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Recently Markov  learning models with  two unidentifiable presolution 
success states, an error state, and an  absorbing learned state, have been 
suggested to handle  certain aspects of da ta  bet ter  than  the  three s ta te  
Markov  models of the  General All or None model type. In  a t tempting to 
interpret  psychologically, and evaluate statistically the  adequacy of various 
classes of Markov models, a knowledge of the  relationship between the  
classes of models would be helpful. This paper considers some aspects of 
the  relationship between the  class of Genera l  All or None models and the  
class of Stationary Absorbh~g Markov models with N error states, and M 
presolution success states. 

Many  recent Markov models can be considered as special cases of the 
General All or None model [Greeno & Steiner, 1964], which is represented by  
the following matrix P and arbi t rary initial vector  V: 

(1) p = s' o 1 - w , v = ( e ( a l ) ,  P ( s , ) ,  P ( s j )  

st_  ( l - u )  

I f  we let the data  take on two values on each trial, say success and error, then 
the data  sequences consist of a finite string of successes (S), and errors (E) 
and end with an infinite string of successes. The  process is in state g on each 
tr ial  in which an E occurs, it  is in state g' on each S prior to the last E,  and 
it  enters state (~ on the trial after  the last E.  Note  tha t  the term "Absorbing 
Markov Chain" will be used to mean absorption in a success state. Poison 
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and Greeno [1965] have shown that this class of models need not have the 
"stationarity" property, that is P(E. t E. kY S.) is not constant independent 
of n, contrary to what was previously thought. In addition, recently several 
four-state models which contain two preabsorption indistinguishable "suc- 
cess" states have been suggested [Atkinson & Crothers, 1964] for experiments 
with the same type of binary data as described above. With the loss of sta- 
tionarity as a criterion for all or none models, and with the advent of four-state 
models, several questions arise. First, are there some simple properties that  
characterize M1 models that  satisfy (1) for success, error sequences? Second, 
if a N-state model does not imply (1), what statistical properties of data will 
distinguish the model from (1), and how can we test the null hypothesis that 
(1) gives a satisfactory fit to the data? Third, what restrictions on the N-state 
model are necessary for it to satisfy equation 17 

The present discussion is restricted to consideration of the identifiability 
of transition parameters. In applications, questions about initial probabilities 
depend at least partly on procedures that vary from one experiment to 
another. An analysis general enough to cover most procedures would involve 
a considerable amount of calculation that would not bear on the question of 
distinguishing N-state processes from (1), following the first error. Therefore, 
we initially consider the question of whether a model satisfies (1) regarding 
data starting with the first error. This is a natural way to narrow the problem 
for the all-or-none model Errors are recurrent Markov events, which means 
that everything that  occurs before the first error can be ignored in calculating 
probabilities of things that happen later. We say that a model T, with param- 
eters numerically specified, is a member of the General All-or-None Model 
Type if the model satisfies (1) following the first error. A model type T will 
belong to the General All-or-None model type if for every probability meas- 
ure P(T) generated by a set of parameter values for T, the associated proba- 
bility distribution conditional on the first error having occurred satisfies 
equation (1). Of course, some model types may satisfy equation (1) after the 
first error only with certain restricted sets of parameter values. Because the 
concern in the present paper is with the statistical properties of model types 
satisfying equation (1), a model type that satisfies equation (1) after the 
first error only with parameter restrictions will still be considered a member 
of the General All-or-None model type so long as the parameter restrictions 
are imposed. 

We will say that a state is observable if for every trial n in any complete 
response sequence in the outcome space of the experiment, we can say whether 
or not the state occurred on trial n. (The terminology differs from an earlier 
article [Greeno & Steiner, 1964] where the term "identifiable" was used to 
refer to these states. We now use the term "identifiable" to refer to parameters, 
to be consistent with standard usage in statistics and econometrics [Greeno & 
Steiner, 1967].) 
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Analysis of General All-or-None Models/or Binary Data 

Recurrence Analysis 

In  the following discussion, reference will often be made to indistinguish- 
able states. The results will, of course, be applicable to the case in which the 
states are distinguishable, but  for purposes of analysis, are considered in- 
distinguishable. 

The  following notat ion will be used. Suppose a Markov  Chain has a 
set of error states {E~, • • • , EN}, a class of success states {S~, • . - ,  S~} and a 
class of learned states {L~ , . . .  , L ,} .  We will let the events 

hr 

8. = ~ E ~ . ,  

M 
e~. = U S , . ,  

i -1  

and 
R 

£.  = I J  L , .  , 

80 tha t  the event g, 8, or £ will occur on any trial on which one of E~ , S~ , 
or L~ respectively occur. For  any sequence, let n '  denote the trial number  of 
the last  & Define ] j .  and h~. as follows: 

]J. = P(g.+J ('~ $~+~-1 ('~ "'" ('~ 8.+1 i g.), J > 1, n > 1 
and 

hj .  = P ( g . + j ( ' ~ g . + j _ l / ~  . . .  f~ g . .~  Ig-) ,  J :> 1, n >_ 1. 

I f  g is a recurrent event, as it will be in the cases considered in this paper, 
the trial subscript, n, can be dropped. Similarly, define ]j(i) and hj(i) for 
i *  {1, "" , N }  as 

] j . ( i )  = P(g.+j  (~ $.+.r-~ f" ,  - "  ~ $.+, 1 E,.), J > 1, n > 1 

a n d  

h.,.(i) = P(g.+j  f-~ g.+~_, f~ . . .  f~ gn+l I Etn), J :> 1, n k 1. 

The  trial subscript, n, will be dropped because the {E~} are assumed to be 
M a r k o v  states, ~nd therefore are recurrent events. For  J, K > 1, i~ { 1,. •., N, } 
let 

f(i) = ~ L(i) ,  
J = t  

K 

s.(i) = Z IJff). 
J - - 1  

The concept of lumpabi l i ty  [Burke & Rosenblat t ,  1958; Kemeny  & Snell, 
1960] will be used extensively. 
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Definition 1. We will say tha t  a Markov chain with states X(1),  - . -  , 
X(m)  . . .  is lumpable with respect to a part i t ion of the states Y(1), - . -  F 
Y(n), . . .  if the transition probabilities between the Y(n) are constant  and 
independent of the trial number, and if the transition probabilities do not  
depend upon the choice of a s tar t  vector. 

Kemeny  et  al. [1960] have proved tha t  a necessary and sufficient condi- 
tion for lumpability with respect to the { Y(i) } part i t ion is tha t  for every pair 
Y(i) and Y(J) ,  the transition probabili ty Px(~).r,) has the same value for 
every X(m) in Y(i). 

Theorem 1. An Absorbing Markov chain T with s tat ionary transition 
probabilities, indistinguishable error states {E~ , - - .  E~}, indistinguishable 
success states {S~, ---  , SM}, and indistinguishable learned states {L~ , . - .  
L.  } is a member of the General All or None Model type  (G. A. N.) for all 
initial vectors such tha t  P~(8) -- 1 if and only if for i ~ {1, . . .  , N}, 

(2) l.,(i) = P(8~++ (5 $~++_, (~ . - .  ('~ $~+~ [E,~) 

= ~ f l  J-~, d > l ,  0_<a,B_<l 
l'r, J = l ,  0 _ < ~ _ < 1 ,  

(3) h j (0  = P ( 8 . + j ( % - . .  (~Sn+~ [8,~) = 7  J, J _ >  1, 0_<~,_< 1. 

Proof. Le t  us expand the states of T in the following way. Let  the 
{E, } states remain the same. Let  T be in Sf.n+k(i) when E,  occurs on trial n, 
and 8 occurs on trials n + 1, • • • ,  n + k and there will be a future occurrence 
of 8. Thus  {Sf ~.,(i) }, fo rn ,  k >_ 1, i e {1, . - -  , N} is the set of all occurrences 
of g prior to the last occurrence of 8. Define T to be in State  a on trial n if 
.13 occurs on n, or if 8 does not  occur for n '  _> n. 

Le t  us say T is in g' on trial n if one of the { Sf.,+,(i) } occurs on trial n. 
The transition probabilities can be written as follows for n >__ 1, i ~ { 1, - - . ,  N } 

V t (4) (S,÷~...+,+1(0 I S~ ~+,(J)) 

O ~  i # j  or L # I  

= J](i) - s~,l (i) 
( I(i) --s~(i)  ' i =  J ,  L = 1 , n ,  k >__ 1, 

" i = L ( i )  (5) P ( ~ + ~ ÷ ,  t s~ . .+~( ) )  I(/) - s~( / ) '  

(6) P(8.÷~ I E,.)  = h,(i), 

(7) P(S'~..+~(i) [ Ej . )  = ~£' i # i, k # 1 
(0 - -1 , (0 ,  i =  J ,  k - - l ,  

(S) P(a.÷~ [ E,.)  = 1 - l ( O .  
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If  T is assumed to belong to the G. A. N., then (1) is assumed to hold on the 
states a,  8, $'. Thus 

P(8 .+~  I s ' )  = w 

P ( a , + ,  1 8 , )  = u = 1 - -  ] 

P(S.+~ [ s.) = (I - ~)v = I, 

If  we let 

lO 
a = ( 1 - - u ) ( 1 - - v )  1 - - w  

(9) 
/ $ = l - - w  

= (1 - u)v 

and substitute in (2), then it can be shown tha t  

IJ = ~(1 -- u)(1 -- v)w(1 -- w) J-2' 

[ (a u)v, 

J _ > 2  

J =  1, 

J > l .  

Consider the initial vector with 

Consider 

P I ( E k )  = 1. 

Clearly then, T would not satisfy equation (1). The same argument holds 
for the {hj(i) }. Therefore, (2) is implied, with a,/~, and ~, defined as in this 
proof. 

To show the second half of the theorem we assume (2) and (3) hold, and 
then demonstrate that  a,  $', and 8 are Markov states with the appropriate 
transition probabilities. 

Let  F be any event on (a, $', 8) that  depends only on trials after trial n. 
Let  G be any event on (Ct, $', 8) tha t  depends only on trials prior to n such 
that,  

P ( 8 . ~ G )  # 0 .  

P(F [ 8. ('~ G) = ~-] P(F I E" (~ G) p(E,. (~ G). 
,-1 P ( a . ( 5  G) 

h~ = ((i - u)v) J, 

The trial subscript, n, can be dropped on Is.  because (1) implies tha t  8 is a 
recurrent event. Bu t  it still must be shown tha t  (2) and (3) also hold for all 
i ~ {1, . . .  , N}. Assume there exists a k ~ {1, . . -  , N} such tha t  
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Now, since {E~} are all Markov states, and equations (2) and (3) are as- 
sumed, 

P ( f  I E,~ (h G) = P ( F  I E,~) = P ( F  [ 8~), i ~ {1 ,  . . .  , N } ,  n > 1. 

Therefore, we can write 

P ( F  I 8~ ('h G) = P ( F  [ &,), n >_ 1. 

Hence 8 is a Markov state. To show tha t  S~,,,.~(i) is a Markov state for 
k >_ 1, n > 1, and i ~ {1, -- .  , N} assume 

P(S~.,,+~(i) (h  G) ~ O. 

' i Then, by the definition of S~,.+k( ) and the fact tha t  the {E,} are Markov 
states, 

P ( F  I S',.+k(i) t% G) = P ( f  I $..k t'h . . .  ('h $.+, t'h E , .  t'h G t% n '  > n) 

= P ( F  [ $.+4 (h  . . .  (h  $.+1 fh  E , .  ('h n '  > n) = P ( F  I S~,,+k(0) 

Thus, S~..+k(i) is a Markov state for i ~ {1, . - .  , N}, k, n >_ 1. Clearly 6t is a 
Markov state since i t  is absorbing. 

We ~411 now consider the transition probabilities. By  definition, for 
k , n  >_ l , i ~  {1, . . .  , N } ,  

(lO) P(a.+,+, I S',.+k(i)) = O, 

(11) P(a.., l a . )  = 1, 

' i (12) P(8.+~ l a . )  = P(&.,,+,( ) l a . )  = O. 

By substituting (2) and (3) into (4), (5), (6), (7), and (8), one obtains 
f o r i ~  {1, - . .  , N } , n , k _  1, 

' i (13) P(S[+~,.+k+,(i) I Sk,.+~()) --- 5, 

P (14) P(8.+k., [ Sk,.+,(:)) = 1 -- /~, 

(15) P(8.+, I Sa = ~', 
at~ 

(16) P(S' . .+,( i )  ] g.) = 1 - - ~ '  

at~ 
(17) P(A.+~ 18,) = 1 -- 1 - - / 3  

From (13), (14), and (16), it  can be seen tha t  the {S;..+~(i)} are lumpable 
to a single Markov state, $'. By  the above equations, the transition matrix 
in (18) directly follows. 
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(18) P = 

If  we let 

and 

1 o o 1 
g' 0 ~ 1 -- f~ . 

8 1 - - y  1 - - f l  1 - - ~  7 

w 
a =  ( 1 - -  u) ( 1 - -  V) l _ w 

/ 3 =  (1 -- w), 

= (1 -- u)v, 

(18) is seen to be identical to (1). This completes the proof. 

(19) 

L 

S: 

& 

E 

An example of a chain satisfying Theorem 1 is given in (19); 

E2 

0 

1/2 

0 

L $2 $1 E1 

1 0 0 0 

o 1/2 o o 

1/4 0 1/2 1/4 

1 -} -7  3 / 4 ( 1 - - 7 )  0 7 /2  
4 

-),/2 1 -- 3' 1 -- "), 0 
2 2 

E: 

with the initial vector (0, O, O, P,  1 -- P) .  
I t  can easily be seen tha t  

(20) f j(1) = ]j(2) = 13/8(1 ,,/) (1/2) J-~ , 

l~ /2 ,  

(21) 

~/2 

J > I  

J = l ,  

h j(1) = hj(2) = (~/2) J ,  J >_ 1. 

In  Lemma 1, ~ condition equivalent to (2) will be given. Let  n '  denote 
the trial of last occurrence of 8 for a given sequence. 

L e m m a  1. For  an absorbing Markov chain T with error states {El,  . - -  
EN}, success states {$1 , " "  , SM}, and learned states {L1 , . . .  , Ln} 

(22) I~(i) = P ( 8 , , j  m s~+,_I m . . .  m 8°+, I E, , )  = l ~ f - l '  
J > 1 

17, J = 1 
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if and  only  if for  i ,  {1, - - .  , N} 

(23) gj(i)  = P(8~+j ('~ $.+j_, l% . . .  l'~ $~+~ I E , ,  t% n '  > n) 

Ol~ J - 1  

o~fl ' " y + - -  
1 - - ~  

(24) 

Proo]. 

J > l  

J 

~/ J = l  

P(n '  > n [ E , . )  = "r + 
1 - - ~  

T h e  proof  follows direct ly  f rom a considera t ion  of condi t ional  
probabil i t ies .  

B y  T h e o r e m  1 and  L e m m a  1, the  following T h e o r e m  is proven• 

Theorem 2. An Absorb ing  M a r k o v  Cha in  T wi th  indis t inguishable  
er ror  s ta tes  {El , . - .  , EN}, indis t inguishable  success s ta tes  {$1 , - - .  , Sn}  
and  indis t inguishable  learned s ta tes  {L1, -.  • , L . }  is a m e m b e r  of the  Genera l  
All or  N o n e  model  t y p e  for  all init ial  vec tors  such t h a t  P1(8) = 1 if and  only  
if f o r i ~ { 1 ,  . . . , N } , 0  <_ a ' ,  B, ~ '  _< 1, 

(25) g,( , )  = P (8 .+ j  V'~ &+~_~ ~ . . .  (-~ &+~ I E,~ V'~ n '  > n) 

o/~ "-1 J > 1 
t 

l ' / ,  J = 1 

P ( n '  > n I E,~) = "/, (26) 

where  

eL 

, / + - -  
1 - - ~  

and  

(27) 

. y t  _ _  

3 ' + - -  1 - - 3  

h~(i) = P(~n+J ('~ " "  (~ 8~+1[ E,~) = , y  J, J > O. 

T h e o r e m  2 is in teres t ing for the  following reasons.  I f  an  Absorb ing  
M a r k e r  chain  wi th  error  s ta tes  {El , - - -  , EN} satisfies equa t ion  (26), t hen  

(28) 1 --  ](i) = P ( n '  = n l E , , , )  = 1 -- "y', i ~ {1, . - .  , N } ,  
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since n' < n is impossible if E ,  occurred on trial n. Thus, 

(29) 
P(E,,) 

i 
= (1 --3¢') ~ p ( E , ~ )  - 1 - - ~ ' .  

i 

Equation (29), and thus (26), can be shown to imply the almost geo- 
metric distribution of total errors usually associated with All or None models. 
Theorem 2 shows that the geometric distribution of total errors is not a strong 
enough condition to insure membership in the G. A. N. 

In the light of Theorem 2, several useful properties result from writing 
the G. A. N. model in the form of equation (1). The following are (26) and (27) 
written with the parameters of (1). 

(30) 

= [~1 - v)w(1 - w) J - ' ,  ~r > 1 

, J = O .  

(31) P ( n '  > n I ~,~) ----- 1 - -  u .  

(32) P(~,+J (-~ "'" ('~ ~÷1 I Gn) -- [(1 -- u)v] z, J > 1. 

The maximum likelihood estimators of u, v, and w, are known [Greeno & 
Steiner, 1964]. So, if (1), and thus (30), (31), and (32), are assumed to hold, 
a direct and separate test can be made of the conditions of Theorem 2 by the 
use of (30), (31), and (32). 

In summary, Theorems 1 and 2 provide two sets of equivalent necessary 
and sufficient conditions for a Markov model with stationary transition 
probabilities to belong to the G. A. N. model type following the first error. 
The conditions of Theorem 2 can be written so as to provide separate tests 
of the necessary and sufficient conditions. Therefore it appears that Theorem 
2 might be more useful in a data test. However, in the next section, it will 
be seen that Theorem 1 is very useful for theoretical analysis. 

M a t r i x  A n a l y s i s *  

Once Theorem 1 is obtained, a natural question to ask is whether there 
exist restrictions on transition matrices that are equivalent to the conditions 
of theorem 1. The following definition of a property which may obtain be- 
tween classes of states will be useful: 

* The  authors wish to t h a n k  Dr. William H. Batchelder  for much  constructive 
discussion and  specifically for his suggestions t h a t  lead to a proper level of definition of 
the  concept of uni tary entrance. 
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Definition 2. L e t H  = {H1, -.-  ,H~,} a n d K  = {K1, . . .  , K N } b e  
two classes of Markov states which constitute a subset of the states of some 
Markov chain. If  H and K are disjoint classes, let t. be a random variable 
tha t  takes on the number of trials, after trial n, to first passage to K for each 
sequence that  is in H on Trial n, and remains in H until passage to K.  If  
there is a ~ independent of n and P.(H),  such tha t  for all probability vectors 
(P(H~.), . . .  , P ( H . . )  ) for Trial n, 

(33) P(r,  = J I H.) = a'd/  n >_ 1, J >_ O, 0 <_ a" , ~ <_ 1, 

then we will say that  H is unitary relative to entrance into K. If  H = K, then 
define r~ to be a random variable tha t  takes on the number of trials in H 
after trial n before exit, for each sequence in H on Trial n. Then H is uni tary 
relative to entrance into H, if equation (33) holds. 

I t  is clear tha t  if M -- 1, tha t  is if H as only one member, then H will 
be uni tary with respect to entrance into any class, because H will be a Markov 
state, and all Markov states satisfy (33). Also, if the states of H satisfy the 
Kemeny and Snell [1960] conditions for lumpability, then H will be uni tary 
relative to entrance into any class of states. However, Theorem 3 will provide 
weaker conditions, not equivalent to the Kemeny et al. conditions, under 
which H will be unitary. 

The following notation will be needed in this section. Let  P ( K  [ H) be a 
vector such tha t  its i th  component, P ( K  ] Hi), denotes the probability 
of a one-step transition from Hi to any state in K. Let P" denote P transpose. 
Also, the notation [0] will be used to denote the zero vector of dimension 
appropriate to the context. 

TheoremS: L e t H  = {H~, . . .  ,HM} a n d K  = { K , ,  . . -  , KN},N,  
M _> 1, be two classes of Markov states. Let  C be the matrix of stationary 
tr-ansition probabilities from states of H to states of H. H is uni tary with 
respect to entrance into K if and only if there exists a ~ such that  

(34) (C - -  ~ I M × M ) P * ( K I H )  = [0], 0 _< ~ <_ 1. 

Prool. Assume (34) holds. Let  P~(H) = (P(H1.), . . .  , P(HM.)) be 
any probability vector for H, on trial n. Now 

P(r .  -- J) = P~(H)CJF(K [H) ,  J _> 1 

P( r ,  = 0) = P , (H)P ' (K I H). 

By (34), 

(35) CP' (K  t H ) = f l lP~(g [ H) = P ' ( K  i l l ) .  

I t  can be simply shown by induction tha t  (35) implies 

CkP*(K}H) = /~kP'(K i H), k >_ 1. 
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Thus, we have 

P(r. = J I U.) P . ( H ) f / P ' ( K  I H) = 5J p.(H)pXK I H) 
- P~(H) P~(H) 

Let 

Then 

a: = P,(H)P ' (K i H_)). 
P.(H) 

, J _ _ l .  

P(r. = J IH.) = ~ ' / ,  J >_ O. 

Thus H is unitary relative to entrance into K. 
To prove the second half of the theorem, assume (33) holds. Now, as was 

shown in the first half of the proof, 

(36) P(T. = J I H.) = Pn ~ CJP'(K 1 H), J >_ 1, 

P(r. = 0 [ H,) = P,(II) P'(K I H) 
P(tI.) 

n >  1, J ~  1, O < a ~ ,  ~ < 1 ,  

(37) 

By (33), (36), and (37), we have 

P.(H) CjP,(K Ill) ' ~ 
P(H.) (as) 
P'(---~ P ' (K  I H) = a;  vffr2 

Equation (38) holds for all vectors P~(H), with ~ constant. Consider vectors 
which start  the process out in a single state of H with a probability of 1. 

P ' (K  I H) = ( a l ,  . . -  , c~,~)" 

(1, 0, . . .  , 0)CJP'(K I H) = a;~ J 

(39) (0, 1, 0, . . -  , 0 )C 'P ' (K I H) = a~5 a 

(0, --- , O, 1)C:P'(K ] H) = a~/~ ~. 

Thus we have shown that  

(40) IM×MCJP'(K ]H) = CJP'(K [H) = " 

Lo&, ~" 
By (39) 
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(41) ~I,~×MP'(K I H) = " • 

Subtracting (41) from (40) and setting 

J =  1, 

we have 

(42) CP' (K  ]H)  - -  ~IMxMI.)"(K [ H )  ---- (C --  ~IMxM)P'(K [ g )  = [0]. 

,Clearly 0 _< f~ ~ 1 by assumption in (33). Thus, the second half of the proof 
is complete. 

Theorem 3 shows tha t  H is unitary with respect to K if and only if 
la( K I H) is an eigenvector of C corresponding to an eigenvalue f~ that  can be a 
probability. The intuitive meaning of the above, and (34) is tha t  the effects 
of the matrix C operation on the vector P ( K  [ H) can be represented as multi- 
plication by a single constant B. 

The following example shows that  the conditions of Theorem 3, and thus 
equation (34), are not equivalent to lumpability of the states of H. The values 
of the transition probabilities for El , E2 are only restricted by the usual 
probability considerations in the example. 

(43) 

Example 1. Let  H = { $1 , S~ } ; 

2 

S, 

E2 

E, 

L 

L - 1  
! 
2 

a 

! 

k~2 

0 

l 4 

0 

b 

g 

K - -  [E l ,E2 } .  

$1 E2 E1 

0 0 0 

-1 i 0 
8 8 

1 1 ½ ~ 

c d e 

h l k 

Equation (43) satisfies Theorem 3 with B = ½, but  S1 and $2 do not meet 
the Kemeny et al. [1960] conditions for lumpability. 

In order to apply the new definition and Theorem 3 to the problem of 
finding restrictions on matrices equivalent to the conditions of Theorem 1, 
some additional notation is necessary. Let 

f j  = (]~(1), . . .  , ]j(N))  

and 

P(~ [ s )  = (P(~  [ ~,), . - . ,  P (~  I s~ ) ) ,  

where P(~ ] S j) is the probability that  an error state occurs on trial n W 1 
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given 8 j  on trial n. Some symbols are necessary to represent certain sub- 
matrices of the stat ionary one step transition matrix. Let  G be the submatrix 
of transition probability from the {E~} to the {S j}, C be the submatrix of 
transition probabilities from { S~ } to { S j  }, and D be the submatrix of transi- 
tion probabilities from {E~ } to {E~ }. 

The  definition of unitary, definition 2, was formulated with respect to 
all possible probability vectors for the states of H. For  the par t  of this section 
tha t  deals with restricted vectors, the following definition will be necessary: 

Def in i t i onS .  L e t H  = {H1 , . . .  ,HN},  a n d K  = {K1 , . . .  , KM},  

for N, M ~ 1, be two classes of Markov states which constitute a subset of 
the states of some Markov chain. If  H and K are disjoint classes, let r .  be a 
random variable defined as in definition 1. If  there is a fl such tha t  for all 
probabili ty vectors for H .  in V, where V is a subset of the set of all possible 
probabili ty vectors for H on trial n, (33) is satisfied, then H is uni tary rela- 
t ive to entrance into K over V. If H equals K, define r ,  as in definition 2 for 
this case. Then  if (33) holds for all probability vectors for H in V, where V 
is a subset of the set of all possible probability vectors for H on trial n, then 
H is uni tary relative entrance into H over V. 

I t  is easy to produce examples to show that,  in general, the condition 
expressed in (34) is not  a necessary condition for definition 2, if V is a proper 
subset of the set of possible vectors for H . .  

Clearly, if H is uni tary with respect to entrance into K, then H will be 
uni tary with respect to entrance into K over V, for all V. 

L e m m a  2. For  an absorbing Markov chain with error states {El , 
• . .  , EN} N _> 1, success states {81 , . . .  , SM} M _> 1, absorbing learned 
states {LI , . . .  , L~}, R >_ 1, stationary transition probabilities, 

P~(8) = 1, 

and f o r i  ~ {1, ---  , N}, 

(44) L ( i )  --  P (8 .÷J  (% $ .÷J- ,  f~  . . .  ~ $.÷1 l E , . )  

=taflJ-1, J >  1, 0 < / ~ 1  
L~', J =  1, 0 ~ / ~  1, 

J ~ l ,  0 _ < ~ _ < 1  (45) h~(i) = P(8.+j  (-~ . . -  (-~ 8.+, I E,.) = ~ ,  

if and only if 

(A) g is uni tary with respect to entrance into 8 over set of all vectors 
such tha t  P1(8) = 1 

(B) 8 is uni tary with respect to entrance into 8 over set of all vectors 
such tha t  PI(~) = 1 
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(46) GP' (S [ 8) = ( ~ ,  . . -  , a~)" 

(47) P(8  [ 8) = (7, " ' "  , 7). 

Proof. 

Assume N > 1 and M > 1. 
Assume (44) and (45). In  the proof of Theorem 1, the conditions of 

(44) and (45) were shown to imply tha t  ~ was a Markov state. Since a Markov  
state is uni tary with respect to any class of states, conditions (B) follows im- 
mediately. 

To show condition (A), first define a part i t ion of the set of all occurrences 
of $ as follows. Let  T be in the state SK.,+K on trial n + K if 

(8. ~ 8,,+, ~ 8,,+2 ~ " ' "  8,,+K) 

o c c u r s .  

Clearly, {$K..÷~} for K > 1, n >_ 1 is a part i t ion of all occurrences of S, 
because it  is assumed tha t  P(8 , )  = 1. 

Le t  X .  be any particular history of the process up to trial n. Then, there 
exists for every occurrence of 8. a K >_ 1 such tha t  for J > 1, 

(48) P(T. = J [ St,.) -- P(a.÷j+,  F'~ $.+j (A . . .  6"~ 8.+1 I $. F'~ X._1) 

= P ( & + j + ,  (A $.+~ (A . - -  {'A 8._K÷~ 6"~ 8.-K 6"~ X,,-K-1) 
P(8.  ~ " .  ~ &-K+, ~ &-K ~ X,-K-~) 

= P(a.+.r÷, f'~ S.+.r f-~ . . -  ('~ S.-K+, I &-K).  
P ( $ .  f '~ . . .  f-~ & - K + ,  [ 8.-~:) 

The fact tha t  8 is Markov is needed to derive equation (48). Using the ] j  
notation, we have obtained 

P ( r .  = J ] 8~:..) = P ( 8 .  ~ . . .  t% 8._~:+, I - - , , , . . , a  

where 

~,.~ = P ( S .  ~ . - .  ~ S . _ ~ , ,  I & - ~ ) ,  J ,  n,  K >_ 1. 

The  value of ~,.~ is determined by  the chain, and the initial vector. Let  

~ K  

Now, since for n > 1, 

we have for J ~ 0, n :> 1, 

n--1 

8. = ~JsK,. , 
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(49)  

w h e r e  

~-i p /  
P ( r , - -  J l $ , )  P ( r .  = J ~ $ ~ )  E £r~ = J [ $ ~ . ) P ( $ x , )  

= p ( $ . )  = ~ - ,  P ( $ ~ )  

" "  P(Sz..) ,, ^ j  _ ~ , ~  , 
- K - ,  a ~ , K  P ( S ~ )  - - a . , K p  , 

"- '  , P ( $ x . . )  
" - -  • 

Oln  , K 

Because (49) holds for all arbi t rary s tar t  vectors satisfying the restriction tha t  

P(~3 = 1, 

(49) implies tha t  $ is uni tary with respect to g over the set of initial vectors 
such tha t  

P(g~) -- 1. 

By  (44), setting J = 2, we have 

f~ = G P ' ( E  [ S) = ( ,~,  . . . ,  a#)'.  

B y  setting 

J = l  

in (45), (47) follows. 
To  show the second half of Lemma 2, consider the following. By  the 

definition of $ being uni tary over the set of initial vectors such tha t  

P(EI) = 1 

and the fact tha t  the probability of ~ on trial one is one, we can write 

(50) ottf~ J = P(r2 = J [ 82) -- P(r2 = J [ 82 (~ ~1). 

....... b+2.~ d > O. 
- P ( ~ - 8 1 )  ' 

Thus, 

f++:,, = P($2 [ gl)a't3 ~, J > O. 

Consider an initial vector  such tha t  for some i r {1, . - .  1 N} 

P ( E , )  = 1. 

Then, 

(51) fJ+~,l(0 = P(82 I E.)o, I f  = P , ( 0 G C J V ( ~  [ 8). 

Since E,  is Markov, 
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] j( i)  = ]Jl(i), J >_ 1, 

and 

P(S~+, I E,~) = P(s~ I E, , ) ,  n > 1. 

The  above argument holds for all i u {1, . . .  , N}. Thus the following is ob- 
tained. 

(52) f ,j  = I G C J P ~ ( 8  [ $) = ~ - 2 ( p ( $ ~  i E , )a~  , . . .  , P($2E~, )a '~)  ~, J _> 2.  

Equat ion  (46) implies tha t  

f2 (aft ,  . . .  , af t)  = (P($~E1,)a~ , . . .  , P ( $ 2 E ,  v,)a'N). 

Thus, 

(53) f~ = (aft ~- ' ,  . - - ,  af~- l ) ,  J >__ 2. 

Condition D implies tha t  

fl = ~. 

A similar argument shows tha t  

h~ = D s - ' P ' ( 8  [ 8) = (7 s - ' ,  . . .  , 7s - ' )  ", J _> 2, 

h~ = 7. 

Thus, the second half of Lemma 2 is complete. B y  Lemma 2 and Theorem 1, 
Theorem 4 has been proven. 

T h e o r e m  4. An absorbing Markov chain T with error states {E , ,  • -. , 
EN}, N ~ 1, success states {$1 , . - -  , SM}, M >_ 1, and absorbing learned 
states {L, ,  • • • , LR }, R >_ 1, stationary transition probabilities, and P(8 , )  = 1 
is a member of the G. A. N. if and only if 

(A) $ is uni tary  with respect to entrance into ~ over the set of proba- 
bility vectors for $ such tha t  P , (8)  = 1. 

(B) 8 is uni tary  with respect to entrance into 8 over the set of probabil i ty 
vectors for 8 such tha t  P~(8) = 1. 

(C) GP~(8 IS) = ( ~ ,  . . .  , ~ ) ' .  
(D) P ' ( s l  g) = (~, " ' " ,  ~)' .  

To  extend Theorem 4 to a broader class of initial vectors is not  difficult. 
Consider a s tar t  vector  allowing sequences in 2, 8, or ~ on Trial 1. Clearly 
no new restrictions are necessary to handle sequences starting in .~ or g. 
Sequences starting in ~ tha t  never enter 8 also cause no difficulties because 
they are pu t  into (~. Now, consider sequences starting in $ tha t  do enter  g. 
Since g is a Markov state, once ~ is entered, the probabil i ty of all future 
events on the level of A, 8, and $ do not depend on what  occurred prior to g. 
Thus the probabili ty of these sequences is just  the product  of the probabili ty 
of the initial string of successes terminating in an 8, and the probabili ty of 
the future events given g. All tha t  is necessary then, is to bring the proba- 
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bilities of the strings of successes tha t  s tar t  in S and terminate in ~ into line 
with the strings of successes tha t  are preceded by  an error and terminate in 8. 
I t  can be shown tha t  the conditions of Theorem 5 are the proper ones. 

Theorem 5. An absorbing Markov chain with error states {E~, • - - ,  EN}, 
N >_ 1, success states {$1 , "-- , S~}, M >_ 1, and absorbing learned states 
{L1, • • • , LR }, stationary transition probabilities, is a member of the G. A. N. 
for all initial vectors if and only if 

(A) $ is uni tary with respect to entrance into 8. 
(B) 8 is uni tary with respect to entrance into 8. 

GP ' (8  [ S) = ( ~ ,  . . .  , ~ ) "  

p'(81 ~)  = (% " - ,  ~)" 

The major results of this section are the following. Previously, one might 
have intuitively thought  tha t  the only way a large Markov chain with some 
classes of unobservable states might belong to the G. A. N. was either tha t  
the appropriate states would lump by the Kemeny et al. [1960] theorem, or 
tha t  the chain could be expanded into new states tha t  did satisfy the Kemeny 
e% al. [1960] theorem. Theorems 4 and 5 prove tha t  the G. A. N. contains a 
much larger class of models than one might have previously expected. 

I t  is important  to note that,  in general, conditions for inclusion in the 
G. A. N. will depend upon the class of initial vectors over which membership 
is required. Thus, if in a given experiment, the data  is generated by  a par- 
tieular Markov chain, whether or not  the data  will be fit by a G. A. N. model 
may  depend upon the value of the initial vector. 

Application o] Matrix Analysis to Four SSa~e Models 

In  this section, some results are presented regarding an unrestricted 
four-state model, with errors occurring in only one state. A table of some 
general restrictions sufficient for membership in the G. A. N. is given. Also, 
some extant  models are analyzed from the present perspective. 

Le t  the following matrix P represent a four-state Markov model with 
one error state (E), two unobservable presolution success states, S~ and $2 , 
and a learned state (L), 

(54) P = 

L S~ $1 E 

S~ 2.~ P2.2 P~.~ P~,o 

SllPI.s PI.~ P1.1 P,.o / 

E LPo.3 Po.2 Po.1 Po.oJ 

and some initial vector V = (Po(L), Po(S2), Po(SI), Po(E)). 
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TABLE 1 
Example Restrictions on Equation 54 Making P Satisfy G.A.N. Following First Error 

for (P2,0, PI,0) 

General Restrictions v = w Restriction 

Case I P1,2"P2,1 ~ 0 
PI,I'P2,~ = P1,2"P2,1 

Case II  

P l , l  + P2.2 < 1 
(P. ,o ,  Pl .o)  = (Pl ,oP2,~/PI,2,  Pl .o)  
PI,2"P2,1 = 0 
P1,2 = P2,1 = 0 
P~.I = P2.~ 

Po,o(Pl,1 + P~.2) = Po.I'PI.1 
+ Po,2P2, o 

Po,o'P2,* = Po,lP1,o + Po,2P2,o 

and, 

Since there is only a single error state, 

P ( g n + + + l  C~ - - .  , ( 5  g~+, I g~) = Po~,o I , J>__0 

G P ' ( E  [ $) = Po,2P2.o + Po . ,P l . o ) .  

By Theorem 5, all tha t  remains to insure tha t  (54) satisfies (1) after  the first 
error is tha t  8 is uni tary  with respect to 8. T a b l e  1 lists several ways in which 
(34) is satisfied for P2.o and Pl,o • The entries in Table  1 were obtained 
by  solving the characteristic equation [Murdoeh, 1957] of the submatr ix  
C in (54), and obtaining solutions such tha t  (P~,o , P~.o) is an eigenveetor 
corresponding to a 0 < B < 1. This  is the general procedure for obtaining 
constraints on (P2,o , Pl,o). 

[_P,., P ~ . J  

So, if a model fulfilling the restrictions of (54) fulfills a condition in Table  1, 
it will be a member  of the G. A. N. model type  following the first error. 

By  calculating the reeursion for each ease in Table  1, column 1, t h e  
restrictions necessary for the v = w ease of (1) can be obtained. The  restric- 
tions for v --- w corresponding to the column 1 restrictions are contained in 
column 2. 

I n  addition to the restrictions in Table  1, Column 1, other specific solu- 
tions are obtainable by  the same methods, if restrictions are pu t  on (P2.o , 
P~.o). 

One unusual ease of (54) which satisfies (1) following the first, error is 
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PI,, = P2.2 = O, 

PI.2"Pz.1 ~ O, 

Pl.o = 2,O~p2. x" 

As an example, consider Bernbach's [1965] forgetting model for paired- 
associate learning. We give a slightly expanded expression of the model. 
There are five states: L, where the correct response is in permanent  memory; 
H, where the correct response is in temporary memory; I, where an incorrect 
response is in temporary memory; G, where no response is in memory, but  
where the subject guesses correctly; and E where no response is in memory, 
and the subject guesses incorrectly. The transition probabilities are 

L 

H 

P = G  

E 

I 

(55) 

L H G E I 

-1 0 0 0 0- 

c ( 1 - - c ) h  (1 - - c ) ( 1 - -  h)g ( l - - c ) ( 1  -- h ) (1 - -  g) 0 

0 h (1 -- h)g (1 -- h)(1 -- g) 0 

0 (1 -- e)h (1 -- h)g (1 -- h)(1 -- g) eh 

_0 ( 1  - -  e)h ( 1  - -  h)g ( 1  - -  h ) ( 1  - -  g) eh 

The distinction between states I and E has implications for a special statistic, 
the probability of repeating the same error on successive trials. However, in 
estimating parameters and in the main evaluation of the model, Bernbach 
considered iust the sequences of correct responses and errors. For  the data  
considered in this way, states I and E can be considered as a single state W, 
where wrong responses occur. Then Bernbach's model is in the form of (54), 
with state H corresponding to $2, G to S~, and W to E. According to Table 1, 
Bernbach's model is in the G. A. N. model type. t We have, in general, 

PI.~P2.1 = h(1 - c)(1 -- h)g ~ 0; 

which is Case I .  Then we see tha t  

P~,lP2,2 - -  P ~ , 2 P 2 , ,  = ( 1  - -  h ) g ( 1  - -  c)h - -  h ( 1  - c ) ( 1  - -  h )  = 0 .  

The restriction P1,1 ~- P2,2 _< 1 is satisfied for most parameter  values. 
However, we have 

Po.o(P~.l "-? P2.2) = Po.lP~.o + Po.2P2.o 

if and only if e = 0. Therefore, Bernbach's model usually will not  generate 

t All examples  in th i s  sec t ion can be  s h o w n  to sa t i s fy  t he  Case  I res t r ic t ion on 
(P2,o, Pl,o). 
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data  agreeing with all-or-none learning with v = w; however, it will generate 
data  agreeing with the general all-or-none model of (1). 

As a second example, consider one case of a model investigated by  
Greeno [1967]. There  are four states: L, where an i tem is in permanent  mem- 
ory; H, where the i tem is in temporary memory; E,  where the i tem is not  in 
memory and the subject gives a wrong response; and G, where the i tem is not  
in memory bu t  the sulJject guesses correctly. The  transition probabilities are 

L H G E 

(56) e = H (1 - c)h (1 - c)(1 - h)~ (1 - -  ~)(1 - -  h)(1 - g) 

G ( 1 - d ) h  (1-a)(1--h)g ( 1 - 4 ) ( 1  h ) ( 1 - - g )  

E d ( l - a ) h  ( 1 - - a ) ( 1 - - h ) g  ( 1 - - 4 ( 1  h ) ( 1 - g )  

The  model as given here relates to Bernbaeh's ra ther  closely. If  e in Bern- 
bach's model is zero, and if d in (56) is zero, then the two models are identical. 
Further ,  if c and d are equal in (56), we have the model tha t  Atkinson and 
Crothers [1964] called LS-2. 

Applying the present analysis to the model, we can see tha t  the model 
should imply (1) with v = w. Using Table 1, we first see tha t  we are in Case I, 
since, in general, 

P~,~P2,~ = (1 -- d)h(1 -- c)(1 -- h)g # O. 

Then within Case I, 

P , . 1  + P2,2 = (1 - -  d) (1  - -  h)g + (1 - -  c)h > 0 

and simple algebra shows that,  

Pl.,P2.2 = PI.2P,.1 

The  result is consistent with earlier findings; Greeno's [1967] article has a 
proof tha t  (56) implies (1) with v = w. 

Finally, consider a more general form of (56), 

(57) P = 

One obtains: 

L $2 81 E 

o 0 o ) 
$2 (1 -- e)XP (1 - e)(1 - - X ) P  (1 -- e)(1 - - P )  

$1 (1 -- d)Yg (1 - d)(1 -- Y)g (1 -- d)(1 -- g) 

E c (1 -- c)ZS (1 - c)(1 -- Z)S  (1 -- c)(1 -- S) 
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Pl.IP2.~ - P1.2P2.1 

= (1 - d)(1 - Y)g(1 - e)XP - (1 - d)Yg(1 - e)(1 - X ) P  

= (1 - d)(1 -- e)gP[Z(1 -- Y) -- Y(1 -- Z)]  

= (1 --  d)(1 -- e)gP[Z - Y]. 

I f  one assumes, as in (56) and the LS-2 Model, 

0 ~ P I . I W P 2 . 2 _ < 0  

and 

i f X  = Y, then 

P1.2" P~.I ~ O, 

PI . I 'P2 .~  -- P1.2"P~.I. 

Thus  with all the apparent  complexity of (57), such a model, following the 
first error, will imply the G. A. N. model type  if P = g, as can be seen b y  
applying the Case I restriction for (P2.o, Pl.o). 

Application o] Recurrence Analysis 

In  the previous section, the matr ix  analysis was applied to an analysis 
of models. In  this section, two applications of the recurrence analysis are 
made. First, a likelihood ratio test  is derived testing a four s tate  theory against  
a three s tate  theory. Second, the restrictions imposed upon (54) if (1) is 
satisfied are examined. 

As a specific al ternative to the three-state all-or-none theory, consider 
the following four-state theory, which is a generalization of models investi- 
gated by  Atkinson and Crothers [1964] and Greeno [1967]. The  states are L, 
where the i tem is learned; H, where the i tem is in t empora ry  memory;  G, where 
the i tem is not  in memory  but  the subject guesses correctly; and E, where 
the i tem is not  in memory  and the subject gives an incorrect response. The  
transit ion probabilities are 

L H G E 

(58) P = 

0 0 

H (1 -- c)h, (1 -- c)(1 - -h~)g  

G (1 -- d)h2 (1 --  d)(1 -- h2)g 

E (1 --  d)h2 (1 -- d)(1 -- h2)g 

0 1 (1 - -  c)(1 - -  h i ) (1  - -  g) , 

(1 - -  d)(1  h2)(1 g) 

(1 - -  d) (1 h2) (1 g) 

0 < c , d ,  hl , h 2 , g  ~ 1. 

In  the case where hi = h2, Greeno [1967] showed tha t  this model implies 
G. A. N. with v = w. 
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We can show quite easily, using theorems 3 and 5, tha t  for hl ~ h, the 
model is not a member of the G. A. N. over the set of all initial vectors. All 
tha t  must be done is to show that  (P(E~+I I H~), P(E,+~ I G~)) is an eigenveetor 
of 

H G 

C =  H I ( l - -  c)hl ( 1 -  c ) ( 1 - - h l ) g  t 
V (1 - d)h2 (1 d)(1 - h2)gJ 

if and only if 

h 1 ~ h 2 ° 

The  proof requires simple algebra. 
However, if we restrict the initial vector such tha t  

PI(E) = 1, 

then we know tha t  the requirement that  P(~ I $) be an eigenvector of C 
satisfies one of the conditions of theorem 4, but  may not  be a necessary condi- 
tion. I t  can be shown tha t  (58) could belong to the G. A. N., with v = w, 
over the set of initial vectors such tha t  

P , (E)  = 1 

if and only if 

hi = h2. 

Thus, for the two classes of initial vectors under consideration, the equali ty 
of h~ and h2 is necessary and sufficient for membership in G. A. N., with v = w. 

We will present some results which permit  a statistical test  of (1), in the 
framework of (58). Specifically, the null hypothesis is tha t  in (58), 

hi = h2 ; 

and the alternative is tha t  (58) holds but  tha t  

0 < hi , h2 < 1. 

The test to be developed is a likelihood ratio test, and we deal with 
identifiable parameters. Atkinson and Crothers [1964] partially solved the 
problem of identification for (58) by  showing tha t  the following three param- 
eters are sufficient and identifiable. 

r = (1 -- c)h~ , 

(59) s = (1 -- d)(1 - h2), 

t -- (1 -- c)(1 - d)(1 -- h,)h~. 
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To  use this result  in an application,  we need the  likelihood of da t a  as a func-  
t ion  of r, s, and  t. T h e  recurrence probabili t ies give a convenient  s u m m a r y  
of the  probabi l i ty  measure.  We  will show t h a t  

i ,  = s ( 1  - -  g ) ( a -  b) J 

_[_(I _~ g) It -I- s2g -- s(a -- b ) ] [ ( a  - { -  b) ~" - -  ( a  - -  b ) J ] .  

(60) 
~, - ,F ( - 1 - - r ) s +  t ] 

i = ].r = ( I  - -  " J " l  ,2 .T-o L( -- a) -- ~2 , 
where 

r + S O  a 
2 ' 

b = %/(r -~ sg) ~ --  4(rs --  t) ~ O. 
2 

To  begin we define the  quant i t ies  

X j  = P(H~+j  (~  C,+,r-1 f'~ . . .  , {'~ C~+1 [ E , ) ,  

Y., -- P(G~+j (~  Cn+j- ,  f'~ . . .  , {'~ C~+l [ E . ) .  

F r o m  (58) we have  

X j + I  = (1 - c ) h i X j  -{-- (i  - -  d ) h 2 Y j ,  

Y,+,  = (1 - -  c)(1 - -  h~)gX.r Jr- (1 - -  d)(1 - -  h2)gY.r , 

which holds for all J >__ 0 if we set Xo -- 0 and  Yo = 1. We  can t rans la te  these 
recursions into two second-order  difference equations.  

Xj+~ --  (1 --  c)h, + (I  --  d)(1 --  h2)gXj+l  -[- (1 - c)(1 - d)(h, - h 2 ) X j  

-- X j + 2  - (r -4- sg)Xj+~ -{- (rs --  t ) X j  -- 0;  

Y.,+2 --  (r "4- sg) Y,+~ --}- (rs - -  t ) Y j  -- O. 

The  solution of  a second-order  difference equa t ion  is described b y  Goldberg  
[1958]. I n  the  present  case we have  

m J X j  = K l m ~  -{- K2 2 , 

Y j  = K j m (  -4- K 4 m ~ ,  
where 

m l  ~-- 
(r + 8g) + V ( r  + sg) ~ - 4g(~8 - t) 

. . - - a Z r b ,  
2 

(r + se) - ~ ( r  + s g) ~ - 4g(rs - t) 
m~ = - . - - a - b .  

2 
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I f  m: ---- m2, a different set  of 
are de termined  by  the  initial 

Xo 

X1 

Yo 

YI 

T h e n  we ob ta in  

equat ions  app ly  [Goldberg, 1958]. T h e  cons tan t s  
conditions. 

0, 

= (1  - d ) h : ,  

~ 1 ,  

= (1 -- d)(1 --  h2)g. 

K~ = - K :  - - ( 1  - d)h~ 
1 2 b  

K4 = 1 - - K s  = 1 - -  (1 - d ) ( 1 - -  h~ )g - -  ( a - -  b) 
2b 1 

We now obta in  the  f j  : 

IJ -- Xz(1 -- c)(1 --  h,)(1 --  g) -~ Y j(1 - d)(1 - h2)(1 --  g) 

(I  --  d)h2 
- - - -  25 [(a q- b) J --  (a --  b)Z](1 --  c)(1 - -  hi)(1 --  g) 

q_ { ( 1 - -  d ) ( 1 - -  h2)g -- (a --  [ ( a q - b ) J - - ( a - - b )  J] -t- (a - b) J}  

• ( 1  - -  d ) ( 1  - -  h ) ( 1  - -  g )  

and  subs t i tu t ion  of r, s, and  t gives (60). 
We  do no t  see a w a y  to  develop closed-form est imates  of r, s, and  t f rom 

(60). However ,  es t imates  would be easy to obta in  using i terat ive search on a 
computer .  The  general hypothes is  consists of (60). Since errors are recur ren t  
M a r k o v  events,  each error  can  be considered as the  beginning of an  indepen-  
den t  observat ion  of the  system. We  can describe the  d a t a  af ter  the  first error  
by  t abu la t ing  the  values of n~ , the  f requency  of success runs  of length  i, 
where n= is the  n u m b e r  of t imes t h a t  an  error  is followed b y  no more  errors. 
T h e n  the  likelihood func t ion  is 

n ~  n o  n l  n 9  

L = (1 - - f )  f o f ,  f 2 , " "  , 

which will be a finite p roduc t  for a ny  set of exper imental  results. 
T h e  res t r ic ted hypothes i s  is (60) wi th  h: = h~ . This  is ob ta ined  in the  

identifiable parameters  b y  the  restr ict ion 

t =  rs. 

N o t e  t h a t  this specializes the  recurrence probabil i t ies  so t h a t  a = b; hence, 

] j  = (1 --  g) (rs -l- s2g)(a -I- b) J = (1 --  g)s(r -t- sg) "r. 
_ _  2 h _  
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Then r and s could be estimated easily by direct calculation. However, an 
iterative search program could be written to maximize the likelihood under 
the restriction using the general estimation but  with the search restricted 
to the t = rs plane. 

Now we will turn to our second topic of this section. What  constraints 
are imposed on (54) by requiring (1) to be satisfied also. Suppose a set of 
data  satisfies (1), following the first error, with u, v, and w estimated by using 
the maximum likelihood estimation procedure [Greeno, et al., 1964]. One 
then obtains 

L -- (1 - -  ~ ) ( 1  - -  9)(1 - -  ~ ) ~ - ' ~ ,  J > 1, 

where ~, 0, and ~ are maximum likelihood estimates. In  terms of Theorem 1, 
one obtains 

e~ = (1 --/Z)(1 -- t))@, 

a = l - - ~ .  

The restrictions imposed on (54) have to be examined in two cases. 

Case 1. Assume, 

P:.2" P2.1 ~ O. 

Let 

(61) 

(62) 

(63) 

(64) 

where 

X j  = P(S2.+, ('~ S~+~_,/% --- , f'~ S~+, I E~) 

Y j  = P(S~.+, ~ S,,+.._, ~ . . .  f'~ S~+, 1 E , )  

I t  can be easily shown tha t  

X j+2 = a X j + ,  + b X j  = 0 

Y~+2 = a Y j + ,  + bY. ,  = 0, 

a = P , . ,  + P2.2 

b = PlaP2 .2  - -  P1.2P2., . 

Now, using (63) and (64), one can show tha t  

(65) /J+2 = X~+lP2.o + YJ+,P~.o  = a].~+, - -  b ] j .  

Since i t  is assumed tha t  (1) is satisfied, the {]j } is almost geometric, and hence, 

(66) ]J+2 = ~J)¢2, J > 0. 

Combining (65) and (66), one obtains 

(67) ~2 = a~ -- b -- 3(P~., + P2.2) - (P, .~P2.2 --  P,.2P2.,), 
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(68) 

(69) 
Case ~. 

if 

~l~ ~ 0. 

Since ~ = 1 -- ~ is fixed by the estimation procedure, (67) provides a restric- 
tion on (54). In addition, the following restrictions on (54) also apply. 

]2 = P o n P , . o  q- Po.2P~.o = (1 -- ~)(1 -- ~)~ 

], -- Po.o = (1 -- ~)~. 

PI.~" Ps.1 = 0 

Starting with (61) and (62), it  can be shown tha t  

(70) / j  = g i g S - '  -[- g s z ~ - ' ,  J > 1, 

where K,  , K s ,  Z, , Z2 depend upon the particular instance of Case 2 being 
examined. [Goldberg, 1961]. Case 2 splits up into many special eases, but  the 
following analysis holds for all cases. 

In  order to use the same general technique tha t  was used in Case 1, let 
us ask if there is a pair (a, b) such tha t  

(71) ]J+2 = a/ j+ ,  - -  b / j ,  J >_ 1 

where ]~ is not identically zero for all J .  
Using (70) and (71), one obtains 

J-1 2 K Z ~ - ' t Z  2 (72) K , Z ,  (Z ,  - a Z ,  -k  b) -J- ~ 2 ~ ~ - -  aZ2 -J- b) = O, J >_ 1. 

If  
ZI ~ Z~ , 

then for (72) to hold and for the lJ distribution not to be identically equal to 0 
for all J > 1, 

(73) Z~ --  a Z ,  "k b = 0 

(74) Z~ --  aZ2 -[- b = O. 

Equations (73) and (74) provide 2 equations in a and b. Assuming ZI , Z,  
both not zero, one obtains 

(75) a -- Z, ~- Z2 

(76) b -- - - Z , Z ~  . 

If  one of Z , ,  Z~ is zero, but  both are not zero, one obtains the solution tha t  

a = Z ~ O  

b = 0 .  
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If, however, gl and Z~ are equal, then if ]j is not equal to zero for all J :> 1, 

Z 2 - -  a Z  + b -~ O. 

Thus, there always exist a pair (a, b) for Case 2 such that (71) holds. 
Again, assuming that the data satisfy (1), (66) can be also assumed. Combin- 
ing (66) and (71), (67) is shown to hold for Case 2. As in Case 1, the additional 
restrictions in (68) and (69) also clearly apply to Case 2. 

This analysis provides a method to examine various cases of (54) in order 
to analyze the restrictions imposed upon (54) assuming it satisfies (1) follow- 
ing the first error. An extension of the same type of analysis to runs of suc- 
cesses prior to the first error is also possible. 
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