A SET OF INEQUALITIES IN FACTOR ANALYSIS

J. N. Darroch

UNIVERSITY OF MICHIGAN

Inequalities relating the communalities to the multiple-correlation coefficients are derived. They are stronger than the well-known inequalities which have played an important role in factor analysis for the past thirty years. Necessary and sufficient conditions for equality are obtained.

1. Introduction

Let $\boldsymbol{\Sigma}=\left[\sigma_{i i}\right]$ denote the correlation matrix of $\mathbf{x}=\left[x_{1} x_{2} \cdots x_{p}\right]^{\prime}$. We shall suppose that Σ is nonsingular and therefore positive definite. (If, to the contrary, $\boldsymbol{\Sigma}$ is of rank $r(<p)$ then there are only r linearly independent variables $x_{1}, x_{2}, \cdots, x_{r}$, say, and the others are redundant.)

Next let

$$
\begin{equation*}
\mathbf{\Sigma}=\boldsymbol{\Gamma}+\boldsymbol{\Delta} \tag{1}
\end{equation*}
$$

where

$$
\boldsymbol{\Delta}=\left[\begin{array}{cccc}
\delta_{1}^{2} & 0 & \cdots & 0 \\
0 & \delta_{2}^{2} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & \delta_{3}^{2}
\end{array}\right] \quad 0 \leq \delta_{i}^{2} \leq 1, \quad 1 \leq i \leq p
$$

and $\boldsymbol{\Gamma}=\mathbf{\Sigma}-\boldsymbol{\Delta}$ is positive semi-definite. The factor-analysis interpretation of (1) is that

$$
\mathrm{x}=\mathrm{y}+\mathrm{z}
$$

where $\mathrm{y}=\left[y_{1} y_{2} \cdots y_{p}\right]^{\prime}$ has covariance matrix $\boldsymbol{\Gamma}$ and is uncorrelated with $\mathrm{z}=\left[z_{1} z_{2} \cdots z_{p}\right]^{\prime}$ which has covariance matrix Δ, so that z_{i} is uncorrelated with $z_{j}, 1 \leq i \leq j \leq p$. The variable y_{i} is called the common-factor component of x_{i} and $\operatorname{var}\left(\overline{y_{i}}\right)=1-\delta_{i}^{2}$ is the communality of x_{i} while z_{i} is the specific factor of x_{i} and $\operatorname{var}\left(z_{i}\right)=\delta_{i}^{2}$ is the uniqueness of x_{i}.

Let ρ_{i} denote the multiple-correlation coefficient of x_{i} with the remaining $p-1$ variables. Then

$$
\begin{equation*}
\rho_{i}<1 \tag{2}
\end{equation*}
$$

$$
1 \leq i \leq p
$$

because $\boldsymbol{\Gamma}$ is nonsingular. Roff [3] pointed out and Dwyer [1] proved that

$$
\begin{equation*}
1-\delta_{i}^{2} \geq \rho_{i}^{2} \tag{3}
\end{equation*}
$$

$$
1 \leq i \leq p
$$

In this paper we derive a set of stronger inequalities than (3).

2. The Inequalities

Write

$$
\mathbf{\Sigma}=\left[\begin{array}{cc}
1 & \mathbf{o}_{1}^{\prime} \\
\mathbf{o}_{1} & \mathbf{\Sigma}_{11}
\end{array}\right]
$$

where $\boldsymbol{\Gamma}_{11}$ is the covariance matrix of $\mathbf{x}_{1}=\left[x_{2} x_{3} \cdots x_{p}\right]^{\prime}$ and define

$$
\Omega_{1}=\Sigma_{11}^{-1} \boldsymbol{d}_{1} .
$$

Thus $\bigotimes_{1}=\left[\beta_{12} \beta_{13} \cdots \beta_{1 p}\right]^{\prime}$ is the vector of regression coefficients of x_{1} on X_{1}. Now

$$
1-\rho_{1}^{2}=E\left[\left(x_{1}-\varrho_{1}^{\prime} \mathrm{x}_{1}\right)^{2}\right]=\left[\begin{array}{ll}
1 & \left.-\mathfrak{ß}_{1}^{\prime}\right] \Sigma
\end{array}\left[\begin{array}{c}
1 \\
-\aleph_{1}
\end{array}\right] .\right.
$$

Therefore

$$
1-\rho_{1}^{2}=\left[\begin{array}{ll}
1 & -\mathfrak{\varrho}_{1}^{\prime}
\end{array}\right] \Gamma\left[\begin{array}{c}
1 \tag{4}\\
-\wp_{1}
\end{array}\right]+\left[\begin{array}{ll}
1 & -\mathfrak{\varrho}_{1}^{\prime}
\end{array}\right] \Delta\left[\begin{array}{c}
1 \\
-\aleph_{1}
\end{array}\right]
$$

The second term on the right of (4) is $\delta_{1}^{2}+\beta_{12}^{2} \delta_{2}^{2}+\beta_{13}^{2} \delta_{3}^{2}+\cdots+\beta_{1 p}^{2} \delta_{p}^{2}$ and, since Γ is positive semi-definite, the first term is nonnegative. Applying the same argument to $1-\rho_{2}^{2}, \cdots, 1-\rho_{p}^{2}$, we have the following set of p inequalities

$$
\begin{equation*}
1-\rho_{i}^{2} \geq \delta_{i}^{2}+\sum \beta_{i j}^{2} \delta_{i}^{2} \tag{5}
\end{equation*}
$$

$$
1 \leq i \leq p
$$

where $\beta_{i j}$ is the coefficient of x_{j} in the regression of x_{i} on the remaining $p-1$ variables.

3. Conditions for Equality

Suppose that

$$
\begin{equation*}
1-\rho_{1}^{2}=\delta_{1}^{2}+\sum_{i>1} \beta_{1 i}^{2} \delta_{j}^{2} \tag{6}
\end{equation*}
$$

Then $\boldsymbol{\alpha}_{1}^{\prime} \boldsymbol{\Gamma} \boldsymbol{\alpha}_{1}=0$, where $\boldsymbol{\alpha}_{1}^{\prime}=\left[\begin{array}{ll}1 & -\beta_{1}^{\prime}\end{array}\right]$. But, since $\boldsymbol{\Gamma}$ is positive semi-definite, $\boldsymbol{\alpha}_{1}^{\prime} \boldsymbol{\Gamma} \boldsymbol{\alpha}_{1}=0$ only if $\boldsymbol{\Gamma} \boldsymbol{\alpha}_{1}=\mathbf{0}$. Therefore (6) holds if and only if

$$
\left[\begin{array}{ccc}
1-\delta_{1}^{2} & \boldsymbol{\sigma}_{1}^{\prime} \tag{7}\\
\boldsymbol{\sigma}_{1} & \Sigma_{11}-\Delta_{1}
\end{array}\right]\left[\begin{array}{c}
1 \\
-\boldsymbol{\beta}_{1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right],
$$

where

$$
\boldsymbol{\Delta}_{1}=\left[\begin{array}{cccc}
\delta_{2}^{2} & 0 & \cdots & 0 \\
0 & \delta_{3}^{2} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & \delta_{p}^{2}
\end{array}\right]
$$

Equations (7) are

$$
\begin{aligned}
1-\delta_{1}^{2}-\boldsymbol{\sigma}_{1}^{\prime} \boldsymbol{\beta}_{1} & =0 \\
\boldsymbol{\sigma}_{1}-\boldsymbol{\Sigma}_{11} \boldsymbol{\beta}_{1}+\boldsymbol{\Delta}_{1} \boldsymbol{\beta}_{1} & =0
\end{aligned}
$$

However

$$
\begin{aligned}
\boldsymbol{\sigma}_{1}^{\prime} \boldsymbol{\beta}_{1}=\sigma_{1}^{\prime} \Sigma_{11}^{-1} \sigma_{1} & =\rho_{1}^{2} \\
\boldsymbol{\sigma}_{1} & =\mathbf{\Sigma}_{11} \beta_{1} .
\end{aligned}
$$

Therefore (6) holds if and only if

$$
\begin{equation*}
\delta_{1}^{2}=1-\rho_{1}^{2} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{12} \delta_{2}^{2}=\beta_{13} \delta_{3}^{2}=\cdots=\beta_{1 p} \delta_{p}^{2}=0 \tag{9}
\end{equation*}
$$

Equations (9) state that, for each $j, 2 \leq j \leq p$, either $\delta_{i}^{2}=0$ or $\beta_{1 j}=0$.
At this stage it is worth noting the connection between the regression coefficients $\beta_{i j}$ and the matrix $\boldsymbol{\Sigma}^{-1}$. Writing

$$
\mathbf{\Sigma}=\left[\begin{array}{ll}
1 & \mathbf{\delta}_{1}^{\prime} \\
\boldsymbol{\sigma}_{1} & \mathbf{\Sigma}_{11}
\end{array}\right]
$$

we have

$$
\begin{aligned}
\boldsymbol{\Sigma}^{-1} & =\left(1-{\sigma_{1}^{\prime}}^{\prime} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\sigma}_{1}\right)^{-1}\left[\begin{array}{cc}
1 & -\boldsymbol{\sigma}_{1}^{\prime} \boldsymbol{\Sigma}_{11}^{-1} \\
-\Sigma_{11}^{-1} \sigma_{1} & \Sigma_{11}^{-1}+\Sigma_{11}^{-1} \boldsymbol{\sigma}_{1} \sigma_{1}^{\prime} \Sigma_{11}^{-1}
\end{array}\right] \\
& =\left(1-\rho_{1}^{2}\right)^{-1}\left[\begin{array}{cc}
1 & -\beta_{1}^{\prime} \\
-\beta_{1} & \Sigma_{11}^{-1}+\beta_{1}{\sigma_{1}^{\prime}}_{1}^{\prime}
\end{array}\right] .
\end{aligned}
$$

From the form of the first row of $\boldsymbol{\Sigma}^{-1}$ it follows that
(10) $\quad \mathbf{\Sigma}^{-1}=\mathrm{D}^{-1}\left[\begin{array}{ccccc}1 & -\beta_{12} & -\beta_{13} & \cdots & -\beta_{1 p} \\ -\beta_{21} & 1 & -\beta_{23} & \cdots & -\beta_{2 p} \\ -\beta_{21} & -\beta_{32} & 1 & \cdots & -\beta_{3 p} \\ \vdots & \vdots & \vdots & & \vdots \\ -\beta_{p 1} & -\beta_{p 2} & -\beta_{p 3} & \cdots & 1\end{array}\right]=\mathbf{D}^{-1}\left[\begin{array}{c}\boldsymbol{\alpha}_{1}^{\prime} \\ \alpha_{2}^{\prime} \\ \boldsymbol{\alpha}_{3}^{\prime} \\ \vdots \\ \alpha_{p}^{\prime}\end{array}\right]$, say,
where D in the diagonal matrix whose i th diagonal element is $1-\rho_{\boldsymbol{i}}^{2}$. Thus $\beta_{i i}=0, i \neq j$, if and only if the (i, j) element of Σ^{-1} is zero.

We see from (8) that there is equality in any member of (5) if and only if there is equality in the corresponding member of (3).

4. Conditions for $p-m$ Equalities

In this section we shall obtain necessary and sufficient conditions for equality in the last $p-m$ inequalities of (5) (and therefore of (3)). Guttman [2] obtained sufficient conditions for equality in the last $p-m$ inequalities of (3) (and therefore of (5)). The end results of this section are closely related to Guttman's but the method of analysis is different.

Let

$$
S=\{1,2, \cdots, m\}, \quad T=\{m+1, m+2, \cdots, p\}
$$

Then we know that

$$
\begin{equation*}
1-\rho_{i}^{2}=\delta_{i}^{2}+\sum_{i \neq i} \beta_{i j}^{2} \delta_{i}^{2} \quad \quad i \varepsilon T \tag{11}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\delta_{i}^{2}=1-\rho_{i}^{2} \quad i \varepsilon T \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i \in S} \beta_{i j}^{2} \delta_{j}^{2}+\sum_{i \varepsilon T, i \neq i} \beta_{i j}^{2} \delta_{j}^{2}=0, \quad i \varepsilon T \tag{13}
\end{equation*}
$$

Equation (13), taken in conjunction with (12), holds if and only if

$$
\begin{equation*}
\beta_{i i} \delta_{i}=0 \quad i \varepsilon T, \quad j \varepsilon S \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{i i}=0 \quad i \varepsilon T, \quad j \varepsilon T, \quad i \neq j \tag{15}
\end{equation*}
$$

Condition (15) states that the (i, j) element of Σ^{-1} is zero for all $i \varepsilon T, j \varepsilon T$, $i \neq j$. One way of describing this is to say that, given $x_{1}, x_{2}, \cdots, x_{m}$, the variables $x_{m+1}, x_{m+2}, \cdots, x_{p}$ are uncorrelated (partially). This is clearly a very special situation. (In particular, there is equality in all p inequalities if and only if $x_{1}, x_{2}, \cdots, x_{p}$ are completely uncorrelated, that is $\mathbf{\Sigma}=\mathbf{I}$.) When (12), (14), and (15) hold, $\boldsymbol{\Gamma}=\mathbf{\Sigma}-\mathbf{\Delta}$ is at most of rank m for

$$
\Gamma \alpha_{i}=0 \quad j \varepsilon T
$$

and, from (10), the vectors $\boldsymbol{\alpha}_{m+1}, \cdots, \boldsymbol{\alpha}_{p}$ are linearly independent.
So far we have pointed out that (12), (14), and (15) are necessary and sufficient for (11). Now (14) holds in particular if

$$
\begin{equation*}
\delta_{i}=0 \quad j \varepsilon S \tag{16}
\end{equation*}
$$

When (12), (15), and (16) are satisfied $\boldsymbol{\Gamma}$ is exactly of rank m for, using an obvious notation, we have

$$
\mathbf{\Sigma}=\left[\begin{array}{cc}
\mathbf{\Sigma}_{S S} & \mathbf{\Sigma}_{S r} \\
\mathbf{\Sigma}_{T S} & \mathbf{\Sigma}_{T T}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{\Sigma}_{S S} & \mathbf{\Sigma}_{S T} \\
\mathbf{\Sigma}_{T S} & 0
\end{array}\right]
$$

5. Discussion

Guttman [2] proved an important limiting relationship between the communalities $1-\delta_{i}^{2}$ and the multiple-correlation coefficients ρ. Namely that, if q is the rank of Γ and $q / p \rightarrow 0$ as $p \rightarrow \infty$, then $\left(1-\delta_{i}^{2}\right) / \rho_{i}^{2} \rightarrow 1, i=$ $1,2, \cdots, p$. Thus the communality $1-\delta_{i}^{2}$ may be characterised as the squared multiple-correlation coefficient of x_{i} with an infinite set of "relevant" variables. This property, and the fact that in very special situations it is possible for $1-\delta_{i}^{2}$ to equal p_{i}^{2} for some values of i, led Guttman to call ρ_{i}^{2} the "best possible" systematic estimate of $1-\delta_{i}^{2}$ in the practical case of a finite number of variables. While it is usually realized that the use of these estimates is strictly illegitimate in the sense that they lead to a $\mathbf{\Gamma}$ which is nonnegative definite and therefore cannot be a covariance matrix, the extent to which they are illegitimate may now be better judged from the amount by which they contradict the p inequalities (5).

In this paper we have only been concerned with helping to demarcate the region of legitimate communalities and not with any criteria which propose a particular point in this region as the communality solution. We hope to treat this aspect in a later paper.

REFERENCES

[1] Dwyer, P. S., The contribution of an orthogonal multiple factor solution to multiple correlation. Psychometrika, 1939, 4, 163-171.
[2] Guttman, L. "Best possible" systematic estimates of communalities. Psychometrika, 1956, 21, 273-285.
[3] Roff, M. Some properties of the communality in multiple factor theory. Psychometrika, 1935, 1, 1-6.

Manuscripl received 11/17/64

Revised manuscript received 3/2/65

