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I t  has been observed that  the number of different ways in which a graph 
with p points can be labelled is p! divided by the number of symmetries, and 
that  this holds regardless of the species of structure at hand. In this note, a 
simple group-theoretic proof is provided. 

The article by Harary and Read [1966] concluded with a table listing 
the probabilities P(n,  k) that a connected functional digraph with n points 
has a cycle of length k, for n = 2 to 7. We wish to acknowledge that the 
entries in this table are given by the formula 

(1) P ( n , k )  - ( n -  1)! n "-~ 
(~ - k ) !  ( n  - 1 )  ~ 

in accordance with the theorem in Katz [1955]. This result was anticipated 
in turn by Rubin and Sitgreaves in an unpublished memorandum cited in 
Katz [1955]. 

In order to contribute something positive in this note, we now prove 
the theorem about graphs and groups which justifies the formula given in 
Harary and Read [1966] for the number of ways to label a structure. Since 
this is a sequel to Harary and Read [1966], its notation and terminology 
will be used. Thus we write s(G) for the symmetry number of graph G (the 
order of its automorphism group r(G)) and l(G) for the number of labelings 
of G. As usual we denote the number of points of G by p. 

The notation used in the following proof follows that in Harary [in press] 
and Harary and Palmer [1965]. Accordingly, S~ is the symmetric group of 
degree p acting on X = {1, 2, . . -  , p}; X (~) is the set of unordered pairs 
of the objects in X; S~ (~) is the pair group acting on X (~) as induced by S~ ; 
and E2 is the identity group on Y = {0, !}" The power group (introduced 
in Harary and Palmer [1965]) E~ ~'~ acts on yxc. ,  and each function ] from 
X ~2) into Y represents a labeled graph with point set X. Two points i, j ~ X 
are considered adjacent in the graph of ] whenever ]({i, j}) = I. 

*This work was supported by Grant MH 10834 from the National Institute of Mental 
Health. 
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In order to present this proof concisely, we assume the basic properties 
of permutation groups A acting on X. These include the "stabilizer" of an 
object x ~ X (the subgroup of A which fixes x), the "orbit" of A which con- 
tains x (the set of all objects to which x can be mapped by permutations 
in A), and the "index" of a subgroup B of A (the ratio of the order of A 
to that  of B). We also recall the well known result: 

Lemma. The index in the group A of the stabilizer A= of an object 
x E X is the number of objects in the orbit of A which contains x. 

The theorem is stated for graphs, but is easily modified to apply to 
any type of structure, e.g., trees, directed graphs, tournaments, relations, 
1-choice structures (functional digraphs), and nets. 

Theorem. The number of different ways in which the points of G can 
be labeled is: 

= P! (2) z(a) 8(G)" 

Proof. Since the theorem is obvious for p = 1, 2, we assume p > 3. 
Now let G be the unlabeled graph on p points which corresponds to 

the function ] mentioned above. I t  is clear that  the number of ways in which 
G can be labeled is simply the number of functions in the orbit of ] regarded 
as an element in the object set of the power group E~ '~'). Furthermore, 
the stabilizer of J in ~ is obviously isomorphic to F(G). Applying the 
lemma to this power group, we have the result that the number of ways 
of labeling G is the order of 2 divided by the order of F(G), i.e., the 
index of I~(G) regarded as a subgroup of the power group. The proof is com- 
pleted by observing that the order of this power group is p! when p >__ 3. 
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