THE NUMBER OF WAYS TO LABEL A STRUCTURE*

Frank Harary, Edgar M. Palmer, and Ronald C. Read UNIVERSITY OF MICHIGAN
AND
UNIVERSITY OF THE WEST INDIES

Abstract

It has been observed that the number of different ways in which a graph with p points can be labelled is p ! divided by the number of symmetries, and that this holds regardless of the species of structure at hand. In this note, a simple group-theoretic proof is provided.

The article by Harary and Read [1966] concluded with a table listing the probabilities $P(n, k)$ that a connected functional digraph with n points has a cycle of length k, for $n=2$ to 7 . We wish to acknowledge that the entries in this table are given by the formula

$$
\begin{equation*}
P(n, k)=\frac{(n-1)!}{(n-k)!} \frac{n^{n-k}}{(n-1)^{n}} \tag{1}
\end{equation*}
$$

in accordance with the theorem in Katz [1955]. This result was anticipated in turn by Rubin and Sitgreaves in an unpublished memorandum cited in Katz [1955].

In order to contribute something positive in this note, we now prove the theorem about graphs and groups which justifies the formula given in Harary and Read [1966] for the number of ways to label a structure. Since this is a sequel to Harary and Read [1966], its notation and terminology will be used. Thus we write $s(G)$ for the symmetry number of graph G (the order of its automorphism group $\Gamma(G))$ and $l(G)$ for the number of labelings of G. As usual we denote the number of points of G by p.

The notation used in the following proof follows that in Harary [in press] and Harary and Palmer [1965]. Accordingly, S_{p} is the symmetric group of degree p acting on $X=\{1,2, \cdots, p\} ; X^{(2)}$ is the set of unordered pairs of the objects in $X ; S_{p}^{(2)}$ is the pair group acting on $X^{(2)}$ as induced by S_{p}; and E_{2} is the identity group on $Y=\{0,1\}$. The power group (introduced in Harary and Palmer [1965]) $E_{2}^{S_{p}^{(2)}}$ acts on $Y^{x^{(1)}}$ and each function f from $X^{(2)}$ into Y represents a labeled graph with point set X. Two points $i, j \in X$ are considered adjacent in the graph of f whenever $f(\{i, j\})=1$.
*This work was supported by Grant MH 10834 from the National Institute of Mental Health.

In order to present this proof concisely, we assume the basic properties of permutation groups A acting on X. These include the "stabilizer" of an object $x \in X$ (the subgroup of A which fixes x), the "orbit" of A which contains x (the set of all objects to which x can be mapped by permutations in A), and the "index" of a subgroup B of A (the ratio of the order of A to that of B). We also recall the well known result:

Lemma. The index in the group A of the stabilizer A_{x} of an object $x \in X$ is the number of objects in the orbit of A which contains x.

The theorem is stated for graphs, but is easily modified to apply to any type of structure, e.g., trees, directed graphs, tournaments, relations, 1-choice structures (functional digraphs), and nets.

Theorem. The number of different ways in which the points of G can be labeled is:

$$
\begin{equation*}
l(G)=\frac{p!}{s(G)} \tag{2}
\end{equation*}
$$

Proof. Since the theorem is obvious for $p=1,2$, we assume $p \geq 3$.
Now let G be the unlabeled graph on p points which corresponds to the function f mentioned above. It is clear that the number of ways in which G can be labeled is simply the number of functions in the orbit of f regarded as an element in the object set of the power group $E_{2}^{S_{p}{ }^{(*)}}$. Furthermore, the stabilizer of f in $E_{2}^{S_{p}{ }^{(a)}}$ is obviously isomorphic to $\Gamma(G)$. Applying the lemma to this power group, we have the result that the number of ways of labeling G is the order of $E_{2}^{S_{p}(2)}$ divided by the order of $\Gamma(G)$, i.e., the index of $\Gamma(G)$ regarded as a subgroup of the power group. The proof is completed by observing that the order of this power group is $p!$ when $p \geq 3$.

REFERENCES

Harary, F. A seminar on graph theory. New York: Holt, Rinehart and Winston, 1967. Harary, F. and Palmer, E. M. The power group of two permutation groups. Proceedings of the National Academy of Science, U. S. A., 1965, 54, 680-682.
Harary, F. and Read, R. The probability of a given 1-choice structure. Psychometrika, 1966, 31, 271-278.
Katz, L. Probability of indecomposability of a random mapping function. Annals of Mathematical Statistics, 1955, 26, 512-517.

Manuscript received 7/25/66

