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Abstract

Due to the increasing popularity of spatial databases, researchers have focused their efforts on improving the

query processing performance of the most expensive spatial database operation: the spatial join. While most

previous work focused on optimizing the ®lter step, it has been discovered recently that, for typical GIS data sets,

the re®nement step of spatial join processing actually requires a longer processing time than the ®lter step.

Furthermore, two-thirds of the time in processing the re®nement step is devoted to the computation of polygon

intersections. To address this issue, we therefore introduce a novel approach to spatial join optimization that

drastically reduces the time of the re®nement step. We propose a new approach called Symbolic Intersect

Detection (SID) for early detection of true hits. Our SID optimization eliminates most of the expensive polygon

intersect computations required by a spatial join by exploiting the symbolic topological relationships between the

two candidate polygons and their overlapping minimum bounding rectangle. One important feature of our SID

optimization is that it is complementary to the state-of-the-art methods in spatial join processing and therefore can

be utilized by these techniques to further optimize their performance. In this paper, we also develop an analytical

cost model that characterizes SID's effectiveness under various conditions. Based on real map data, we

furthermore conduct an experimental evaluation comparing the performance of the spatial joins with SID against

the state-of-the-art approach. Our experimental results show that SID can effectively identify more than 80% of

the true hits with negligible overhead. Consequently, with SID, the time needed for resolving polygon intersect in

the re®nement step is improved by over 50% over known techniques, as predicted by our analytical model.

Keywords: true hit detection, spatial joins, spatial databases, spatial query processing

1. Introduction

The requirement for spatial data management in Geographic Information Systems (GIS),

Cartography, image processing, VLSI, and CAD/CAM has driven the fast-increasing

market demand for spatial databases. Spatial join processing is critical in spatial databases

because it is commonly used for many classes of queries required by the above-mentioned



applications. One query class is map overlay [4], [13] which merges two map layers into a

single layer consisting of the overlapping regions. The second is intersection detection

which returns all objects in one target data set that share a spatial relation such as intersect
or contain with at least one object from a second target data set. A query such as ``Find all
counties that intersect some areas ¯ooded last year'' is an example of such a query based

on the intersect relation.

Computing spatial joins is very expensive in terms of both CPU and I/O costs because:

1. Spatial objects are typically represented by structures that require extensive

storage. For example, a high-resolution vector representation of a polygon may

store thousands of points where each point is represented by an x-coordinate and a

y-coordinate value.

2. A spatial join operation requires multiple scans of often large data sets.

3. Determining a spatial relation such as intersect between two objects is very compute-

intensive, namely, it requires super-linear time complexity as a function of the

number of points used to represent each object. The most widely used algorithm is

called the plane sweep algorithm [3], [18], [22] whose lower bound in computation

complexity is O�n� log�n�� where n is the number of points representing the objects.

The ®rst two factors contribute to high I/O costs, whereas the third results in high CPU

costs. As a result, spatial join queries over large data sets usually incur a long response

time. To minimize cost, strategies for spatial join processing typically execute in two

steps [16]:

* The ®lter step uses a conservative geometric approximation, such as the MBR

(Minimum Bounding Rectangle), to represent each object. It then computes a set of

object-pairs comprised of one object from each target data set, such that the geometric

approximations of the two objects share the constrained relation. This resulting set of

object-pairs is called the candidate set.
* The re®nement step retrieves the full spatial data representation of the two objects in

each object-pair of the candidate set and runs an algorithm such as plane sweep to

determine if the spatial relation (speci®ed in the join query) exists between them.

The advantage of the two-step approach is that the ®lter step eliminates many object-

pairs that cannot satisfy the spatial predicate without having to retrieve their storage-

intensive spatial object representations. More importantly, the CPU-intensive re®nement

step processing is avoided for the candidates eliminated in the ®lter step.

Very recently, it has been discovered, based on experiments conducted over GIS map

data [17], that the re®nement step is more expensive (in terms of overall processing time)

than the ®lter step. This makes the optimization of the re®nement step in spatial join

processing especially critical. Furthermore, approximately two-thirds of the time in

processing the re®nement step is devoted to resolving intersect relation while the other

one-third of the processing time is used to retrieve the spatial representation of the objects

[17]. Therefore, spatial join computation is a very CPU-intensive process in which the
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intersect test in the re®nement step, based on current technology, is likely to be a

bottleneck. The situation is even worse for ®ne-grained (high-resolution) map data1

because while the ®lter step is independent of map resolution, the cost of the re®nement

step increases super-linearly as the resolution increases. To account for the emergence of

higher map resolution (e.g., images generated from ®ne-grained NASA measurement

instruments), we are investigating improvements on spatial join processing that are

scalable in handling ®ne-grained data sets.

While most recent spatial join research [2], [9]±[11], [17] presented improvements on

the ®lter step, this paper focuses on the optimization of the re®nement step. State-of-the-art

approaches in spatial join processing employ the plane sweep algorithm [3], [18], [22] to

detect intersections between object-pairs during the re®nement step. We propose a screen-

test procedure to be executed before the plane sweep algorithm that substantially reduces

the computation required during re®nement. We call this procedure Symbolic Intersect

Detection (SID). For each object-pair in the candidate set, SID uses the overlapping MBR

(OMBR)2 to clip all the segments of the two polygons which overlap the area bounded

by the OMBR. During SID optimization, we represent each clipped segment in a compact

symbolic form that identi®es where the segments intersect the OMBR. SID generates

two sets of such symbolic clipped segments, one for each object in the object-pair. Next,

based on the symbolic representation of the clipped segments, SID ef®ciently determines

when any two clipped segments, one from each set, intersect each other, and as a

consequence, SID eliminates the expensive plane sweep computation for all these detected

true hits.

In this paper, we present an analytical model as well as an experimental evaluation over

®ne-grained real GIS data sets, which con®rm that a very high percentage (> 80%) of true

hits can be identi®ed by SID. As a result, the overall performance of the re®nement

computation of spatial join processing is greatly improved by our proposed SID

optimization.

This paper makes the following contributions:

1. We propose a promising new approach for the optimization of the re®nement step of

spatial intersect3 joins, called SID.

2. We present an analytical cost model characterizing SID's effectiveness under various

conditions.

3. Based on real map data, we run experiments comparing the performance of the state-

of-the-art spatial join approach with the spatial join using the SID optimization. Our

results show that our SID optimization effectively detects more than 80% of the true

hits with negligible overhead. Consequently, with the SID optimization, the time

intersect computation in the re®nement step is improved by over 50%, as predicted

by the analytical model.

4. Our SID optimization is independent of the access data structures deployed in the

®lter step which is the focus of many recent research efforts. Consequently, our SID

optimization can be directly applied by practically all of the state-of-the-art spatial

join methods [2], [9]±[11], [17], therefore further optimizing the performance of

these known techniques.
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A preliminary version of this paper was presented in [8]. In contrast to the previous

version, this paper provides a more detailed presentation of the SID method. Furthermore,

in addition to an experimental evaluation based on real GIS maps, a signi®cant portion of

this paper now focuses on a thorough performance study of SID based on a new analytical

cost model (Section 4) not available in the preliminary version [8].

The outline of the remainder of this paper is as follows: In Section 2, we describe the

background and related work on spatial join processing. Our proposed Symbolic Intersect

Detection approach is introduced in Section 3, followed by an analytical cost model in

Section 4. We present the experimental evaluation in Section 5 and conclude this paper

in Section 6.

2. Background on spatial joins

2.1. Related work

The literature has been endowed with a plethora of recent research focusing on spatial join

processing. In [15], the z-ordering technique is used to transform multi-D data into

the 1-D domain. A spatial join is then conducted on the B� -tree structures that store

z-ordering values of the spatial data. In [20], spatial join indexes are computed using Grid

®les [14] to index the spatial data. In [12], spatial join is conducted to create the distance-

associated join indexes for spatial range queries. In [6], a model of the generalization

tree is proposed to compare the tree-based spatial joins with the alternative approaches

using cost estimation. Spatial joins based on depth-®rst traversal of R-trees were proposed

in [2]. In [9], we developed an alternative R-tree join technique based on breadth-®rst

traversal which was shown to have a better overall performance than the depth-®rst

approach.

Some spatial join research has focused on joining spatial data when the associated

spatial indexes do not exist for both data sets. In [10], a seeded tree is constructed for the

data set without an index in order to join it with the R-tree of the other data set. When

indexes do not exist for both data sets, a spatial hash join is proposed in [11] that uses

spatial partitioning as the hash function. Parallel to the work of [11], a partition-based

spatial-merge join is proposed in [17].

All above mentioned research focused mainly on developing a more ef®cient ®ltering

step (i.e., to optimize false hit reduction). To our knowledge, the only related work that

achieves a signi®cant percentage of true hit reduction is the progressive approximation

techniques presented in [3]. Their approach achieves roughly 35% true hit detection in the

®lter step. The advantage of detecting true hits in the ®lter step is that the vectors for the

identi®ed true-hit candidates need not be retrieved in the re®nement step. However, their

approach incurs additional pre-computation and storage costs in order to create and store

the additional approximation for each object. Work in [19] evaluated topological

relationship between MBRs to identify a subset of those relationships for which the

re®nement step is not needed. While it is clear that this approach can reduce the load on the
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re®nement phase for the overlaps predicate, the work does not present true hit detection

rates for real maps.

Work in [3] proposed another approach using trapezoid decomposition as the spatial

representation for polygons. Although very ef®cient in spatial join processing, such an

approach incurs even more extensive pre-computation and storage costs. Furthermore, it

requires creating a spatial representation for polygons that is incompatible with the vector

format most commonly used in spatial data applications.

In contrast, our SID approach not only achieves an impressively higher true hit

detection rate (> 80%, see Section 5), but it is also independent of the access structures

deployed in the ®lter step and is based on the vector representation of the polygons.

Therefore, SID is compatible with the popular spatial data (index and storage) structures

and can be used in conjunction with almost all spatial join optimizations of the ®lter step,

particularly those techniques that focus on early detection of false hits [2], [3], [9]±[11],

[17], [19].

Since there exist many strategies for optimizing the ®lter step, our focus in this paper is

on the computationally more expensive re®nement step. Therefore, for the purpose of this

paper, we assume a candidate set has already been computed (by any of the popular

recently emerged techniques) and is available as the input to the re®nement step. The

remainder of this section gives a background on the re®nement step processing adopted by

most recent spatial join techniques [3], [18], [22].

2.2. The two-phase approach in state-of-the-art re®nement processing

Upon retrieving from the candidate set a polygon-pair and their vector representations, the

state-of-the-art re®nement approach determines the intersect relation between the two

polygons by processing the restricting phase and the sweeping phase (see ®gure 1a).

2.2.1. The restricting phase. If a polygon-pair in the candidate set is a true hit (its two

polygons intersect), the area of intersection must be enclosed by their OMBR. Therefore,

any line segments of one polygon that do not overlap4 the area bounded by the OMBR will

not intersect any line segments in the other polygon. Therefore, to determine the intersect
relation between the two candidate polygons, the restricting phase eliminates the line

segments that do not overlap the OMBR. Only the ones that overlap the OMBR are

retained as input to the next phase: the sweeping phase.

If no line segment in either polygon is marked, the two polygons do not intersect, and

this candidate can be eliminated from further consideration. Therefore, in addition to

reducing the number of line segments, the restricting phase can also potentially reduce the

number of candidate pairs passed on to the sweeping phase.

2.2.2. The sweeping phase. During the sweeping phase, the query processor runs the

plane sweep algorithm [3], [18], [22] to determine whether or not the candidate polygons

intersect. The plane sweep algorithm sorts the marked line segments from both vectors by

the x-coordinate values of their left-most vertex. Next, the algorithm ``sweeps'' a vertical
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line across all sorted line segments from left to right. The sweep process evaluates the

sorted line segments by stopping at the left-most vertex of each segment it encounters. At

each of these vertices, the algorithm conducts an intersect test between the encountered

line segment and all line segments from the other polygon whose MBRs intersect that of

this line segment. If at any time an intersection is found, the sweep process terminates and

the candidate satis®es the intersect relation. If the sweep process exhausts all line

segments and does not ®nd an intersection, the candidate is discarded as the two candidate

polygons cannot intersect.

A key performance consideration of the plane sweep algorithm is how many iterations

of the inner loop the algorithm requires. While the worst case can require as many as n
iterations for the inner loop (n is the number of line segments passed on by the restricting
phase), for GIS map data sets, our experiment results show that the average number of

iterations for the inner loop is a small constant (close to 3 with our test data). The average

Figure 1. The state-of-the-art approach vs. the SID approach in re®nement step.
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time complexity to perform the sweeping phase on real map data therefore is bounded

by the cost to sort the line segments �O�n� log�n��� [3] passed on by the restricting
phase.

3. The Symbolic Intersect Detection (SID) optimization

We now introduce a novel approach to improve the performance of the re®nement step

called Symbolic Intersect Detection (SID). As is commonly assumed, the two target data

sets contain polygon objects and each object is represented by a vector of topologically

ordered 2-D boundary points or line segments. For the discussion in this paper, we focus

on the boundary intersect predicate. However, a generalized intersect predicate such as

area intersect can be easily extended from the boundary intersect computation.5

3.1. Overview

Figure 1 contrasts the state-of-the-art re®nement step (the state-of-the-art approach) with

the re®nement that incorporates our SID optimization (the SID approach) presented in the

remainder of this section. As shown in ®gure 1, the SID approach improves on the state-

of-the-art approach by directly replacing the restricting phase with our proposed SID

optimization.

The basis for SID stems from our observation that clipping the two candidate polygons

using their OMBR as a window creates two sets of polygon segments, one for each

polygon. By examining the topological relationship between these polygon segments and

the OMBR, in many cases, we can detect without ambiguity that two polygons intersect.

This technique improves performance during the re®nement step by reducing the number

of polygons that must be passed on to plane sweep algorithm. Our SID optimization is

comprised of two stages, the clipping stage and the detection stage.

3.2. The clipping stage of SID

3.2.1. Clipped polygon segments. An ordered traversal of all the line segments in one

candidate polygon may cross the boundary of the OMBR zero or more times. By clipping a

candidate polygon with the OMBR, we create a set of polygon segments (in the shape of

an arc), bounded by the OMBR, that are parts of the boundaries of this polygon. Each

polygon segment is entirely enclosed by the OMBR with its two end points on the OMBR

boundary.

For example, in ®gure 2, during the clipping stage while evaluating the candidate

polygons r and s, three clipped polygon segments are created. They are x and y of polygon

r, and z of polygon s.
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3.2.2. Classi®cation of clipped polygon segments. Based on the topological relation-

ship between the OMBR and the two end points of the clipped polygon segments, we

categorize these clipped polygon segments into 10 classes. These 10 classes are Vertical,
Horizontal, Left, Up, Right, Down, UpperLeft, UpperRight, LowerRight, and

LowerLeft. Figure 3 illustrates each of these classes. This classi®cation is complete in

the sense that all possible cases of clipped polygon segments are covered by this set.

Figure 2. Clipping the polygon segments using OMBR.

Figure 3. The ten classes of clipped polygon segments.
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3.2.3. Symbolic Clipped Primitives (SCP). In SID, each clipped polygon segment is

modeled by a symbolic representation we call a Symbolic Clipped Primitive (SCP). Each

SCP is represented by a 3-tuple hclass; a; bi, where class is one of the ten classes (shown in

®gure 3) to which the polygon segment modeled by this SCP belongs. The values a and b
in hclass; a; bi are offsets from the corners of the OMBR that identify the location of the

segment endpoints. For each SCP, the locations of the corners, from which the offsets a
and b are measured from, are determined by the class of the SCP. The relevant corners and

offsets for each SCP class are illustrated in ®gure 3.

3.2.4. The clipping stage creates two SCP sets. During the clipping stage, an SCP is

generated for each clipped polygon segment. All the SCPs for a candidate polygon are then

stored in a set we call the SCP set. The result of the clipping stage therefore is two SCP

sets, one for each candidate polygon.

3.3. The detection stage of SID

3.3.1. Detecting intersection using SCPs. After the two SCP sets are created for the

candidate polygons during the clipping stage, SID performs true hit detection by a simple

comparison of SCPs from the two sets. To illustrate how many true hits can be detected by

comparing SCPs we use the examples depicted in ®gure 4. Let r and s be the two polygons

in a candidate. Then SCP(r) represents a 3-tuple hclass; ar; bri in the SCP set of r whereas

SCP(s) represents a 3-tuple hclass; as; bsi in the SCP set of s.

Figure 4a shows that if SCP(r)�hVertical,-,-i and SCP(s)�hHorizontal,-,-i (``-,-''

means don't-care), then the polygon segments represented by SCP(r) and SCP(s) must

intersect. As shown in ®gure 4a, SID requires in this case only the classes of the two SCPs

to determine unambiguously that r and s intersect.

In ®gure 4b, SCP(r)�hVertical, 3, 4i and SCP(s)�hVertical, 4, 3i. Because

ar � 354 � as and br � 443 � bs, the SCPs must intersect. Therefore, r and s intersect

Figure 4. Six examples of intersection detected by SID.
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in this case. More generally, if both classes are Vertical and we have �ar � as and b4 � bs�
or �ar � as and br � bs�, then r and s intersect. Figure 4c is similar to 4b except that the

intersection is assured because of the condition ar � 35as � 45br � 5. The offset bs is

irrelevant for the intersect detection. Figures 4d, 4e, and 4f show additional examples

where SID detects intersections.

In contrast, ®gure 5 illustrates some of the cases where SID cannot detect an

intersection. Note that an intersection does occur in ®gures 5b and 5c. However, the

symbolic information kept by the SCPs is non-resolvable. For instance, ®gures 5a and 5b

have the same SCPs, but ®gure 5b corresponds to an intersection whereas ®gure 5a

does not.

The examples in ®gure 4 are a small subset of cases where SID can determine polygon

intersection. We present all such cases using a two-D table (Symbol Intersect Resolution

Table, or SIRT) in table 1. Each entry in SIRT is a predicate evaluated by the function

SymbolIntersect at the detection stage. SymbolIntersect uses the two SCP

classes to index into SIRT, evaluates the predicate based on the offsets of the two SCPs,

and returns a boolean value. If SymbolIntersect returns TRUE, it means the two

SCPs intersect, whereas a FALSE means that SID cannot determine whether or not the two

SCPs intersect.

3.3.2. SID performs pair-wise evaluation of the two SCP sets. SID conducts polygon

intersect detection by calling the SymbolIntersect function for all pairs of SCPs in

the two SCP sets created during the clipping stage. This process corresponds to a nested-

loop over the two SCP sets as illustrated by the function SIDTrueHitDetected in

®gure 6. Once an intersection between two SCPs is detected (line 4 in ®gure 6), a candidate

is known to be a true hit. Only if SID exhausts all SCP pairs without ®nding an intersection

(line 5 in ®gure 6), SID will pass this candidate to the sweeping phase to perform the

traditional intersect testing using plane sweep (as done by the state-of-the-art-approach).

3.4. The SID approach: Restricting phase plus true hit detection

The SID approach improves the re®nement processing by deploying the techniques in the

clipping and detection stages as a replacement for the restricting phase in the state-of-the-

art approach (®gure 1). Because the SID clipping stage needs to generate the SCP sets as

well as perform the state-of-the-art restricting process, it incurs a slightly higher

Figure 5. Three examples of non-resolvable cases.
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Table 1. Symbol Intersect Resolution Table (SIRT).

SCP(r) � hclass; ar ; bri (row)

SCP(s) � hclass; as; bsi (column)

Class Vertical Horizon Left Up Right Down UpperL UpperR LowerR LowerL

Vertical * T F ar � as F ar � bs br � as ar � as br � bs br � bs

br � as br � bs

Horizon T * ar � as F ar � bs F ar � as br � bs ar � bs ar � as

br � as br � bs

Left F ar � bs * F F F ar � bs F F ar � bs

ar � as ar � as ar � as

Up ar � bs F F * F F br � bs ar � bs F F

ar � as br � as ar � as F F

Right F br � bs F F * F F br � bs ar � bs F

br � as br � as ar � as

Down br � bs F F F F * F F br � bs br � bs

br � as br � as br � as

UpperL ar � bs ar � as ar � as ar � bs F F * ar � bs F ar � as

br � as br � bs

UpperR ar � as br � bs F ar � as ar � bs F br � as * ar � bs F

br � as br � bs

LowerR br � bs br � as F F ar � as ar � bs F br � as * br � bs

br � as br � bs

LowerL br � bs ar � as ar � as F F ar � bs ar � as F br � bs *

br � as br � bs

Key:

1. ``T'' for TRUE means intersect detected without conditions.

2. ``F'' for FALSE means intersect cannot be determined.

3. ``*'' � ��ar � as� ^ �br � bs�� _ ��ar � as� ^ �br � bs��.
4. An entry is TRUE if the conjunction of all its clauses, if any, evaluates to TRUE.

Figure 6. Function for early true hit detection using SCPs.
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computation cost than the restricting phase by itself. Our analysis and experiments show

that this cost (in terms of processing time) in general is 25% higher than that of the

restricting phase (see Section 5). However, the time complexity of both approaches are

bounded linearly by the number of line segments in the candidate polygons. Our

evaluation con®rms, however, that the 25% increase in the linear cost component is

insigni®cant compared to the super-linear complexity of plane sweep that can potentially

be saved by SID.

The time complexity for SIDTrueHitDetected is bounded by O�n� m� where n
and m are the cardinality of the two SCPs sets, respectively. In Section 5, our experimental

results based on real map data show that the size of an SCP set is typically very small (the

average is less than 5). Therefore, the cost of processing the detection stage in SID is also

very small in practice.

4. Cost analysis

This section presents an analytical cost comparison between the state-of-the-art approach

and the SID approach to the re®nement step processing. Table 2 is the list of the

parameters used in the cost model.

4.1. Cost of processing the state-of-the-art re®nement step

4.1.1. Restricting phase. During the restricting phase, each line segment in both

polygons of the candidate is tested to see if it overlaps the OMBR. The cost to perform the

restricting phase on a polygon-pair is given by:

Table 2. Parameters used in the cost model.

Parameter Description

n average number of line segments in one candidate polygon

k number of candidates in the candidate set
d average number of the inner loops of Plane Sweep computation

s average number of SCPs in the SCP set for a candidate polygon

il;m time to compute the intersection between a line segment and an MBR in the restricting phasecil;m time to compute the intersection between a line segment and an MBR while generating an SCP

in the clipping stage

ii;l time to compute the intersection between two line segments

iscp time to compute SymbolIntersect

pe probability that a false hit is eliminated from the candidate set in the restricting phase

po probability that a line segment overlaps the OMBR

pf probability that an element in the initial candidate set is a false hit

pr probability that a candidate is a false hit after the restricting phase

ps probability that a candidate is a false hit after the SID optimization

pt probability that a true hit is detected in the detection stage
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Cr � 2� n� il;m: �1�

4.1.2. Sweeping phase. The plane sweep algorithm is performed on the reduced sets of

line segments for the two candidate polygons in order to determine precisely whether or

not the two polygons intersect. The cost of an average plane sweep test on two candidate

polygons is:

Cps � 2� n� po � log�n� po� � 2� n� po � d � 1� pr

2
� il;l: �2�

The term 2� n� po � log�n� po� is the cost to sort the line segments selected during

the restricting phase separately for both polygons. The term 2� n� po is the number of

outer loops and d is the average number of inner loops for the plane sweep algorithm.

Therefore, the product of the two is the average number of intersect tests required for one

full plane sweep on one candidate (a polygon-pair).

However, for a true hit we assume that only half of the line segments need to be

evaluated before an intersect is found, whereas, for a false hit, the sweeping process must

test all line segments. Therefore, the average number of intersect tests conducted during a

full plane sweep run must be adjusted to account for the early termination when an

intersection is found. Such an adjustment is accomplished as follows. A false hit incurs a

full cost, therefore its probability weighted cost is 1� pr, where pr is the probability that a

candidate is a false hit. A true hit, on average, incurs only half of the cost, and therefore its

probability weighted cost is 1
2
� �1ÿ pr�. The total (probability weighted) cost is the sum

of the two, hence the value �1� pr=2�.

4.1.3. The total state-of-the-art re®nement cost. The total state-of-the-art re®nement
cost is given by:

Cref � Cr � k � Cps � k � �1ÿ pf � pe�: �3�

The parameter k is the number of candidates in the candidate set, therefore Cr � k is

the total cost of processing the restricting phase for all k candidates. The term

k � �1ÿ pf � pe� is the number of candidates remaining after the restricting phase,

therefore Cps � k � �1ÿ pf � pe� is the total cost of processing the sweeping phase.

4.2. Cost of the re®nement step with SID optimization

The re®nement step with SID optimization has two phases: the SID phase and the

sweeping phase (see ®gure 1). The SID can be further divided into two stages: the clipping
stage and the detection stage.

4.2.1. The clipping stage of SID. In addition to performing the tasks similar to those

performed by the restricting phase of the state-of-the-art approach, SID generates the
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SCPs for the two candidate polygons. The average cost to perform clipping on a candidate-

pair is given by:

Cc � 2� n� cil;m: �4�

The quantity cil;m includes the cost to test if a line segment overlap the OMBR �il;m� and the

cost of keeping track of the status of the line segment in order to generate an SCP for each

clipped polygon segment.

4.2.2. The detection stage of SID. During the detection stage, SID calls the function

SIDTrueHitDetected (®gure 6) to detect true hits. The cost for one execution of

SIDTrueHitDetected is given by:

Cd � s2 � 1ÿ �1ÿ pr�pt

2

� �
� iscp �5�

where s is the average number of items in an SCP set (and therefore de®nes the number of

iterations for each of the loops the SIDTrueHitDetected function). Again, as in the

analysis of the state-of-the-art approach, we assume early termination half-way through

the nested comparison loop for the true hits, and we require all comparison for the

undetected ones. The term 1ÿ ��1ÿ pr�pt=2� constitutes the expected fraction of the full

iterations of the intersection loop. It consists of three terms, the number of true hits

detected by the SID optimization with an average of 1/2 of the number of iterations,

i.e. 1
2
� �1ÿ pr� � pt, the false hits with a full cost pr, and the cost for true hits not

detected by the SID optimization �1ÿ pr� � �1ÿ pt�, also assessed at full cost.

These combine to form the expected cost for a single candidate pair:

��1ÿ pr� � pt=2� � pr � �1ÿ pr� � �1ÿ pt� � 1ÿ ��1ÿ pr�pt=2�:

4.2.3. The sweeping phase with SID optimization. The average cost of a plane sweep
on a candidate-pair with the SID optimization is as follows:

cCps � 2� n� po � log�n� po� � 2� n� po � d � 1� ps

2
� il;l: �6�

We use a probability weighted cost ��1� ps�=2� to account for early termination on hits.

4.2.4. The total re®nement cost with SID optimization. The total re®nement cost with

the SID optimization for the entire candidate set therefore is:

dCref � Cc � k � Cd � k � �1ÿ pf � p� � cCps � k � �1ÿ pf � pe� � �1ÿ pt � prpt�:
�7�
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The parameter k stands for the number of items in the candidate set. The term

k � �1ÿ pf � pe� is the number of candidates remaining after the clipping stage, and

k � �1ÿ pf � pe� � �1ÿ pt � prpt� is the number of candidates remaining after the SID

optimization.

4.3. Performance comparison based on the cost model

To practically use our cost model to compare the performance between the state-of-the-art

and the SID approaches, we must reduce the number of variables by giving reasonable

values to as many parameters as possible. We achieve this by assigning to all parameters

one of the following three types of values: controlled, approximated, and derived.

4.3.1. Parameters with controlled values. In our performance evaluation below, we

assume the number of tuples in the candidate set k is 2,000. The parameter n represents the

resolution of the data set, and is set to 500, 1,000, 1,500, and 2,000 in our evaluation. The

parameter pf is the probability that a candidate is a false hit, therefore its value depends on

how effective the ®lter step eliminates false hits. We control pf by assigning to it a range

of values from �0; 1�, namely, 0.2, 0.4, 0.6, and 0.8. The parameter s is the average

number of SCPs in the SCP set for a candidate polygon. Our controlled value of s ranges

from 0 to 120.

4.3.2. Parameters with approximated values. As in many complex cost models, some

parameters can be assigned an approximated value in order to simplify the analysis. The

approximation is typically done by taking measurements gathered from experiments or

from historical data. Along these same lines, we conducted an extensive set of experiments

on real GIS map data, and measured the values of some parameters as displayed in table 3.

Note that the values of il;m;cil;m; il;l, and iscp are CPU cost relative to the unit cost which is

the time needed to perform a compare/swap operation during sorting.6

4.3.3. Parameters with derived values. The values of some parameters in our model

can be derived from those of the other parameters. In particular, we derive

pr � �pf � �1ÿ pe�=1ÿ pf pe� and ps � �pr=1ÿ pt � prpt�. We de®ne TDR (true hit
detection rate), used in subsequent discussions, as the average percentage of true hits that

can be detected by SID optimization. TDR is derivable as TDR � ��1ÿ pr � pt�=1ÿ pf �
where �1ÿ pr� � pt is the probability that a candidate is a true hit detected by SID and

1ÿ pf is the probability that a candidate is a true hit. For ease of discussion (and reading),

Table 3. Parameters with approximated values.

Parameter d pe po il;m
cil;m ii;l iscp

Approximated value 3 0.5 0.3 1.2 1.5 70 5
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we also use CFR (candidate set false hit rate) as a percentage representation of the

probability parameter pf �CFR � pf �.

4.3.4. Evaluation 1: The effect of the percentage of true hits detected by SID. In this

evaluation, we set n� 1,000 and vary TDR from 0% to 100%. Figures 7 and 8 show the

results of our cost model based on equations (3) and (7). The two ®gures are plotted with s
(the number of items per SCP set) set to 10 and 50, respectively. The solid horizontal line

in each of the two ®gures depicts the cost of the state-of-the-art approach. The other non-

solid lines represent, in percentage to the cost of the state-of-the-art approach, the costs of

the SID approach with CFR set to 20%, 40%, 60%, and 80%, respectively. The case when

CFR� 0% or 100% is very unlikely and therefore is omitted.

Figure 7. Processing cost vs. TDR �s� 10�.

Figure 8. Processing cost vs. TDR �s� 50�.
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From ®gures 7 and 8 we see that a higher TDR achieved by SID results in a greater

performance improvement of our proposed re®nement step over the state-of-the-art

approach. Among the various CFR values, the performance improves most drastically

with a small CFR when the TDR increases. This is because when the CFR is small, most of

the candidates in the candidate set are true hits. A higher TDR achieved by SID on such a

candidate set eliminates the need for processing the sweeping phase for a large number of

the candidates, thus improving the overall performance more signi®cantly.

Contrasting ®gure 7 with ®gure 8, we can see that the cost savings achieved by SID is

less signi®cant when s� 50 than when s� 10. In other words, when s is larger (i.e., s� 50

in ®gure 8), the overhead of processing the detection stage (equation (5)) increases enough

so that performance advantages are only gained when TDR exceeds 50%. However, when

s is small (i.e., ®gure 7), SID incurs minimum overhead and promises performance

improvements even for a modest TDR (such as 20%). Based on our experimental studies

over a set of real map data in Section 5, we discover that the average s is between 3 and 5,

and therefore drastic improvements can be expected by our technique in real-life

applications.

4.3.5. Evaluation 2: The effect of the average number of items in an SCP set. We ®rst

set the TDR to 60%, CFR to 40%, and vary s from 0 to 120 with n set to 500, 1,000, 1,500,

and 2,000. The results in ®gure 9 show that when s is small (i.e., s5 10), the performance

improvement achieved by SID is very signi®cant (40% improvement), and is insensitive to

n. This means that when s is small, the improvement achieved by SID is very signi®cant

across maps of various resolutions (i.e., values of n). Only when s is very large (> 60), will

SID optimization become ineffective, particularly for less ®ne-grained map data.

However, since in real-life GIS data, the value of s is typically very small, therefore

SID is likely to achieve signi®cant improvement (roughly 40%) for maps of various

resolutions when TDR� 60% (SID detects 60% true hits).

Figure 9. Processing cost vs. number of SCPs �CFR� 40%�.
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Next, we set TDR to 60%, n� 1,000, and vary s from 0 to 120 with values of CFR set to

20%, 40%, 60%, and 80%. The results in ®gure 10 show that, with a small s, the higher the

CFR the greater the performance improvement SID achieves. This is because when the

CFR is high, most tuples in the candidate set are true hits. Because SID detects true hits (in

this evaluation, 60% of true hits) with only negligible overhead, the total re®nement cost

improves as CFR increases. From the two sets of evaluation based on our cost model, we

conclude that a small s value and a high TDR combined can provide a dramatic

performance improvement in the re®nement step. In the next section, we investigate the

values of s and TDR for real data sets and demonstrate that such a favorable combination

indeed occurs in real map data.

5. Experimental evaluation

We conduct experimental evaluation based on real maps for two purposes. First, we

measure the performance improvement of SID against the state-of-the-art re®nement

processing. Second, we compare the results with those predicted by our cost model in

order to verify the accuracy of the cost model.

5.1. Experimental design

5.1.1. Testbed. All experiments were conducted on a SUN Sparc-20 workstation

running the Unix operating system. The implementation of the ®ltering step in the spatial

join is based upon optimization techniques proposed in [2]. For the re®nement step, we

implemented the traditional re®nement step as well as the re®nement step that incorporates

Figure 10. Processing cost vs. number of SCPs �n� 1,000�.
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the SID optimization technique presented in this paper. All programs were written in

C��.

5.1.2. Maps. The map data used in our experiments were extracted from the polygon

data sets in the Sequoia 2000 Storage Benchmark [23]. In particular, they are regions of

various land use and land cover classi®cations in the State of California and Nevada. The

number of line segments per polygon range from tens to thousands. Because our SID

optimization is targeted to handle complex spatial data, we extracted several sets of

polygons and created eight classes of data with the minimum number of line segments set

to 100, 200, 300, 400, 500, 600, 700, and 800. This resulted in eight groups of data sets

with an average number of line segments of 850, 950, 1,100, 1,300, 1,450, 1,650, 1,750,

and 1,850, respectively (see table 4).

5.1.3. Spatial join experiments. For each map class, we selected a pair of polygon data

sets, performed the (intersect) spatial join between the two sets and recorded the CPU

usage for both versions of the re®nement step.

5.2. Experiments measuring the size of SCP sets

Based on our analytical model presented in Section 4, the two most important factors that

determine the performance of SID are the cardinality of the SCP set (s) and the true hit

detection rate (TDR). Particularly, if s is small (< 10), the performance gain of SID is

assured, and is proportional to the value of TDR. Intuitively, if we randomly lay a

rectangle over a smooth-shaped polygon, then the number of the line segments of the

polygon that cross the rectangle boundary is likely to be very small. Because the number of

crossings determines the cardinality of the SCP set, the s value for a smooth-shaped

polygon is also likely to be very small. Conversely, if the polygon has many zigzag-shaped

components, then it is possible that more of the polygon's line segments cross the

boundary of an overlaid rectangle, thereby contributing to a higher s value. We now

present the s values measured from real map data during the clipping stage of SID.

Figure 11 shows the distribution of s values for maps with polygons of various sizes,

namely classes 1 �n � 850�, 5 �n � 1; 450�, and 8 �n � 1; 850�. We can see by the results

in ®gure 11 that maps with more segments per polygon (higher-classes) tend to have larger

SCP sets. Nevertheless, our measurements show that no map produces an s value that is

greater than 16 during a SID enhanced join, and most of the s values are smaller than 5 for

maps in all three classes. In fact, more than 95% of the MBR overlapping cases have fewer

Table 4. Map classi®cations.

Map Class Number 1 2 3 4 5 6 7 8

Min. no. of line segments per polygon 100 200 300 400 500 600 700 800

Avg. no. of line segments per polygon 850 950 1,100 1,300 1,450 1,650 1,750 1,850
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than 10 SCPs per polygon for all map classes. These results indicate that it is very likely

that MBR overlapping between the majority of polygons in typical GIS maps will result in

small SCP sets (small s). Based on our analytical model, this ®nding assures that our

proposed SID optimization will be effective in reducing the cost of the re®nement step

during spatial join processing.

5.3. Experiments measuring the True Hit Detection Rate (TDR)

Figure 12 records the TDR achieved by SID for maps of all classes (1±8). The results show

that there is no notable correlation between the TDR and the complexity (class) of the

Figure 11. Distribution of number of SCPs per polygon.

Figure 12. True Hit Detection Rates achieved by SID.
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maps. In fact, in all map classes, the true hit detection rates are consistently between 82

and 94%. This ®nding indicates that our proposed SID optimization technique effectively

eliminates the need of expensive plane-sweep intersect operations for more than 80% of

the true hits in the candidate set for maps with a wide variety of complexities.

5.4. Experimental results comparing performance of the re®nement steps

In ®gure 13, we compare the CPU usage times between SID and the state-of-the-art

approach for all map classes (1±8). The results show that SID achieves a signi®cant

performance improvement for all map classes. In ®gure 14, we show the percentage of the

CPU costs of SID over the state-of-the-art approach. The results show that the

performance gain by SID map classes 2 �n � 950� to 4 �n � 1; 300� is above 40%

whereas an over 50% improvement is achieved for map classes higher than 4 �n > 1; 300�.

5.5. Comparing experimental results with analytical results

Based upon the analytical model that we presented in Section 4.3, and depicted in ®gure

10, we predict that for n � 1; 000; s � 10, CFR � 40%, and TDR � 80%, the CPU time

for re®nement in the SID approach is slightly higher than 50% of CPU time for re®nement

in the state-of-the-art approach. This means that a performance gain of more than 40% is

expected in the re®nement step. The experimental results in ®gure 14 show that the SID

Figure 13. CPU usage time: SID vs. state-of-the-art.
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approach outperforms the state-of-the-art re®nement step by more than 40% for map

classes 2 and 3 (with 950 and 1,100 line segments, respectively). The two results,

experimental and analytical, agree with a very small discrepancy (< 10%). This

demonstrates that our analytical cost model is accurate in predicting the effectiveness of

our proposed SID technique.

6. Conclusion

Ef®cient processing of spatial joins is crucial for many applications such as GIS,

Cartography, CAD/CAM, etc. Because spatial join computation has been recognized as a

CPU-intensive process [17], we consider the optimization of the most computation-

expensive component in spatial join processing: the re®nement step. To this end, we

present the Symbolic Intersect Detection (SID) technique that signi®cantly improves the

ef®ciency of the re®nement step. SID performs ef®cient true hit detection in two stages.

First, to determine if two candidate polygons intersect, SID uses their OMBR to clip all

segments of the two polygons which overlap the OMBR. SID abstracts each segment by a

compact symbolic representation using only offsets of the sides of the OBMR. Next, based

on this abstract information, SID ef®ciently detects situations under which two clipped

segments cross each other deterministically. When such a crossing is determined between

two clipped segments, their association polygons therefore are guaranteed to intersect. As

a result, performance is improved because further intersect computation such as the

computationally intensive plane sweep algorithm is not needed for the true hit candidates

detected by SID.

Figure 14. Percentage of the CPU time achieved by SID of that achieved by the state-of-the-art approach.
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In this paper, in addition to presenting the SID approach, we also describe an analytical

cost model for studying the performance of SID. Our model identi®es that SID is most

effective when the number of clipped segments is small and when polygon representation is

®ne-grained. In addition, we conduct an experimental evaluation of SID and its state-of-the-

art competitor based on real GIS maps with complex polygons. Our experimental results on

real GIS maps show that the average number of clipped segments per polygon is indeed

small (< 5). Furthermore, an impressive percentage (greater than 80%) of the true hits are

shown to be detected by SID with only negligible overhead. Consequently, with the SID

optimization, the time to resolve polygon intersection in the re®nement step is improved by

over 50%, as predicted by our analytical model. Because SID optimizes the re®nement step,

it is complementary to many state-of-the-art spatial join techniques [2], [9]±[11], [17] that

have focused on improving the ®lter step. The combination of an impressive performance

gain achievable by SID and its compatibility with other approaches therefore promises a

signi®cant improvement for existing solutions to spatial join processing.
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Notes

1. A ®ne-grained map means its objects are represented by large numbers (hundreds or more) of points.

2. The OMBR of an object-pair is the rectangle which is the overlap between the MBRs of the two objects.

3. For the discussion in this paper we focus on the boundary intersect predictate.

4. We use overlap to mean intersects or contains or is contained by.

5. The object-pairs that satisfy the area intersect predicate are the union of those that satisfy the boundary
intersect predicate and those that do not satisfy the boundary intersect predicate but satisfy the contain
predicate. The most common technique in resolving the contain predicate is called the point test [18] which

has a linear time complexity in the length of the vector representation. Therefore, contain test can be much

less expensive than intersect test which dominates the cost in area intersect joins.

6. It is much cheaper to compute il;m than il;l because determining whether or not a segment intersects an

orthogonal rectangle is usually a simple comparison, whereas determining if two segments intersect requires

¯oating point division, a notoriously expensive operation.
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