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PART I

THEORETICAL STUDY

by

C. N. DeSilva and P. M. Naghdi
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PREFACE

In order to absorb the enormous power of modern aircraft engines, the pro-
peller blade must be so designed that its airfoil section merges into the round
shank at the spinner within a very short length. This region from the airfoil
to the shank - the so-called transition region - becomes highly stressed during
operational conditions. The bounding surface of this region is not simple; in-
deed, its mathematical specification becomes very difficult. The ordinary sim-
Ple methods of stress analysis fail to predict even approximately the stresses
developed in such a propeller blade. Thus, it becomes necessary to employ more
stringent and accurate theories to determine the stress distribution. In the
present report, we confine ourselves to the "hollow blade" design of such a pro-
peller and apply the bending theory of shells in an attempt to find the stresses
within the propeller. This is no easy task especially for the transition region,
where, as was mentioned, the bounding surface is mathematically difficult to pre-
scribe. The present report summarizes only the theoretical work accomplished so
far, work which is substantial indeed but still requires considerable effort to
bring to completion. Hence, this report must be regarded as containing only the

preliminary work on the project.



1. INTRODUCTION

In order to apply the theory of thin elastic shells to find the stress dis-
tribution in the hollow blade propeller, we have shown in Fig. 1 a simplified
middle surface of the blade. It is evident by inspection that this middle sur-
face can be subdivided into three component parts as follows: Part A is the
airfoil region. The transverse section of Part A (transverse implying perpen-
dicular to the axis of the blade) is an ellipse. The airfoil region will there-
fore be treated as an elliptic cylindrical shell. Part B is the transition re-
gion. This is the region in which the elliptic cylinder of Part A changes into
Part C which is the round shank. The transverse section of Part C is a circle,
allowing this region to be treated as a circular cylindrical shell.

Before proceeding to a detailed examination of these component parts of the
propeller, a word about the loading is in order. From physical tests, it has
been found that the 1ift coefficient may be assumed, with negligible error, to
exist only on the airfoil region. Thus, Parts B and C may be assumed free of
surface loads while a variable surface load acts on Part A. All three blad re-
gions, however, will be subjected to a centrifugal force due to rotation of the
blade. For the gake of generality, however, no assumption will be made here
about the character of the loading.

2, PART A: THE AIRFOIL SECTION

A. THE GEOMETRY OF THE SECTION

The airfoil section is of constant thickness h = hA and will be treated
as a thin elliptical cylindrical shell. The transverse section is an ellipse
Mo represented by

ay sin ¢ (2.1)

-]
1]

y by cos @ (2.2)

where &; and by are the lengths of the semi-major and semi-minor axes of
the ellipse, respectively. The angle g = ¢A: as well as X, the arc length
of mn,, are measured clockwise from the vertical axis.

Let 35 be the unit normal vector to the middle surface M of the shell
and let { be the distance along 8z of a point from M, such that § =
+ hp/2 defines the two surfaces which are the boundaries of a shell of thlck-
ness hp. Then the position vector of a point of the shell is R La Rl + ¢ a3,
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where LA is a characteristic length and ILp Ry denotes the position vector of
a point on M. The equation of the line element of the shell is given by

ds® = g1 af° + iz + a® (2.3)
where
g11 = a1% 12 (1 + K ® cos? )
Br = Ef (2.14)
® = (1 - p5)/k
and

g
X, = a1 B ‘/; (1 + k; 2 cos® t)l/2 at (2.5)

which can easily be expressed in terms of elliptic integrals. We also note

that RA’ the radius of curvature of the ellipse, is given by

Ry = a Blz (1 + k% cos? ¢)3/2 (2.6)
and that
2
Ry . = Ra(w/2) = & B

0<By <1 (2.7)

Ra, = Ra0) = -ZJ:

B. FORMULATION OF THE PROBLEM
Following the theory of cylindrical shells, as given in Ref. 1, the deter-
mination of the stress distribution is reduced to establishing a stress function

® and a dimensionless displacement w normal to the middle surface. With the
introduction of dimensionless coordinates

0 = XA g = gA = _Z_ , n = __t,_ (2.8)

we define



Ly -
Pg=—‘B—Pg: Pg = —Pg, P = IpP

o g

0 (0]

In the above equations, Pg, P¢, and P are the components of the load inten-
sity in the o, €&, and 7 directions, respectively

Ly s
a:‘i,X’ B:':EX
N (2.10)
Ly = min< s
R
Amin

Lp 1is the span of the shell (see Fig. 1) and S is the circumference of the el-
liptic section Mo+

The differential equations for the deflection w and the function ¢ may
be written as (Ref. 1, p. 422)

| LL(Y) - 1 &2 Vrgp = 0 (2.11)

where the comma denotes partial differentiation and

L) = 0®( )ygg + B%( )sge (2.12)
vy = w4+ i E'E
. (2.13)
@ = gq+1Kaq
2 - n9%% T
)N
- b4
K = 9?) = m = N12(1-v°)
M) EIL
_ 4
7 - “—i?—(BpAg+p) P (2.14)



qQ = o* Ag,gg + 54 Ae,gg - v oPp® (Pg,g + Pg,g)
8 8 2 .2 432
po= 2 . (1 + k7 cos® @)
Ra aify

Also the stress resultants and the stress couple may be expressed as

Ng = B¥mg, N = o®ng, Ngg = OBng,

(2.1k)

Mg = Ly PPme , My = 'LAo‘zmg; Mg = - Mg = OB I, my, 0 (2.15)
Q»G-‘-ﬁ‘lg, Q.§=th§ J
where
_ d
B Fl v
To T T |pE e T Z e
- . B _v I
mg = ag _BE.W,QGA'l‘a.é.W’gg
"(2.16)
B(1-v)
mgg = -(XZBZ W,gg
Ng = Py -fg3  mp = 055-Ar 5 mg = - By
9o T Tgo*Teg,e s Gg = Moot Tt
A\3E Lp hA
e e A o= 2 .
1_2(]_-1/2) ? LA (2 17)

and E and v are Young's modulus and Poisson's ratio, respectively.

C. SOLUTION OF THE HOMOGENEOUS DIFFERENTTAL EQUATION (2.11)

Assuming that V¢ has the form



v = el78 g(o) (2.18)

where y 1s some constant, then with the use of (2.12), the homogeneous equa-
tion (2.11) may be written as

a4 dz
£ 4+ =B+ [C2+CaeP(0)lg = O (2.19)
ae* e

In (2.19), C. are constants defined as follows:

J
2.2 : 4 4 2
cl=-2ﬁa%-'-, 02=%{—, Cs=i% (2.20)

Since from (2.5) and (2.8), 6 is a function of @, being defined for O < < ex,
we now transform (2.19) so that ¢ becomes the independent variable. As & re-
sult of this transformation, (2.19) can be now written in the following form:

a4 a3 a2 d,
gﬁ+aﬁ+3%§+5§+ﬁg=o (2.21)

In (2.21), the following definitions hold:

A =3 k2 sin 2¢ ™2

ﬂ: k12 [4(1+k;%) + sin® @ (7 k32 - 8) - 11 k;2 sin? @] a2

-gii(gﬁ)ﬂ
o2 5
é:klzpos¢sin¢[-h+5k12+9k14-18k12'sin2¢-5k14 sin® ¢

2
- ze—gg—) k;? cos @ sin @ (?‘-;EJ)

O- %ﬁi (?‘15294 M+ Z-iz'l—ﬁi(9‘-1,5-;95‘)3 pt/z

- 6 ki* sin® g1 4™°  (2.22)

0PNB1

A= (1 + k;® cos? @)

Recalling from (2.4) that

w2 - =B B, - 2
1 = 2 ) 1 = 4
B1 1



then under the restriction 0 < B; <1, we note that A is analytic and non-
vanishing in I¢: 0< ) < 2x. It follows, therefore, that a, B s @, and &~
are analytic in I¢..

Since ¢ appears only as trigonometric functions in the coefficients of
(2.21), we introduce a new variable A  as follows

AL = cos @

into the homogeneous eqﬁation (2.21) which becomes
(L -7 g1V 4 [- 6X (1 -%2) - (1 -2
Sh e TRE+3QA0 -2 YABa w2 @
PR AR B 2R
+ B -

Here primes denote differentiation with respect to 'K . After manipulation, this
equation may be written in the form

(Z- 1% gV + A1) (K-1)% g™ + A K- 1) g"

+ Q@ (K-1) g+ Ay e = 0 (2.23)
where
6 (L + k2) X
a.i(%) = (l + klaxal)' (x+ l)
- 257 818 (1+ k2 XB) (X-1)
a.za') - Q-L'l) l(¢+ l)

(L + ky2) [= 4 + (7 +15 k2) X2 - 12 k2 K4]
(1 + k32 AB)2 (K+ 1)2

It

2,2 2 (1+k32) X (-1
Qutty - 255 ()" LR R

(1+k3) ZK-1) v 2412 o 2 <
(l+ k1;7(?)3(1 12 [(1+ 13k) - 15k (ks ) X + 12k X4 r (2.24)



Byt (a181\* (1 + k,2x2)% (K- 1)°
a4(X) = _&-41- (_ilv ?1_" 1)2

. 7°mg® GJ&)S (1 + k12X2)1/2 (X-1)%
(X+ 1)%

It will be noted that the dj are analytic at %=1 and have poles at X = -1.
It follows then, from the form of (2.23), that A=1 isa regular singular point
of the differential equation and solutions may be found which are valid in the cir-
cular region with ¥ =1 as center and extending to the pole K= -1. Assume a

solution of the form
g(l) = ZO e, (X-1)"3 (2.25)
n= :

where r j are the solutions of the indicial equation

r(r-1)(r-2)(r-3) +A4(1) r(r-1)(r-2)

+dz(l) r(r-1) +a3(l)r +a4(]_) = 0

From (2.24), at L- 1, we have
A1) = 3 As(1) = o
Az(1) = 3/4 da(1)

L
o.

Hence, the indicial equation reduces to the form

r(r-1)(r-1/2)(r-3/2) = 0
the roots of which are
0
ry = 1/2 (2.26)
3/2

Solutions of the form (2.25) will exist for r = 3/2 and r = 1. The other
two solutions will probably contain a term in log 1— .
D. | LOADING OF THE ELLIPTIC CYLINDER

The loading is described in detail in the Appendix.

10



3. PART C: THE ROUND SHANK

A. GEOMETRY AND FORMULATION OF THE PROBLEM

This component of thé propeller blade will be treated at this time because
it is a circular cylindrical shell, i.e., it is a special case of the elliptic
cylindrical shell the theory of which was given in the previous sections. We
have

ay = by = Ry ; Br = 1 (3.1)
It follows then that
s = 2x Ry a = le/Le
p = 2x B = 2nRo/L, (3.2)
Le
L. = min A = he/Le
Ro

where: Lo is the length of the round shank measured along the axis of the pro-
peller (see Fig. 1).

The dimensionless coordinates ©, &, and 1 are now defined as

X z - 1lg-1j
¢ C
(3.3)
X, = Ry ¢c

where the length x, and the angle @, are both measured fromthe vertical axis,
and h,, which is a constant, is the thickness of the shell. All the previous
expressions for the displacements and stresses still hold. The differential
equation to be solved is again given by

LL(‘I’) -1ie® W,gg = 0 (3.4)

where the definitions of (2.12), (2.13), and (2.14) hold and it must be noted
that €2 is a constant because of (3.2), viz.,

€2 = 2m o®p3x/\ (3.5)

11



B. SOLUTION OF THE HOMOGENEOUS DIFFERENTIAL EQUATION (3.k4)

Consider the homogeneous equation (3.4) which, by virtue of the definition
of L(¥), may be written as

5411[ 2& 84“1, + @i éfllf(.
o6t o2 0620t2 o ot
2 2
15 -g—"z’ -0 (3.6)
Let
v o= f(g) ™0 (3.7)
Then (3.5) becomes
2 2 2 " 4.4
fiv . <? 0222“ + i §;> £y = ;40# fn = 0 (3.8)

where primes denote differentiation with respect to ¢. Assuming solutions of
(3.7) in the form

£, = e°F (3.9)
we have from (3.8)
8% - 2 “222 (02 + 1 2.7)82 + n4gia4 = 0 (3.10)
where
o = 2 - QTL? (3:11)
At once, then
5% = “:gz [(0% + 1 155) + 4o (202 + 2i n2)%/2]
Now
(-1 + 21 002 = =032 - 177 e 1 (12 4 100V
1 = g *+ b nt



and hence
2o lo - lo -
52 = “_BE_ {nZ + ——,_Z (1% - 102)1/2}+ i% 1.2 £ _2 (12 + 102)1/2 ﬂ

(Note that plus sign goes with plus “sign, minus with minus, from the previous
equation.)

Let
ri® = ot 4 1ot + 1 2 TP
N2 I {nz (12 - 202)1/2 N 202 (12 + 102)1/2}
I‘22 - 1"14 + 104 + 102 -f.?_'
' - /2
-’\[Elo {na (IZ - 102)1/2 + 102 (12 + 202)1/ }
then
b1(0 10 1/2 1/2
8y = iBJE{[r1+n2+J"2:(IE-102) :1
1/2
+ i [1-1 -n2. 2 (12 - 102)1/2_1 /}
N2 ]
"t ddn (3.12)
b2 = + 12 I:rz + 02 - L0 (]2 102)1/2]1/2
B2 N2
P Xy 2)1/2] 1/2}
J’é o]
= (hy + 1 ky) (3.13)
Then
JHen + 1 dp)t
£ (8) (5.14)

e’—'(hn +1 kp)t

13



and the homogeneous solution ¢ may, therefore, be written from (3.7) as

Vg o= L

n=1

+ Cp

x a
[An e(cn+i n)t .

»e(hn+ikn)§ ' D

~(cp+idy )t
e

e-(hn+1kn)gJ RELC (3.15)

n

C. LOADING ON THE ROUND SHANK AND A PARTICULAR SOLUTION OF EQUATION (3.k4)

Congider the centrifugal loading defined by

PEA) = Pgq w2hp ([’T - ZA) 0<zp< dp
P(B) = 2h (4 y3 2 ) 0 L
¢ = powfhg (L + Lo + Lp - zp Lzp< iy (3.16)
P(C)- o®hn (L. + bn - 2Z) 0<z,< 4
3 = Po C \Ye c c =“cx"*

where « 1s the angular velocity and the superscripts identify the component

of the propeller.

]

p(e)

(8)
B (e)
(
g

d

P C

1}

)(¢)

and note that as a consequence

(&) =

We rewrite (3.16) in the form

po (l)zhA ;@A f—T- - ¢
I
— /4
po ¢Ph, £y (1 + DBE) (;CB - )
B
2 ZeC
Po @7l fe 7~ = £

of this and using (2.9)

(3.17)

Ly [5 ()

T Jo Fe o de

(3.18)

3
%_/; PgB) at + AgA)(l)

Lo £ ()

k2 ag + a8)(1)

4

it

In (3.17), we have assumed that hy and hy are constants while hp varies

linearly

14



(3.19)
b = e 1
hy
and we have defined (see Fig. 1)
(3:20)
leCB = Ze + IC + IB = IT - IA

Integrating (3.18) after substitution of (3.17), we have

L ) 2
A A T
Ag )(g) = -a-po w® hy ﬂA.Q_g '%)

J -2 2
AéB)(g) = -I?f po @ hy Ly [—Z%B- £ - (1 - b —e—C]é> -gé— b Eﬂ%g‘q)(l) (3.21)

Assuming

&
]
o
ey |
i
o

(3.22)

and (3.4) may be written as

Hy

S o4
a4—-"i+eoc2a2——“'+6‘*gg-i€2§g = 1Kaq,

o6t 062 ¢2

A particular solution of this equation is

15



=1

do £2

V. =
P 2

N

Substituting the expressions for E, dy, and €2, we have

p = - = 4o Ro po 0% £° (3.23)
P oF I 0 .
C
We have finally
Vo= Vg + Vp (3.24)

where yg 1is given by (3.15), V¥p by (3.23).

., THE TRANSITION REGION B

A. INTRODUCTORY REMARKS

The transition region, as its name implies, refers to the transition from
the airfoil section to the round shank of the propeller blade. Consequently, at
one boundary of this region, the transverse section is circular while at the other
boundary, the transverse section is elliptical. Considering the transition region
as a shell, its middle surface is arbitrary, satisfying only the requirements that
one edge is circular, the other elliptic. Because of the complexity of the equa-
tiong governing the deformation of an arbitrary shell, some simplification is nec-
essary. Rather than omit terms from these equations whose effect cannot be truly
predicted, it is proposed to require that the middle surface of the transition
region be developable. This means that the expressions for the Christoffel sym-
bols of such a middle surface will be simplified so that on the surface the square
of the line element may be expressed in the form ds® = duZ + dvZ. As a conse-
quence, the membrane equations of equilibrium can be solved in terms of a stress
function and its first and second derivatives. To summarize, therefore, we must
find

(i) A developable surface such that its boundary transverse
sections are circular and elliptical.

(1i) Orthogonal geodesic coordinates u,v such that ds® =
duZ + avZ,

B. CONSTRUCTION OF A DEVELOPABLE SURFACE

Let 2z be the axis connecting the centers of an ellipse and a circle which
are parallel to each other, Iy be the length from center to center along 2

16



(see Fig. 1), and let the center of the ellipse be the origin of our coordinate
system.

Consider a point P, on the circle given by

P, : (R, sin @, , Rycos f, , 1Ly + Ip) (k.1)

and a point P. on the ellipse specified by
P, : (ap sin @, , by cos B, Lp) (4.2)

where R, is the radius of the ecircle and aj;, by are the semi-principal axes
of the ellipse (see Fig. 1). By projecting the line P P. onto the x-z and

y-z planes, it can be shown that the position vector = PePg is given by
‘ > . ‘.* 3

T .Z..iRO sin ¢c+ 1 =28 )gin ¢A;E_Rocos¢c+ 1-2% blcos¢A;z*+lA
) g Iy IB

or equivalently
>
r: [t R, sin @, + (1-t) ay sin @y 3 £ R, cos P, + (1-£) by cos Py 3 Ipk + 1]
(k.3)
where
z* =z -1y, £ = z¥/1p

Equation (4.3) defines a ruled surface whose Gaussian curvature K must vanish
if the surface is required to be developable, i.e.,

kK = LN-M¥ _
B
(.4)
LN -M* = 0
where, in the notation of Ref. .7,
L = #.%,, M o= &P, N o= & .7
-> > N N
S H o= [#yx 75 (+.5)
> d T > P r
I = —




€1, E> being the parametric curves. We next choose 2z and ¢A as the two
independent variables, and note that since ?11 = 0, L vanishes and with the
use of (%.5), our condition for developability (4.4t) becomes

i‘>12 . (?1 X ?é) = 0 (4.6)

Evaluation of (4.6) using (4.3) yields

d Po

—= [by sin @y cos Po - ay cos @, sin gl = O
d Pa

whence we have the developability condition

tan Py = 7y tan B (4.7)
where
-1 a 4
= B = Ei (%.8)

The required developable surface, after substitution of (4.7) into (L4.3), is
therefore given by

- 3
X = sin ¢C Rot + (1-£) azmy 1 + tan® b 1/2

i 1+ 12 tan2‘¢c _

- ‘ (k.9)
y cos B~ |R &+ (1-¢) b {' L+ tan® fo 1/21
v = - 1

Clmo 1+ 03 tan® g | |

VA -

C. THE ORTHOGONAL GEODESIC COORDINATE SYSTEM

In finding an orthogonal geodesic coordinate system, we adopt the procedure
given in Ref. 8, pp. 136-145. Since any straight line on a surface is a geodesic,
it follows that ¢C = constant represents a system of geodesics. To this end,
we define

uy = 1 - E H vy = TE[. - ¢C
R = 59 H b = P‘L (14“10)
- by Ig

e 1 + tan2 vy |1/2 . ;- I3 z
T ) ni® + tan2 vy ? T \Ig

1R



and therefore rewrite (4.9) as

7. [X y z )
D \7 >3 » 7T

2 - b cos vy [R + wi(-R + n;2 £)]
Lp
(k.11)

L= bSiIlVl [R+u]_ (‘R+f)]
Ip

Ip + 1
.E_ = - 11/2 uy; 4+ ._:E_...—.._é
LB '

Introducing a new coordinate usz and assuming u; = u;(up,vy), we can write

ds? = Ep dus® + 2 Fo dup dvy + Gp dvy® (k.12)
where
B, - 2 9% _ f <§§i§>2
us 0 uz duz,
J ;ﬁ 9 zb oy [= = 9
Fo = . = S .
2 dug o vy dup [? + o ;] (k1)
> > 2
Gz = 0 Ip . 9_29 = A <é51 +B+2C <?E£>
and

Aj(vi) = B [RP+1-2R 2" - n® (1-0y%) cos® vy £3(vy) + £/12]

]

B(vy) = P2 IR +uy (R + ni2 £2)1° (4.14)
E(vl) = b (1 - nlz) cos vy sin vy £ [R + uy (-R + 172 £3)]

It must be pointed out that use has been made of the identity

19



o= 3
a

= - (1 - ;%) sin vy cos vy £3(vy)

Requiring wus and vy to be orthogonal, i.e., Fs = 0, we have

ou C
—a—v-l- = - = (4.15)
1 Ao
or equivalently, by using (4.1%4)
%' + gJ; U3y = (o (}-hl6)
ovy
where
1
d1(vy) = (L - 13®) cos vy sin vy £ (-R + 712 £3) A;
(b.17)
2 s - -1
42(vi) = =R (L - n17) cos vy sin vy £ Aj
Noting that
f d3 dVl = - lOg KO
we can formally write the solution of (4.16) as
g(uz)
u = —1/2 = G¥(vy)
Ao (Vl)
(4.18)

cos vy 8in vy f(vq)
‘é?;?é“ JF - 1/2 vy

With u; as defined by (4.18), (4.12) may now be written after substituting
for Ep as given by (L4.13), as '

; S 2
ds® = A, (55:) due2 + Go dvlg (4.19)
We now set
1/2 duy
Ug = d.uz

auz

20



so that (4.19) becomes

ds? = dug® + Gz dvy (k.19)
From (4.18)
dw _ 1 dg(up)
2 1/2
Bug AO / d.u;-

i.e.,

and (4.18) becomes

w
u = o= - G*(vy) (4.20)

- Kol/z

from which us may be expressed in terms of wuy. and vy. Applying the ortho-
gonality condition (%.15) to the expression for Gz in (4.13), we have

= B[1 - (1-m32)2 cos? vy sin? vy £2(vy)A ™

Go = B - o

éDIIqQ

Substituting for B from (4.1%) and for wu; from (4.20), we finally obtain

JE; = Cl(vl Uz + Cg(vl) (hoEl)
where
. P>
Cu(vy) = 21 - (1-1,2)2 Coﬁi'vl sin® vy fZ(Vl) Y/ [-R + n12 3(vy)]
Bo(vi) B2 (v1)
(h.22)
Ca(vy) = 41 - (1-n,%)2 cgsz vy sin? vy £2(vy) 1/2 R{l _ Q*jRX;l [_R+n12f3(v1)1}
Ao(vy)
If Caz(v*) = 0, then if we let
Vz = J[ Cy(vy) dvy (4.23)

21



then (4,19a) becomes

dsZ = dus? + ug® dvo® (4.24)
Finally, if we define
u = ug COS Vo
(k.25)
v = ug sin vo

Equation (4.24) reduces to the form

dsZ = du® + av® (%.26)
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APPENDTX

B. T. Caldwell

~ LOADING OF THE ELLIPTIC CYLINDER

In the g-direction, there is an effective loading component

i
P6) = o0 1ty (12 - ) (1)

i

where p, 1is the density of the material, o is the angular velocity, and
Ip = 1p + Ip + Io + L as shown in Fig. 1.

In the o-direction, the loading component is negligible, i.e.,

In the ({-direction, we assume P to have the following form:
P(£18) = Do [1 - 5(6)] pa(t) (A2)

where D, is a constant, and

o)

p1(t) = X asnsy sin (Ontl) =t (A3)
n=0

In (A3), the coefficients a, Wwill be so chosen that p1(&) varies as an ellipse
of major axis [, and of arbitrary minor axis.. In order to find a representa-
tive form for S(6) in (A2), we select a typical pressure distribution for the
airflow around a thin girfoil. To this end, we make use of the data given on
P. 328 of Ref. 2 for an airfoil which sufficiently approximates the elliptic
section so that the general nature of the results will hold for our study. The
formula used for the determination of S is taken from p. T7 (;gg.‘giz.) as are
the following quotations with our comments in parentheses:

"The velocity distribution about the wing-section is thus considered to be
composed of three separate independent components as follows:

1. The distribution corresponding to the veloeity distribution over
the basic thickness form at zero angle of attack (v).

2. The distribution corresponding to the load distribution of the
mean line at its ideal angle of attack (Avj in this particular
case Av = 0 because the airfoil and the ellipse are both symmet-
riec about the horizontal axis).
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3. The distribution corresponding to the additional load distribu-
tion associated with the angle of attack (Ava).

"The local load at any chordwise position is caused by a difference of ve-
locity between the upper and lower surfaces. It is assumed that the velocity
increment on one surface is equal to the velocity decrement on the other sur-
face." And from p. 79 comes the remark "although this method of superposition
of -velocities has inadequate theoretical justification, experience has shown
that the results are adequate for engineering uses."

If V is the velocity at infinity, p, the pressure at infinity, and Py
the mass density of air, then the pressure p, at any point on the surface of
a cylinder of infinite length is (cf. p. 7T, Ref. 2)

1
P = Hp-zpaVZS (k)
where
1 2
HP = po+-é-pAV (A5)
and
: 2
s = (¥ + Mg (A6)
v v

the plus sign being used for the upper portion of the external boundary surface,
the minus sign for the lower portion. S is readily found since v/V and Ava/V
are tabulated on p. 328 of Ref. 2 for different values of percent of chord where
the chord is the line of symmetry in this case (chord has the usual aeronautical
definition). This means that the S computed for a given percent of chord is
the value at the upper or lower intersection of the boundary surface with the
perpendicular to the chord at the given percentage of chord length.

We now assume that the S of the airfoil at a given percent of chord is

identical with the S of the elliptic middle surface at the same percent of
chord. Knowing the percent of chord of the ellipse, we can find the length of

arc corresponding to it.

In particular, we have
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[alE(0x/2)-B(e" B1, 0 < <ife, xcpc

100
a,[E(6',x/2)+E(6",0], /o< 2L < 1 ,%2< @<
=100 = p="=
XA = < _ X - (Aa)
2,[5E@" ,x/2)-E(e",4], 1 >72>1/2,0<9< 3
el x/2)48(0" 81, 1/2 > 22> 0 ,-523‘-5 6 < 2x
0<x <8
E(e',f) = f [1 - sin? o' sin® £]/2 at
(o]
s = 4E (o',x/2)
Io (A9)
@' = arc gin (1 - l
@ = arcsin |2k -1
100

In the above equations, x; is the percent of chord, Xj 1s the arc length of
the ellipse measured counterclockwise from the point (-a;,0), and © is a di-

mensionless coordinate whose origin occurs at EAM’ the point of maximum pres-
sure on the boundary surface. This point is determined from the condition [see
Equation (A4)]:

Y . M (A10)
v A '
Evaluating the elliptic integrals E(O’,a) by means of Refs. 4t and 5 and
using Equations (A7) to (A10), we compute S(8;) at @y which are discrete
values of ©. This computation is given in Table I. The values of the constants
used are

ay = 5.3 2 bl = 0.2
(A11)
o' = 87.837382°
whence, from (A10) and p. 328 of Ref. 2
XaM
= = o.0120k2 (A12)
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There remains the task of finding a simple functional relationship between
S(6;) and B. We note from the results of our previous computation that S has
a high peak occurring at

8(0;,) = 835, = 29.665 (A13)

We assume, therefore, that S has the form

5(@) = I B, sin nxé + F1(0) . (ALk)
n=1 '
_— kO
Fl(a) = A]_ [Sin2 2 mﬂa] (5 + Xﬁ) (Als)
S

and impose the following conditions for the determination of Fl(a):
(1) Fl(EJO) = A £8 ,8>0

(11) Fl(EJO) = 8,

(111)  Fa(8y 1) = Syl = 5.373
Condition (1) implies that
X
sin2m:rﬂ = sinf'-

s 2

i-ne‘.,
m = 21
. (a16)
sin® 2 mx (1 - ﬁ) = 0.999%

From (A16) and (ii)

Ay sin® 2 my ( - }EAM.) = 29,665
s
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A; = 29.68 (ALT)
From (A15) and (Al7), and from the computed data noting that 550_1 = 0.981202
(o.9932hh)k° = 0.4801

k. = 108 (A18)

0
where the nearest integral value of k, is used.

‘The values of By are evaluated in the usual manner yielding

By = l.b51 Bz = 0.5676
Bx = -0.4966 By = =0.3070 (A19)
Bs = 0.3280

Five terms of the Fourier series are sufficient for satisfactory convergence.
We have, therefore

108

— 5 * — — —
s(e) = Z.l B, sin nu® + 29.68 [sin® 42 5] (6 + 0.012042) (A20)
n=

The plot of ,8(5) together with that of the function 3(65) is shown in Fig. 2.
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PART IT

EXPERIMENTAL STUDY

by

S. K. Clark



PREFACE

Models of three geometries of thin propeller blades were cast of aluminum
alloy 355 and used for an experimental stress analysis comparing the effect on
stresses of various transition sections. The blades were identical in both the
hub and ocutboard (airfoil) sections, and differed only in the transition regionms.
Strain measurement in the transition region of each blade was accomplished by
the use of stress-coat and electrical resistance strain gauges.

Loading fixtures were constructed which permitted the application of pure
tensile loads and of pure bending moment about either the flat-wise or chord-
wise axis of the blade. Two blades were loaded in tension and one in bending
about the flat-wise axis in order to demonstrate the feasibility of the loading

fixtures and the strain-measuring techniques.
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GENERAL STATEMENT OF BACKGROUND

Work on the experimental phase of this program began in April, 1956, and
approximately five months were consumed in planning tests and in the design of
propeller blades and loading fixtures. Serious difficulty was encountered in
finding acceptable methods of manufacturing the blades, since machining proved
to be too costly and since only one foundry was willing to attempt direct cast-
ing on the blades. In view of the limited financial resources of the project,
it was decided to attempt casting, and a contract for this was let to Pressure
Cast Products, Incn,‘1028 Vermont Ave., Detroit 16, Michigan, in November, 1956,
with delivery promised for February 1, 1957. Considerable difficulty was ex-
perienced by this vendor in obtaining any kind of a casting, and after several
months of unsuccessful trials a casting consultant was engaged by the project
to provide advice to the vendor. Following this, complete castings were obtained,
the last of the series being delivered July 20, 1957.

The castings as received were not acceptable from the standpoint of dimen~
sional tolerances and contour shape. They were, however, sound and free from
obvious flaws, and in light of this and considering that the project was now
seriously short of time for completion of any testing it was decided to accept
the castings. These castings were then machined and assembled in the fittings,
and trial tests were run on two blades in tension and on one blade in bending.
All fittings operated satisfactorily, and the method of applying loads and mo-
ments appears to be a sound ome.

OBJECTIVES OF TEST PROGRAM

The general objective of the test program was to provide experimental data
which could be used ag verification of certain calculations to be made in the
second year of theoretical work on this problem. It was decided in conference
with Prof. P. M. Naghdi, director of the theoretical group, that it would be de-
sirable to calculate from theory and to measure experimentally the stresses pro-
duced in an actual aerodynamic loading and by actual centrifugal loads. The ex-
periment was originally designed to include loads as shown in Fig. 3.

The result of the loads is that each cross section of the transition region
is acted upon by the following forces:

(a) A constant tensile force due to the mrw= of all material outside

of the transition region.

(b) A variable tensile force due to the body force mrve acting through-
out the transition region.

(¢) A bending moment which is variable and which is due to the presence
of the aerodynamic pressure distribution. This bending moment has
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components in both the flat-wise and long-wise directions of the
blade.
(d) A shear force due to the presence of the aerodynamic pressure dis-
tribution. '

(e) A twisting moment or couple due to the possible eccentricity of
the resultant of the aerodynamic forces.

It was decided to attempt to piece the complete loading together by perform-
ing a series of tests and by combining the results by superposition. In order to
do this effectively, it was planned to request funds for a centrifugal test (cov-
ering loading "b" in the list above) and for an actual shear and bending loading
test (items "c" and "d" above) during the anticipated second year of operation of
the project. When it became evident that funds were not available for the second
year of effort, it was decided to complete that part of the testing which would
. demonstrate the feasibility of the proposed loading schemes in so far as they had
progressed. For this reason tensile and pure bending tests were chosen, since
fittings were already manufactured for these tests and since the data obtained
might be useful in propeller design. The methods of loading are explained in de-
tail in the following sections.

METHODS OF LOADING

DIRECT TENSILE LOADS

Direet tensile loéds were applied to the specimen by means of a conventional
Riehle testing machine. ILoading was accomplished through chain links as inter=-
mediate members, to insure that eccentricities did not introduce unwanted bending

’::ju



moments. A blade loaded in this fashion is shown in Fig. 4. By means of these
fittings loads of M0,000 total pounds could be easily applied in tension to the

specimen.

PURE BENDING MOMENT

A means for the application of pure bending moments without shear or ten-
sion was devised. In the form used here it is most easily described by the
photograph of Fig. 5. Basically a single tensile load is split by means of
cables and pulleys so that the specimen is subJjected to l/h of this total load
as each of four points as shown in Fig. 6.

The fittings for the blade models were constructed in such a way that this
pure bending moment could be applied about either of the axes of the propeller

blade.
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INSTRUMENTATION

Instrumentation of the propeller-blade models was performed by qualitative
use of stress-coat and by electrical resistance strain gauges. Stress-coat was
utilized to determine the directions of principal strain so that gauges might

“be properly oriented. It was not found possible to photograph the stress-coat
pattern with enough clarity to present in this report.

Type A-18 strain gauges were placed on all models, both inside and outside,
at 0%, 25%, 50%, 75%, and 100% of the transition length, measured from the root
end of the transition, and at other points as appeared desirable from the stress-
coat tests. This particular type of gauge was chosen since its short length made
installation in a restricted region somewhat easier, while the averaging effect of
its length was kept small. At .each of these sections along the transition length,
a band of strain gauges was placed. These gauges were attached in pairs, one cir-
cumferential and one aligned with the longitudinal axis of the blade since the
stress-coat tests indicated these to be the principal strain directions.

RESULTS

Due to the limited resources in time and funds it was not possible to per=
form as complete an interpretation of the measured strains as was desired. TFor
this reason the results obtained are presented in summary form only, while the
complete data are to be transmitted to WADC for possible further interpretation.

Tensile load strains were measured on the 12-inch and 6-inch transition-
lengﬁh models at loads of 10,000 and 20,000 pounds. The modulus of elasticity
used in the calculations was determined by test to be 10 x 10° psi. Assuming
that the gauge pairs are oriented in the principal strain directions, and assum-
ing that the stress component through the thickness of the blade shell is zero,
the stresses may be immediately computed in terms of the measured strains and

the physical properties.

A very simple method of presenting these data is used, in which the ratio of
maximum measured shear stress to nominal shear stress is tabulated. Nominal shear
stress is defined as 1/2(P/A), where P = load and A = cross-sectional area. The
maximum value of this ratio for each of the two transition sections tested is gi-

ven in Table IT.

TABLE IT
Transition Section Iength, in. (Tmeas/Tnom)max
6 s 2.35
12 1.62
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For the bending test a couple of 2000-inch-pounds was applied about the flat
axis of the 12-inch transition-length propeller blade and strains were again meas-
ured. Using the same assumptions as before, the maximum value of the measured
bending strain may be converted to stress and divided by the nominal beam bending
stress to yield a simple dimensionless ratio. Data of this nature from the 12-
inch blade are given in Table IIT.

TABLE III
. Tbmeas
Transition Length, in. Tbnom / max
12 1.89

Here, the nominal bending stress is taken to be MG/I, and does not imply
anything other than a convenient quantity for use in manufacturing a dimension-
less ratio.
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APPENDIX

BLADE GEOMETRY

The transition-gsection region was in all cases designed on the basis of one
" half cycle of a cosine curve. As an example, the two lines of Fig. 7 may be
Jjoined by a curve, shown as a dotted line, of the equation

y:hl*CQSE
2 |y

which satisfies both ordinate and slope continuity. Curves of this type were
fitted to each of the two plan views (side and front) of each of the three lengths
of transition section, for both inside and outside profiles. The cross section

~ of each blade, again both inside and outside, was taken to be an ellipse whose
major and minor axes were chosen to conform with the half-cosine curve previously
discussed. The constant outboard section was also defined by ellipses. Thus,
the shell in all cases is defined as the material lying between two concentrie
ellipses, with the eircular shank merely a special case of this. It should be
pointed out that this definition of shape is almost identieal with that which
would be obtained in the usual manner of fairing with splines. Blade drawings
are given in Plates I through IV.

—~ ' X

Fig. . 7.
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