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This paper describes a method of matrix decomposition which retains 
the ability of factor analytic techniques to summarize data in terms of a rela- 
tively low number of coordinates; but at the same time, does not sacrifice the 
useful analysis of variance heuristic of partitioning data matrices into indepen- 
dent sources of variation which are relatively simple to interpret. The basic 
model is essentially a two-way analysis of variance model which requires that 
the matrix of interaction parameters be decomposed by using factor analytic 
techniques. Problems of judging statistical significance are discussed; and an 
illustrative example is presented. 

Analysis of variance methods of decomposing matrices provide one of 
the most  powerful methods presently available to aid one in understanding 
matrices of data. Another  set of powerful tools which often help one to 
unders tand da ta  is based on factor analytic techniques. Tukey  [1962] has 
emphasized the potential  importance of work showing relationships between 
these two techniques and in using each technique to complement  the other. 
Li tera ture  which is directly relevant  to this impor tan t  problem is s ~ r i s i n g l y  
scant. Wi th  the notable exceptions of work by  Tukey  [1962], Creasy [1957], 
and Burr  [1947, 1966], investigators have usually used either factor  analyt ic  
techniques or analysis of variance techniques, but  have  rarely used bo th  in 
combination. I n  the present  paper,  relations between factor  analytic and 
analysis of variance techniques are discussed and features of bo th  techniques 
are combined to form a powerful method for decomposing two-way tables. 

The  basic purpose of factor analytic techniques is to reduce the dimen- 
sionality of the da ta  by  expressing it in terms of new coordinates. I n  addition, 
i t  is generally hoped tha t  the new coordinates will describe meaningful  
"dimensions" of the original data.  Various types of rotat ion of the coordinate 
axes are often employed in seeking such meaningful dimensions. 
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Standard analysis of variance methods partition data matrices into 
independent terms which are relatively simple to interpret; i.e., the grand 
mean, main effects which represent the degree to which row elements exert 
an effect over all columns and vice versa, and interaction terms which rep- 
resent the degree to which the combined effect of a given row and column 
element is different from the sum of their individual main effects. 

The method of matrix decomposition described in this paper retains 
the ability of factor analytic techniques to summarize data in terms of a 
relatively low number of coordinates; but at the same time, does not sacrifice 
th.e relative ease of interpretation which standard analysis of variance models 
afford. The basic model described here is essentially a two-way analysis 
of variance model which requires that the interaction parameters be de- 
composed by factor analytic techniques. Tukey [1962] has remarked that 
this type of procedure might provide a powerful tool for many types of data 
analysis. The present paper expands upon the basic idea of using factor 
analytic techniques to study structure in interaction, and works out the 
details for both a fixed model and a mixed model version of the technique. 
Approximate methods for judging the statistical significance of factors are 
discussed; and exact significance tests for judging "factor similarity" are 
presented. The paper is concluded with a numerical example. 

1. The Factor Analytic Decomposition 01 a Matrix 

Throughout this paper the terms "factor analytic techniques" and 
"factor model" are used in a generic sense to refer to matrix decomposition 
methods which involve solving for eigenvalues and eigenvectors. It  is neces- 
sary to keep in mind that there are important differences between "factor 
model" in the present sense, and the more common "Factor Analysis model" 
which refers specifically to a decomposition method which involves inter- 
correlating variables and estimating communatities. This paper does not 
explicitly consider Factor Analysis models in the narrow sense; but rather, 
is concerned with the "factor analytic" decomposition described below. 

Up to the point where we begin discussing tests of statistical significance, 
we shall treat the data matrix, X, as though its entries represent "true" 
population parameters, rather than being estimates of such parameters. 
Thus, initially we shall write the factor analytic and all other model equa- 
tions without including terms for error. 

Factor analytic techniques for rectangular matrices are based on the 
fact (see Horst, [1963]) that any two-way matrix, X, can be expressed as 

(1.1) X = ADB' 

where 

X = a J X K matrix with elements {x;k(j= 1, 2, - • . ,  J ;  k = 1, 2, - - - ,  K) }, 
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A --- a J X N orthonormal matrix (i.e., A ' A  = I ,  where I represents the 
identity matrix) with elements ~;~ (n = 1, 2, . . .  , N), 

D = a N X N diagonal matrix with elements dl _> d2 _> d3 > " "  >_ 
d ~ >  . . .  >_d~,  

B -- a K X N orthonormal matrix (i.e., B ' B  -= I )  with elements 3 ~ ,  
N = the rank of X, and if for convenience we let J < K we have N _< 

J < _ K .  

The matrices A, D, and B of (1.1) can be obtained by solving first for 
the characteristic vectors, and characteristic roots of the J X J matrix X X ' .  
The J X N matrix A then consists of the characteristic vectors, and the 
N X N diagonal matrix D consists of the square roots of the characteristic 
roots of X X ' .  The K X N matrix B can then be found by solving the equation, 

(1.2a) B = X ' A D  -1. 

The above solution specifies that  the matrices D and A be found by 
solving for the eigenvalues and eigenvectors of the matrix X X '  and tha t  
then the matrix B be obtained from (1.2a). I t  is also possible to solve for 
the matrices D and B by finding the eigenvalues and eigenvectors of the 
matrix X ' X  and then obtaining A from 

(1.25) A = X B D  -~. 

Thus, for ease of calculation it is convenient to solve for the eigenvalue- 
and eigenvectors of whichever matrix, X X '  or X ' X ,  has the smaller dsi 
mensions. 

One of the primary reasons tha t  the factor analytic model provides a 
very powerful method for decomposing matrices is based on the Eckar t -  
Young [1936] theorem which states that  the matrix of rank r which provides 
the best estimate, in the least squares sense, of X is obtained by using (1.1) 
and simply retaining only the first r columns of the matrices A and B and 
using only the first r terms in D. In  order to facilitate later discussion, (1.1) 
is now rewritten in expanded form as: 

(1.3) xi~ = dlc~i13kl q- d~ai23k2 q- " ' "  q- d.ai.3k~ q- " ' "  q- d~ailvflk~. 

Another important  characteristic of the factor analytic decomposition 
(1.3) is that  every set of terms {d,a;,/~k, (] = 1, 2, --- , J ;  ]~ = 1, 2, --- ,K)  } 
is orthogonal to every other set of terms {dn,a~,,3k,, (] = 1, 2, . "  , J ;  k = 
1, 2, " -  , K)} tha t  is, 

(1.4) ~ ~ (d~a;flk~)(d,,~,flk,,) --- 0, 
i k 

for all values of n and n'  where n ~ n ' ,  and the symbol ~ , .  is used to signify 
~ -~ . , .  The fact tha t  the sets of terms in the factor model (1.3) are orthogonal 
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to each other can be proven easily by rearranging (1.4) to obtain 

(1.5) dndn,(~ a~na,~,)( ~~ flk~k~') = O. 
i k 

Writing ~-~j a i .a~,  for all values of n and n'  in matrix terms gives A ' A ,  
and  ~-~, fl~B,,, is written a s  B'B.  Since A and B are orthonormal matrices 
we know, by definition, tha t  A ' A  = B 'B  = I. Hence, for all values of n and n'  
where n ~ n', (1.5) reduces to the product of a constant (d,d,,) times zero, 
which, of course, is zero. Thus, we see tha t  the N sets of terms of the factor 
analytic model (1.3) are mutual ly orthogonat. 

In  later discussion it will be important tha t  we know how the matrices A 
and B of the factor analytic decomposition differ depending on whether the 
matrix X is factored without prior modification, converted to a row or 
column-centered matrix (i.e., forcing all row or column sums, respectively, 
to  equal zero), or is doubly-centered. We will now show tha t  when a row- 
centered matrix, Z, is factored, the matrix B of the factor analytic model (1.1) 
is column-centered, and hence tha t  ~-~, ilk, = 0 for all n. Premultiplying 
both sides of (1.2), which allows one to solve for B when given A, D, and 
X = Z, by a 1 X K (row) vector of unities, U', gives 

(1.6) (U 'Z ' )AD -~ = U'B. 

Since Z is row-centered, Z'  is column-centered and U'Z'  is a 1 X J (row) 
vector of zeroes. Clearly, the left side of (1.6) is a 1 X N (row) vector of 
zeros and B must therefore be a column-centered matrix. I t  is also easy 
to show tha t  when a colunm-centered matrix is factored, the matrix A is 
column-centered. I t  then follows readily tha t  when a doubly-centered matrix 
is factored, the columns of both A and B sum to zero. 

The Basic F A N O V A  Model 

Since the model described here combines features of both factor analytic 
(FA) techniques and analysis of variance (ANOVA) techniques, we refer 
to it as the "FANOVA" (factor analysis of variance) model for decomposing 
two-way matrices. The standard analysis of variance model for decomposing 
a two-way table is, 

(1.7) xi~ = ~ • R~ ~ Ck + ~/i~, 

w h e r e ,  (the grand mean) is a constant, ~ i  R,. ~- ~-~.k Ck = 0, and ~ ;  ~'i~ = 
~ ~i~ = 0 for all j and ]~. The {Ri} and {C~}, respectively, represent the 
row and column main effects and the {-y;~} represent the interaction pa- 
rameters. (The brace notation { I denotes the set of quantities indicated: 
e.g., { ~/;k} refers to the set consisting of the J K  values, ~,;k with ] = 1, 2, • • . ,  J ;  
k -- 1, 2, • -- , K.) Expressing the analysis of variance parameters, ~, {R;}, 
{Ck}, and {~/i~.}, in terms of the {xi~} yields the equations: 
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(1.8) ~ = m.., 

(1.9) R i  -= x i .  - x . .  , 

(1.10) CA = x ,  -- x . ,  

(1.11) ~/j~ ---- xi~ -- xi. -- x.k q- x.. , 

where a dot  replacing a subscript indicates tha t  an arithmetic mean has been 
taken over the entire range of the replaced subscript. (The dot notation is 
used frequently throughout this paper.) 

The basic FANOVA model is essentially a two-way analysis of variance 
model which requires that the matrix of interaction parameters {'/,k} be 
expressed as the sum of several successive multiplicative contrasts such that  
each contrast is orthogonal to all previous contrasts and accounts for a 
maximum of the remaining variance of the { ~ } .  A contrast among the 
interaction parameters {~ik} is a linear function of the {~k} 

i k i k 

where the {w,.~} are (known) constants subject to the restrictions ~-:~ w;~ : 
~ w~ -- 0. A normalized interaction contrast meets the additional condi- 

2 = 1. A multiplicative contrast is here defined as a contrast tion, ~ ~ k  w;k 
among the {~/;k} such that ,  

.(1.13) w~k = P i q k  , 

where, of course, ~-~ Pi -- ~ q~ -- 0. 
Since the matrix of {~/;~} is a doubly-centered matrix (and by conven- 

tion J < K), it has a maximum rank of (J -- 1) and hence, when expressed 
in terms of the factor model, can be prefectly reproduced by 

J - - 1  

(1.14) ~/;~ : ~ d . a , . # , . .  
n 

Since the matrix of {3'i~} is doubly-centered, the matrices A and B of the 
factor model decomposition will be column-centered. Thus, ~]~ a;.--- ~-~k #k.--- 0 
for all values of n; and therefore, the terms {a:.#~. (j = 1, 2, - . -  , J ;  k = 
1, 2, - . .  , K) } can be thought  of as defining a multiplicative contrast among 
the interaction parameters {3'~k}. Since this is true for all values of n, we 
refer to the ( J -  1)sets of terms, {d,~i2k, (j--- 1, 2, . . . ,  J;/~ = 1, 2, . . - ,  K)}, 
in (1.14) as i n t e r a c t i o n  f a c t o r s .  

I t  is often convenient to express the factor resolution (1.14) of the {y~k} 
as  the product of two terms, rather th~n three. In  matrix notation we write 
(1.14) as 

(1.15) F = A D B '  
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where r is a J X K matrix with entries {~/ik}, and the matrices A, D, and 
B are defined by (1.1). If  we now define matrices P and Q' as 

(1.16) P = A D  1/2 and Q' = DI/2B ', 

we can express the matrix r as 

(1.17) F = PQ'.  

The above definitions of the matrices P and Q are not unique, but  it is usually 
sensible to use the definitions given by (1.16) because they keep the entries 
of P and Q at approximately the same order of magnitude. Making in the 
standard analysis of variance model (1.7) the substitution suggested by 
(I.17), and writing the matrix product PQ'  in expanded form gives 

J - - I  

(1.18) xi~ = ~ "l- R~ ~ C~ -~ ~_, p~,,q~,, . 

Equation (1.18) expresses a model where the matrix of {~'ik} is completely 
factored. However, in applications of factor analytic techniques one is rarely 
interested in completely factoring a matrix. Rather, it is hoped that an 
adequate approximation to the matrix can be obtained by extracting a 
number of factors which is considerably less than the rank of the matrix. 
In order to take account of this fact we now define the symbol M to refer, 
not to the rank of a matrix in general, but to the number of factors actually 
retained in order to approximate the matrix being factored. Under these 
conditions we can express the initial interaction parameters as 

(1.19) ~,~, = ~ ,  p~mq,,~ + ¢ , , ,  
ra 

where (m = I, 2, --- , M) and the {~i,} represent the parameters of the 
residual interaction, and meet the conditions ~ ¢~ = ~--~k ~k = 0 for all 
j and k. Taking the standard analysis of variance resolution of the matrix X, 
and substituting the fight-hand side of (1.19) for the interaction parameters 
{~/;~} yields 

(1.20) xik = # + R~ + Ck + ~ Pi,,qk,~ + 4~i~ , 
m 

which represents the FANOVA model for decomposing a two-way table. 
The residual interaction parameters can be obtained by subtraction as in 

¢;4 = ~;, -- ~ Pi,~q,,~ , 
m 

or, alternatively, by using the relation, 
J - - 1  

6ik = ~ P~,,q~.. 
n f f iM+l  

One convenient scheme for presenting the results of a FANOVA analysis 
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is obtained by expressing (1.20) in matrix notation. Letting • represent 
a J X K matrix with entries {¢i~} 

R = 

-%/-~ R1 1.0- 

V ~  R2 1.0 

V ~  R~ 1.0 

_%/"~ Rj  1.0 

and defining the matrices R and C as 

1.0 C~- 

V ~  1.0 C~ 

C __ 
%/'~ 1.0 CA 

1.0 CK 

we express (1.20) as 

J X K  J X ( 3 + M )  (3+M) XK 

+[°1 
J X K  

where the J X M matrix P* and the K X M matrix Q* consist, respectively, 
of the first M columns of the matrices P and Q; and where the values written 
beneath each matrix represent its dimensions. 

As mentioned earlier, the basic FANOVA model is essentially a two-way 
~nalysis of variance model which requires that  factor analytic techniques 
be used in seeking structure in the matrix of interaction parameters {~i~}. 
We shall now discuss some of the relations between the FANOVA method 
of matrix decomposition and alternative methods of investigating the struc- 
ture of a matrix of interaction parameters. 

2. Alternative Methods ]or Decomposing Interaction Parameters 

First we will consider the case where neither the row nor the column 
elements are quantitative or naturally ordered. The following procedures 
all involve partitioning the interaction parameters into a set of highly struc- 
tured (or systematic) terms and a set of less structured (or unsystematic) 
residual terms, which are obtained by subtraction. Thus, in his test for non- 
additivity in a row X column design with one observation per cell, Tukey 
[1949] suggests that the interaction parameters be decomposed into the fol- 
lowing "one degree-of-freedom for non-additivity" and (J  -- 1)(K - 1) -- 1 
df for residual 

(2.1) 3'~,, = gRiC~ "-}- O~k , 

where g is a constant, the {Ri} and {Ca} are, respectively, the row and 
column main effects; and the residuals {0ik} are obtained by subtraction 
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(i.e., 0~ = 3'ik -- gRaCe). Mandel [1961] has proposed a model which is 
more highly structured than (2.1) and which includes (2.1) as a special 
case. Mandel's decomposition for the interaction parameters is given by 

(2.2) ~/~ = gR~Ck + h~Ck + 0~,  

where ~ ;  Rthi = 0 and, of course, ~ hi = 0; and the {0~} are the residuals. 
Solving for the constant g in (2.2) accounts for one df and solving for the 
{hi} accounts for (J - 2) dr, leaving (J -- 1)(K - 2) df which are accounted 
for by the residual. Finally, Tukey's [1962] "basic vacuum cleaner" includes 
the systematic portion of Mandel's model and goes a step further, as shown 
by the decomposition, 

(2.3) ~'i~ = gR~Ck + hiCk + Ri~k + O~f,, 

where ~ C ~  = 0, ~"]~ Vk = 0, and the {0~;} are the residuals. I t  is of 
interest to note that the three highly structured sets of terms in (2.3) account 
for (J + K -- 3) dr, which, as will be shown later, is also the number of df 
accounted for by the first interaction factor of the FANOVA model. 

The decomposition methods suggested by (2.1), (2.2), and (2.3) all 
possess the limitation t h a t  they cannot provide useful information about 
the structure of the interaction parameters unless there are substantial 
differences between row means or between column means, or between both. 
The FANOVA model resolution of the {'Y;k}, on the other hand, is applicable 
irrespective of whether or not substantial main effects exist; and also allows 
for the possibility that the {~'ik} are completely independent of any existing 
row or column main effects. Another advantage of the FANOVA method 
of decomposing matrices is that it enables one to find up to (J -- 1) multi- 
plieative contrasts such that each successive contrast accounts for a maximum 
of any remaining variation due to row by column interaction. 

Tukey [1962] briefly mentions that one natural way to continue the 
basic vacuum cleaner is provided by factor analytic methods. Depending 
on such things as the subject-matter and the primary purpose of doing the 
analysis, it may indeed be advantageous to postpone application of factor 
analytic techniques until some or all of the interaction variation which is 
picked up by Tukey's vacuum cleaner is removed. 

When the levels of factors in a fixed effects analysis of variance design 
are quantitative and can be considered as representing equal steps along 
some underlying continuum; users of analysis of variance often investigate 
the response surface further by partitioning main effects and interaction 
terms into orthogonal multiplicative contrasts (trends) such as linear X 
linear, linear X quadratic, quadratic X linear, etc. [e.g., Winer, 1962; 
Snedecor, 1956]. In general, this procedure requires (J -- 1)(K -- 1) or- 
thogonal multiplicative contrasts in order to perfectly reproduce the J K  
interaction parameters; whereas the FANOVA model accounts for the 
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interaction perfectly by specifying only (J - 1) orthogonal multipficative 
contrasts. For example, in a 3 X 4 design, six a priori contrasts are needed 
to account for all of the interaction variation; while the FANOVA model 
accounts for the interaction perfectly by specifying only two orthogonal 
multiplicative contrasts. Furthermore, in this example the first interaction 
factor of the FANOVA decomposition will necessarily account for at least 50% 
(and probably much more) of the interaction variation. Although the relative 
advantage of using the FANOVA decomposition becomes much greater as 
J (J <__ K) increases and as the size of K relative to J increases; it seems. 
clear that the advantages of using the FANOVA decomposition can be, 
of practical significance even when dealing with small matrices. 

Having discussed some of the advantages of the FANOVA model for 
decomposing two-way matrices, we now turn to a discussion of methods 
for judging the statistical significance of interaction factors and the residual 
interaction. 

3. Statistical Tests of Hypotheses in the Fixed F A N O V A  Model 

Our discussion up to this point has focused on applying the FANOVA 
model to a matrix, X, whose entries are equal to "true" population pa- 
rameters. But in practical applications we, of course, do not know the values 
of the population parameters; but. rather, use samples of observed data 
to estimate the entries in X. In this section we consider problems which 
arise in applying the FANOVA decomposition to data containing error. 

The fixed FANO VA model 

A two-way fixed FANOVA model, and its corresponding analysis of 
variance model, is one in which the levels of both ways of the design are 
determined by some systematic, non-random procedure. Letting Y,k denote 
the ith observation (i - 1, 2, . . .  , I) in the ], k cell, we make the following: 
assumptions which are standard in the analysis of variance, 

( 3 . 1 )  Y . k  = x~k + e . ~  , 

where the {e,~} represent uncontrolled sources of variation which are inde- 
pendently and normally distributed with zero means and equal variance 

2 as for every ], k cell; and are statistically independent of the true cell means, 
[xi~}. If  for xi~ in (3.1) we substitute the standard analysis of variance 
decomposition of the {xik} (1.7), we obtain the model equation: 

(3.2) y,~ = I~ + R~ + C~ + ~'~ + e , ~ .  

Least squares estimates of ~, {R;}, {C~} and the {~}  in (3.2) are given b y  
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(3.3) 

(3.4) 

(3.5) 

(3.0) 

/~i = Y.~. - -Y  . . . .  

O ~  = y . . I ,  - -  y . . .  , 

qik = Y. ik --  Y.i. -- Y..~ + Y . . . .  

Replacing the interaction parameters {~,;~} in (3.2) by  their factor model 
decomposition (1.19), we obtain the following expression of the two-way 
fixed effects FANOVA model: 

(3.7) y , ~  = ~ + R i  + C~ + ~ p~.q~., + 4~i~ + e ,~  , 
m 

where all terms are defined and restricted as specified in (1.20) and (3.1). 
Since the row and column main effects in the FANOVA model are identical 
in all respects to the main effects in analysis of variance, we can use con- 
ventional methods for testing the hypotheses that  all {Ri} equal zero or 
tha t  all { Ck } equal zero. 

M e a n  squares ]or interaction factors 

Our first step toward developing a rough guide for judging whether 
or not  the ruth interaction factor accounts for a statistically significant 
amount  of the variation in the {xik} is to define mean squares for the inter- 
action factors. We will first write the quantities which must  be minimized 
in order to fulfill the conditions specified by the FANOVA model. Let  ~ k  
represent the estimated residual interaction terms which result when ][0 < 
] <: ( J  - 1)] successive interaction factors have been extracted from the 
matrix of { ~ } ;  that  is 

Y 

( 3 . 8 )  = - 

where, it will be recalled, d . ~ . ~ ,  represents the contribution of the rath 
interaction factor to the j, kth cell, and can alternatively be wri t ten 
as ~6 ;~ . .  The FANOVA model requires that,  for all the values of 
] > 0 ([ = 1, 2, ---  , J -- 1), we minimize the ( J  - 1) quantities 

(3.9) EI = ~ ~ ( d j a u f l k s -  ~f-,6i~) ~, 
i k 

where the {(~_~)6~} are treated as fixed when solving for estimates of the 
{df~;f3~f}. Our work is simplified now by  recalling that  Eckar t  and Young 
[1936] proved that  least squares estimates of the {a;s}, {flkf}, and {dl} 
which minimize each of the (or -- 1) quantities represented by  (3.9) can be 
found by  expressing the matrix of {q~} in terms of the decomposition specified 
by  the factor model. Thus we can now write 

(3.10) f' = j/5/}' 
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where ~ represents a J N: K matrix with entries {~-k}, and in general a 
caret, ~, indicates tha t  all entries in the matrix are least squares estimates 
of population parameters. 

We will now determine the number of linearly independent parameters 
which are fit in calculating each interaction factor. The  ruth interaction 
factor is subject to the restrictions 

= o = o ,  
i 

:rod due to the fact tha t  the A and B matrices of the factor model (1.1) 
are orthonormal, the ruth interaction factor has two restrictions imposed 
upon it by the requirements tha t  

E 

and finally, also due to the fact tha t  A ' A  = B ' B  = I,  the mth interaction 
factor is subject to the following [2(m - 1)] orthogonality restrictions: 

i k 

i k 

E OQ(m-1)O~im ~ 0 E ~k(m--1)~km ~" O. 
i k 

In general then, the ruth interaction factor of the FANOVA model has 
[4 + 2(m - 1)] or simplifying, (2m + 2) linearly independent restrictions. 
Since the ruth interaction factor is expressed by the J a ~  values + the 
K 3k~ values + the "regression" weight; d~ ; a total  of ( J  + K + 1) values 
are used to express the ruth interaction factor. Thus, the ruth interaction 
factor accounts for [(J + K + 1) - (2m + 2)] or, simplifying, (J  + K - 
1 - 2m) dr. We now define the mean square for the ruth interaction factor as 

(3.11) MSem --- SSy,~/(J + K -- 1 - 2m), 

where SSu,, represents the sum of squares accounted for by the rnth inter- 
action factor and is obtained as described below. 

Treating the factor weights { d ~  (3" -- 1, 2, • • • , J ;  k = 1, 2, . .  • , K) } 
in the FANOVA model as fixed weights which define a normalized contrast  
g%,n among the interaction parameters,  we estimate the "value" of the 
contrast  in the conventional manner  [e.g., Seheff~, 1959} by  

(a.m) = E E = E E • 
i k i t: 

(Context should make it clear whether we are using the symbol Tp,~ to refer 
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to the value of a contrast or to the function which defines the contrast,) 
The sum of squares accounted for by the normalized contrast ,I%~ is given by 

(3.13) SS~.r,~, = I~I%~.~ 2 

We will now show that  d~ --- ~ , , ,  ; and therefore, in practice, the calcula- 
tions described by (3.12) will not be carried out since the {d~} are simply 
the eigenvalues which are obtained in the process of factoring the matrix ~. 
Beginning with the factor analytic decomposition of ]~ (3.10), it can be 
readily shown that  

(3.14) /) = ~'1~/~. 

Expanding (3.14) gives 

i k i k 

where it is important  to remember that  we are treating the [~+~} and {flk~} 
as fixed. Since the right-hand sides of (3.12) and (3.15) are identical we 
see that  

(3.16) d~ -- ~ F ,  -- E E ~+~k~y.~k • 
t k 

Thus, substitution in (3.13) gives 

(3.17) ss~= = ~ d ,~ ,  

and making in (3.11) the substitution suggested by (3.17) yields 

(3.18) MSvm = I d~ / (J  + K - 1 -- 2m). 

A mean ,~quare ]or the residual interaction 

Having defined plausible mean squares for the interaction factors of the 
FANOVA model, we now define a mean square for the residual interaction. 
The sum of squares accounted for by the residual interaction, Fres, depends 
on the number of interaction factors, M, retained in the model; and is ob- 
rained by subtraction in the following manner, 

( 3 . 1 9 )  = - 2 2  = ss c - 2 2  
m 

where SSRc represents the sum of squares due to all row by column inter- 
action and is defined as 

(3.20) SSRc = I E E ' ~ ,  = I E E (Y.+~ -- Y.+. -- Y..~ -t- y.. .)~. 
i k i k 

Alternatively, when the I~'+k} have been completely factored, one may wish 
to compute the residual sums of squares by using the relation 

J - - 1  

(3.21) SSr,o, --- I E d~ 
n = M + l  
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and checking to see that  

(3.22) SS~c = 22 SS~,~ + SS~ . . . .  
m 

The number of linearly independent restrictions imposed on the residual 
interaction also depends on the value of M and is obtained by  subtraction. 
As is well known, (J  - 1)(K -- 1) df are accounted for in calculating SSRc ; 
and since the ruth factor extracted from the matrix of {2;~} accounts for 
( J ~ - K - 1 - 2 r a )  dr, we see that  [ ( J - - 1 ) ( K - 1 ) - - ~  ( J - t - K - - 1 - 2 m ) ]  
or simplifying, (J  -- 1 - M ) ( K  - 1 - M)  df are accounted for by the 
residual interaction. Thus we define the mean square for the residual inter- 
action as 

(3.23) 5'IS~,~o =- SSF~o,/(J - 1 - M ) ( K  - 1 - M) .  

A rough index ]or judging the significance o] interaction ]actors and the residual 
interation 

A central problem in data  analysis is tha t  of finding simple and heurist- 
ically useful methods of summarizing variation in experimental data [e.g., 
Green and Tukey, 1960; Tukey,  1962]. I t  is in this spirit that  we present 
some rough guides for judging the stability of factor weights and describe 
some quantities which provide usefut summary descriptions of R X C varia- 
tion in the data. 

One useful measure for summarizing variation of the data is simply 
the proportion of R X C interaction variation accounted for by the ruth 
interaction factor (i.e., SSFm/SSRc.). In  describing the results of a FANOVA 
analysis it is, of course, also useful to calculate the "mean squares" given 
by (3.20) and (3.23), since they provide a measure of how much variation 
per estimated parameter we have accounted for. One might say that  a mean 
square tells us how much sum of squares we have "bought"  for each df 
"spent ."  

Now we shall consider a rough index to aid us in judging the statistical 
significance of interaction factors. Recall tha t  SSF~ equals I d~ , and that  

(3.24) & = E E 
i k 

If the values {~im~k,, (j = 1, 2, . . .  , J ;  k = 1, 2, . . -  , K)} were constants 
which had been chosen before observing the {2,k}, we could treat  them as 
weights in an a priori contrast;  and, for all m, could test the hypothesis 
tha t  d m =  0 (i.e., the hypothesis tha t  the ruth interaction factor accounts 
for none of the variation in the {xik}) by  conventional analysis of variance 
methods [e.g., Winer 1962]. But  of course, the FANOVA model does use 
a posteriori information about  the {2ik}; and it is for this reason that  we 
assign (J -t- K - 1 -- 2m) df (rather than one df) to SSR~ . Mat ters  are 
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further  complicated by the fact tha t  the ld,~,} are not linear functions of 
the observations {Y , i k } .  

However, asymptotically the { ~im } and { ~ , ,  I are constants which equal 
the [ai,.} and {~k~}, respectively; and thus, asymptotically the /d,.} are 
linear functions of the observations lY,k}. When we let 

(3.25) Aa~.~ = a~.. -- ~i~ and Abk~ = B~,~ -- ~k~, 

it  can be shown tha t  the probabili ty that  Aaim > e and Abk., > e, for any 
value of e > 0, approaches zero as the number  of observations, I ,  upon 
which the data  is based increases, i.e., l i m i t ~  Aa~,,, --- 0, and I i m i t ~  Abk,,, --  O. 

Thus, asymptotically d~ is a linear function of the observations; and con- 
sequently, the asymptotic  distributionM properties of SS~,~ (m = 1, 2, - . -  , M) 
and SSr~°, can be determined by  well known procedures for dealing with 
linear functions of normally distributed observations. Hence, under the 
hypothesis tha t  d~ = 0 (and under the assumptions of the fixed FANOVA 
model) the (M + 1) sums of squares I d~, I d~, - . -  , I d~ ,  ---  , I d~ and 

2 (SS~o I ~-~.~ d~), following division by ~ ,  are asymptotically distributed 
a s x  ~ w i t h ( J  + K -  3), ( J  + K - 5), . . .  , (J  + K - 1 - 2 m ) ,  . . .  , 

(J  + K - 1 - 2M) and (J  -- 1 - M) (K - 1 -- M) dr, respectively. Asymp- 
totically, it  also follows that  the M + 1 quantit ies/SSpm (m = 1, 2, • • • , M) } 
and SSr~e. are all statistically independent of each other; and that  the 
expected mean square for the mth interaction factor is 

(3.26) E(MSr~)  = I z ~  + a~, 

where 

(3.27) ~r,~2 = d ~ / ( J  + K - 1 - 2 m )  

and a] = E(MS,)  and 

(3.28) MS,  = S S , / J K ( I  - 1) = ~ ~ ~ ( y , k  - y . ~ ) 2 / J K ( I  - 1). 
i i k 

The  quant i ty  SS,/a~ is, of course, distributed as x ~ with J K ( I  - 1) dr. 
A s ta tement  directly analogous to (3.26) can also be made regarding MSr  ..... 

F rom the above facts we conclude tha t  asymptotically (i.e., I --~ o~) 
the hypothesis tha t  ay~2 = 0, and the equivalent hypothesis tha t  d~ = 0, 
is rejected at  the a level of probability if 

(3.29) MS~,,/MS~ > F~;(~+K-1-2m).JK(I-1) , 

where the right side of the equation refers to the upper-a point of the F- 
distribution with (J  + K -- 1 -- 2 m )  and J K ( I  - 1) df. Use of the criterion 
described by (3.29) is suggested as a rough-and-ready Md to one's intuit ion 
in judging whether or not the ruth interaction factor accounts for a statistically 
significant amount  of the total variation. I t  is important  to remember tha t  
although the ratio M S ~ / M S ,  is asymptotically distributed as F ,  i t s  exac t  
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distribution is unknown. The accuracy of the F-distribution as an approxima- 
tion to the unknown, true distribution depends upon the magnitude of 
the {Aa;~l and {Abkm}. In practice the criterion (3.29) will be reasonably 
accurate when the values l~i~km} are reasonably stable; i.e., when further 
increases in I do not greatly affect the values of the l~;~} and { ~ } .  Thus, 
it is possible for 15 or 20 observations on data with very small error variation 
to yield reasonably stable values of I~;~} and /~m}; while a much greater 
number of observations on highly variable data may yield markedly un- 
stable values of {~i~} and {f~}. 

Residual interaction. The residual interaction sum of squares, SSF,o, , 
provides a measure of the amount of interaction variation remaining after 
removing that variance accounted for by M interaction factors. I t  is of 
course possible to extract enough interaction factors to make SSF~o, negligible 
or even equal to zero. However, it seems very unwise to extract an inter- 
action factor which accounts for an obviously non-significant and trivial 
amount of variation. Such a factor, by definition, does not describe systematic 
variation in the data. Thus, even in cases where the residual interaction 
is obviously substantial, any interaction factor which does not itself account 
for a substantial amount of variation should not be retained. 

Asymptotically, the quantity SSF=,/a ~. is statistically independent of 
the interaction factor mean squares and is distributed as x: with (J -- 1 -- M) 
• (K -- 1 -- M) dr. Thus, as a rough guide, we may reject the hypothesis 
that all ¢~ = 0 if 

(3.30) MS~,o,/MS, _> F, ,  (J-,-M)C~-I-M).J~(I-I~ • 

Note that, of course, the same comments made regarding use of criterion 
(3.29) also apply here. 

Table 1 outlines the computations for the two-way fixed effects FANOVA 
model. 

Additional guides ]or judging significance in the fixed F A N O V A  model 

In this section we describe tests for finding lower bounds (conservative 
test) and upper bounds (liberal test) for p-values applying to tests of the 
hypothesis that dm= 0. Tests of the hypothesis that all the Fres parameters 
{¢i~} equal zero can be developed by directly analogous methods, but will not 
be explicitly presented. 

A conservative test. The significance test described in this paragraph is 
conservative in the sense that it will yield too few "significant" decisions 
(i.e., high Type II error) but keeps the probability of making a Type I 
error <:~. Scheff~'s [1959] method for ~udging all possible contrasts in a 
fixed model analysis of variance provides a conservative test for judging 
the significance of the M interaction factors and the residual interaction 
factor in the fixed effects FANOVA model. Using Scheff6's method, the 
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TABLE 1 

Computational Formulas for the Two-way Fixed Effects 
FANOVA Model 

Source d_!f Sums of Squares 

Rows (R) J-i IK [ 2 - iJKy2 • Y.j. 
J 

Cols (C) K-I IJ ~ y2 _ IJKy2 
• ~k .i. 

k 

2 - iJKy2 RxC (J-1)(K-1) I [ [ Y.jk 
j k "" 

F1 J+K-3 Ia 2 

Y2 

9 

FM 

Fres 

Error 

J+K-5 

J+K-l-2m I~ 2 
m 

- SS R - SS C 

J+K-I-2M 1i 2 

(J-l-M) (K-l-M) SSRc - [ SSFm 
m 

2 2 
JK(I-1) I ~ ~ Yljk - I ~ ~ Y.jk 

ij k j k 

probabili ty tha t  all contrasts tested will be significant is > 1 -- a;  irrespective 
of the number of contrasts estimated and irrespective of whether the contrasts 
are selected a pr io r i  or are chosen after examining the data, as in the FANOVA 
model. Applying Scheffd's method to the problem of judging the significance 
of the ruth interaction factor in the fixed FANOVA model, we conclude 
with probabili ty >_ 1 - a tha t  d~ ~ 0 if 

$8~/1 
(3.31) - S S , / J K ( I  - -  1) >- (g -- 1)(K -- 1)F=~(j-1)(~_~).j~(~-l) . 

I t  is useful to note tha t  the approximate test  described earlier (3.29) and 
the conservative test (3.31) differ only in tha t  they assign different (if to 
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S S ~ .  I t  is easy to see that the number of df assigned to SSr~ by the ap- 
proximate test (i.e., J ~ K -- 1 -- 2m) cascades in steps of two df as the 
value of m increases; whereas Scheffg's method (3,31), in effect, assigns a 
constant number of dr, (J -- 1)(K -- 1), to S S ~  irrespective of the value 
of m. 

A liberal test. The significance test presented below is "liberal" in the 
sense that  is has high probability of making Type I errors (i.e., rejecting 
the null hypothesis when it is true) but has a very low probability of making 
a Type II  error. Although the liberal test will overestimate the number 
of statistically significant interaction factors, it is sometimes helpful to 
know the maximum number of statistically significant factors. The liberal 
test is based on the fact that  an a priori hypothesis always has greater power 
than the corresponding a posteriori hypothesis. The liberal test ignores the 
fact that a posteriori information is used in selecting the best interaction 
factors, and treats the obtained factor weights {~i~3k~} as though they 
had been known a priori. Thus, the liberal significance test for the ruth 
interaction factor is obtained simply by using conventional methods for 
testing the significance of a priori contrasts [e.g., Winer, 1962]. Thnsj in 
the ease of the fixed FANOVA model, we reject the hypothesis that d .  = 0 if 

(3.32) SS~m/1 > F,~I.jK(x-I> • 
- 

In using the FANOVA model it is often useful to apply the asymptotic, 
the conservative, and the liberal tests in combination. First, the conservative 
and liberal tests, respectively, enable one to find the lower and upper bounds 
on the p-values applying to given interaction factors; and the asymptotic test 
can then be used to aid one in judging the significance of those factors which 
are neither accepted by the conservative test nor rejected by the liberal test. 

A n  "exact test." As mentioned earlier, conventional tests which are 
exact are available for judging the significance of a priori contrasts. I t  is 
valid to treat contrast weights as a priori so long as the basis on which they 
are selected does not use information about the specific set of parameter 
estimates to which they are to be applied. Thus, in addition to using data 
from previous experiments as a basis for defining a priori weights {~i~. ,} 
which define an "a priori interaction factor," it is also valid to use a randomly 
selected subset of data from a single experiment to define a priori inter- 
action factors. Given I observations in a two-way fixed model, some pro- 
portion, p, of the observations are randomly selected from each cell to 
define, say, set V of data; and the remaining (1 -- p) I  observations per 
cell define set W of data. The data from, say, set V are then decomposed 
according to the FANOVA model. Since V and W comprise two statistically 
independent sets of data, the interaction factors (and main effects) found 
for set V of data can be used to define contrasts which are a priori with 
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respect to set W data. Set W data is then analyzed by using conventional 
methods for judging significance of a priori contrasts (obtained from set V) 
in a fixed model analysis of variance. 

4. Judging "Factor S imi lar i ty"  in the Fixed Effects F A N O  V A  Model  

Consider a three-way (G X R X C) fixed effects analysis of variance 
model with y~,~, representing the ith (i = I, 2, . . .  , I) observation at the 
tth (t = 1, 2, - .-  , T) level of G, jth level of R, and kth level of C. Assume 
that we have the FANOVA decomposition for the R X C "summary table" 
of data obtained by averaging over observations and over levels of G. The 
problem of judging factor similarity, as defined here, arises when we wish 
to judge whether or not an interaction factor accounts for an equal amount 
of variation at each level of G. Say, for example, that our dependent variable 
is performance score on some tasks; and the levels of R and C are three different 
diagonastic categories and four different drugs, respectively. Having averaged 
over levels of G, say a stress vs. no stress manipulation, and having obtained 
the FANOVA decomposition of the diagnostic category by drug summary 
table; we want to test whether each component of the FANOVA decomposi- 
tion accounts for an equal amount of variation of the category by drug 
profile of results within both the stress and no stress groups. The significance 
tests described in the following section are all exact; and require only the 
conventional assumptions for the three-way fixed effects analysis of variance 
model. 

Fit  o] the over-all interaction ]actor at each level o] G 

Letting x,~k represent the population value which is estimated by y.,;k, 
we first obtain the least squares estimate of the overall R X C profile of 
scores {x i, } by calculating 

(4.1) ~.i~ = y..;k ; 

and then obtain the FANOVA model decomposition of the {y..;k}. We then 
approach the problem of judging factor similarity by testing whether regres- 
sion of the T subtables of R X C means {y., ~, (j = 1, 2, -. •, J ;  k-- 1, 2, . . . ,  K) } 
on the ruth set of estimated interaction factor weights {~'~k~ (j --- 1, 2, 
• -- , J;/~ = 1, 2, --- , K)} leads to significantly different regression weights 
{d,,~ (t = 1, 2, . . .  , T)} for different levels of G. 

The significance test described below is based on the fact that the 
parameter estimates associated with R × C and G × R X C variation are 
statistically independent quantities. This means that information about 
R X C variation tells us nothing about G × R X C variation. Therefore, 
we can treat the M sets of estimated interaction factor weights { ~ k ~  (j -- 
I, 2, . . .  , J ;  k = 1, 2, . . .  , K)} and the residual interaction parameter 
estimates {~,} as (M + 1) mutually orthogonal contrasts which are a priori 
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with respect to G X R X C variation. Thus, it is valid to test  the hypothesis 
tha t  our estimate of the ruth interaction factor accounts for different amounts 
of variation at  each level of G by simply making the same assumptions and 
using the same computational procedures as are used to test the hypothesis 
that ,  say, a (linear R) X (quadratic C) contrast accounts for equal amounts 
of R X C variation within each level of G. The basic idea expressed in this 
paragraph should be remembered since i t  is central not only to the significance 
test described in this section, but  also to tests which are described later 
in the paper. 

Following conventional procedures for testing the significance of 
a prior i  interaction contrasts [see Winer, 1962], we obtain least squares 
estimates of the T regression weights {d,~ (t = 1, 2, . . -  , T)} by calculating 

It 

where of course, the [~;~ (j = 1, 2, . . .  , J)} and {$k~ (k = 1, 2, . . .  , K)} 
are treated as fixed weights which define an interaction contrast. We then 
compute 

sso . = z E (d,.. - d.o)' = z E d, - s s , . . ,  
$ $ 

(4.s) 

where 

(4.4) s s , ,  = Z T ( E  E = I T S . , .  
i k 

Since (T - 1) independent parameters are estimated in computing SSa~, , 
we define 

(4.5) M S a , ,  = S S o , , / ( T -  1). 

Under the usual assumptions of the analysis of variance model the quant i ty  
SSap~/a. 2 is distributed as non-central x 2 with (T -- 1) df. I~ence, for any  
given value of m, we reject the hypothesis tha t  all {d,~ (t = 1, 2, . - .  , T)} 
are equal if 

(4.6) M S g r , / M S ,  > F,~-,.r~K(z-1) • 

I t  is important to recognize tha t  (4.6) provides an exact test of the hypothesis 
tha t  the contrast defined by the estimates { d ~  (j  = 1, 2, . . .  , J ;  k = 

1, 2, . . .  , K) } accounts for an equal amount of variation of each level of G. 
However, strictly speaking, (4.6) is not a test of whether the popula t ion  

parameters  {ai~f~k~, (j = 1, 2, . . .  , J ;  k = 1, 2, . . .  , K)} define a contrast 
which accounts for an equal amount of variation at each level of G; and it is 
reasonable to treat  it  as such only to the extent that  the estimates { di~k~ ( j--- 
l, 2, - "  , J ;  k --- 1, 2, . . .  , K)} reflect the " t r u e "  pattern of factor weights 
in the population. 
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Similarly, a test of the hypothesis that the estimated R X C residual 
interaction, Fres, accounts for an equal amount of variation at each level 
of G is obtained by treating the Fres parameter estimates {~;~} as defining 
a fixed contrast which is a priori with respect to G X R X C interaction 
variation. Hence we compute 

(4.7) 
where 

(4.S) 

and 

(4.9) 

MSaF~., - -- .SSoF~./(T- 1) 

SSFr., = SS~c - IT  ~ .  a~ . 
m 

The significance of variation due to G X Fres interaction is tested against 
the usuM error term, MS, .  

The SS accounted for by the remaining G X R X C interaction is given by 

(4.10) SSoRc~r.., = S S ~ c  -- ~ SSap~ -- SSGF~.. , 

where SSaRa represents the SS due to the overall G X R X C interaction. 
The terms on the right side of (4.10) are mutually orthogonal and, respectively, 
account for (T -- 1)(J -- 1)(K -- 1), (T -- I)M, and (T -- 1) dr. Hence 
we define 

(4.11) MSo~c~r~.~ = SSo~eI~,.1/~, 

where ), = [(J -- 1)(K -- 1) -- (M -b 1)](T -- 1). The hypothesis that no 
G X R X C interaction remains after removing variation due to G X Fm 
(for all m) and G X Fres interaction is rejected if 

(4.12) MSo~c~r,,I/MS, _> F.;x.~j~c~_,) • 

Table 2 summarizes the computations used in partitioning the overall 
G X R X C variation in order to judge factor similarity. 

The methods used above for judging factor similarity can of course 
also be applied to the problem of judging the similarity of main effect profiles 
for different groups of Ss. Space limitations require that  a comparison of 
the above technique and that of simply treating the overall R X C inter- 
action as a measure of profile similarity be left for a later time. We now turn 
to a discussion of the three-way repeated-measurements FANOVA model. 

5. The Three-way Repeated-Measurements F A N  O V A Model 

In this section we consider a design in which repeated measurements 
which vary along two dimensions (R X C) are taken on several subjects (S). 



H A R R Y  F.  GOLLOB 

TABLE 2 

Partitioning of GxRxC Variation in Order t o  
Judge Factor Similarity 

93 

Source d..!.f Stm* of Squares 

¢xFl (T-l) 

GxF2 (T- l )  

GxFm (T-l) 

^2 _ SSFI I ~ dtl 
t 

^2 _ SSF2 I X d r 2  
t 

z I ~2 _ ss m tm 
t 

CxFM (T-l )  Z [ ~2 _ SSFM 
tM 

t 

^ 2 ~2 
GxFres (T-l) I ~. ( ~. ~. ¢jkY tjk ) / ~" ~" Cjk - SSFres 

t j k  j k  

GRC[res] k* SSGR c - ~. SSGF m - SSGFre s 
m 

* k = [ ( J - 1 ) ( K - 1 )  - ( M + I )  I ( T - 1 )  

We also allow for one or more independent replications (Rep) within each 
cell. We write this design as Rcp (S X R X C) where replications and subjects 
are treated as random and the levels of R and C are treated as fixed. The 
analysis of variance model for this design is 

(5 .1)  y~.~ = ~ + S, -I- Ri  -I- CA + 3'~, + O. + w,t + r,~h q- eh,t~ , 

where Yh,~k denotes the observation on the hth (h = 1, 2, . . - ,  H) independent 
replication of the ith subject's score on the ], kth measurement. We make the 
following assumptions: 

a. E R a =  E e l =  E ~ , .  = E ~ , .  
i k i k 

= E 0,, = E - , .  = E ~,, .  = E ~,, .  = o 
i k i k 
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b. The IS, I, {o,} ,  {~r,~}, and {~,~} are jointly normal with zero means. 
e. The [eh,k} are independently and normally distributed with zero 

mean and variance ~ ; and are independent of the {S,}, {O,i}, {~r~k}, 
and {r,ik}. 

The analysis of variance model (5.1) implies the following decomposition 
of the "true" measurements {x;,} averaged over the population of subjects 
and replications, 

(5.2) x~, = ~ + R~ + C~ + ~ , .  

A least squares estimate of x;~ is given by 

(5.3) 2ik = y..;~. 

Applying the FANOVA model decomposition to the matrix of {y..;k} yields 
least squares estimates of the grand mean, the row and column main effects, 
and of the M interaction factors and the residual interaction. I t  is in the 
spirit of trying to provide some heuristically useful ways of summarizing 
the results of a FANOVA decomposition of three-way mixed model data, 
that  the following quantities and indices are presented. 

Interaction ]actors in the repeated-measurements F A N O  VA model 

The sums of squares and mean squares for the M interaction factors 
and the residual interaction, Fres, for the three-way repeated-measurement 
FANOVA model are directly analogous to the corresponding quantities for 
the fixed FANOVA model and are given by 

s s ~ .  = H ~ d ~ ,  

S S ~ ,  = S S ~  - ~ S S ~  , 
m 

(5.4) 

(5.5) 

and 

(5.6) 

(5.7) 

MS~.~ = SSvm/(Y + K - 1 - 2m), 

MSFro. = SSF,e,/(J - 1 - M ) ( K  - 1 -- M ) .  

The above quantities summarize variation in the two-way table of data 
which is obtained by averaging over replications and subjects. The following 
two paragraphs describe measures which summarize variation due to in- 
dividual differences in the size of the contribution of various interaction 
factors to the scores of individual subjects. 

Variation due to individual differences can be investigated by treating 
the factor weights {~;~3,, (j = 1, 2, . . .  , J ;  k - 1, 2, . . -  K)} as fixed 
weights which define a contrast; and computing for each interaction factor 
the I quantities 

(6.8) d,, = E E 
i k 
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The larger the value of {d~} for a given subject, the larger the absolute 
contribution of the ruth factor in determining his R X C table of scores 
{y.,~ (j -- 1, 2, .-- ,  J ;  k = I, 2, . . .  , K)}. Thus, the ith subject's R X C 
table of measurements as estimated solely on the basis of (a) his "score," 
~ , on the ruth interaction factor and (b) the overall factor profile defined 
by the weights I~i~k~ (j ---- 1, 2, . - .  , J ;  k = 1, 2, . . .  , K)}, can be ob- 
tained by 

(5.9) Y.,,~(,~) = ~,.,~,,~k,~. 

For the ruth interaction factor, the sum of squares of deviations of subjects" 
individual regression weights {d,m (i -- 1, 2, . . .  , I)} around the average 
regression weight ~. ~ is 

(5.10) SSsp~ = H ~ (d,. -- d.~) ~ = H ~ d L  -- S S ~ .  
i i 

Since calculations of S S s ~  involves fitting only (I - 1) linearly independent 
parameters, we define 

(5.11) MSsr~ = S S ~ r ~ / ( / -  1). 

Similarly, we compute variation due to individual differences in the 
absolute size of the contribution of the contrast defined by the estimated 
Fres parameters {5~} by 

(5.12) SSsr, . .  = H ~ ( ~  ~ ~,,y.,,,)~/~'~ ~ ~ ,  -- SSF . . . .  
i ~ k i k 

As in the case of the interaction factors, only (I -- 1) linearly independent 
parameters are fit in calculating SSsF~., and we define 

(5.1a) M S ~ o .  = S S ~ o . / ( [ -  ~). 

At this point it seems natural to describe a quantity which we will refer 
to as the F / R  ratio (Fixed/Random) and which is obtained by 

(5.14) (r/R)~m = M S ~ / M S s ~ .  

A similar ratio can, of course, be computed for the residual interaction and 
for main effects. The calculations made in obtaining the F / R  ratio are similar 
to those used in computing an F-ratio for judging the significance of say, 
a linear X quadratic trend; but, we emphasize that the distribution of the 
F / R  ratio is not known. Although no attempt to discuss the distribution 
properties of the F / R  ratio will be made here, some of its heuristic usefulness 
should become more clear when it is discussed in the context of an illustrative 
example which is presented later. The following presentation of a liberal 
and conservative test of the hypothesis that d ,  = 0 may also help to suggest 
"interpretations" of the F / R  ratio. 
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A c o n s e r v a t i v e  t e s t  a n d  a l i b e r a l  t e s t  

C o n s e r v a t i v e  tes t .  A conservative test of significance of interaction factors 
and the residual interaction in the three-way mixed FANOVA model is 
obtained by  a straight-forward extension of Scheff~'s [1959] method for 
judging all possible contrasts among main effects of the fixed way of a two-way 
mixed model analysis of variance. We can think of the interaction parameter  
estimates {~;~} as being obtained by  taking the mean over the range of i 
of the quantities {2,k} which are given by  

(5.15) ~ , i k  = Y . , ~  - -  y . , . k  - -  Y . , .  - k  y . , . .  • 

Since only (J  - 1)(K -- 1) parameters are est imated in calculating the J K  

quantities, {~i~}, it  is possible to write (J  -- 1)(K -- 1) = V new values, 
{2, (v = 1, 2, . . . ,  V) } which retain all the information in the {%~}. Similarly, 
it  is possible to express the I sets of {~,~ (] = 1, 2, • • • , J ;  k = 1, 2, • • • , K) } 
in terms of new values, {2~, }, such that  

(5.16) ~ ,  = ~. .  

Under the assumptions of the mixed analysis of variance model, the I vectors 
( z , 1 ,  z~2 , . .  • , z~.  , • . .  , z ~ r )  are independently and normally distributed with 
an arbi t rary  pat tern  of means and with a variance-covarianee matr ix of 
arbi t rary  form. From this point i t  is simple to extend Scheffd's [1959, pp. 
271-74] method to obtain the present test which allows us to reject, at  
the ~ a level, the hypothesis tha t  d~ = 0 if 

S S ~ / 1  > (I  -- 1)(J - 1)(K - 1) 
(5.17) ~----~sF~-~---/~-- (-]--m I ~ K  -- i)  E.:(j- ,)(~-~,.r-(~-,)(~:-~ • 

Clearly, the test (5.17) can be used only when I > ( J  -- 1)(K - 1). The  
inequality (5.17) can also be writ ten as 

SS~,,J(J - 1 ) ( K -  1) 
(5.18) C ~  = S S s r ~ - - ~ Z T - - - - ~ ) ( K  -- 1) >-- F~cJ-1~(K-I~.I-CJ-I~(~-I~ - 

Although the test given by  (5.17) and (5.18) is e x t r e m e l y  conservative 
in the sense that  it  has very  high probabili ty of making Type  I I  errors; 
it may  well be of practical use when I (the number  of observations) is large 
relative to (J  -- 1)(K -- 1). In  most applications it  is probably wise to let 
a equal .15 or .20 when using this test. A conservative significance test  for 
the residual interaction (or any other contrast  among the {~'ik} is obtained 
by  substituting the appropriate "fixed" and " random"  SS for SSr~ and 
S S s ~  in (5.17) or (5.18). 

L i b e r a l  t es t .  As in the fixed effects FANOVA model, a liberal test  of 
the hypothesis tha t  d~ = 0 is obtained simply by  treating the interaction 
factor weights { o ~ k ~  (j = 1, 2, ---  , J ;  k = 1, 2, - - -  ,~K) } as though they  
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defined an a priori contrast. Thus, we reject the hypothesis that  d .  = 0 if 

(5.19) LF ,  S S ~ / 1  
= ~ I S s ~ .  >- F . ~ l , ~ - ~  • 

I t  is sometimes convenient to compute L ~  by  using the relation 

(5.20) L~m = (J  + g -- 1 -- 2m) (F /R) r . , .  

I t  is interesting to note tha t  the ratios C r .  , ( F / R ) ~ .  , and L~ ,  all 
differ essentially in tha t  they assign different df to S S r .  and /or  SSsF,  ; 
and that  

(5.21) C~. < ( F / R ) ~ .  < L ~ . .  

An  "exact test" 

As in the fixed FANOVA model, it is a simple mat ter  to obtain an 
exact significance test  of the various FANOVA components of variance if 
we have some a priori basis for predicting what  the precise form of the 
components will be. Thus, instead of trying to test the significance of inter- 
action factors obtained by  factoring interaction parameter  estimates ob- 
tained by using the entire set of subjects, the I subjects (observations) can 
be randomly divided into two groups, say, V and W. Since this results in 
two independent sets of data, it  is now possible to use the FANOVA de- 
composition of, say, set V of data to define contrasts which are a priori 
with respect to set W data. The estimated main effects {/~} and {Ok}, 
the M sets of estimated interaction factor weights {~;./~,.. (j = 1, 2, . . .  , J ;  
k = 1, 2, . . .  , K)} and the residual interaction parameter  estimates {Sik} 
can all be used as contrasts. Conventional methods can then be used to 
judge the significance of the contrasts (obtained from set V data) when 
applied to set W data. 

A significance test ]or S X Fm interactions when H > 1 

As discussed above, the quant i ty  SSs~.  provides a measure of variation 
due to individual differences in the absolute size of the contribution of the 
ruth estimated interaction factor to subjects' measurements. Thus, if the 
profile of estimated weights of the ruth interaction factor accounted for an 
equal amount  of variation in each subject 's R X C table of measurements, 
it  would be true tha t  d ~  = d2~ = . . . .  d~, = . . . .  d,~ and therefore 
SSsp.  would equal zero. When the {~i~,~ (J = 1, 2, . - -  , J ;  k = 1, 2, - - .  , K) } 
are t reated as fixed, it  can readily be shown that  

( 5 . 2 2 )  = ' 

where a ~. = E(MS,)  and 

(5.23) 2 = Z :  ( d , .  - - 1 ) .  
i 
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Since variation due to R × C interaction is statistically independent of 
variation due to S × R X C interaction, we can t rea t  all sets of { ~  
(j = 1, 2, - - .  , J ;  k = 1, 2, - . -  , K) } as fixed weights which define contrasts  
which are a priori with respect to S X R × C variation. Thus, under the  
usual assumptions for judging the significance of orthogonal a priori con- 
trasts, we reject the hypothesis tha t  ZSF~ ~ = 0 if 

(5.24) M S s ~ / M S ,  >_ F~_~.~K(~_,~ • 

Similarly the hypothesis tha t  ~sp~o~2 = 0 is rejected if 

(5.25) M S s F ~ / M S ,  _> F~x_l.r~(H_l~ • 

We postpone consideration of significance tests for S X Fm interactions 
when H -- 1 until  after  the following discussion of SRC [res] interaction. 

The SRC[res] interaction 

The S X R X C variation remaining after variation due to all SS~F,, 
and SSF~, has been removed is given by 

(5.26) SSsRc~,,,~ = SSsRc - ~ S S s ~ -  SSF~,,, 
m 

where S S ~ c  represents the SS due to the overall S X R X C interaction. 
The df assigned to the terms on the right side of (5.26) are ( I -  1) ( J -  1) (K--  1), 
( I  -- 1)M, and [ -- 1, respectively; and it  is easy to show tha t  ), = [(J -- 
1)(K -- 1) -- (M + 1)](I -- 1) df should be assigned to SSsRct,~,l . Hence 
we define 

(5.27) MSs~ctre,, = SSsRct,o.,/},. 

Under the hypothesis tha t  the true variation due to SRC[res] equals zero, 
i.e., 2 = 0, the quant i ty  SSs~zE~8, is distributed as 6~,x ~ with ~, dr, O'~gRC[re~ ] 

and we reject the hypothesis tha t  zz~c1~J2 _- 0 if 

(5.28) MSsRcI~,1/MS~ >_ F~;x.11Kcz-~. 

2 ~ O.  I f  H -- 1, we cannot test the hypothesis tha t  ¢sRc~,,~ 
Having described a significance test we now turn to a brief discussion 

concerning the " interpreta t ion"  of the SRC[res] interaction. The  overall 
S X R X C interaction provides a measure of the degree to which the profiles 
of subjects' R X C means {y.~;k (J = 1, 2, - - .  , J ;  k = 1, 2, . . .  , K)} differ 
from each other. Thus, if all subjects' R X C mean profiles are perfectly 
parallel, SSsRz -- 0. As indicated by  (5.26), the interaction of subjects with 
the M interaction factors and the residual interaction of subjects with the 
M interaction factors and the residual interaction factor accounts for only 

par t  of the tors i  S X R X C interaction. The  M + 1 interaction contrasts 
employed in the FANOVA model are selected a posteriori to exhaust all 
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the R X C sum of squares; but  since these same contrasts are a priori with 
respect to S X R X C interaction, they behave in the same manner as any 
other (M + 1) mutually orthogonal a priori contrasts, such as linear X linear, 
quadratic X linear, etc. Thus, the FANOVA model partitions the S X R X C 
interaction into two major parts; with one part consisting of M + 1 com- 
ponents representing individual profile differences with respect to inter- 
action factors and the residual interaction, and the remaining major part  
representing individual profile differences with respect to R X C contrasts 
which are orthogonal to the interaction factors and the residual interaction. 

Significance o] S X F m  interactions when H = 1 

When only one replication within each i, j, k cell is available one may  
2 = 0 i f  2 = 0 and reject the hypothesis tha t  zsF~ wish to assume that  ¢~Rct~.~ 

(5.29) MSs~JMS~Rc~,o~ ~ F,;~_~.~, 

where h = [(J - 1)(K -- 1) -- (M + 1)](I -- 1). Similarly, one may  reject 
the hypothesis that  a 2 = 0 if S F r e s  

(5.30) MSs ~,o~/MS~RcI~o~I >_>. F ~ _ ~ , ~  . 

Since E(MSs~c~.~.j) = Ha~s,ct~..~ + a.2 , it  is easy to see tha t  the tests 
lfqsRC[rea] ~ 0. described by (5.29) and (5.30) will err on the conservative side" 2 

Table 3 presents a summary of the computations used in decomposing 
R X C and S × R X C sources of variation according to the requirements 
of the three-way repeated-measurements FANOVA model. 

6. Judging "Factor S imi lar i t y"  in Repeated-measurement Designs 

Described in this section is a test for judging "factor similarity" over 
different groups (G) of subieets in a design which consists of fixed repeated 
measurements (R X C) on randomly selected subjects (S) who are nested 
in the fixed groups (see Wirier [1962] for a discussion of this design). For 
convenience we assume that  there is only one replication per cell, and tha t  
each group contains an equal number of subjects. Thus, in this design there 
are T groups of I subjects; and J K  measurements are obtained on each of 
the I T  subjects. Many  learning experiments are of this type; with levels 
of G being different experimental treatments, levels of R being different 
stimulus characteristics, and levels of C being different blocks of learning 
trims. The population R X C profile of measurements in the t th group is 
defined by the set {x, i ,  (] = 1, 2, . . .  , J ;  k = 1, 2, . . .  , K)}, and is esti- 
mated by  

(6.1) ~t~ = Y.,i~ • 

Assume tha t  the overall R X C profile IY..,~ (] -- I, 2, - . .  ~ J ;  b = 
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TABLE 3 

Computations for Decomposing RxC and SxRxC 
Variation in the Three-way Repeated-Measurements FANOVA Model 

Source df Sums of Squares 

P, xC (J-I)(K-I) 

F1 J{K-3 HId~ 

F2 J+K-5 HId~ 

Fm J+K-1-2m Hid 2 
-- -- m 

FM J+K-I-2M HI~ 

Fres (J-I-M)(K-I-M) SSRc - ~ SSFm 
m 

SxRxC (I-I)(J-I)(K-I) 

SxFI I-i 

SxF2 I-i 

SxFm I-I 

SxFM I-i 

SxFres I-i 

SRC[res] l* 

Error IJK(H-I) 

* I = [(J-I)(K-I) - (S+l)](I-l) 

H~([ [ ~jlklY.ijX -SSrl 
• j k 

^ ^ 2 
H ~ ( [ ~ ~j28k2Y ijk ) - SSF2 

• j k 

^ ^ 

H i [ ( [ [ ejmSkmY'ijk)2 - SSFm 
• jk 

^ ^ 2 H ~ ( [ [ ~jMSkMy.ijk) - SSn~ 
" j k 

" ^2 
H (XX*jkYijk)2/X;*jk- 

• j k " jk 

SSsR C - ~ SSsF m - SSsFre s 
m 

Yhijk - H i ~ ~ Y.ijk 
h ~ i J  k " j k 

SSFre~ 
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1, 2, . . .  , K)} has been computed and then decomposed into the FANOVA 
model components: 

m 

By a method directly analogous to that  used in the fixed FANOVA model, 
we then approach the problem of judging "factor similarity" by testing, 
for each of the M interaction factors, the hypothesis that  the contrast de- 
fined by the {~i~k~ (J = 1, 2, . . -  , J ;  k = 1, 2, - . .  , K)} accounts for an 
equal amount  of variation in each of the T population group profiles {x,i~ (j -- 
1, 2, . . - ,  J ;  k = i,  2, - . - ,  K) }. Of course, we also can ask a similar question 
concerning the residual interaction and the main effects. 

The parameter estimates associated with the analysis of variance 
sources, R × C, G X R X C, and S(G) X R × C [i.e., (S within G) × R X C] 
lie in three mutually orthogonal spaces are statistically independent. This 
means that  information about variation due to R X C interaction tells 
us nothing about variation due to G X R X C and S(G) X R X C variation. 
Hence, it  follows that  the interaction factors (and the residual interaction) 
which are estimated on the basis of information about R X C variation, 
define contrasts which are a priori with respect to variation due to the 
G X R X C and S(G) X R X C sources. A test of whether the G X Fm 
term is significant is presented here as a test of "factor similarity." The 
significance of G X Fm variation is tested by conventional methods [e.g., 
Winer, 1962] for judging the significance of, say, a G X (linear R) X (quad- 
ratic C) term in an analysis of variance design of the type now being discussed. 

Following conventional methods, scores for the I T  subjects on the 
ruth estimated interaction factor are computed from 

(6.3) = Z:  Z:   ,ofl oy,,. • 
i k 

For each value of m (i.e., for each a priori contrast defined by the M inter- 
action factors) we now have scores for each of the I T  subjects. Under the 
assumption tha t  the variance of the normally distributed {d,m (i -- 1, 
2, . . .  , I)} is the same for all T groups, we can do a one-way analysis of 
variance on each of the M sets of data  {d,~ (i = 1, 2, • • . ,  I ;  t = 1, 2, • . - ,  T) }. 
The group main effect obtained will actually be the G X Fm effect, and the 
error variation will actually be variation due to S(G) × Fro, i.e., individual 
differences (of subjects nested in groups) in the size of the contribution 
of the ruth estimated interaction factor to subjects' scores. Thus, 

(6.4) SSaF~ = I ~ (3.,m -- d..~) 2, 

and since SSr~ = ITc~ .~ , 

(6.5) SSGF~ = I ~ ({2,~ -- S S ~ . .  
t 
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The SS for the error term is 

{6.6) SSs(a,F., ~ ~ (d,,,~ - d 2 = 37,,~ = .,o) 52 52 - s s ~ , = -  s s , ~ .  
i c i $ 

The mean squares are 

(6.7) M S o ~  = S S q ~ J ( T -  1), 

and 

(6.8) MS~ca~F~ -- SSs<~,z,=/(I- t)T. 

Under the usual assumptions for judging the significance of orthogonal 
a priori contrasts, we reject the hypothesis that  the mth estimated inter- 
action factor contributes equally to subjects' measurements at each level 
of G if 

(6.9) MSox.,JMSsca)~.,~ >_ F,,r-1.<~-l)r • 

We emphasize that, as in the fixed model the test of "factor similarity" 
suggested by (6.9) is an exact test of the hypothesis that the contrast defined 

A 
by the estimates {ai~flk~ (j = 1, 2, . . .  , J ;  k = 1, 2, . . .  , K)} accounts 
for an equal amount of variation at each level of G. 

G × Fres variation. A significance test for variation due to the G X Fres 
source is obtained by computing the I T  scores 

(6.10) ~,, = ~ ~ .  g),,y,,,,, 
i k 

and doing a one-way analysis of variance on the {vS~,}. However, since 
52+ E ,  5~, ~ 1, it is necessary to divide the SS obtained by E+ E ,  5~, 
in order to make the values commensurate with the other SS obtained in 
the overall analysis. Thus, 

(6.11) SSoF,,. = [I 52 d7.,/52 52 ~ , ]  -- SSF.°. ,  
t ~ k 

^ 2  ~2 (6.1e) s s~(+~o.  = [~2 52 ~,,/E 52 ,,~] - s s ~ . -  s s , , . ,  

where 

I m ~ 2  (6.13) SSFro, lw. .  = SSac - 52 SSF~ . 
m 

The hypothesis that the contrast defined by the {5;k} accounts for an equal 
amount of variation at each level of G is rejected if 

S S o F r ~ / ( T -  11) ) (6.14) ss~(~,F,e2(~ ~ T >_ Fo;~-I.,~-1,~. 

GRC[res] variation. Described in this paragraph is a test of whether a 
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significant amount of G X R X C interaction variation remains after varia- 
tion due to G X F m  (for all m) and G X Fres interaction has been removed. 
Variation due to GRC[res] interaction is obtained by computing 

(6.15) SSa~ci~,,j - -  SSaRc - ~ SSaF,, - S S ~ , . ,  , 

and variation due to individual differences in the contribution of GRC[res] 
variation is given by 

(6.16) SSs(o~Rc[~,,~ = SS~o),c - ~ SSsca)F, , -  SSs(e)F,., • 
m 

The mean squares are 

(6.17) M S q R o [ r e s l  = SSGRc[ rea l /~ ,  

where 6 = (T -- I)[(J -- 1)(K -- I) - (M -b I)], and 

(6.18) MSzce)Rcl,~,~ = SSs(a)~cI,o,~/~, 

where ~ -= T ( I  -- 1)[(J -- 1)(K -- 1) - (M + 1)]. The hypothesis that 
no G X R X C interaction remains after removing variation due to G X Fm  
(for all m) and G X Fres interaction is rejected if 

(6.19) MSa~c[ro.l/MSs(a),ci~o.1 > F , ;6 . , .  

The test given by (6.19) is a conventional one and assumes that the variation 
in SSs(a),c[,..l is homogeneous. 

Table 4 presents a summary of the computational formulas used when 
judging "factor similarity" over different groups of subjects in a repeated- 
measurements FANOVA model. Work by Gollob [1965] illustrates use of 
the above tests of "factor similarity." 

Methods directly analogous to those presented above for judging factor 
similarity can be used to test whether main effect profiles, or R X C inter- 
action profiles are the same over T different groups. We will not discuss this 
possibility further here; but emphasize that  the resulting significance tests 
taken singly require only that the "contrast scores" assigned to subjects 
in each group meet the usual one-way analysis of variance assumptions; 
and are valid irrespective of the form of the population variance-covariance 
matrices associated with the original measurements. 

7. Illustrative Example 

In order to emphasize and clarify central features of both the fixed 
and the mixed FANOVA model a detailed illustrative example is now pre- 
sented. The basic FANOVA decomposition of a two-way table of data is 
the same for both the fixed and mixed FANOVA model. In the case of judging 
the statistical significance of various components of the decomposition, 
however, the fixed and mixed models differ in several important ways; 
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with the procedures for the mixed model being considerably more complex. I t  is 
for this reason that we present a detailed example of a mixed model analysis. 
Gollob [19651 has described the results of applying a mixed effects FANOVA 
model to the problem of predicting the evaluative (good-bad) rating of a 
sentence subject as it is described by the total sentence. All sentences fit 
the sentence frame: The adjective man verb noun. For example: The vicious 
man harms criminals. The kind man likes alcoholics. All possible combinations 
of eight adjectives, six verbs, and four nouns were used to construct 192 
sentences. Twenty-four Ss rated the man described by each stimulus sentence 
on an ll-point good-bad scale. We will discuss the FANOVA decomposition 
of the three-way table of data resulting after averaging over the adjectives 
(evil, cruel, cynical, uncouth, uninteresting, friendly, considerate, kind). The 
verbs and objects used are presented in Table 5. In the resulting table we 
let Y,i, represent the ith S's mean rating (over adjectives) of men described 
by sentences containing the ]th verb and kth adjective. Least squares estimates 
of the grand mean ~, verb main effects {Vi}, object main effects {Ok}, and 
interaction parameters {7;,} were obtained by substituting y.~k for x~, in 

TABLE 4 

Computational F o r m u l a s  for Judging "Factor 

Similarity" in the Repeated-measurement FANOVA Model 

Source d~f Sums of Squares 

CxRxC (T-I ) (J - I ) (K-I )  

GxF1 (T-I) 

GxF2 

I [ a2t 1 - % 1  
t 

t 

GxFm 

GxFM 

GxFres 

GRC[res] 

. t m  t 

(~-I~ I ~ ~2.~ _ s s m  

(T-i) I ( ~ ~ rJkY.tJk ) ] [ [ #Jk " SSFres 
j k  j k 

5 t 
SSGR C - ~ SSGF m - SSGFre s 

m 
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S(G)xRxC (I-1)(T)(J-I)(K-I) 

S(C)xn (Z-I)T I I a 2 - s s  n itl - SSGFI 
i t 

S(G)xF2 ( I -1 )T  [ [ dit2^2 . SSGF 2 - SS~2 
it 

S(G)xF= (Z-I)Z I [ ~tm - S%m " ssm 
i t  

o 

S(C)xn¢ (l-l)Z 

S(C)xFres (I-I)T 

[-2 -ssG~ ssm 
T-t dltM 

^ 2 ^2 
~ ( ~ ~ CjkYltJk ) / ~ X CJk - SSGFres - SSFres 

~ - t  j k - -  j k 

S(C)RC[res] v~ SSs(G)RC - ~ SSs(c)Fm - SSs(c)Fres 

SSFm = ITd2m where ~2m represents the --mth eigenvalue obtained in 

using the factor model to decompose the matrix of {Yjk }. 

SSFres  = SSRc - ~ SSFm - 
m 

6 = (T-I) [ (J-l) (K-I)-(~+I) 1 

v = T(I-I) [ (J-l) (K-I)-(M+I) ] 

formulas (1.8) to (1.11). The { y. ik } and the parameter estimates are presented 
in Table 5. An analysis of variance summary table for this data is presented 
in Table 6. The verb and object main effects and the verb X object inter- 
action are all highly significant. Using percentages based on variance com- 
ponent estimates, [see Hays, 1963; pp. 406-7, 438], we find that the verb 
main effect accounts for 58%, the obiect main effect for 2%, and the verb X 
object interaction accounts for 40% of the "between predicates" variation 
[e.g., for the verb  main effect: ~2,, ~2 2 ~z ¢,/~¢, + ~o + ¢,o) = (1.52)/(1.52 + .05 + 
1.03) = .58]. 

To obtain the FANOVA decomposition of the {y.;k} we now must 
express the 6 X 4 matrix ~, of interaction parameter estimates {qi~}, in 
terms of the factor model (1.1). Since J > K we solve for matrices 1)2 and 
/} by finding the eigenvectors {~k~} and eigenvalues {d~} of the 4 X 4 matrix 
~ '~ and then use (1.2b) to obtain the matrix fl~. The matrices _~, ~,  and 
are presented in Table 7. 
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TABLE 5 

Observed Means, Fitted Values, and Interaction Parameter Estimates* 

The three entries in the J,kth cell are the 
(a) mean rating (over observations and adjectives) for the predicate 
(b) value fitted by summing the grand mean and main effects, and 
(c) interaction p a r a m e t e r  estimates. 

The main effects are given in brackets along the left and upper margins. 

grand mean [.22] [.16] [-.ii] [-.27] 

ffi -.43 physlcans colleagues alcohol~cs criminals 

1.77 1.42 l.SS -.72 
[ 1.51] helps (1.31) (1.24) (.98) (.82) 

.46 .18 .90 -1.55 

1.22 1.10 1.32 -.18 
[ 1.30] befriends (1.09) (1.02) (.75) (.60) 

.13 .08 .57 -.78 

1.22 .95 -1.00 -1.82 
[ .27] praises (.06) (.00) (-.27) (-.43) 

1.16 .96 -.72 -1.39 

-1.14 -1.03 -1.26 -.40 
[ -.53] criticizes (-.73) (-.80) (-1.07) (-1.22) 

-.41 -.23 -.19 .82 

-1.95 -1.83 -1.95 -.04 
[-1.02] frustrates (-1.22) (-1.29) (-1.56) (-1.71) 

-.73 -.54 -.39 1.67 

-2.37 -2.25 -2.25 -1.00 
[-1.54] hates (-1.75) (-1.81) (-2.08) (-2.23) 

-.62 -.44 -.17 1.23 

* The slight inaccuracies which appear in this table (and in the following 
tables) are due to rounding error. 

Table 3 summarizes the computations used in partitioning variation 
due to R X C (Verb X Object) and S X R X C (S X Verb X Object) inter- 
action in a three-way mixed-effects FANOVA model. Thus the sums of 
squares accounted for by the ruth interaction factor is given by 

(7.1) ss m = 

where the {d, ~} are the eigenvalues of ~ '~  and have been obtained in the 
process of factoring the table of interaction parameter estimates, ~. Since 
the number of Ss , / ,  equals 24, and from Table 7 we see that ~ = (3.703) 3 -- 
13.711; we compute the SS accounted for by the first interaction factor 
by SSp~ = (24) (13.711) = 329.064. The ruth interaction factor is assigned 



HARRY F. GOLLOB 

TABLE 6 

Analysis of Variance of Mean Ratings 
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Source df S S M__SS 

Predicates 23 1146.70 

V 5 741.11 148.22 56.06* 

0 3 22.56 7.52 14.60" 

VxO 15 383.02 25.53 30.54* 

Individual 
Differences 552 721.91 

S 23 93.72 

SxV 115 304.03 

SxO 69 35.54 

SxVxO 345 288.62 

Total 575 

4.07 

2.64 

.51 

.84 

* ]~ < .001 by Greenhouse and Geisser conservative test (see 
Winer, 1962). This test allows the relevant variance- 
covariance matrices to be of arbitrary form. The test 
rejects the null hypothesis if the usually computed ratios 
exceed the tabled value given for the F-distribution with 1 
and (l-l)df. 

TABLE F 

Factor  Analytic Decomposition (r~B') of the  lu terac t lo~  
Parameter Estimates 

The Matrix A The Matrix,D The Matr ix  B' 

~lps 

bef r iends  

praises  

criticizes 

frus trates  

hates 

P--I(~jI) ~(~j2) P--3(~j3) 

.453 .533 .485 

.222 .357 - .534 

.501 - .758 .051 

-.259 - .047 - .482 

- .523 -.105 .492 

-.394 .020 -.016 

tim az a3 phTs coll al_...cc crlm 

,2 1.~97 P2c~k2~ I.~36 -.362 .8s5 -158 I 
F3 0 .0 P3{~k3) [~.679 -.729 - .027 .077~ 
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( J  + K -- 1 - 2m) df, so the first factor is assigned (6 + 4 -- 1 -- 2) = 7 df. 
Each successive factor is assigned two df less than  the preceding factor. 
The MS for the first interaction factor is 329.064/7 = 47.010. The results 
of making the preceding computations for all three interaction factors are 
presented in the top half of Table 8. 

The SS accounted for by  the S X F m  interaction is computed by thinking 
of the weights {~i~#,., (] = 1, . . .  , J ;  k = 1, . . .  , K) } as defining a contrast; 
and applying the standard formula for normalized contrasts, 

(7.2) = 55 ( E  E = Z: d L -  
¢ i k i 

In  calculating the {d~=} for the ruth interaction factor it  is useful to obtain 

where ~ ,  and #k~ are the entries in the mth columns of the matrices 
and ~,  respectively. The I values {d~ (i -- 1, --- , / )  } are then computed by  

(7.4) d , . ,  = Z Z , 
i k 

and are substituted in (7.2) to obtain SSsy~ . A convenient check on the 
computation of the {d~} is provided by the relation d.~ = d~ . The SS 
and MS for S × F1, S X F2, and S × F3 are presented in Table 8. 

TABLE 8 

Summary Table of Variation Accounted for 
Interaction Factors 

Source d__[f Sums of Squares Mean Squares (F/R)Fm F-Ratio 

VxO 15 383.016 25.535 

F1 7 329.064(85.92) # 47.010 9.41 

F2 5 53.784(14.04) 10.757 13.70 

~3 3 .169( .04) .052 .24 

SxVx0 345 288.621 .836 

SxFI 23 I14.892(39.81)~ 4.995 

SxF2 23 18.046(6,25) .785 

SxF3 23 4.969(1.72) ,216 

SV0[res] 276 150.714(52.22) .546 

9.14' 

1.44 

.40 

% Percentage of VxO interaction accounted for by the m th interaction factor. 

Percentage of SxVxO variation accounted for by "source." 

* ~ ~ .0001 
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Having computed the relevant mean squares, we will now decide how 
many  interaction factors we must  retain in order to adequately account for 
the verb X object interaction. Using the liberal test (5.19) we obtain ratios 
of (7)(9.41) = 65.87 and (5)(13.70) -- 68.50, respectively, for F1 and F2. 
These ratios are impressively large when considered in the light of the fact 
tha t  mean ratings of the type analyzed in this example are known to be 
very  stable over different groups of subjects [Gollob, 1965]. In  general, 
the more reasonable it  is to assume that  different groups of subjects would 
give highly similar mean ratings [y.~'k}, the more reasonable it is to think 
of the liberal test as being an approximation to the "exact  test"  which actually 
applies weights obtained from one set of data  to a different set of data. 
Note  also tha t  although F2 accounts for only 14% of V X 0 variation, 
individual differences in the size of its contribution are so slight tha t  F2 
is judged more statistically significant than  F1 which accounts for 85% of 
the V X 0 variation. For  the third factor the liberal test  yields a ratio of 
(3)(.24) = .72 which is obviously not statistically significant. In  addition, 
Table 8 shows tha t  the third interaction factor accounts for only .04% 
of the V X 0 variation; and Table 11 shows tha t  its largest possible con- 
tr ibution to any predicate is only .03. Furthermore,  Table 8 shows tha t  
variation due to S X F3 is small and nonsignificant; and therefore, F3 is 
not  an important  factor in describing individual differences. I t  is clear tha t  
the third interaction factor is of neither statistical nor "practical" signif- 
icance; and therefore, we will not consider it further. 

The  conservative test described by (5.18) assigns (J  -- 1) (K -- ]) = 15 df 
to all SS~,~ and I -- (J  - 1)(K -- 1) = 9 df to all SSsFm • The resulting 
ratios for F1 and F2, respectively, are C~1 = 1.74 and C~2 -- 1.79 which 
reach significance only at  the .25 level. This test is very  conservative indeed! 

The (F/R)Fm ratios for the three interaction factors are presented in 
Table 8. Although no such evidence is now available, experience with using 
the FANOVA model may  show tha t  under some conditions it  is a useful 
procedure to look up tabled p-values as though the F / R  ratios were dis- 
t r ibuted as F~ with (J -~ K - 1 -- 2m) and (I  - 1) dr. Or perhaps some 
empirically determined cut-off point such as a F / R  ratio of say, 3 or 4 required 
for "significance" will be found useful for some types of subject-matter.  
Under the assumption that  we will at least be somewhere in the ball-park, 
we pretend tha t  the F / R  ratios are distributed as F~+~-~-2~. , -1  and find 
that  for both  the first and second factor p < .0001. 

On the basis of the above considerations, we tentat ively decide that  
the first two interaction factors are necessary and sufficient to adequately 
account for the V X 0 variation. Thus, M = 2 and SSFro, , which would 
ordinarily be found by  subtraction (SSvo -- ~-~m SSF~), is identical with F3. 
The SS due to SVO[res] interaction is given in Table 8. 

Since we have only one replication per cell we use MSsvoi,~,3 as an 



110 PSYCI-IOMETRIKA 

error term in judging the significance of the S X Fm "sources" of variation. 
The results, which are presented in Table 8, show that S X F1 interaction 
(which accounts for 40% of S × V X 0 variation) is highly significant 
and that S X F2 and S X F3 interactions are slight and non-significant. 
Thus, a major portion of individual differences in the profiles of V X 0 
interaction parameter estimates for Ss can be accounted for simply by 
assigning each S a "score" which determines the size of the contribution 
of F1 to his ratings. 

Qualitative ]eatures o/ the FANO VA decomposition. 

Keeping the grand mean separate for convenience, Table 9 presents 
the FANOVA decomposition of the data. Table 10 shows (a) the size of 
the contribution of F1 to each ], k cell, and (b) the residual in each ], k cell. 
Table 10 also presents the percentage of SSvl which is contributed to given 
rows and columns of the table. (Thus, 20.52% of the SS accounted for by 
the first interaction factor is in the four cells defined by combinations of 
"helps" with each of the four objects.) Table 11 presents the corresponding 
data for the second factor. I t  is helpful to note that the proportion of ruth 

TABLE 9* 

FANOVA Decomposition for Predicate Means 

helps 

befriends 

praises 

criticizes 

frustrates 

hates 

%Vx0 Vat. 

%"Predi- 
cate" Var.t 

Ver_~b 0~ 

1.51 1.00 

1.30 1.00 

• 27 1.00 

-.53 1.00 

-i.02 1.00 

-1.54 1.00 

F! F_! 

.87 .65 

.43 .44 

.96 -.93 

-.50 -.06 

-i.01 -.13 

-.76 .02 

85.92 14.04 

ph¥s toll ale erim 

Verb [i.00 1.00 1.00 1.0 i 

l0 iI 

~i | . 8 1  .57 .26 -1.6 

F2 L41 -4~ 105 -191 

99.96 

58.46 1.87 34.08 5.57 99.98 

(grand mean = -.43) 

* This table is read as follows: Consider the predicate "praises criminals" 
~htained mean rating = -1.82). The ix4 (row) vector associated with "praises" 
times the 4xl (column) vector associated with "criminals" yields (.27)(i.00) 
+(I.00)(-.27)+(.96)(-1.63)+(-.93)(-.19) = .270-.270-1.565+.177 = -1.39; and 
adding the grand mean (-.43) gives a "predicted" rating of -1.82. 

The "% 'Predicate' Vat" for the mth interaction factor was computed by multlplylng 
the proportion of VxO sums of squares accounted for by the m_th factor times the 
percentage of predicate variation (estimated on the basis of variance components) 
due to VxO interaction. 
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TABLE I0 

The First Interaction Factor 

The two entries in the j ,kth cell are 
(a) the contribution of the first interaction 

^ ^ ^ 

factor~ dl~jlflkl , and 

(b) the first factor residual. 

The "weights" for verbs {ajl } and objects {flkl } 

bracketed in the margins, and dl = 3.703. are 
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[dl = 3.703] [.419] [.296] [.133] [-.848] % SSFI 

phys eoll alc crim in row i 

[ .453] help (.70) (.50) (.22) (-1.42) 20.5 
-.24 -.32 .68 -.12 

[ .222] befrnd (.34) (.24) (.ii) (-.70) 4.9 
-.21 -.16 .46 -.09 

[ .501] praise (.78) (.55) (.25) (-1.57) 25.1 
.38 .41 -.97 .18 

[-.259] crit (-.40) (-.2s) (-.13) ( .sl) 6.7 
.00 .05 -.06 .01 

[-.523] frust (-.81) (-.57) (-.26) (1.64) 27.4 
.08 .03 -.13 .03 

[-.394] hate (-.61) (-.43) (-.19) (1.24) 15.5 
-.01 -.01 .02 -.01 

% SSFI 

in col k 17.6 8.8 1.8 71.9 i00.i 

factor variation contributed by the ], kth cell is 
2 $ (7.5/ ( d , . a , , . ~ , 2 1 d ~  = a, ,2~,~ , 
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A 

where it will be recalled that ,~,.mflk~ represents the contribution of the 
ruth factor to the j, kth cell. The proportion of Fm variation contributed 
by the cells in the jth row is 

(7.6) ~ ~ A2 ~ 
O Li m ~k  m ~ OLim , 

and similarly, the proportion of Fm variation contributed by the kth column 
is 

The Verb and Object main effects. As shown in Table 9 the verb main 
effects account for 58% of the total variation due to predicates, are highly 
significant, and distinguish sharply between "good and bad" verbs. The 
large verb main effect suggests that when other information is averaged out, 
a man who, say, hates tends to be thought of as a "hater;" and similarly, 
a man who, say, helps tends to be thought of as a "helper." The object 
main effect in both sets of predicates also clearly separates "good and bad;" 
and although it accounts for less than 2% of the variation due to predicates, 
is still highly significant. Thus, when other information is averaged out, 
it seems that Ss rate a man negatively (or positively) simply for being asso- 
ciated with negatively (or positively) evaluated objects. 

The first interaction factor. Upon examining Table 9, one readily notes 
that the first interaction factor accounts for the bulk, about 86%, of the 
Verb × Object interation. The verb and object weights of the first interaction 
factor clearly suggest the distinction between "good and bad" verbs and 
objects. Note, however, that the object "alcoholics" is assigned a small, but 
positive weight. In general, F1 contributes a positive evaluation when the verb 
and object have evaluative connotations of the same sign; and contributes a 
negative evaluation when the verb and object have evaluative connotations of 
opposite sign. For example, F1 contributes a large positive evaluation to the 
good-good and bad-bad predicates, "helps (+ )  physicians ( + ) "  and "hates 
(--)  criminals ( - ) ; "  and contributes a large negative evaluation to the 
good-bad and bad-good predicates, "helps (+ )  criminals ( - -)"  and "hates 
(--) physicians (+ ) . "  This result is, of course, what would be predicted 
by  "balance" theory [e.g., Heider, 1967; Abelson, 1963]. 

The second interaction factor. The second interaction factor seems to 
describe an aspect of meaning which is more subtle than the simple good-bad 
dimension of the first factor. The second interaction factor assigns all the 
negative verbs weights near zero, and distinguishes between the positive 
verbs by assigning "praises" a large negative weight and assigning "helps" 
:and "befriends" moderately sized positive weights. Notice also that the 
object "alcoholic" is assigned a large positive weight, while "physician" 
and "colleague" have moderate sized negative weights, and the weight 
assigned to "criminal" is near zero. The net effect of the weight assignments 
is that the second interaction factor contributes a highly negative component, 
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relative to the other predicates, to "praise alcoholics;" and it seems reasonable 
to hypothesize that there is a sense in which Ss think of alcoholics as people 

TABLE Ii 

The Second Interaction Factor 

The two entries in the j.t.kth cell are 
(a) the contribution of the second interaction 

^ ^ ^ 

factor, d 2 a j 2 ~ k 2  , and 

(b) the second factor residual. 

The "weights" for verbs {~j2 } and objects {6k2 ] 

bracketed in the margins, and a 2 = 1.497. are 

[d2 = 1.497] [ .336]  [ - .362 ]  [ .855]  [ - .158 ]  % SSF2 

phys coil ale crim in row i 

[ .533] help ( - .27)  ( - .29)  ( . 6 8 )  ( - .13)  28.4 
.03 - .03 .00 .00 

[ .357] befrnd ( - . ! 8 )  ( - .19 )  ( . 4 6 )  ( - .08 )  12.8 
- .03 .03 .00 .00 

[-.758] praise (.38) (.41) (-.97) (.18) 57.5 
,00 .00 .00 .00 

[ - . 047 ]  c r i t  ( . 0 2 )  ( . 0 3 )  ( - .06 )  ( . 0 1 )  .2 
- .02 .03 .00 .00 

[ - . 105 ]  f r u s t  ( . 0 5 )  ( . 0 6 )  ( - .14 )  ( . 0 3 )  1 . l  
.03 - .03 .00 .00 

[ .020] hate ( - . 01 )  ( - .01 )  ( . 0 3 )  ( . 0 0 )  0.0 
.00 .00 .00 .00 

% SSF2 

in row k ii.3 13.1 73.1 2.5 i00.0 
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who are relatively less deserving of praise than are colleagues or physicians. 
Simultaneously, the second factor suggests tha t  Ss consider colleagues and 
physicians as people who, relative to alcoholics, are less in need of help 
and friends. This interpretation seems intuitively reasonable, and although 
the second interaction factor accounts for less than 6% of the predicate 
variation, it at tained an even higher level of statistical significance than  
did the first interaction factor which accounts for 34% of the predicate 
variation. This, of course, is due to the fact tha t  there was little individual 
difference in the importance of the second interaction factor. Thus, the 
aspect of meaning which it  suggests seems to be particularly stable across Ss. 
In  this light, it  is not surprising that  we were able to arrive at  a reasonable 
interpretat ion of the factor. I t  is also of interest to note tha t  the variance 
accounted for by  F2 is concentrated primarily in those cells which define 
predicates whose obiect is alcoholics. The  role of F2 is further  clarified by  
noting tha t  F1 accounts for only about 13% of the variation due to inter- 
action of all verbs with alcoholic; whereas F2 accounts for 86% of the variat ion 
due to interaction of all verbs with alcoholic. Thus, the second factor is 
the pr imary  determiner of interaction between the verbs of this s tudy used 
in combination with alcoholics as objects. One advantage of the present 
method of analysis is tha t  this point is brought out clearly. Although this 
completes our discussion of the present illustrative example of a mixed 
FANOVA analysis; more details and additional data  are presented in 
Gollob [1965]. 
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