN M
J 2 4 6 8 10 12 14 16 18
Wavelength (103 km)
Figure 3. Stability diagram showing the variation of the e-folding time T as

a function of the vertical wind shear and the wavelength.
0.

2.3.2 THE WAVE STRUCTURE

Parameters:

B

=0

If we substitute the expression for c, from (2.41) and that for B from
the second part of (2.L0) into (2.39) we obtain, after some manipulation,
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+
o=(p,) = Ap(p, -1) (p, -

no |
| +
1
[
—
N
o
)
Q\

ik(x-ct)

so that w,, the real partcﬁlﬂ(p*)e , can be written in the form

+ -~
+ ket ¢ 1 \/
oz = Ae™CT p*(l—p*) [(; - p,) cos k (x-cpt) + =
sin k (x - cyt) ]
or
+ -+ +
w, = D7 cosfk(x-crt) - ol (2.51)
+ ol 1/2 .
where D= = AeKCTPp (1-p )(p° - p + 1) / (2.52)
¥ ¥ X *
+ _ r,+\/‘5'
and o = tan~t (= IR (2.53)

In (2.51) the upper and lower sighs correspond to the amplifying (ci > C) and
damped waves (ci < 0), respectively. The same notation will be used in all
our discussions of unstable waves.

To find an expression for the stream function $(X,p*,t) we first eliminate
Q(p%) between (2.50) and (2.9), neglecting the Beta term, and obtain

Af

.y .

o) = 2 6 6p 1133 (2p, - 11
2ikdp, (c*-1)

o s e
e then multiply both sides of this equation by elkiX-c t), substitute for o
from (2.43) and for Up from (2.48) and finally equate the real parts to obtain

+ + +.
V(x,p,,t) = E cos [k(x-c,t) - €7] (2,54)
where
+ 20 A £, du/dz .k o ;
= = > i (3p] - 3p, +1) (2.55)
V3 Pk’
(o}
3(2p -1) 7
and @i = tan™! 1 ( p*amli . (2.56)

+3
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The variation of the amplitude of w, and Vr with pressure, as given by
(2.52) and (2.55), respectively, can be found in Figure 4(a) where both ampli-
tudes have been normalized to have a maximum value of 1. Since D+/|D+]
D /|07 |,y 8nd E¥/|ET| = E7/|E7|pay  the normalized amplitudes shown in Fig-
ure 4(a) apply to both the amplifying and the damped waves alike., Both curves
are symmetric about the point p, = 1/2. We note that it is precisely at this
level that the amplitude of the stream function reaches its minimum value, just
as in case 1 (see Figure 2).

Figure 4(b) shows the variation with pressure of the phase angles o and
8 for the amplifying waves as given by (2.53) and (2.56), respectively. Just
as the normalized amplitudes of Figure M(a), these phase angles are independent
of the wavelength. We note that a range of 360 degrees in these phase angles
corresponds to a distance L (the wavelength) along the x axis. Thus we see
that the amplifying stream function waves, W+, slope westward by 120 degrees
or one third of a wavelength from p, = 1.0 to p. = 0. The o' waves, on the
other hand, slope westward by only 60 degrees or one sixth of a wavelength in
the same pressure interval.

In Figure 5(a) we present a vertical cross-section along the x-axis for
the o' wave as obtained from (2.51). Again all the values have been normalized
so that the maximum is 1. Figure 5(b) is a similar diagram for the stream func-
tion wave V' as given by (2.54).

2,4 THE CASE dU/dp, = CONST. < 0, B = CONST., 0 = O
2.4.1 The Stability Analysis

In this section we investigate the effect of the P term on the stability
and structure of baroclinic disturbances. As in section 2.% we assume that
0 = 0 (dry adiabatic lapse rate) and that the basic zonal wind varies linearly
with pressure as given by (2.35). Although our model differs slightly from
the one used by Fjgrtoft (1950) for a similar study, it yields essentially the
same results concerning the effect of the B term on the stability of the waves.

When (2.35) is substituted into (2.13) and 0 set equal to zero we find
that the differential equation for this case is

2
, d Q } aa
(p% + C% - l) (P% + c* -1+ CR*) = - [Q(P* + C* l) + CR*]"‘— = 0
dpy dp,,
(2.57)
. - B :
where Cpy = ~5— (2.58)
KR,
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(a) Normalized Amplitude

Figure 4(a). Normalized amplitudes of the wt waves (D/|D|psy) and of the V+
waves (E/|E|pax) as functions of pressure. These normalized amplitudes are
independent of the wavelength. Parameters: o =8 = 0.
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(b) Phase Angle (degrees)

Figure 4(b). Phase angle of the amplifying  waves (Q+) and of the amplifying
¥ waves (6+) as function of pressure. These phase angles are independent of
the wavelength. An increment of 360 degrees in the abscissa corresponds to

a distance of one wavelength along the x axis. Parameters: o =B = 0.
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Figure 5(a).

have been normalized so that the maximum is

Cross-section showing w' as a function of Py and X.

X——->

1.

Parameters:

The values
o=8=0.
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Figure 5(b). Cross-section showing ¥+ as a function of py and x. The values

have been normalized so that the maximum is 1. Parameters: o =8 = 0.
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and again cy, = . (2.59)

If we now let

e = (p, -1+ c*)/CR (2.60)
we can write (2.57) as
dEQ dq
E(E + 1)-—75 - (28 +1) — =0 (2.61)
ag ag
the solution of which can be found by standard methods to be
Q= A(% 2 +18) 43 (2.62)
2

where A and B are constants. With the new independent variable €, the bound-
ary conditons (2.14) become

c* -1
Q@ = Oat & = G
Ry
and ' (2.63)
Q = 0 at & = x|
CR*

Applying the solution (2.62) at the two boundaries we obtain

A[Cc*f-.l)3 . (c*-l)2

3 ]+B = 0
3Chx 202
and (2.6k4)
p) 2
A[C*5 +c*2 7+B = 0
BCR* 2Cp,

This system of equations has non-trivial solutions provided that the determin-
ant of the coefficients 1s equal to zero, that is, provided that
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or

cx = %(1 - Cry) * \E(Bc2 -1) . (2.65)

Rx

If we eliminate c, between (2.65) and (2.59) and note that C, = B/kQUT, we
obtain the following expression for the phase speed:

[3(382/K" - Uﬁ) 2

no
O\ll—‘

or

I+

1 2 1/2
= ud) gk_E Li3e? k" - u) (2. 66)

since by (2.35) U, + % Uy = U(1/2).

From (2.66) it is easy to see that the perturbatlons are stable (c real) if
362/x* - U

> 0 and unstable (c complex) if Bﬁg/k U° < 0. The stable
and unstable regimes are therefore separated by the condition

382/ - U o= o,

which can be written, using (2.48) and B = 16 x 1071¢ n~t -1

sec”—, as

W _ 506 4° (2.67)
az

where [ 1s the wavelength in thousands of km and dU/dZ is given in m sec

The plot of (2.67) appears as the heavy line labelled '"neutral curve" in Figure

6. To the right of this curve we have 362/11LL - U2 > 0 so that the waves in that

reglon are stable; to the left of the neutral curve, on the other hand, we have
7 < 0 and hence the waves in that region are unstable

Logmel,
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Figure 6. Stability diagram showing the variation of the e-folding time T as
a function of the vertical wind shear and the wavelength. Parameters: o = 0,
B =16 x 10-12 p-1 gec-1l.

As a measure of the instability we use again the e-folding time given by
+
T = 1/ke] . (2.68)

From (2.66) we see that the positive imaginary part of the phase speed is given
by

1 _ g2 ity 112
Pos g B - 3R]

which can be rewritten, after using (2.48), as

+ 3 au2 .2, 4.1/2
g = 7 H20 )" - 367/ (2.69)

If we now eliminate c'{ between (2.68) and (2.69), noticing that



B = 16 x 10712 1 gecl,

we obtain

au
az

02
10

0.0k 12 + 3.35 T('f)l/2 i (2.70)

where T_ is the e-folding time in days and [/ is the wavelength in thousands
of km.

Figure 6 illustrates the graph of (2.70) for selected e-folding times rang-
ing from one-eight of a day to one day. We see that to the left of the neutral
stability curve, the smaller the wavelength and/or the larger the vertical wind
shear, the more pronounced the instability. We recall that a similar result
has been obtained in section 2.3.1 where the B term had been neglected. In fact,
if we compare the stability diagram for section 2.3.1 (see Figure 3) with the
one given in Figure 6, we see that they are nearly identical in the short wave
domainj in other words, the B term has practically no effect on the e-folding
time of the short waves. The B term does have, on the other hand, the impor-
tant effect of stabilizing the long waves. We note also from Figure 6 that
the range of wavelengths which are stabilized by the B term increases as the
vertical wind shear decreases.

We recall from section 2.3%.1 that when both the B term and the 0 term
are neglected all waves are unstable and propagaté eastward with a speed U(1/2),
the speed of the basic current at p, = 1/2 or p = 500 mb., Figure T shows the
speed of propagation c,, obtained from 2,66, that is, for the case where the
B term is retained. The solid curve was computed using aU/dZ =2 m sec™! km~1
and U(l/2) = 10 m sec™l to simulate summer conditions white the dashed curve
was computed using dU/dZ = 4 m sec~l km~l and U(1/2) = 15 m sec-l to simulate
winter conditons.

We see from (2,66) and Figure 7 that in the unstable domain (i.e. for
B{SQ/J&LL - U% <0) Cp, the real part of the phase speed, is a single valued func-
tion which™tends to U(1/2) as the wavelength tends to zero. In other words,
as the wavelength tends to zero we revert to the phase speed obtained in the
model without the f term. Thus, as was also found to be the case for the e-
folding time, the speed of propagation of the very short (unstable) waves is
practically unaffected by the B term.

We algo see from (2.66) and Figure 7 that in the stable domain (i.e., for
Bﬁg/kLL - Ui > O) Cy is a double valued function of the wavelength. In our no-
tation, c;*and c; refer to the real part of the phase speed obtained by choos-
ing the upper and lower signs, respectively, in (2.66). It is interesting to

note that
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Figure 7. Phase speed as a function of wavelength for the case 0 = 0, B = 16
x 10712 n"L sec=l, For the solid curve dU/dZ = 2 m sec™t km~t, U(1/2) = 10 m
sec™l and U(1/2) = 15 m sec™L.
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+ -
c > U(1/2) and ¢~ » - was L > o
I r

The very long waves, in other words, tend either to propagate eastward at the
speed of the basic current at p, = 1/2 (p = 500 mb) or to retrogress rapidly
just as the non-divergent waves (mode m = 0) in section 2.2 (see (2.28) and
Figure 1).

2.4,2 The Wave Structure
We can obtain a convenient expression for { as a function of 129 by first

eliminating & and B from (2.62) using (2.60) and the second part of (2.6k4),
réspectively, and then eliminating c, from the resulting equation by means of

(2,65)., The result is
N
Dy(p,-1) (2p,-1 £ 5(BCR -1)) (2.71)

j " R«
6CR* ‘

Qi(P*) =

where again (see (2.58) and (2.48))

auy |

37 (2.72)

Cp, = B/(x°Up) = B/(20%?

To obtain aw(x,p*,t) we multiply both sides of (2.71) by eik(x-ct) 4pq equate
real parts.

For the unstable domain (i.e. for BCi* - 1 <0) the result is

w? (%,py,t) = D~ cos [k(x-c,t) - ai] (2.73)
where
+ I
ket
oo 210 L 1o Vi, (1o - 9%, (2.74)
6C2x
and ,
V (1 c; )
o = tan-l EPULSCRe (2.75)
1-2py

For the stable domain (i.e. for 5C§* - 1>0), on the other hand, we ob-
tain
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" +
wf (x,0%,t) = B~ cos k(x-ct) (2.76)
where

BY = =5 by (p,-1) [ep,-lx 3(3¢51)] . (2.77)

If we refer to Figure 6 we find that for a vertical wind shear dU/dZ of
b m sec™t kmL any wave with a wavelength of about 10,700 km or less is unstable.
The normalized amplitude D/]Dlmax for each of two unstable waves (L = 6000 km
and.L = 10,600 km) appears as a function of pressure in Figure 8(a). Since
D+/|D+|max = D7/|D7| s the curves shown in this figure apply to
both the amplifying and the damped waves alike. In Figure 8(b) the phase angle
at (corresponding to the amplifying wave), as given by (2.75), appears as a
function of pressure again for L = 6000 km and L = 10,600 km.

We note that for L = 6000 km the variation with pressure of the amplitude
of the o’ waves is very similar to the one given in Figure 4(a) for the case
where the B term had been neglected. In addition, Figure 8(b) shows that the
o’ wave slopes westward with decreasing pressure in very nearly the same man-
ner as the w' wave in Figure 4(b) (curve labelled a¥). We can then conclude
that for a wavelength of 6000 km the B term has nearly no effect on the struc-

ture of the w' wave.

If we consider a wave with L = 10,600 km, however, we see from Figure 8(a)
that the amplitude of the w' waves has two maxima, one at about p, =0.25 (p = 250 mb)
and the other at about p, = 0.75 (p = 750 mb). From Figure 8(b) we notice that
as the wavelength of the unstable o' disturbances increases their slope with
pressure also increases. We should keep in mind, here, that a range of 360
degrees in the abscissa of Figure 8(b) corresponds to one wavelength.

A cross-section showing wt, for L = 10,600 km, as a function of p, and
X can be found in Figure 9. This cross-section should be compared with the
one appearing in Figure 5(a) for the case when the B term is neglected. Again
we see the two-fold effect of the B term on the structure of the wt wave, namely,
the increase in slope with pressure and the change from a single maximum in
the amplitude at p, = 1/2 (p = 500 mb) to two mexima, one at p, = 0.25 (p =
250 mb) and the other at p, = 0.75 (p = 750 mb).
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Figure 8(a). Normalized amplitude of the unstable w + waves as a function of
pressure for wavelengths of 6000 km and 10,600 km. Parameters: o = 0, B = 16
x 16712 p°1 sec™l, qu/dz = b m sec™t xm ™t

0.0

0.2

0.4

0.8

1.0
10 30 50 10 90 110 130 150 170 190

(b) o Phase Angle of w (degrees)

Figure 8(b). Phase angle of the amplifying w wave as a function of pressure
for wavelengths of 6000 km and 10,600 km, Parameters: o =0, B = 16 x 10-12
mL sec-l, AU/dZ = 4 m sec~l km-1,
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Figure 9. Cross-section showing w'as a function of p and x for a wavelength
of 10,600 km. The values have been normalized so tha% the maximum as 1. Para-
meters: o =0, B = 16 x 10712 m"L sec-l, au/dz = 4 m sec-l kmL,

Having examined the structure of some unstable w waves, we now turn our
attention to the longer, stable wi waves whose structure is given by (2.76)
and (2.77). First we notice from (2.76) that these stable waves do not slope
with pressure, just as the stable waves of section 2.2. Moreover, we note that
for a given wavelength we have two wave solutions to our equations, one given
by Bt cos k(x-c™t) and the other by B~ cos k(x-c™t). We recall that both phase
speeds, ct and c”, are functions of the wavelength and that et > ¢~ (see Fig-
ure 7). The normalized amplitudes for w, B+/]B+|maX and B_/IB—lmax’ appear
as functions of pressure in Figure 10(a) and (b), resvectively, for three dif-
ferent wavelengths. The curve labelled Iy in each diagram gives the normalized
amplitude of a wave on the neutral stability curve, where Bﬁe/k U2-1 = 0 or
302-1 = 0 (see the equations preceding (2.67)). We see from (2.7T7) that for
the*wavelength Iy we have B+/|B+lmax = B'/IB'I , as 1s also evident in Fig-
ure 10(a) and (b). For this wavelength B* and BX are large and positive at
p, = 0.2 (p = 200 mb), zero at p, = 1/2 (p = 500 mb) and large and negative
at p, = 0.8 (p = 800 mb). For a wavelength of 18,000 km, however, we note that
B* has a single minimum at about p, = 0.55 (p = 550 mb) while B~ has a single
maximum at about p, = 0.45 (p = 450 mb).
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Figure 10(a). Normalized amplitudes of the stable w' wave as a function of
pressure. The curve labeled 1, refers to a wave on the neutral stability curve.
Parameters: o =0, p = 16 x 10-12 n ! sec-1, au/aZ = 4 m sec™l km-1,
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Figure 10(b). Same as Figure 10(a) but for the stable w~ wave.
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Our next step is to study the structure of the | waves. A convenient ex-
pression for W(x,p*,t) can be obtained by first eliminating Q(p*) between (2.9)
and (2.71) and then substituting for ¢ from (2.66). Finally we multiply the
resulting equation for Y(p*) by eik(x-ct) ang equate the real parts.

2
For the unstable domain (i.e. when 3Cp,-1< 0) the result is

+ + +
V(x,0%,8) = F cos [k(x-c,t) - 67] (2.78)
where
ket
AT e
- —— - o +a5  (2.79)
6030 [oF + (cp - U + B/K°)?]
6" = tanl [2] (2.80)
o
+
o = -ci(60y-6p,#1)+(c,-08/K%) \3(1-305 ) (2p,-1)

(2.81)

ay = (e, -Usp/x%) (602-6p,41) +eT \B(1-303,) (2p 1)

(2.82)
s
and cy and c; can be obtained from (2.66).
2
For the stable domain (i.e. when 3cgy-1> 0), obtain
q;f (%,05,t) = GF sin k(x-ct) (2.83)
where
5 —
N Ay 6, + {3368, -1) (ep,-1)-6p, + 1 -
5 0 2 '
k - -
CaxPol Up  6bp, % Vi(ch* 1) +3(cp -1)
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Figure 11(a). Normalized amplitude of the unstable X waves as a function of
pressure for wavelengths of 6000 km and lOi6OO km., Parameters: o =0, B =
16 x 107tep L sec'l, dU/az = U4 m sec™ xm

0.0 — T ] T 1 T 1T T 1

0.2~

0.4

e [ 1=10.6
0.6 —

0.8

1.0 A AN N AN N NN (NN NN NN (R N N |
-90 -10 -0 -30 -10 10 30 50 70 %
(p) 8% Phase Angle of ¥ (degrees)

Figure 11(b). Phase angle of the amplifying V¥ wave as a function of pressure
for wavelengths of 6000 ¥ and 10,600 km, Parameters: o =0, B = 16 x 10712
m-l sec-l qU/AZ = L m sec” k™t
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We see from (2.79) that for a given wavelength the normalized amplitude
of the amplifying wave, F /|F lmax: is identical to the normalized amplitude
of the damped wave, F /|F | This normalized amplitude, denoted by F/|F|
for convenience, appears as a functlon of pressure in Figure 1l1(a) for wave-
lenths of 6000 km and 10,600 km. For both wavelengths the maximum in the am-
plitude appears at b, = 0, while the minimum progrésses to higher pressures
as the wavelength increases. The slope of these waves with pressure is given

y (2.80). Figure 11(b) shows the plot of 6%, the phase angle of the amplify-
ing wave, as a function of pressure for the same wavelengths as above.

To find the effect of the B term on the structure of the amplifying V¥
waves, we compare the curves of Figure 11 to those referring to the stream func-
tion in Figure 4. TFor a wavelength of 6000 km we note that the main effect
of the B terms is to modify the variation of the amplitude with pressure
whereas only a small effect can be found on the slope of the wave. The other
curves in Figure 11 reveal that the B term becomes more important as the wave-
length increases. The wave with L = 10,600 km is seen to be quite different
from the one shown in Figure 4 in the variation of both the amplitude and the
phase angle with pressure. A cross-section of this wave can be found in Fig-
ure 12, The effects of the B term can again be visualized by comparing this
cross-section to the one found in Figure 5(b). We note in particular the dif-
ference in the amplitudes near p = 1,0 (p = 1000 mb) and in the slopes near
P, = 0.8 (p = 800 mb).
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Figure 12. Cross-section showing V™ as a function of Py and x for a wavelength
of 10,600 km, Parameters: o =0, B = 16 x 10-12 m sec~l km7l, dU/dZ = 4k m
sec™l km-1,
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The longer, stable ¥ waves can have either of the two amplitudes given
by (2.84), The normalized amplitudes G+/1G+!max and G_/IG']max are shown in
Figure 13(a) and (b), respectively. Just as in Figure 10, Iy refers to a
wavelength falling on the neutral stability curve where, we recall, 302 -1 =
0. We note in Figure 13(a) that for all wavelengths G' is large and nggative
in the upper levels while its value at p. = 1 (p = 1000 mb) is positive and
increases with the wavelength. From (2.83) we see, therefore, that these waves
consist of a series of alternating vertical troughs and ridges in the upper
levels, lying above a series of alternating vertical ridges and troughs in
the lower levels, in about the same manner as the | wave shown in Figure 2(b).
The ¥ waves with amplitude G~ differ from those with amplitude G+ in that for
very large wavelengths G~ remains negative for the entire pressure interval
0<p, <1 (Figure 13(b)). These very long waves, therefore, consist of alter-
nating vertical troughs and ridges which extend throughout the atmosphere.

2,5 THE CASE dU/dp* = CONST. <0, B = 0, 0 = CONST,
2,5,1 The Stability Analysis

Our objective in this section is to investigate the effect of the static
stability parameter ¢ on the stability and structure of baroclinic disturbances.
As in section (2.3) we neglect the variation of the Coriolis parameter with
latitude (i.e. B = 0) and assume that the basic zonal wind varies linearly with
pressure as given by (2.35). A similar study, we note, was made by Eady (1949)
using a slightly different model.

When the assumptions mentioned above are introduced in (2.13) we find that
the differential equation for { becomes

2 2_ 2
(p-l+c)g‘._ﬂ_2.d_9___l,§__d_pﬁ.(p-l+c)ﬂ=o (2.85)
* * 2 ) * *
where again
c-Uy
C =
If we now use
Ex = p -l+tec, (2.86)
and
2
k=0
@ = 2o (2.87)
fe
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Figure 13(a). Normalized amplitude of the stable V' wave as a function of
pressure. The curve labeled ly refers to a wave on the neutral stability
curXe. Parameters: o0 =0, B = 16 x 10712 m™1, sec-l, qU aZ = 4 m sec™t
km™,

0. 0gT T T T T T T T

L L L L
0.2

0.4

Px
0.6

Figure 13(b).

0.8

1.0

-10-8 -6 -4 -2 0

=18

b~

T I T T VIO

2=11"

]

|

£=£N

[ V|

(b)

2 .4

67116 T max

I
.0

|
.8

1.0

Same as Figure 13(a) but for the stable ¥~ wave.

3k



we can rewrite (2.85) in the form

L o8 2xg oo, (2.88)
ae* ae*

With the new independent variable &*, the boundary conditons (2.14) become

Q = 0 for ¥ = cy -1
and
Q = 0 for &% = cy . (2.89)

The solution to (2.88), which can be found in Kamke (1943, p. 539, case 5.6),
is

0 = & a_ u 2.90
2 4 () (2.90)

where u is the solution to the equation

that is,

*
u = Aqu + Be~q&¥

where A and B are constants. If we substitute this expression for u into (2.90),
we arrive at the general solution to (2.88):

0 = 2e98¥(ge* - 1) - Bea8¥(qex + 1), (2.91)

Introducing the boundary conditons given by (2.89) we obtain

AeQ(C*‘l) [a(cyg-1)-1] - Be”Q(C*‘l) [q(c*-l)+l] = 0
and (2.92)
Ae9Cx (qc*-l) - Be-dCx (qc*+l) = 0.
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This system of equations has non-trivial solutions provided that the determinant
of the coefficients is equal to zero, that is, provided that

M) (ge 10-1)e™x (ge 1) 4ex(ae, 1)e 804D

(geg-a+l) = O,
or

gc, -dc, - (1L -qcothg) = 0,

which has the solutions

£ 11
c = -—+-«’\/€ 2.
" St3 (2.93)
where
N
5 = 1 + 3 (1 - q coth q) (2.94)
a
We recall that
C:UO
> T 1
T

so that eliminating c, between (2.93) and this last equation we obtain

U
+
c = U + L U + —E*Jg
o 2 T7»o
or
* 1, . U
= = U(p) £ 5B . (2.9)

From (2.95) we see that the perturbations are stable (c real) if & >0
and unstable (c complex) if & < 0. The stable and unstable domains are there-
fore separated by the conditon & = O, which can be rewritten, using (2.94),
as

tanh @ = ~Eg— .

q°+h
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The solution to this transcendental equation can be found by trial and error
to be approximately

qa = 2.h4o.
1 1
2 )
Since by definition q = o kpo/fo = 2710 pO/Lfo
1/2
21 PA0
we have L = a—gge———
R. 40 £y
or L =370 x lO5 km

if we take 0 = 2 MI'S units. The wave length Iy = 3.70 x 105 km, therefore,
represents the "neutral curve" separating the stable and unstable domains.
This result, we note, depends on the static stability o but not on the ver-
tical wind shear, The curve LN = 3,70 % 10° km appears as the 1 heavy line in
Figure 14, For L < LN we have & > 0 so that the waves are stable whereas for
L > Ly the reverse applies.

The e-folding time T = l/kc of the unstable waves can be computed by not-
ing from (2.95) that the p031t1ve imaginary part of the phase speed c is given
by

Un  —
cT S J-5
1 2
so that T = mé_ . l
Kp (% (2. 96)

where & is given by (2,94). Alternately, if we recall that UT =20 dU/dZ we
can write (2,96) in the following more convenient form:

U (2.97)

az 10kT N -5

Figure 14 shows the plot of (2.97) for selected values of T. The curves show
that for a given vertical wind shear there is a certain wavelength for which
the e-folding time is smallest. This wavelength would therefore grow faster
than the others and hence may be called the most unstable wave. By inspection
of Figure 14 we find that for our model this wavelength is approximately 5.53
x 107 km, independently of the vertical wind shear.

To gain an insight into the effect of the static stability on the be-
havior of the perturbations we should compare the stability diagram in Figure
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14 to the one shown in Figure 3 which applies for the case where o is set equal
to zero,

10 T ) T Y17 T 7 T T T T T 2T T 1
i | | T=1/2 Day i
Neutral Curve | Most Unstable
ol r .

= L |
€ I
= |

g |
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Wavelength (103 km)

Figure 14, Stability diagram showing the variation of the e-folding time T
as a function of the vertical wind shear and the wavelength. Parameters: o =
oMIS units, £, = 10°% secl, B = o,

We see that the most important effect of the static stability is to stab-
ilize the very short waves. The longer waves are still unstable but the rate
at which they amplify is now lower, especially for wavelengths not much larger
than 3.70 x 10° km. For example, let us consider a wave with L = 4500 km and
a wind shear of 3 m sec'l km'l. When 0 = O we see (Figure 3) that the e-fold-
ing time is about 1/2 day whereas when 0 = 2 (Figure 14) it is one day. For
the longest wave shown, however, the two diagrams are very similar, indicating
that the 0 term has a negligible effect on the growth rates of these long waves.

The speed of propagation of these stable and unstable waves, as given by
(2.95), appears as a function of wavelength in Figure 15. The dashed curve
was computed using U(l/2) =15m sec™t and dU/dZ =4 m sec™t km~l while the
solid curve was obtained using U(1/2) = 10 m sec™l and du/dz =2 m sec™ xkm1,
In the stable domain (5 > 0) we have two possible values for ¢ since we can
choose either sign in front of the last term in (2.95). In the unstable do-
main (3 < 0), however, c, 1s #ingle valued and equal to U(1/2), the speed of
the basic current at p, = 1/2 (p = 500 mb). We recall from section 2.3 that
when both the B term and the 0 term are neglected all the waves are unstable
and propagate with a speed U(l/2). Thus the inclusion of the o term does not
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change the speed of propagation of those waves which are too long to be stab-
ilized by it. It does, however, as we have seen above, change the rate at
which they amplify.

60 et
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Figure 15. Phase speed as a function of wavelength for the case 0 = 2MI'S units,
B = 0. For the solid curve dU/dZ = 2 m sec™! km~1 and U(1/2) =10 m sec'l,
while for the dashed curve dU/dZ = 4 m sec™ km™® and U(1/2) = 15 m sec™L.

2.5.2 The Wave Structure

To study the structure of the w wave we start with (2.91) from which we
eliminate £* by means of (2.86) and B by using the second equation in (2.92).
The result can be expressed in the form

+ * 2+ + .
27 (p,) = I {[1-q"c(p, + ¢, - 1)] sinh q(1-p,)
- a(1-p,) cosh q (1-p,)]} (2.98)
+ qc’t
where J = _g_é.g_i-l-.
1+ acy
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+ .
and ¢y are given by (2.93). We then multiply (2.98) throughout by elk(x-ct)
and equate the real parts.

In the stable domain (& > 0) the resulting equation is

+ + x
o (x,p,5t) = K cos k (x-ct) (2,99)
where
qcy
: + .
k= - 2Ae"¥ ([1 - qgc;(p* +c, - 1] sinh q(l-p*)

1+ qc;

-q(1-p,) cosh q(1-p)} - (2.100)

.|.
= +
In the unstable domain, where ® is negative and cy, and c— are complex,

the expression for w, takes the form

+ x + _
wr(x,p*,t) = Q cos[k(x-c, t)-0"] (2.101)
where
‘ k i%
+ 2 AelCyr o%Cy +
& - AefBy 2e 12 . [(aM - biN—)g + (biM + aNi)]l/g
(1tac,y)” + a%cl,
- + t oin qot
a = (1+ qc*r) cos q o, +qey, sin A
bt = —qe™ cos gor, + (l+gc ) sin ci
_q‘*i q*i q*r q*i
M = (®le (p +c -1) -c® 1-1} sinh q(1-p )
XK x4y ¥ *
+ q(1-p,) cosh q(1-p)
+ gi_ .
N = g%, (p, + QC*r—l) sinh q(l-p*)
and
+ b+ alr
o~ = tan-l ["135;;24*] . (2.102)
b~™N— - aM
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We see from (2,99), which applies for the stable domain, that for a given
wavelength we can have two distinct w waves, one with an amplitude K" and a
phase velocity ¢" and the other with an amplitude K~ and a phase velocity ¢~ .,
We note also that these waves do not slope with pressure. The normalized
amplitudes K+/!K+|max and K_/]K"]maX appear in Figures 16(a) and (b), respec-
tively, as functions of pressure., We see that for short wavelengths the Kt
and K~ amplitudes attain their maximum absolute values in the upper and lower
levels, respectively, the value of one amplitude at 199 being equal to the
value of the other one at 1 - p,. As the wavelength increases to 3700 km we
notice that the maximum absolute value in both K* and K~ is reached at p, =
1/2 (p = 500 mb).

For the longer unstable waves, wi(x,p*,t) are given by (2.101), where «'
and ®w~ refer to the amplifying and daﬁped waves, respectively. It should be
pointed out that the normalized amplitudes Q'/[Q*| .y 8nd Q7/[Q7 g, 8re identical
so that Figure 17(a), which shows the normalized amplitude as a function of
pressure, applies for both the amplifying wave and the damped one. The remark-
able feature about these normalized amplitudes is that they vary very slowly
with wavelength. Moreover, both curves shown in Figure 17(a) are quite similar
to the ones given in Figure 16 for a neutral wave with L = 3700 km.

We should also note that the amplitudes of these unstable waves vary with
pressure in very nearly the same manner as the amplitude of the unstable waves
discussed in section 2,32, where the 0 term had been neglected (see Figure 4(a)).
We can therefore conclude that within the framework of our quasi-geostrophic
model the static stability of the basic flow does not affect appreciably the
way in which the amplitudes of the unstable w waves vary with pressure. Now
it remains to be seen whether or not the static stability can significantly
change the slope of these waves with pressure.

We mentioned above that for a given wavelength both the amplifying and
the damped waves have the same normalized amplitude |QI/]Q[maX. The same, how-
ever, is not true for their phase angles. Since the damped wave is of little
interest, only the phase angle of the amplifying wave, that is, o as obtained
from (2.102), is presented in Figure 17(b). To find the effect of the 0 term
on the slope of the waves, the curves of Figure 17(b) should be compared to
the curve labelled of in Figure 4(b). We recall that the latter was obtained
with 0 set equal to zero. We see that the effect of the 0 term is to decrease
the slope of the waves but that this effect is felt to a smaller and smaller
degree as the wavelength increases. Thus we can conclude that the static
stability of the basic current dces not affect appreciably the slope of the
very long waves. Since we have reached the same conclusion above concerning
the effect of the 0 term on the normalized amplitudes of the waves, we can then
say that the static stability of the basic flow, important as it may be in deter-
mining the structure of the short « waves, does not play an important role in
determining the structure of the very long amplifying w waves.

As in the previous sections, we follow our investigation of the w waves
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Figure 16(a). Normalized amplitude of the stable w* wave as a function of
pressure for wavelengths of 2000 km, 3000 km and 3700 km. Parameters: 0 =
2MTS units, B = 0.
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Figure 16(b). Same as Figure 16(a) but for the stable w~ wave.
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Figure 17(a). Normalized amplitude of the unstable w™ waves as a function of
pressure for wavelengths of 4000 km and 18,000 km. Parameters: o = 2MIS units,
B = 0.
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Figure 17(b). Phase angle of the amplifying w wave as a function of pressure
for wavelengths of 4000 km and 18,000 km, Parameters: o = 2MIS units, B = O.
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with a similar investigation of the ¥ waves. To obtain an analytic expression
for the stream function, we first substitute (2.98) into (2.9) with B set equal
to zero. After making use of (2.35) and (2.38) to rewrite c-U as U, (px + c, - 1),

T
we obtain the following expression for T(p*):

i 2 Af g2edCy
¥(p,) = = <k [sinh q(1-p,) - qe_ cosh q(1-p )]
k pOU(l +qe,)

The real part of the stream function, wr(x,p*,t), is then obtained by multiply-
ing both sides of the last equation by eik(X-ct) and equating the real parts.

In the stable domain, where & is positive and both c and c, are pure real,
the result is

+ + +
¥ = (x,p4,t) = R sin k(x - c7t) (2.103)
T
where
5 x
3 dCux
+ 2 Af.q e +
R = =9 . [ac, cosh q(1l-p,) - sinh q(1-p,)].  (2.104)
kBpOUT(l + qcf)

In the unstable domain, however, where & is negative and both c and cy
are complex, we obtain

+ * +
W;(x,p*,t) = 8 cos [k(x-crt)—e—] (2.105)
where
2_qgce
2AF g-er xr 4+ + +. +
gt . 0 _ [(an-ttd)® + (brhtadt)? 12
k3pOUT[(l+qc*r)2 + qgc*i]
+ +
d~ = -qcy cosh g(1 - p,)
h = sinh q(1 - p,) - gcy cosh q(1 - p,)
; £+t an
ot = tanl (ZEED) (2.106)
-ad -b h
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and a and bE have been defined after (2,101).

Again the two solutions for the stable domain, given by (2.103), are
vertical waves, one having an amplitude R* and a phase speed ¢’ and the other
an amplitude R™ and a phase speed c”. The normalized amplitudes R'/|R'|
and R'/]R"]max appear as functions of pressure in Figures 18(a) and (b), respec-
tively. If we consider the wavelength L = 2000 km, we see that the ¥t wave
has a much greater amplitude (R*) at p, = O than at p, = 1 (p = 1000 mb) while
the reverse is true for the ¥~ wave. We note, however, that as the wavelength
increases the‘normalized amplitude of the W+ wave at P, 1 tends to 1 while
the same is true for the amplitude of the ¥~ wave at p, = O.

1

The structure of the unstable waves is given by (2.105) where W; and
V. refer to the amplifying and damped waves, respectively. Since the normalized
amplitudes S+/|S+]max and 87/[87[ . are identical, Figure 19(a), which shows
the normalized amplitude as a function of pressure, ... for both the ampli-
fying and the damped waves alike, We observe from this figure that the normal-
ized amplitude of the unstable wi waves changes very little with wavelength.
To find the effect that the 0 term has on the amplitude of these waves we should
compare the curves of Figure 19(a) to the one giving the amplitude of the stream
function in Figure 4, for which ¢ had beenset equal to zero. We see that the
effect of the 0 term is small but especially so as the wavelength increases.

The phase angle of the amplifying V waves, G+, appears as a function of
pressure in Figure 19(b) for three different wavelengths. We see that the slope
of these waves increases with the wavelength. Moreover, we note that for a
wavelength of 18,000 km the phase angle is very nearly the same as that shown
in Figure 4(b) (curve labelled %) for which o had been set equal to zero.

This indicates that as the wavelength increases the effect of the static sta-

bility factor o on the slope of the ¥ waves tends to become negligible. Since
we have obtained the same result concerning the amplitude of the waves, we can
then conclude that the effect of the 0 term on the structure of the V waves

is neglibible for sufficiently long waves.
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Figure 18(a). Normalized amplitude of the stable Ilf+ wave as a function of pres-
sure for wavelengths of 2000 km, 3000 km and 3700 km., Parameters: o = 2MIS
units, B = O.
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Figure 18(b). Same as Figure 18(a) but for the stable ¥~ wave.
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Figure 19(a). Normalized amplitude of the unstable \lai waves as a function of
pressure for wavelengths of 4000 km and 18,000 km. Parameters: o = 2MIS units,
B = 0.
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Figure 19(b). Phase angle of the amplifying V wave as a function of pressure
for wavelengths of 4000 km, 5000 km and 18,000 km. Parameters: o = 2MIS units,
B = 0.
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3. BAROCLINIC INSTABILITY IN A PRIMITIVE EQUATIONS MODEL

3.1 INTRODUCTION

In the previous chapter we investigated the problem of baroclinic insta-
bility in a quasi-geostrophic model based on simplified forms of the vorticity
and thermodynamic equations. In these two equations we assumed that the absolute
vorticity and the temperature (or density) were advected along isobaric surfaces
by the non-divergent part of the wind alone. To close the system of equations,
we then assumed that the simple geostrophic relation ¥ = ¢/fo could be used to
relate the geopotential to the stream function.

The first approximation, that is, using only the non-divergent part of
the wind for advection purposes, has been used for several years in short
range numerical forecasting models and in some studies of the general circula-
tion of the atmosphere. Because the performance of these models often leaves
something to be desired, there is now a growing interest in the so-called "pri-
mitive equations" models, in which this approximation is not made. It is the
purpose of this chapter to investigate the stability of baroclinic waves in
such a model and then to'compare the results with those obtained with the quasi-
geostrophic model.

Our approach here follows the one used in the previous chapter. In sec-
tion 3.2 we present the equations which define our model and derive from them
the differential equation relating the amplitude of the w wave to the pressure.
This equation is "general" in the sense that in deriving it we retain the ver-
tical wind shear as well as both the B and the o terms.

We recall that for the quasi-geostrophic model we have investigated the
following four special cases:

(a) dU/dp = 0, B = constant, 0 = constant

(b) dU/dp = constant < 0, B =0, 0 =0

(¢) du/dp = constant < 0, B = constant, 0 = O
(d) au/dp = constant < 0, B = 0, 0 = constant.

In this chapter we investigate cases (a), (b) and (c) for the "primitive equa-
tions" model, For this model, unfortunately, case (d) is omitted since no ex-
act analytical solution has been found for it. Just as in the previous chapter,
the general case (i.e. dU/dp = constant < 0, B = constant > 0, 0 = constant > 0)
is also omitted due to its mathematical complexity.
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Case (b) has been investigated by Fjgrtoft (1950) and Thrane (1963) and
case (c) by Holmboe (1959). The model atmospheres considered by these authors,
however,are incompressible and vertically finite whereas ours are compressible
and vertically infinite.

3.2 THE GENERAL EIGEN-VALUE PROBLEM

Just as in the previous chapter, we propose to investigate the properties
of a model in which the perturbations have small amplitudes so that products
of perturbation quantities can be neglected. Furthermore, we again restrict
our investigation to perturbations which are independent of the y coordinate.
As we pointed out in Chapter 1, by neglecting the y dependence in the pertur-
bations we may be deleting some important non-geostrophic effects (Phillips,
1964), but we shall see in the following sections that even our simplified per-
turbations can serve a useful purpose by demonstrating some properties of non-
geostrophic flow.

The linearized equations for our model are the following:

M, QU JU - 3B,y (3.1)
ot ox dp 0x
ov + Uéz = - fu (3.2)
ot ox
o = -8 (3.3)
op
ég + Uég + fo ggvﬂ— ow = 0 (5»“)
ot ox dp
and
é~'l-%-+a—-(',‘) = O, (3*5)
ox Op

where & is the specific volume and the other symbols are as defined in the pre-
vious chapter. (3.1) and (3.2) are the first two equations of motion, (3.3)

is the hydrostatic equation, (3.4) is the adiabatic thermodynamic equation and
(3,5) is the continuity equation.

The first step in our procedure is to eliminate the geopotential ¢ from

the above equations, thus reducing the system to one of four equations in
four unknowns, namely, u, v, ® and & We do this by first combining (3.1)
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and (3.2) to give the vorticity equation

() + () 4 py = - £ O (3.6)
dt ox ox Ax ox

and then eliminating @ between (3.1) and (3.3) to obtain, with the help of (3.5),

d,du o duy _ o ov
Soi5p TSy T s o5 o1

Our system of equations then consists of (3.4), (3.5), (3.6) and (3.7).
We note here that the B term, the effect of which we propose to investigate,
appears only in the vorticity equation. We now solve this system of equations
subject to the conditions that u, v, B and & are periodic in both x and
t and that w = Oatp = 0 and at p = p, (pressure at the ground). Using the
method of separation of variables, we write the solutions in the form

(wv,00) = [4(0),3(0),8(p) ,4(p) 1T EECY) (5.8)

A A A A
where U, Vv, ®, & are the amplitudes (possibly complex) of u, v, ® and O, respec-
tively. We then substitute (3.8) into (3.4) to (3.7) and obtain

. A dUA A
-ik(c-U)a + £, A 0 (3.9)
A
i+ 2 - o (3.10)
dp
2
K= (e —U+%)<}+fo i = 0 (3.11)
X
A A A
k(e - B - gky -2, o= 0 (3.12)
dp dp

A

The procedure now consists in eliminating @ between (3.9) and (3.12) and
then v from the resulting equation by means of (3.11). This gives us an equa-
tion which contains the two unknown variables » and u, the latter of which we

can then eliminate with the help of (3.10). The resulting equation for & can
then be written in the form ‘
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(c=U) (c-U+Cg) a8

2 2
d
p*

(¢-U) (e-U+cg) [1-

C1

av a  op o

+ [2(c-U)+C_] - ——5(c-U+CR)w = 0 (3.13)
R dp*'dp* Ct

where CR = B/kg, CI = fo/k and D, is defined as in the previous chapter.

(3.13) 1is the "general" differential equation relating the amplitude of
the w wave to pressure for our "primitive equations" model. We note here that
whenever both |c-U| << C7 and lc-U+CR| << Cp hold true (3.13) reduces to the
quasi-geostrophic equation (2.13). The basic differences, therefore, between
our quasi-geostrophic model and our "primitive equations" model is that in the
former we have implicitly assumed that the two inequalities were satisfied
whereas in the latter we do not.

Since we are unable to solve the "general" equation (3.13) exactly, we
proceed by investigating three special cases of it in an attempt to gain some
insight into the behavior of baroclinic "non-geostrophic'" perturbations.

3,3 THE CASE U = CONST, » 0, B = CONST. > O, 0 = CONST. > O

In this section we investigate the behavior of perturbations (possibly
baroclinic) embedded in a barotropic bagic flow. We recall that we have also
investigated this case in section 2.2 for our quasi-geostrophic model. A
comparison of the results from the present section with those from section
2.2 will then reveal something about the influence of non-geostrophic effects
on perturbations in a barotropic current. This interesting comparison, we
note, has also been made by 'Arnason (1961).

For the present case, the differential equation relating the amplitude
of the w wave to the pressure, namely,

. DA
) (c-U) (c-U+Cg), d°w  o0p,2 2
(c-U) (c-U+Cg) 1 - ] — - 25 (c-U4CR) B = 0
C1 dp,~  Cp

(3.1k)

where U is a positive constant, is obtained by setting dU/dp* equal to zero
in (3.13). If we now write (3.14) in the form

+ q& = 0 (3.15)

where
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q = - o [leUR) - (5.16)
(c-U) (c-U+Cg)

2

(1-

C1

we see that (3.15) is identical in form to (2.15) but that the expression for
q is now different. Moreover, the boundary conditons for (3.15) and (2.15)
are the same, that is, ® = O for p, = 0 and for p = 1. By analogy to (2.15),
therefore, we can write the solution of (3.15) as

® = Asin (Vg p,) (3.17)

where, again,

Ja = mr, m = 0, £, £, ... (3.18)
If we now substitute (3.18) into (3.16) to eliminate g we obtain

22
m x . 2 . _
0p02 (c-U)[cI - (c-v) (c-U+CR)] + (c-U+CR) = 0. (3.19)

The object now is to find the various values of c¢ which satisfy this
equation and then to determine the type of atmospheric wave motion to which
they pertain. First we note that for the vertical mode m = 0 (3.19) reduces
to

¢ = U-Cg = U-B/k°

(3.20)
g0 that, for this particular mode, only one type of wave motion can exist.

By (3.18) and (3.17), m = O implies that o(x,py,t) is identically zero which,
by the continuity equation, implies inm turn that the horizontal divergence is
zero everywhere. The mode m = O, therefore, corresponds to a non-divergent
mode of motion with the famous Rossby phase speed given by (3.20). We recall
that we have obtained an identical result for the mode m = O in our quasi-geo-
gtrophic model (see (2.28) and Figure 1). We conclude, therefore, that the non-
geostrophic effects introduced in the present chapter do not affect the phase
velocity of the non-divergent waves.

For the other vertical modes, that is, for each integral value of m # 0,
(3.19) is a cubic equation in c and hence it has three possible solutions, say,
c1, Cp, and c3. To solve this equation it is convenient to introduce the no-
tation X = c¢-U and rearrange terms in (3.19) so that it takes the form
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2 2

3 o 9% 2 2
X7+ CpX© - (meﬂg + C; ) X - Cq ;525 0. (3.21)

The solutions to (3.21) can be obtained by using the standard formulae for a
cubic equation. They are

X} = cg-U = A+B (3.22)
e - 1 V3,
Xg = 02 U = 2(A+B) + 5 (A-B) (3.23)
and X3 = cj-U = - %(A+B) - i%é-(A-B) (3.24)
where
51/2.1
A = [-24 (P_ + &) / ] /5
2 b 27
B o= [-2.( £)1/2]1/5
2 b 27
2
a = - o 012 -1 CR2
n°r® 5
C 2
_ Bion© 19 %P0 2
and b = 27(20R 18 =7 + 9cI ) .

Since Cr and Ct are functions of the wavelength, the three phase speeds
e1s Cp and cz are also functions of the wavelength. When these phase speeds
are computed by the above formulae, (with Py = 1000 mb, 0 = 2MIS units, f, =
107 sec™t, B = 16 X 10-12m~1sec™l), we find that they have real values for
all wavelengths (0 < L < 18000 km) so that the wave motions to which they per-

tain are stable for all wavelengths.

When the values of c, are computed for wavelengths ranging from O to 18,000
km and for the vertical modes m = 1, 2, and 3, we find that the results do not
differ appreciably from those obtained with the quasi-geostrophic model (see
Figure 1, curves m = 1 and.2). More precisely, we find that the phase ve-
locities computed with the current "primitive equations" model and the quasi-
geostrophic one differ by less than 0,2% of the quasi-geostrophic values for
the above range of wavelengths. Since we have also found that the curve m = O
in Figure 1 applies for both models, we can therefore conclude that all the
curves shown in Figure 1 apply, with a reasonable accuracy, to both our quasi-
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geostrophic and "primitive equations" model. This is tantamount, of course,
to saying that the phase speeds of the "Rossby" waves have not been significantly
affected by the non-geostrophic effects introduced in the present chapter.

The non-geostrophic effects, on the other hand, do play the important role
of introducing two more possible phase speeds, namely, co and c3 as given by
(3.23) and (3.24). These two phase speeds appear as functions of the wave-
length in Figure 20 for the vertical modes m = 1, 2, and 3. The uppermost:
three curves in the figure refer to cp while the lowermost ones refer to c3.
The waves which travel at the speeds co and c3 are gravity-inertia waves. We
note that the lower boundary condition that we use, namely, w = 0 for p = Po
precludes the existence of external gravity waves (Hollmann, 1956). The waves
under discussion, therefore, are internal gravity waves modified by the inertial
forces due to the rotation of the earth. We note that for large wavelengths
these waves can travel at very high speeds and that for any wavelength they can
propagate both eastward and westward relative to the zonal current (U = 15 m

sec™l in Figure 20).

If, as we remarked above, co and c3 are the phase speeds of internal gra-
vity waves modified by the inertial forces due to the rotation of the earth,
we should then be able to obtain the phase speeds of the pure internal gravity
waves by neglecting all references to the rotation of the earth in (3.21).

We do this by setting f = B = O (which implies that C_ = f/k = 0 and Cgr = B/k2
0), in which case (3.21) becomes I

I

2
O'po~

me e

X(x° - ) = o.

The three solutions to this equation are then

Xl = Cl—U = 0 (5‘25)
2
0p,“, 1/2
X, = ey U = 20 ) / , mo o= +l, 42, ... (3.26)
m 7
2
9P, 1/
and X5 = 37U = - (mgig) / , mo= 1, +2, ... (3.27)

where co and c; are the phase speeds of pure internal gravity waves. We see
that for 0 < 0 cp and‘c5 are complex so that the waves are unstable. This

is not a surprising result, of course, since 0 < O implies that the basic

state has a superadiabatic lapse rate, in which case all vertical displacements
are unstable. For ¢ > 0O, on the other hand, co and cz are both real which im-
plies that the waves are stable. It is interesting to note, here, that in con-
trast to the gravity-inertia waves these pure gravity waves have phase speeds
which are independent of the wavelength. Finally we note the important result
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Figure 20. Phase speed of the gravity-inertia waves as a function of the
wavelength. The dashed, solid and dotted curves refer to the vertical modes
m=1, 2 and 3, respectively. Parameters: U =15m sec'l, 0 =2 MIS units,
B = 16 x 10~12m-1 sec™L.
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that when 0 = O we have co = cz = U; in other words, when the basic state has
a dry adiabatic lapse rate the waves do not propagate relative to the basic
zonal current, This is due to the fact that when the basic state has a dry
adiabatic lapse rate there is no vertical restoring force to counteract any
vertical displacement given to a parcel of air (assumed dry). The basic
mechanism for the propagation of internal gravity waves is therefore absent
and hence 0 = O effectively filters out internal gravity waves.

If we now make use of this filter to preclude internal gravity wave solu-
tions, we should be able to obtain the phase velocity of pure inertia waves
from (3.21). With o = 0, (3.21) takes the form

X(X2+CRX—CIE) = o.

The three solutions to this equation are then

X, = ¢-U = 0 (3.28)
.o _1l o, 2., 2y1/2 ,
X, = U o= = [-CR+(CR +he7) 7] (3.29)
R N I Z - JE -0 /-
and x5 = c3 U = 5 [ Cq (cR +ucI )] (3.30)

where Co and c5 are the phase speeds of the inertia waves. For very short wave-
lengths B/k is much smaller than f/k i.e. Cg 1s negligibly small compared to
CI) in which case, to a fair approximation, (3.29) and (3.30) can be written

as

cp-U = 0 = f/k (3.31)

1
1
C

and ¢z-U = -C_ = -f/k (3.32)
respectively.

We observe from (3.29) that since (CRQ+MCIQ)1/2 is always greater than
Cr it follows that Xp is always positive. On the other hand, we see from (3.30)
that X5 is always negative., This indicates that the wave components with phase
velocities c, and c3 travel to the east and to the west, respectively, with
respect to the basic current.

Before going on to the next section, where we investigate the behavior
of wave disturbances in a "primitive equations" model with vertical wind shear
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in the basic flow, it seems profitable to summarize the main results that we
have obtained with our "primitive equations" model with a constant basic cur-
rent, We have seen that the latter model has wave solutions of the Rossby and
gravity-inertia types, all of which are stable for ¢ > 0. We found that the
Rossby waves propagate to the west with respect to’ the basic current and at
very nearly the same speed as the Rossby waves of section 2.2 (the quasi-geo-
strophic model). The gravity-inertia waves, on the other hand, propagate both
to the east and to the west with respect to the basic flow and exist only in
our "primitive equations" model.

In the next section we shall investigate the effects of vertical wind
shear on the stability and speed of propagation of the wave disturbances. We
shall assume that dU/dp is anegative constant and that both B and 0 are zero.
The model will therefore be analogous to the one investigated in section 2.3,
differing only in that the flow will not be assumed to be quasi-geostrophic.

We emphasize that our assumption 0 = 0 will filter out the internal grav-
ity waves from our system while our lower boundary conditiony w = 0 at p = 1000
mb, will filter out the external gravity waves. We can therefore expect that
our model will yileld wave solutions of the Rossby and inertia types as modified
by the vertical wind shear.

3.4 THE CASE dU/dpy = CONST. <0, B =0 =0

Similar models to the one that we investigate in this section were inves-
tigated by Figrtoft (1950) and Thrane (1963). These authors, however, obtained
only a wave solution of the Rossby type, omitting the inertia wave solutions,
whereas we shall consider all the possible solutions.

The differential equation relating the amplitude of the w wave to the pres-
sure ig obtained by setting B (and therefore CR) equal to zero in (3.13).
The latter equation then reduces to

(c-0)2.a%0 . AU ao
(c-U) [1- L5255 + 2 = 0. (3.33)
CI dp, dp* dp*
If we now assume that
U(p,) = U +Up(1l-p,) (3.34)
where Ub is the speed of the basic current at by = 1l and UT = -dU/dp* = constant,

we can then write (3.3%3) in the form
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-2— = 0 (3.35)

CI* dpy, dpy
c—UO
where Cy = (3.36)
Up
CI T
and C = = = =, (3.37)
Ix UT kUT

We now change the independent variable by means of the transformation

e - p +c -1 _ c-U
Cry Cr (3.38)

so that (3.35) now takes the more convenient form

§(1-§2)93@ _ pdd

— 0. .
reieT (3.39)

We note that this differential equation has three singular points, namely,
£E =0and & =+ 1. If we use the definitions of &, cy, Cyy, and U given above,
we find that fﬁese singular points correspond to ¢ = U and ¢ = Uif/k’ respec-
tively. We will discuss the effect of these singular points on the w wave
structure after we obtain the solution to (3.59).

To solve (3.39) we first introduce Q = d&/dé so that the equation can be
written in the form

& _ 2 g

Q £(£°-1)

After separating the right-hand side of this equation into a sum of partial
fractions we can integrate term by term to obtain

InQ = 2 1n & - In(&+1) - 1n(E-1) + 1n A"



where A' 1s a constant. We use the same procedure again, that is, we separate
the right-hand side into a sum of partial fractions and integrate. The result-
ing expression for w takes the form

& = Alt +1n 2] + B (3.40)
where Z = él&
E+1
A = 1a
2

and B is a constant. Since Z depends on the phase velocity c, it can in gen-
eral be complex and hence we can write (3.40) as

& = A[2E + 1n|z| + i8] + B (3.L1)
where © is the argument of Z, that is,

z.
o = tan-l(-zi) . (3.42)
i

The logarithm of a complex number is multi-valued since ©, given by (3.L42), is
multi-valued. Here we will consider only the principal branch of the logarithm
of Z by specifying the range of © to be

<0< . (3.143)

%hoosingeunrother branch, we note, would lead to the same results for c¢ and
@ (p). The range of 6 given by (3.43) implies that ln Z has a branch cut along
the negative real axis as shown in Figure 21.

We note that the inequalities (3.43) leave 6 undefined along the negative
real axis, so that In Z is as yet undefined when Z is real and negative. In
order to be able to attach a meaning to the logarithm of a real and negative
quantity, it seems reasonable to give © -either the value n or -m along the branch
cut shown in Figure 21. Using arguments similar to Lin's (1955), we take the
first choice, that is, we let 8 = n along the negative real axis so that, for
example,

59



(¢»]
il
2
~.

o

0 = -x/2

Figure 21, The complex Z plane showing the discontinuity of ©, and hence of
1n 7, across the negative real axis (branch cut).

In -2 In 2 + ix

but EQE

In =2 In 2 - imx.

The presentation of the arguments which justify this choice is beyond the
scope of this report but nevertheless we can point out the implications of our
choice. Let us suppose that for the present model all waves with a wavelength
L greater than some Ly are unstable while all those with L < Ly are stable.

In the unstable domain we have, for every wavelength, both an amplified and

a damped wave while in the stable domain both waves are stable., Choosing © =

n along the negative real axis implies that both solutions in the stable do-
main are the analytic continuation of the amplified wave of the unstable domain.
Had we made the choice @ = - 5 along the negative real axis, then both solu-
tions of the stable domain would have been the analytic continuation of the
damped wave of the unstable region. For a more detailed discussion of this
topic we refer the reader to Lin (loc. cit.).

Now that we have established how our solution (3.40) is to be interpreted
when Z (and hence c) can be complex for some wavelengths and real for others,
we turn our attention to the problem of determining the possible values of the

- phase speed c. We do this by using the boundary conditions for &, namely, B =
0 for p, = 0, that is, for & =(cx-1/Cy* and & = 0 for p, = 1, that is,& = cy/
C*. Applying our solution (3.L0) at the upper boundary we obtain

2 -1 -1-C...
A[_Eif__l + 1n(Ef___ilf)] +B = 0 (3.44)
CIx Cy=1+C0Tx
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while applying it at the lower boundary yields
c,-C
Al + (X257 +3 = o (3.45)

Subtracting (3.45) from (3.L44) and dividing the resultant equation by A we
arrive at the following frequency equation:

c.,-1-C c tC
_ _2_ + 1n [( * I*) * I*) = 0
Crx c -l+CI* c -CI*
which can then be rewritten in the form
(¢ -1-C+ )(c +C; )
%~ Ie Ny IS ee/CI* (3.46)

(cy=1+C14) (ey=Cry)

This equation is a quadratic in Cy and can be solved in a straightforward man-
ner, The result is

ol Lyq/e
x = 3 + [+ Cix - Crx coth (CI*)] .

To arrive at an explicit expression for ¢ we eliminate c, between this last
equation and (3.36) and obtain

1
¢ = U +UVE (3.47)
where = L4 01y - Cou coth (s ) (3.48)
n I* I* C1x 3

and we have introduced U(1/2) = Uy + 1/2 Upe

We see from (3.47) that ¢ is real and the waves stable if & > 0 while c
is complex and the waves unstable if © < 0. The condition separating the stable
and the unstable domains is therefore ® = 0, that is,

1 2 1
=+ - C__ coth (—) = o (3.49)
%
N I* CI*
Since
C
c = 1
I* UT



f 10~1f
C. = = =
I k 21
and Up = Qdég,
az

where £ is the wavelength in thousands of kilometers and dU/dZ is the vertical
wind shear in m sec’ km'l, we can write (3.49) in the more convenient form

du/az

12,57

tann [L.o57 (39/4%)] - d’i ;Zé ; .
! W @ULEE L o

By trial and error we find that this equation has the solution

99%‘17: - 1.85 (approximately). (3.50)

The graph of this equation, which is the neutral stability curve separating
the stable and unstable domains, appears in Figure 22 as the thick straight

10 T T T 1 // T T T T 7 T T ]
~  Neutral Curve 1+0.5
~ 8 T=0.39 n
E | Stable ]
4
0 L N
g O & 7+0.5
E T M i
3N 4 5 _
N T=1
2 | - j —]
/ T=2 Days i
ouee=m——— 1 | | | 1 | | [T S O N N
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Wavelength (103 km)

Figure 22. Stability diagram showing the variation of the e-folding time T

as a function of the vertical wind shear and the wavelength.

B

Parameters:
=0 = 0.
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line. To the left of this curve B, given by (3.48), is positive so that the
waves inthat region are stable; to the right of this curve, on the other hand,
8 is negative and hence the waves inthat region are unstable.

To determine the rate at which the amplitude of the unstable waves changes
with time we compute the e-folding time given by

key ) (3.51)

From (3.47) we find that

U
= / - Ty 1.2 5 24/2
c; = Upv-p = (C Ugcoth (E;) - EUT -C; ]
so that
Up 10 2 2.1/2
ke; = [kaUTcoth(E—)- Zk Up -Ts ] .

If we now gubstitute this expression for key into (3.51) and make use of the
expressions for Cy and Up following (3.49) we obtain

T - 1.157k
2
(125. 66&(_@-1@5coth 1. 257(@4%) J;uo(ﬁ%‘?ﬁ) _100}+/2

where fo has been taken to be lO‘l*sec'l and T is given in days. We see, there-
fore, that for each value of (dU/dZ)/ﬂ there corresponds one value of T; in
other words, along any straight line (dU/dZ)/E = constant, to the right of the
neutral stability curve in Figure 22, T is a constant.

Figure 22 illustrates a few of the infinite number of isopleths of T which
can be computed from the last equation above., If we fix our attention on a
given wavelength, say 40OOkm, we see that the e-folding time is large for small
wind shears, decreases gradually as the wind shear increases until a value of
T = 0.39 days is reached, and then increases rapidly to reach an infinitely
large value on the neutral stability curve. By trial and error we find from
the above equation for T that 0.39 days is the minimum value (approximately)
that T can attain. Since a minimum value in the e-folding time corresponds
to a maximum in the instability (i.e. rate of growth or decay) we find, there-
fore, that the isopleth T = 0.39 days in the figure corresponds to the line
of maximum instability.
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To see how the non-geostrophic effects introduced in the present chapter
affect the stability of the waves under study, we merely have to compare the
stability diagram shown in Figure 22 to the one shown in Figure 3, the latter
of which was obtained under the assumption of quasi-geostrophic motion. We
observe that the main role of the non-geostrophic effects is to stabilize the
short waves which in our quasi-geostrophic model were extremely unstable (the
so-called "ultraviolet catastrophe"). We note alsc that in the quasi-geo-
strophic model the instability increases (the e-folding time decreases) mono-
tonically as the wind shear increases; in the present model, on the other hand,
there is a finite value of the wind shear for which the instability is a maxi-
mum (the e-folding time is a minimum, namely, 0.39 days). Finally we observe
that for values of the wind shear in the range 0 < aw/az < 10m sec™lkm L the
e-folding time of the very long waves 1s not severely affected by the non-geo-
strophic effects.

We recall that in the quasi-geostrophic analogue of the present model all
waves travel with the speed of the basic current at p = 500 mb. The speed of
propagation cy for the corresponding waves in the present model, as obtained
from (3.47), appears as a function of the wavelength in Figure 23, We note
that Just as in the quasi-geostrophic model all the unstable waves travel with
the speed of the basic flow at p = 500 mb. We observe, on the other hand, that
the speed of propagation of the short stable waves is double-valued and, more-
over, that both values of c, lie in the range U(1) <c, <U(0). As an example,
for the case U(1/2) = 15m sec~l and dU/dZ = im sec~Tkm~l in Figure 23, we have
(1) = -25m sec-1, U(0) = 55m sec™t and we see by inspection of the graph that
indeed -25 <c < 55m secl holds true.

Contrary to the procedure that we followed in the study of our quasi-geo-
strophic model, we will not, here, discuss in detail the structure of ‘the
waves, The reason for this is that when we investigate the structure of the
short stable waves we find that for every wavelength there is a pressure level
at which the amplitude of the wave becomes infinite. This occurs because at
some pressure level |&| = 1 so that as we approach this level Z in (3.40) ap-
proaches either O or infinity (depending on whether & + 1 or -1, respectively)
in which case 1ln Z and & both approach infinity. In turn this difficulty as
|e] > 1 is directly related to the fact that (3.39) has singularities at
|6] = 1. We note here that & = 0 is only an apparent singularity of (3.39)
since the solution (3.40) is well-behaved @t that point.

It seems likely that the infinite amplitudes in the stable perturbations -
result from our neglect of friction, a mechanism which, if present, would
bably tend to reduce the amplitudes at the pressure levels where Ié] =1, Un-
fortunately the inclusion of friction in our model renders the equations so
complicated that no closed analytical solution can be found for the entire range
of pressure 0 < < 1. Instead of trying to solve the equations of a viscous
atmosphere for the entire range of pressure, we could probably use the method
of "cross-substitution" as suggested by Kuo (1949) in connection with the baro-
tropic instability problem. The method consists in sclving the equations for a
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Figure 23. Phase speed of the Rossby type waves as a function of wavelength
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viscous atmosphere in the immediate neighborhood of the points |&| = 1 while
continuing to use the equations for an inviscid atmosphere (as done above) out-
side this neighborhood. The solution for the complete range of pressure O <
P, < 1 would then be obtained by matching the solutions for the equations w1th
and W1thout friction at a short distance away from each of the points Iél

Thrane (1963) has suggested another approach for finding stable wave solu-
tions which have finite amplitudes at all pressure levels. His method consists
in first finding a solution of the form (3.40) and then in integrating it over
the wave number (or frequency) regime to obtain a new solution. This new solu-
tion is then also integrated over the wave number regime, and so on, each inte-
gration relegating the discontinuity in the solution to a higher and higher
derivative., As Thrane has pointed out, the solution which is obtained contains
an error, but this error can be made arbitrarily small.

Since the detailed treatment of the methods mentioned above is beyond the
scope of this report, we shall leave the subject of the wave structure and re-
turn to the problem of determining all the possible types of wave motion in
our model. So far we have encountered one type of waves which can be stable
or unstable depending on their wavelength and travel at a speed cy lying in
the range U(1) < c, <U(0). We shall now show that there exists another type
of waves, namely, inertia waves modified by the vertical wind shear.

Let us consider our general solution (3.40) for the amplitude of the w
wave as a function of €& (which, in turn, is a function of p, and c*), that is,

w = A[PE +1n Z] + B
where 7 = E:i
E+1

and A and B are constants. If we now assume that the phase speed is real for
all values of the wavelength, then £ and hence Z will also be real for all
wavelengths., It is important to note that, in this case,

w = A[CE +1n |Z]] + B (3.52)

also satisfies the differential equation (3059), as can easily be seen by sub-
stituting (3.52) into (3.39).

We now proceed to determine the phase speed of the waves whose amplitude
is given by (3.52). As before, to do this we apply (3.52) at the upper and
lower boundaries, that is, at & = @*rlyﬂl*;and at & = c*/CI*, respectively.
From the resulting two equations we obtain the frequency equation
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2 (cx=1-Crx) (cx*Crx)

- —_—+ =

n :
Crx (cx-1+C1x) (cx-Cyx)

which we can rewrite in the form

(c*-l-CI*)(C*+CI*) - ieE/CI* . (3.53)

(cx-1+C1x) (cx-Crx)

We note that if we choose the plus sign on the right-hand side of (3.53)
we obtain the same frequency equation as before, that is, (3.46). We should
keep in mind that strictly speaking (3.53) is valid only when cy 1s real where-
as (3.46) is valid for cy both real and complex. In any case, since we have
already discussed this solution we need to be concerned, here, only with the
solution obtained by choosing the negative sign on the right-hand side of (353).
With the latter choice of sign, the quadratic (3.53) has the following two roots:

2
Cy = é + [l,+ C - CI*tanh(~£—)]

ot Orx (3.5H)

To obtain an explicit expression for the phase speed c, we eliminate cy between
(3.54) and (3.36) and find that

¢ = UR) +UVB (5.55)
1
Where A= F 0L - CI*tanh(—]I‘-;) :

For all values of Cyy = f/kUT we have A > 0 so that c¢ given by (3.55) is al-

ways real which, in turn, implies that the waves are stable for all values of
the wavelength and wind shear.

To show that (3.55) gives the speed of inertia waves as modified by the
wind shear we take the limit of ¢ as UT goes to zero and find

limc = lim (U(2)+ UTQA}
Up>0 Up>0 °

2 2 .
U f fU Uk
= lim{U(%) P A = - = tanh(—g—)]l/g}
A2 T Lk ok k f
U, 0
T
=U+£.
-k
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This, we recall, is the expression for the phase speed of inertia waves in a
zonal current with speed U when the P term is neglected.

The phase speed of the inertia waves appears in Figure 24 as a function
of the wavelength for vertical wind shears of 0, 2 and im sec™tkm-l. The up-
permost and lowermost three curves are obtained by choosing the upper and lower
signs, respectively, in (3.55). We see that the effect of the wind shear is
to increase the speed (in absolute value) of the very short waves and to de-
crease the speed of the longer waves. The phase speed of the ultra-long waves,
we note, is very large and nearly independent of the wind shear.
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Figure 24. Phase speed of the inertia waves as a function of the wavelength.
The dotted, dashed and solid curves refer to the cases where dU/dZ =0, 2 and
b m sec'lkm'l, respectively. DParameters: U(1/2) = 15 m sec™l, 0 = B = 0.
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In the next section we shall investigate the wave solutions of a model
which differs from the one that we have just discussed only in that it includes
the effects of the B term. We shall again assume that 0 = 0 and use the
boundary conditions w = 0 at p = O and 1000mb, thus filtering out both inter-
nal and external gravity waves. We can therefore again expect to find wave
solutions of the Rossby and inertia types.

3.5 THE CASE dU/dpy = CONST. < 0, B = CONST. >0, 0 = 0

The purpose of this section is to investigate the effects of the B term
on the behavior of wave disturbances in a baroclinic model based on a system
of "primitive equations". Our model is similar to the one used by Holmboe
(1959) and yields substantially the same results as far as the stability of
Rossby waves is concerned. 1In addition to the treatment of the Rossby waves,
however, we also derive the phase speed of the inertia waves in this model,
something which was not included in Holmboe's paper.

The equation relating the amplitude of the w wave to the pressure for
this model, namely,

2A
(c-ﬁ)(c-U+CR)[(c—U)(c-U+CR)-CIQ]9_E£:5

dp*

U d

- ;2 [2(c-U)+Cg]

I = 0, (3.56)

is obtained by setting o equal to zero in the general equation (3.13). We now

assume that the basic zonal wind varies linearly with pressure as in (3.3k4)
so that (3.56) takes the form

2
a=f
(p*—l+c*) (p*-l+c*+CR*) ]:(P*'l+c*) (p*'l+c*+CR*) ‘01*2 ] 5 +
dp*
an
+ 0 R(p,-1c,) + Cp I = 0 (3.57)
dp
*
R¥* U 2
T k UT
C f
c.. = % . _o©



and c =

If we now introduce the notation

and o= == (3.58)
we find that we can write (3.57) in the more convenient form

2 7
(ko) [2(E-p) -1 190 4 (pe® — o (3.59)
ae° at

which, in turn, is equivalent to

é(&-u)@-{[&;({&—u)-lli‘@} - (2&-p) [é(é-u)-l]-@é = 0. (3.60)
dg . dg ag

Equation (3.59), and hence (3.60), has singularities at & = 0, & = p and
E(E-u) = 1. As we shall see, £ = 0 and & = u are only apparent singularities
since the solution to (3.59) is well behaved at these points. Such is not the
case, however, for the singular points occurring at the two roots of E(&-u) = 1;
at these points the solution to (3.59) becomes infinite just as the solution
to (3.39), for the previous case, did at the points € = + 1. Again we could
probably use the methods suggested in the previous section to construct finite
amplitude solutions but the application of these methods is beyond the scope
of this report.

To find the solution to (3.59) we first introduce

Q = [é(é—u)-l]@é (3.61)

at

so that the equation can be written as

dQ. — 2 g =M d,g

Q E(E- )

After separating the right-hand side of this equation into a sum of partial
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fractions and integrating term by term we obtain

InQ = 1ln & + In(E-pu) + 1n A

or Q = A'E(E-u). (3.62)

If we now substitute for Q from (3.61) and rearrange terms we find that (3.62)
can be written as

Again we separate the right-hand side of the equation into a sum of partial
fractions and integrate term by term to obtain

B = a'[t+ = 1n 2] + B
N
A ] (3.63)
or w = A[2§+§\wlnz]+B
where
E-E
7 = —2
-5
A = la
2
2 1/2
A= (Hﬁ—-) (3. 65)

and B is a constant of integration. By the same argument as in the last: sec-
tion we choose the range of ©, the argument of Z, to be

4
N
9]
IA
=

So far we have assumed that ¢ (and hence Z) could be complex but we have
not found its possible values. To do this we use the boundary conditions for
&g namely,
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A ) R*
w = O0forp = O, that is, for € = & = ——— and
. % c
I*
A ) CyxtCryx
® = O forp = 1, that is, for & = &, =
* Crx

We note that if we use the definitions of cy, CR* and Ctx we can, for future
convenience, rewrite £; and &, as

c-U i
b = o2 = (3.65)
I Cr
c-Ub
and &2 =y + (3.66)
C1

Applying our solution (3.63) at the upper and lower boundaries, that is, at
El and 52, respectively, we obtain

£y -u/2-)
A[ggl + 1 1n _l______)] +B = 0
- gl-u/g'f"?\.
and
En-p/2-N
,Am§24-i n.éLﬁL__ ]+B = 0
Mo Emn/en

After subtracting this last equation from the previous one and then dividing
by A we arrive at the following frequency equation:

1, (By-u/n) (Ep-w/en)
26r-82) + £ ln[(él-u/2+k)(ég-u/2-h)] -0 &0

If we now note from (3.65) and (3.66) that & = &1 + UT/CI we can rewrite (3.67)
as

(&1-p/2-\) (&1+Up/Cq-p/2\) 2NU,/C;
= €
(&1-/240) (&) +0p/C-p/2-0)

or, after some manipulation, as

U }JUT ?\,UT
12 L - ¥ 5 - g coth(WUp/C1) ] = 0 . (3.68)
Cr T I

72



It is convenient at this point to substitute for &1, w and A from (3.65), (3.58)
and (3.64), respectively, so that (3.68) takes the form

X2+ (Op-Up)X - [0 2acln/2-Up(CrP4e, 2/ 12 cotn (Mup/cp)T = O
(3.69)

where
X = c-U_.
o

The two solutions to the above quadratic in X can easily be found to be

L
X = 5(Up-Cph®)

from which we obtain

¢ = uw(1/2) - cp/2 +34B (3.70)

e =

where we have introduced U(1/2) = U +Up/2 and defined d by

5 = og + U2 +hof - hug(c,® CRg/h)l/2coth(hUT/CI)« (3.71)

I

We see from (3.70) that the waves are stable (c real) if ® >0 and un-
stable (c complex) if & € 0. The condition separating the stable and unstable
domains is therefore ® = O and hence setting © equal to zero in (3.71) gives
us the equation for the neutral stability curve. We note that when f and B
are given constant values this equation for the neutral stability curve expresses
a relationship between Up and L, the wavelength, but only in an implicit man-
ner. In other words, we are unable, after setting equal to zero in (3.71),
to obtain UT as an explicit function of L as we have done in the previous sec-
tions. In view of this, we shall use a somewhat less accurate but still quite
satisfactory method to obtain the neutral stability curve. The first step in
the procedure is to superimpose a grid on a coordinate system having dU/dZ as
ordinate and { (or L) as abscissa. We then use (3.7l) to compute d at each
of the grid points, a value of © > 0 indicating that the point lies in the
stable domain and a value of 8 < 0 indicating that the point falls in the un-
stable domgin. Having computed the value of & for each of the grid points,
it is then a simple matter to draw, by visual interpolation, the isopleth of
¢ = 0 which gives us the neutral stability curve. This neutral stability curve
appears as the thick line in Figure 25, where a grid spacing of AL = 500 km
and 2(dU/dz) = 0.5m sec hen™t was used.
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Figure 25. Stability diagram showing the variation of the e-folding time T
as a function of the vertical wind shear and the wavelength. Parameters:
B =16 x 107 n ! sec™d, 0= 0.

In the region where ® < O (unstable region) in Figure 25 we can compute
the e-folding time of the waves as a measure of their instability. If we note
from (3.70) that the absolute value of c; is given by

C. = %—V-—B

we find, then, that the e-folding time T = l/kci can be computed by means of
the relation

T o= 2 (3.72)
k-3

where ® is given by (3.71). Since the values of ® have already been computed
in the unstable domain, we merely have to substitute them into (3.72) to obtain
the e-folding time at each of the grid points in the unstable region. With
this information we can then draw isopleths of the e-folding time as was done
in Figure 25 for T = 0.5 days and T = 0.38 days.
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We can now observe the effect of the P term on the stability of the waves
of the Rossby type by comparing the stability diagram in Figure 25 (obtained
with the B term) to the one in Figure 22 (obtained without the B term). We
find that, Jjust as in the quasi-geostrophic model, the effect of the B term
is to stabilize the long waves. We note also that the inclusion of the B
term increases somewhat the slape of the line of maximum instability (dashed
line in Figure 25). Finally we note that the position of the left-hand portion
of the neutral stability curve in Figure 25 is very nearly in the same position
as the one in Figure 22, indicating that the short waves are stable indepen-
dently of the B term. If we now compare the stability diagram in Figure 25
to the one in Figure 6 for the analogous quasi-geostrophic case, we find that
the main difference is the presence of the stable domain in the short wave
region of Figure 25 which, as already noted in the previous section, is clearly
due to the non=-geostrophic effects.

The speed c,, with which the waves under discussion travel can be obtained
from (3.70) and appears as a function of the wavelength in Figure 26. We note
that c,. is double-valued in the stable domains and single-valued in the unstable
domain. The solid curve in Figure 26 applies for the case U(1/2) = 10m sec-1
and dU/dZ = 2m sec™tkm™! while the dashed curve applies for the case U(1/2) =
15m sec™L and dU/dZ = bm sec-lkm-1. If we compare these curves to the ones
shown in Figure 23 (obtained without the B term) we notice that the phase speed
of the short stable waves-is not severely affected by the B term; this is
not the case, however, for the longer waves. In fact, we find that these
longer waves travel at very nearly the same speed as those in the quasi-ged-
trophic analogue of the present model (see Figure 7). In other words, the B
effect is important and the non geostrophic effects unimportant in determining
the speed of propagation of the long Rossby waves while the reverse holds for
the very short waves.

For the same reasons as in the previous section, we shall omit the discus-
sion of the wave structure and restrict our attention to the problem of find-
ing all the possible types of wave solutions for the present model. So far
we have seen that the model has wave solutions of the Rossby type; we shall
now show that it also has wave solutions of the inertia type as modified by
both the vertical wind shear and the B effect. To do this we use exactly
the same procedure as we did in the preceding section. We start with our
general solution (3.63) for the amplitude of the w wave as a function of &
(which, in turn, depends on p, and c,), namely,

W = A2t +-%an]+B

where %, Z, A and B have been defined after (3.63). If we now assume that there
exists a type of waves for which the phase speed ¢ (and hence & and Z) is real
for all wavelengths, we then find that in this case
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Figure 26. Phase speed of the Rossby type waves as a function of wavelength
for the case B = 16 x 1012 w1 secl and 0 = 0, For the solid curve U(1/2) =
10 m sec™t, dU/dZ = 2 m sec™Tkm™L while for the dashed cwrve U(1/2) = 15 m
sec™t and AU/AZ = 4 m sec~lkm-1,
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w = A28 + % In |Z|] + B (3.73)

satisfies the differential equation (3 59), as can be verified by direct sub-
stitution. Our problem is now -to find the phase speéd of the wave whose am-
plitude is given by (3.73) and to verify our assumption that the waves are
stable, independently of the wavelength.

To find the phase speed we apply our solution (3.73) at the upper and
lower boundaries, namely, at € = &1 = (c*-l+CR*)/CI* and at § = §2 = (cy +
CR*)/CI*’ respectively. From the resulting two equations we arrive at the fre-
quency equation

1 | (E1-p/2-\) (Ep-p/2+\)

(e e ) + 11 N
(8,-8) + N (E1-1/2+)) (E5-n/2+0) o
Noting that §2 = §1+UT/CI we can then rewrite (5.7&) as
€, -p/2=N) (€ +Up/Cr-p/2+N I
(61-n/2-N) (E4U/Cr-w/20) 420 /Op (3.75)

(El-p{2+k)(§l+UT/CI-u/2~%)

We observe that if we choose the positive sign on the right-hand side of (3.75)
we obtain the same frequency equation as before (see the equation preceding
(3.68)). Since we have already discussed the solution of this frequency equa-
tion, we shall only concern ourselves here with the frequency equation obtained

by choosing the negative sign in (3.75). With this choice of sign, we find
that (3.75) can be rewritten, after some manipulation, ‘as

We now substitude for & , pand A from (3.65), (3.58) and (3.64), respectively,
so that (3.76) now takes the form

2 1/2

2 . 2
X° 4 (CgUp)X - [C"+0gUp/2-Up( 0240, /4) Y Phann(auy/c1) 1 = 0

(3.77)

where X = c-U,.

We can then write the two solutions to this quadratic in X as
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X = .;_(UT-CRiJ—A)
from which we obtain
¢ = U(1/2) - cp/2 ii«/l (3.78)
where we have used U(1/2) = Uy+Up/2 and introduced
b o= Cgf + Up® + e - AUT(CIQ+CR2/A)1/2tanh (NUg/C1) + (3.79)

For all values of Up and L we have A >0 so that c given by (3.78) is real which,
in turn, implies that the waves are stable for all values of the wind shear
and wavelength.

The waves whose phase speed is give by (3.78) are inertia waves modified
by the P effect and the vertical wind shear. We can show this by setting both
B (and hence Cg) and Up equal to zero in (3.78) in which case we obtain the
classical phase speed of"pure inertia waves, namely, ¢ = UtCy = Uif/k.

The speed of the inertia waves, as given by (3.78), appears as a function
of wavelength in Figure 27 for the vertical wind shears of 0, 2 and Lim sec™t
km . The uppermost and lowermost three curves are obtained by choosing the
upper and lower signs, respectively, in (3.78). First we note that increasing
the wind shear from O to 2 and tm sec” "km = has the effect of increasing the
speed (in absolute value) of the very short waves and of decreasing that of
the longer waves. Just as in the previous section, where the B term was neg-
lected, we find that the speed of the ultra-long waves is nearly independent
of the wind shear.

To find the effect of the B term on the speed of these inertia waves, we
merely have to compare the curves of Figure 27 to those of Figure 24, the
latter having been obtained without the B term. We find that the difference
between the two sets of curves becomes more and more noticeable as the wave-
length increases. When the B term is included, the westward moving waves (three
lowermost curves) travel faster to the west and the eastward moving waves
(three uppermost curves) travel more slowly to the east than when the B term
is omitted. In other words, the B term gives a westward "push" to both the
eastward and westward moving waves.

The case that we have discussed in this section is the last one for which
an exact analytical solution has been found. For the other cases, that is,for
those where dU/dp is a negative constant, 0 is a positive constant and B is
either zero or a positive constant, solutions could be found in approximate
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forms such as truncated power series, for example. We shall not investigate
these cases here but the reader can find similar ones in a paper by 'Arnason
(1963) where the author shows essentially that the effect of the static sta-
bility is to broaden the stable domain in the short wave region of Figures 22
and 25.
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. THE ENERGETICS OF BAROCLINIC WAVES

The approach that we have used in the previous chapters enabled us to
find the criteria which determine whether a given wave is stable or unstable.
It revealed little, however, about the energy transformations taking place in
our model atmospheres. It is our purpose now to present a brief discussion
of the energy transformations which are necessary for the growth or decay of
a wave disturbance.

We can separate the total energy in any of our model atmospheres into
two main classes, namely, the energy of the basic state and that of the pertur-
bations. Since the basic state was defined as one which does not vary with
time, it follows that the energy associated with it is also time independent.
The perturbations, on the other hand, have amplitudes which either vary expon-
entially with time or remain constant depending on whether the waves are un-
stable or not. If a certain wave is unstable and amplifying, the kinetic en-
ergy associated with it is clearly increasing with time and the interesting
problem, here, is to determine the source of this energy as well as the type
of motion necessary to accomplish the transfer of energy from the source to
the growing perturbation. -In the real atmosphere, wave disturbances of differ-
ent wavelengths can exchange energy among themselves by nonlinear interactions
but in our model atmospheres such exchanges have been precluded by our linear-
ization procedure. In our models, therefore, a given wave can undergo an in-
crease or decrease in total energy only if energy is being transfered from or
to the basic state, respectively.

To discuss the exchange of energy between the basic state and a perturba-
tion in greater detail, it is useful to subdivide the energy of each into its
component forms, namely, the internal, potential and kinetic energies. In
a hydrostatic atmosphere the amounts of the first two forms of energy are pro-
portional to each other and hence we can refer to their sum as the "potential
energy'. Moreover, only a part of this potential energy, called the available
potential energy, can be converted to the other form of energy, that is, to
kinetic energy (Lorenz (1955)).

The total avallable potential energy of the perturbations between y =y

1
and y = N is defined as

1 2
A = fo‘— s dp (k.1)
2g 0 g o

where S 1s the area between the latitudes y =y, and y = y2 (ds = dxdy), o is
the perturbation specific volume and o 1§ the average value of the static sta-
bility parameter. over the area S and hencecis the same as the static stability
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parameter of the basic flow. From (L4.1) it follows that the time rate of change
of the perturbation available potential energy A is given by

f l ga—o‘ds dp (4.2)

Similarly we can write the expression for the perturbation kinetic energy be-

tween y = Y1 and y = Y, as
@ u2+v2
K = \/p J[\ o ( 5 ) ds dz

0 S

| 1 [Fo 2, 2
or K = T f (u=+v=)as dp (4.3)
0 S

and its time rate of change as

P
- dK fof u+v )as dp . (4.h)
at 2g 5 ot

We note from (4.1) that the available potential energy of the perturbations
is ‘undefined when ¢ = 0. In this case the surfaces of constant potential
temperature in the basic state are vertical since ¢ = O implies that Be/ép =
Since we make use of (4.1) in our treatment of the energy transfers, we shall
then have to restrict our attention to the energetics of a model in which o >
0. Moreover, since a discussion of the energetics of stable waves would be
trivial, we shall further restrict our attention to the energetics of a model
which has unstable wave solutions. Only one of the seven special cases treated
in this report satisfies both requirements, that is, in having ¢ > 0 and yield-
ing unstable wave solutions for certain wavelengths. This is the case presented
in section 2.5 in which we have: (a) quasi-geostrophic motion, (b) dU/dp =
constant < 0, (c) o = constant >0 and (d) B = 0. We shall now investigate
the mechanisms which can change the energy (kinetic and available potential)
of an unstable perturbation in this model.

I}—‘

We recall that in our quasi-geostrophic model the perturbation horizontal
wind speeds, omitting the primes on the perturbation quantitities, are given
by
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and v o= QE

so that (4.4) takes the form

P 2
&® . 1 f ° f 9945 ap
at ot Ox

Since the first integral on the right-hand side is identically zero we then
have

P

dK 1f Of

ot = v (945 4 L.
ot 2 ) | at ax P, ( 5)

in which the integrand is simply the stream function multiplied by the local
time rate of change of vorticity. The latter, as obtained from the vorticity
equation (2.6), is given by

2 2
__a_(é_‘ﬁ) g0V _ g, (4.6)

3 ok o o °3p

Strictly speaking, B should be set equal to zero in (4.6) since we are inves-
tigating the energetics of a model in which B = O. Retaining the B term, how-
ever, does not alter the subsequent results because the Coriolis force, acting
perpendicular to the velocity vector, has no effect on the time rate of change of
the kinetic energy. In other words, the energy equations which we are de-
riving apply not only for the case where P = O but also for the more general

one where B = constant > O.

If we now substitute (4.6) into (4.5) we find that the time rate of change
of the perturbation kinetic energy is given by
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or

) (4.7)

since the integral involving each of the first two terms on the right-hand
side of (L.6) is zero. Using the boundary conditions w = O for p = O and p =
R and the fact that ¥ is bounded at the top and bottom of the atmosphere we
find that (4.7) reduces to

_— = — J[ JF — dsS dp (4.8)
We recall that in our quasi-geostrophic model V¥ = d/fo so that
N _ L ¥
op £y Op
or, by the hydrostatic equation,
o .2 (4-9)
P £

Substituting (4.9) into (4.8) we arrive
time rate of change of the perturbation

dkK

dt

1 po
- —U/\ Jp wo dS dp
& 0 o

at the following expression for the
kinetic energy:

(L.10)

Equation (4.10) tells us that the total perturbation kinetic energy in the vol-
ume in question will increase with time if the perturbation w and o fields are
positioned in such a way that on the average warm air (o large) is rising (o <
0) and cold air (o small) is sinking (w > C). Conversely the perturbation kine-
tic energy will decrease with time if, on the average, warm air is sinking and
cold air is rising.

When the perturbation kinetic energy changes through the process just des-
cribed, the available potential energy of the perturbations is also affected.
To show this we shall derive the equation for the time rate of change of the
perturbation available potential energy. We start by writing the adiabatic
thermodynamic equation (2.7) in the form
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5(5‘4!) = -U é___(a_\k) + g‘.I_J a_\l; - _.gm(l)

ot op ox Op dp ox fo

which, with the help of (4.9), becomes

o | _ Q0o £, WV gy . (4.11)

ot ox dp ox

If we now substitute (4.11) into (L4.2) we find that the time rate of change
of the perturbation available potential energy is given by

P
lf Ofg[_f UV | 54] as dp (4.12)
g N

© dp dx

since the first term on the right hand side of (4.11) gives no contribution
to the integral. DNoting that f_, dU/dp and o are constants and that OV/dx = v
we can write (4.12) in the form

dA  _ odU _f f
o " dpj fvads dp + wx dS dp  (4.13)

0 S
(a) (b)

The perturbation available potential energy can therefore change with time
through the action of two mechanisms described by terms (a) and (b) in (4.13).
If 4U/dp is negative, as is the case in our model, term (a) is positive and
the perturbation available potential energy tends to increase with time when-
ever, on the average over the volume, the perturbations transport warm air
(a large) northward (v > 0) and cold air (a small) southward (v < 0). Con-
versely, the perturbation available potential energy tends to decrease with
time whenever, on the average over the volume, the perturbations transport warm
alr southward and cold air northward. It is important to note that term (a)
contains both perturbation and basic state guantities and hence represents an
interaction between these two modes of flow. More precisely, it represents the
rate at which available potential energy is being exchanged between the basic
state and the perturbations.

As for term (b) in (4.13), we note that it also appears in (4.10), the
equation for dK/dt, but with the opposite sign. This means that term (b)
expresses the rate at which the perturbation kinetic energy is being converted
into perturbation available potential energy or vice versa depending on whether
term (b) is positive or negative, respectively.

Let us consider, as an example, the direction in which the energy conver-
sions (a) and (b) are going in the case where an amplifying disturbance is super-
imposed on the basic state. It should be clear that when a perturbation is
amplifying its kinetic energy increases with time. In other words, dK/dt in
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(4.10) is positive and hence term (b) in (4.13) is negative. The amplifying
perturbation is therefore increasing its kinetic energy at the expense of its
own available potential energy. Now the perturbation available potential
energy, defined by (4.1), is itself growing with time since the amplitude of
the o wave is increasing exponentially with time. This means that dA/dt in
(4.13) is positive and since term (b) has been shown to be negative we can then
conclude that term (a) is positive and greater in absolute value than term (D).
The direction of the energy conversions is shown schematically in Figure 28.

Available potential Available potential Kinetic energy
energy of the - energy of the P of the
basic state perturbation perturbation

Figure 28. Schematic representation of the energy conversions taking place
in the case of an amplifying disturbance superimposed on a basic flow. The
direction of the arrows is reversed for the case of a damping disturbance.

We should note that in our models we have forced the available potential
energy of the basic state to be constant by specifying that all basic state
quantities be independent of time. This implies that the perturbations can
extract available potential energy from the basic state without ever changing
the basic state. We emphasize, however, that our perturbation analysis is valid
only as long as the perturbations have small amplitudes and hence as long as
the energy conversions between the boxes in Figure 28 are small. We can there-
fore look upon the first box on the left-hand side of Figure 28 as being a large
reservoir whose energy level is not appreciably affected by the small exchanges
with the perturbations. In the real atmosphere, on the other hand, the amplify-
ing disturbances can have large amplitudes and hence can transport a considerable
amount of heat northward as described by term (a) of (4.13). By doing so they
tend to warm the northern latitudes and cool the southern ones thus destroying
the existing meridional temperature gradient. If we now note that

U _ R T

(thermal wind equation)

dp £.p Oy
in which the quantities U, p and T refer to the basic state, we see that the
‘northward heat transport by the perturbations tends to destroy the meridional
temperature gradient and the vertical wind shear simultaneously. After a cer-
tain time, therefore, the vertical wind shear becomes so small that the pertur-
bations are no longer unstable and hence they stop growing.
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5. SUMMARY OF THE RESULTS

We have investigated the stability properties of wave disturbances super-
imposed on a time-independent basic flow. Since we wanted to restrict our
attention to the problem of baroclinic instability, we removed the possibility
of barotropic instability by specifying that the basic zonal wind speed be in-
dependent of the latitude.

In Chapter 2 we have used a quasi-geostrophic model and investigated four
special cases of it to isolate the effects of (a) the vertical wind shear in the
basic flow, (b) the variation of the Coriolis parameter with latitude or B ef-
fect and (c¢) the static stability parameter o on the behavior of the perturba-
tions. The results that we have obtained concerning the stability of the waves
are summarized in Table I. We find, by comparing the results of cases 1l and 2,
that the vertical wind shear tends to make all waves unstable when the B and o
terms are neglected. A comparison of cases 3% and 4 with case 2 reveals, on the
other hand, that the B term tends to stabilize the long waves and that the
static stability parameter o tends to stabilize the very short waves.

For each of the case$ listed in Table I we have investigated the structure
of the waves and shown that the stable waves have vertical ridge (and trough)
lines whereas the amplified and damped waves have ridge (and trough) lines which
slope to the west and east, respectively, with height.

In Chapter 3 we have investigated the stability properties of a model in
which the quasi-geostrophic assumption is not used. dJust as in the previous
chapter, no solution could be found for the general model so that we had to
consider special cases of it. 1In all cases we found solutions corresponding
to the slowly moving Rossby-type waves and others corresponding to the fast
moving gravity-inertia waves (or simply "inertia'" waves in the cases where 0 =
0). The fast moving waves were found to be stable for all values of the wave-
length but this, however, was not the case for the Rossby-type waves. The re-
sults obtained from the stability analysis of the latter are summarized in
Table II. We see from the table that in our "primitive equations" model the
very short waves are stable independently of the presence or absence of wind
shear. By comparing the results of cases 1 and 2 we observe that the vertical
wind shear tends to make the medium and long waves unstable if B and 0 are both -
set equal to zero. Finally, a\comparison of the results of cases 2 and 3 re-
veals that the B term has the effect of stabilizing the long waves, a result
which was also obtained with our quasi-geostrophic model.

Our analysis of cases 2 and 3 in Table II is somewhat unsatisfactory since
some of the wave solutions have infinite amplitudes for some pressure levels.
Two methods have been mentioned in Chapter 3 for constructing solutions with
finite amplitudes at all levels but these methods still remain to be applied.
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TABLE I

RESULTS OF THE STABILITY ANALYSES WITH THE QUASI-GEOSTROPHIC MODELS

Case Section Assumptions Results

1 2.2 U = const. >0 All waves are stable.
B = const. >0
0 =const. >0

2 2.3 dU/dp = const. < O All waves are unstable. The rate of
B =20 growth (or decay) increases without bounds
=0 as the wind shear increases and/or the

wavelength decreases. Figure 3.

N
no
=
jol)
(=
~
(o)}
o]
I

const. < O The long waves are stable and the shorter
B = const. >0 one are unstable. The latter have a rate

0=0 of growth (or decay) which increases with-
out bounds as the wind shear increases and/
or the wavelength decreases. Figure 6.
L 2.5 dU/dp = const. < 0 The very short waves are stable and the

longer ones are unstable. The latter have
const. >0 a rate of growth (or decay) which increases
without bounds as the wind shear increases.
Figure 1k.

a ™
I un
o
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TABLE 1II

RESULTS OF THE STABILITY ANALYSIS WITH THE "PRIMITIVE-EQUATIONS" MODELS
(Waves of the Rossby Type)

Case ©Section Assumptions Results

1 3.5 U = const. >0 All waves are stable.
B = const. > O
0 = const. > O

2 3,4 dU/dp = const. < O . For a given wind shear the very short
B =0 waves are stable and the longer ones
c =0 are unstable; the range of wavelengths

which are stable increases as the wind
shear increases. Figure 22,

3 3.5 dU/dp = const. < 0 The short and long waves are stable
B = const., > 0 whereas the intermediate waves are
0=0 unstable., Figure 25.
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In Chapter 4 we have presented a brief description of the energy exchange
taking place during the growth or decay of a disturbance. We have shown that
during the growth of a baroclinic disturbance in our quasi-geostrophic model
there is a conversion of energy from the available potential energy of the
basic flow to that of the disturbance and also a conversion from the latter
form of energy to the kinetic energy of the disturbance.
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