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A fixed point theorem for muitifunctions and an application 

MARGRET HOFT 

Abstract. The main result is a fixed point theorem for compositions of chain faithful mttltifunctions 
(Corollary 2.3). The theorem is then applied to get sufficient conditions for the fixed point property of 
the product of two partially ordered sets. 
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1. Introduction 

Let P and Q be partially ordered sets. A multifunction F of P into Q is a 
function that assigns to an element p e P a non-empty subset F(p) in Q. We use 
capital letters F, G, H for multifunctions of P into Q and write F:P---~ Q. Let 
F : P--~ Q and G : Q --~ R be two multifunctions, then the composition G o F : P 
R is defined as (G oF)(p) = U {G(q) I q e F(p)}. A fixed point of a multifunction 
F:P---~P is a point p e p  such that p eF(p). If for all peP, F(p) is a 
one-element subset of Q, then F is a single-valued function in the usual sense, 
and a fixed point of F is then a point p = F(p), i.e. a fixed point in the usual 
sense. For single-valued functions we shall use f, g, h. A single-valued function 
f:P---> Q is order preserving if xl =<x2 in P implies f(xl) ~f(x2) in Q. P has the 
fixed point property (fpp) if every order preserving function f:P----~ P has a fixed 
point. The problem whether P x Q has the fpp if both P and Q have the fpp is an 
unsolved problem at present. For current information on the fixed point problem 
one may consult [4]. In [6] and in [8] multifunctions have been used to get results 
about the fpp of a product P x Q. In section 2 we prove a fixed point theorem for 
compositions of multifunctions (Theorem 2.2) and use it in section 3 to obtain 
fixed points for order preserving maps on products P x Q (Theorem 3.1, 
Theorem 3.3, Theorem 3.6). 
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The following lemma will be used in section 3. It appears in various forms in 
the literature, e.g. [4, Theorem, p, 288], [2, Theorem, p, 402] and is a special 
case of a more general result on the fpp of sets that are bounds of chains, e,g. [6, 
Lemma 1, p. 62]. 

L E M M A  1.1. If  P has the fpp and C is a chain in P, then the sets" 
U = {u [u >>-x for all x e C} and V = {v Iv <=x for all x ~ C} have the fpp, in 
particular, both U and V are non-empty. 

( Note, that if C =  {p} is a one-element chain, U = [ p )  and V = ; p ] ,  the 
principal upper and lower ends  generated by p, have the fpp. 

2. A fixed point theorem for multifunctions 

We introduce several conditions that a multifunction F:P-+ Q may satisfy: 

(1) If xl Nx2 in P and if y~ c F(xO, then there is Ya c F(x2) such that y~--<Y2 
in Q. 

(2) If xl <x2  in P and if y2e F(x2), then there is y~ e F(xl) such tha~ y~ =<Y2 

in Q. 

In [5] a multifunction satisfying (1) and (2) is called an order preserving 
multifunction, and we shall adopt this terminology here too. Note, that if F is 
single-valued, then F satisfies (1) and (2) if and only if F is an order preserving 
function in the usual sense. Also, if G:Q---~R is another order preserving 
multifunction, then the composition G o F : P ~ R will be order preserving. 

Now let C be a chain in P, and suppose there is an order preserving function 
f :  C---~ Q such that f (x )  e f ( x )  for all x e C. 

(3) If xo = sup C, then there exists Yo ~ F(xo) such that f (x )  <=y~ for all x c C. 
(4) If x0=>x for all x e C, then there exists Yo e F(xo) such that f (x )  <YO for all 

x ~ C .  

The dual conditions of (3) and (4) will be needed too, they will be referred to 
as conditions (3d) and (4d). A multifunction that satisfies (4) or (4d), will 
obviously also satisfy (1), (3) or (2), (3d) respectively. If P is chain finite, 
conditions (3) and (3d) are trivially fulfilled and (4) and (4d) reduce to  (1) and 
(2). 

If P has the property that the least upper bounds (greatest lower bounds) exist 
for all non-empty chains in P, we say that P has suprema (infima) of chains. If P 
has both suprema and infima of chains, we say that P is chain-complete. 
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L E M M A  2.1. Suppose P has suprema of  chains and let F :P--~ Q be a 
multifunction. Then f satisfies (4) if and only if f satisfies (i) and (3). 

Proof. Let F satisfy (1) and (3), let C be a non-empty chain in P, let f :  C---~ Q 
be such that f (x )  e F(x) for all x e C, let x0 = sup C and let Xl -> x for all x e C. By 
(3) there is Yo e F(xo) so that f (x )  <- Yo for all x e C. Now Xo -< xl and by (1) there 
is Yl ~ F(x~) so that Y0 -< Yl. Also f (x )  <= Yo <- Y~ for all x ~ C, and (4) is verified. 

T H E O R E M  2.2. Suppose P has suprema of  chains, let F:P---~Q and 
G:Q--~ P be multifunctions that satisfy condition (4). I f  there are elements p, 
r 6P, q ~ Q so that q eF(p) ,  r e G(q) and p <-_r, then GoF has a fixed point 
po>=p in P. 

Proof. Let ~ be a system of chains of triples (x, y, z) where x, y ~ P, z ~ Q, 
z eF(x) ,  y e G(z) and x<-_y in P and which contain the triple (p, r, q) as least 
element. 3? is non-empty, since by assumption {(p, r, q)} =: C e ~.  Also, the 
union of a chain of such chains in Lf is again in 5f, therefore Zorn's Lemma can 
be applied, and there is a maximal chain Co in 5f. 

Let X = { x l ( x , y , z ) ~ C o }  , Y = { y l ( x , y , z ) E C o } ,  Z = { z l ( x , y , z ) ~  
Co}. X, Y, Z are chains and by assumption on P, x0 = sup X exists in P and 
Xo -> p. We define f : X---~ Q as f (x )  = z e F(x) and g : Z ~ P as g(z) = y e G(z) if 
and only if (x, y, z) e Co. Since F satisfies condition (3), there is Zo ~ F(xo) such 
that f ( x ) =  z <-Zo for all x e X, hence all z e Z. G satisfies condition (4), 
therefore, for zo>=z for all z e Z ,  there is Yoe G(zo) so that g(z)=y<-<y o for all 
z e Z  and hence all y e Y .  Now x<-_y<-_y o for all ( x , y , z )  in Co, thus xo---- 
Yo c G(zo). For the triple (xo, Yo, zo) we have now (x, y, z)<= (Xo, Yo, %) for all 
(x, y, z ) e  Co and Zoe F(xo), yoe G(zo), xo<= yo . Since Co is a maximal chain, it 
must be true, that (Xo, Yo, zo) ~ Co, and (x0, Y0, zo) is the largest element of Co. 

We prove now that xo =>p is a fixed point of G oF. Let xl :=Yo e G(zo), then 
xo<=xl and zoeF(xo). Since F satisfies condition (1), there is Zl e F(xt), so that 
zo = zl. Since Yo e G(zo) and since G satisfies condition (1), there is Yl e G(zl) so 
that yo<-_ya. Now (Xo, Yo, Zo) <= (xl, Yi, Z1), Z1 e F(xz), Yl e a(zl) and X 1-<_yl, 
hence (xl, Yl, Zl) e Co and therefore (xo, Yo, Zo) = (Xl, Yl, zl). Moreover, xo = xl e 
G(zo), Zo e F(xo), i.e. Xo e U {G(u) [ u e F(xo)}, and x0 is a fixed point of G oF. 

In Theorem 2.2 we can replace condition (4) for F and G by (4d) and get the 
dual result. 

A multifunction satisfying (4) and (4d) will be called chain faithful. Note, that 
chain faithful multifunctions are order preserving, and the composition of two 
chain faithful multifunctions is therefore order preserving, but in general not 
chain faithful. 
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C O R O L L A R Y  2.3. Suppose P is chain complete, let F : P---> Q and G : Q --~ P 
be chain faithful multi-functions. If there are comparable elements" p, r in P and 
q e Q, so that q e F(p) and r e G(q), then GoFhas afixedpointpo comparable to 
p i n P .  

If Q in Corollary 2.3 has an element x0 e Q that is comparable to any other 

element of Q, then we can take p e G(xo), and for any q e F(p) we have x0-<- q 
or q -< x0. Since G is order  preserving, there is r e G(q) so that p =< r or r =<p and 

q e F(p) .  

C O R O L L A R Y  2.4. Let P, Q, F, G be as in Corollary 2,3. If  Q has an 
element Xo comparable to any other element of Q, then G o F has a fixed point. 

Let us now take P = Q and let G : P --~ P be the single-valued identity function 
G ( p ) =  {p} for all p e P .  G then trivially satisfies condition (4), a n d  the 
requirement in Theorem 2.2, that there are elements p -< r in P, q e Q, where 
q e F(p) and re  G(q), simplifies to the assumption that there are elements 
p < - r = q e F ( p ) .  Theorem 1.1 in [7] is now an immediate consequence of 

Theorem 2.2 above: 

C O R O L L A R Y  2.5 (R. E. Smithson). Suppose that P has suprema of chains, 
and let F :P---~ P be a multifunction satisfying (1) and (3). If there is a point p e P 
and a point r e F(p) so that p <= r, then F has a fixed point. 

The proof of this fact in [7, Theorem 1.1] appears to be incorrect. The same 
idea that was used in [7] to prove Theorem 1.1 was used again to prove Theorem 
1.9 in [7]. In the latter case not only the proof but the theorem itself turn out to 

be incorrect, a counterexample is given in [3]. 
An order preserving single valued function f : P - +  P is chain faithful, and in 

this case, the self dual version of Corollary 2.5 is the well known result, that f has 
a fixed point, if there is an element p comparable to f (p ) ,  e.g. [1, TheOrem 2]. 

3. Applications to the fixed point property for products 

To apply Theorem 2.2 and its corollaries to the fixed point property for 
products, we use the notation and terminology of [6]: Let P, Q b e partially 
ordered sets and let h:P x Q--* P x Q be an order preserving function. Then 
h ( p , q ) = ( g ( p , q ) ,  f ( p , q ) )  for all p e p  and q e Q ,  where g : P •  and 
f : P x Q --, Q are order preserving functions. We define multifunctions F: P - *  Q 
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and G :Q--+ P as F ( p ) =  {q If(P, q ) = q }  and G(q)= {p tg(P, q)=P}-  Clearly, 
F(p) and G(q) are non-empty  sets, if both P and Q have the fixed point property 

for single-valued functions. 
Here  is the connection to Theorem 2.2: 

T H E O R E M  3.1. Suppose P and Q have the fop. Then h : P x Q--+ P x Q has 
a fixed point if and only if G o F has a fixed point. 

Proof. (p, q) =h(p ,  q) = (g(p, q ) , f ( p ,  q)), if and only if p ~ G(q) and 
q c F(p),  if and only if p e (G o F ) (p ) .  

Theorem 2.2 can only be applied to multifunctions satisfying condition (4) of 
section 2. The multifunctions F and G defined above are of this type: 

T H E O R E M  3.2. Suppose P and Q have the fpp. Then F and G are chain 
faithful. 

Proof, We show that F satisfies condition (4). All the other cases are similar. 

Let C be a chain in P, let x{~>-x for all x e C, let h : C--* Q be order preserving 

so that h(x) e F(x), i.e. f (x ,  h(x)) = h(x). Note,  that x,, exists because of Lemma 
1.1. Let U= {y ly>=h(x) for all x e C } c Q .  By Lemma 1.1, U:/:~, and for 

y e U we have f(xo, y)>=f(xo, h(x))>=f(x,h(x)) =h(x)  for all x E C, i.e. 

f(xo, y) ~ U. U has the fpp by Lemma 1.1, therefore,  there is y~c U so that 

f(xo, Yo) = Y,, hence Yo e F(x~) and Yo ~ h(x) for all x e C. F therefore satisfies 
condition (4). 

A multifunction H :  P---, P is a composition function if it is representable as 
H = G o F  where F:P-->Q and G:Q--+P are chain faithful multifunctions. 

Composit ion functions are order preserving multifunctions, every order preserv- 

ing single-valued function is a composit ion function, and if P has the property 

that every composit ion function has a fixed point, then P has the fpp. 

T H E O R E M  3.3. Let P have the property that ever)' composition function on P 
has a fixed point. For every Q with the fpp, P x Q has the fpp. 

Proof. Let h : P • Q - ~  P • Q be order  preserving and let F, G be as defined 
before,  H = GoF is a composit ion function by Theorem 3.2 and has a fixed point 
p c H(p)  by assumption.  By Theorem 3, 1, h has a fixed point. 

Theorem 3.3 extends Theorem 1 of [6]. As a consequence of Theorem 3.2 and 
Corollary 2.3 we have 

T H E O R E M  3.4. Suppose P and Q have the fpp, P is chain complete. The 
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following conditions are equivalent. 

(1) h : P x Q - +  P x Q has a f ixed point. 

(2) G o F has a f ixed point. 

(3) There are elements p, r ~ P, q c Q so that q ~ F(p ) ,  r ~ G(q)  and p < r or 

r<-p. 

(4) There are elements p, r ~ P, q ~ Q so that f ( p ,  q) = q, g(r, q) = r and r <=p 

o r p < - r .  

As we have  seen in Corol la ry  2.4 the condi t ions in T h e o r e m  3.4 are trivially 
satisfied if Q has an e l emen t  that  is c o m p a r a b l e  to every  o ther  e l emen t  of  Q: 

C O R O L L A R Y  3.5. Suppose P and Q have the fpp,  P is chain complete, Q 

has an element comparable to every other element in Q. Then P • Q has the fpp. 

In combina t ion  with L e m m a  1.1, Corol la ry  3.5 implies for  ins tance ,  that  if P 

and Q have  the fpp  and P is chain comple te ,  then  for  all p c P, q e Q, P x [q), 

P x (q], [p )  x (q], (p ]  x (q] all have  the fpp. 

Finally we der ive  an extension of  T h e o r e m  2 of  [6] f rom Corol la ry  2,5 and 

T h e o r e m  3.4, if we let H = G oF, with F and G as above.  

T H E O R E M  3.6. Let P be chain complete such that for  every composition 

function H there is a comparable pair p, r ~ P, r ~ H(p ) .  For every Q with the fpp,  

P x Q has the fpp. 
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