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Methods developed by Bernbach [1966] and Millward [1969] permit 
increased generality in analyses of identifiability. Matrix equations are 
presented that solve part of the identifiability problem for a class of Markov 
models. Results of several earlier analyses are shown to involve special cases 
of the equations developed here. Andit  is shown that a general four-state 
chain has the same parameter space as an all-or-none model if and only ff its 
representation with an observable absorbing state is lumpable into a Markov 
chain with three states. 

The problem of identifiability refers to the possibility of uniquely deter- 
mining a set  of parameters  of a model given complete information about  the 
probabilities of all possible experimental  outcomes. In  any  well-formulated 
model, there is a function k t ha t  maps  the pa ramete r  space of the model 
into the family of probabil i ty  measures permit ted by  the model on the experi- 
mental  outcome-space. T h a t  is, for each point in the paramete r  space, the 
probabilities of all possible experimental  outcomes can be calculated. I f  
some or all of the probabil i ty measures permit ted by  the model are associated 
with nonsingular sets of parameter  points, then the model is not identifiable. 
I n  such a case, k is not  one-to-one and there is no inverse function k -1 such 
tha t  knowledge of all the probabilities of possible outcomes would specify a 
unique parameter .  In  an identifiable model, on the other hand, k is one-to- 
one and k -1 does exist. One common reason for a model to be nonidentifiable 
is tha t  its parameter  space is too large and consists of non-independent 
parameters .  Another  reason is tha t  the outcome space, and thus the prob- 
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ability measure, is collapsed in such a way that distinctions between the 
parameter points are lost. 

A number of recent papers have provided analyses of the identifiability 
of finite absorbing Markov chains that are useful in analyzing learning 
processes. Greeno and Steiner [1964, 1968] analyzed a general all-or-none 
learning model. Greeno [1967] analyzed a learning system involving short 
term retention, and showed that  it is indistinguishable in data from simple 
all-or-none learning. Steiner and Greeno [1969] provided some general condi- 
tions under which models with several transient success states are indis- 
tinguishable in data from simple all-or-none learning. And Greeno [1968] 
analyzed the identifiability of a two-stage learning model. In each of these 
reports, the analysis has dealt with a specific model or a narrow class of 
models. 

The purpose of the present paper is to present a general method that 
can be used to solve part of the problem of identifiability for any finite 
absorbing Markov chain that  generates data in the form of sequences of 
correct responses and errors. The method is applied to the models analyzed 
in earlier papers, and the results clarify a principle that operates in all of 
the cases that have been studied. 

A technique that has been useful in the earlier studies involves con- 
struction of a model with observable states. This concept was developed 
by Greeno and Steiner [1964, 1968], who defined an observable state as one 
whose occurrences can be specified on the basis of a data sequence. For 
example, if a model includes only one state in which errors occur, then that 
state is observable because each error in data corresponds to an occurrence 
of the error state in the model. 

In studying the identifiability of a model ~ ,  it can be helpful to con- 
struct a model i)~* with observable states, such that the parameter space 
of 9r~* generates all of the probability measures that are generated by the 
parameter space of ~)r~. When this happens, one says that  ~ implies ~*,  
since any data that  satisfy ~ also satisfy ~* .  

The method that we present in tiffs paper can be applied to any finite 
absorbing Markov model i)~ that generates binary data. The method permits 
construction of a model ~ *  that is implied by ~ and has an observable 
absorbing state. We proceed by first introducing notation for a general 
finite absorbing Markov model ~r~ with initial probabilities II and transition 
probabilities P, and a corresponding model i)~* with initial probabilities II* 
and transition probabilities P*. The difference between the models is that 
in ~)~* the absorbing state is observable while the absorbing state of 9~ is 
not. Then, using techniques developed by Bernbach [1966] and Millward 
[1969], we show that 9r~ implies ~*,  by developing a set of matrix equations 
that map the parameter space of i~ into the parameter space of i~*. 

Let ~ designate the set of equations, and let ~ and a* stand for the 
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parameter  spaces of i)~ and i~*, respectively. Then 

and ~ is developed in such a way tha t  for every parameter  point ~ in 9]Z's 
parameter  space (i.e., ~ ~ ~), it(w) -- w* ~ 2" assigns the same probabilities 
to all events in data  as does ~. In  other words, ~ is a function tha t  gives 
values of new parameters but  preserves probabilities of observable data. 

The fact tha t  ~ exists shows tha t  ~Z implies ~ * ,  since every probability 
measure that  is permit ted by  9]Z also is permit ted by  91Z*. In  applications, 
the functional relationship represented by  t~ can be used in analyzing the 
identifiabiIity of ~ .  The dimension of 2" is often lower than  the dimension 
of i]. If  9]Z* is identifiable, the dimension of ~t* equals the number of identifiable 
parameter  dimensions for 9]Z, and investigation of the inverse mapping 
of tt ( that  is, tL -1 : ~2" --~ gt) is very  helpful in determining the kind of restric- 
tions on 91Z's parameters tha t  can be used to yield an identifiable version 
of illZ. In  cases where 9]Z* is not  identifiable, the dimension of 2" sets an 
upper limit on the number of identifable dimensions for 9]q, and investiga- 
tion of the inverse mapping of tt can contribute to an understanding of 
certain aspects of the identifiability of ~ .  

1. General Equations 

We begin with a characterization of a general finite absorbing Markov 
model ~ ,  with an absorbing state D, where correct responses occur, an 
arbi t rary number of transient error states E1 , " . .  , E .  , and an arbi t rary 
number  of transient success states C1 , ---  , C~ . The initial and transition 
parameters of 9TO are denoted 

II = [ D .  , E l .  C~o], 

D E1 " '"  E.  C1 " '"  C,, 

D 1 0 0 
. . . . . . . . . . . . . . .  3 . . . . . . .  

E1 

(1) p = . 5,1 F. .  G.o 

E.  
. . . . . . .  I . . . . . . . .  i . . . . . . .  

C~ 

M~, H:° Ko~ 

Co 

E,o and C,, are the 1 X e and 1 X c subvectors of initial probabilities for 
the transient error and correct states of 9~, respectively. F, G, H, K, L, 
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and M are submatriees of transition probabilities, with subscripts indicating 
the numbers of rows and columns in the various submatrices. 9E is simply 
a general structure under  which a wide var ie ty  of learning models fit as 
special cases. 

We will investigate the relationship between ~ and another  general 
s tructure ~r~*. The difference between ~ *  and 9r~ is tha t  the absorbing state  
of ~ *  is observable, while ~r~'s is not. The  reason tha t  State  D in ~ is not  
observable is tha t  following the last error, there is an indefinite number 
of occurrences of the transient states C1 , " "  , Co , preceding entry  into 
State D. To  construct a model with an observable absorbing state we simply 
specify tha t  the transitions from transient success states to the absorbing 
state are all zero. This new model ~ *  has an absorbing state T, a set of 
transient  error states R1 , " "  , R .  , and a set of transient  success states 
$1 , . "  , Sc • The  initial and transition probabilities of 9r~* are denoted 

n*  = [T l , ,  R,. , $1o], 

T R , - - - R .  ', $ 1 - . - S ~  

T 1 0 0 
. . . . . . .  t . . . . . . . . . . . . . . .  

R1 

(2) p ,  = . Z,, V.. W,o 

R. 
. . . . . . .  t . . . . . . . . . . . . . . .  

S, 

0 Xo. Yo, 

So 

To understand the relationship between the state spaces of ~ and 9E*, 
suppose (counter to fact) tha t  it  were possible to observe a sequence of 
the theoretical states of 9E, such as E~,  E8 ,  C2, C~, E2 ,  Ca,  C2, D, D, . . .  
This particular sequence would correspond to the following sequence of 
states of ~rc* : RI  , R 3 ,  S ,  , SI  , R~ , T, T,  T, T , . . .  In  general, the outcome 
space for ~ *  can be constructed from the outcome space for ~ if, in each 
sequence tha t  is in 9E's outcome space we substitute R~ for each occurrence 
of E~ , substitute T for each correct response that  follows the last error, 
and substitute S~ for each occurrence of C~ tha t  precedes the last error. 
The correspondence between the outcome spaces amounts to a mapping 
from sets of outcomes in ~ ' s  outcome space into single outcomes in ~ * ' s  
outcome space. An impor tant  feature of the mapping is tha t  within each 
equivaler.ce class of ~ ' s  outcomes induced by  the mapping, the different 
outcome TM cannot be distinguished in data. Therefore, all of the observable 
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differences between outcomes in ~ ' s  outcome space are represented in i)lZ*'s 
outcome space. 

Of course, it is not the case that all of the states of ~r~* are observable; 
specifically, the individual correct and error transient states are not observable 
except under special conditions. But the fact that T is observable turns 
out to make 91Z* useful in analyzing the identifiability of several models. 

We now proceed to develop expressions for ~, the function mapping 
into ~*. As we mentioned earlier, ~ consists of a set of matrix equations, 

and is constructed so as to preserve probability measures on data. For each 
submatrix and subvector of parameters of ~Z*, we develop an equation in 
terms of the submatrices and subvectors of the p~rameters of 91Z. The equa- 
tions axe based on the correspondence between the outcome spaces of ~r~ 
and 91Z* described above. In general, probabilities of entering State T cor- 
respond to probabilities of entering State D, plus probabilities of entering 
the class of transient correct states and remaining there until absorption 
occurs. And probabilities of entering ~ transient correct state S~ correspond 
to probabilities of entering a transient correct state C~ and returning to 
one of the error states before absorption occurs. The reader may find it 
easier to sort out the notation in what follows by remembering that  pax~m- 
eters in ~ are designated by letters in the first half of the alphabet (C through 
M, omitting I and J) and parameters in 12" axe designated by letters in the 
last half of the alphabet (R through Z, omitting U). 

First, consider the vector Z°~ . Each element in this vector is the prob- 
ability of no more errors after an occurrence of a specified error state. From 
State E~ , the item may go directly to State D or it may go into the class 
of correct states, remaining there without an error until learning occurs. 
Thus, when (I - K~o) -~ exists, 

(3) Z.~ = L.~ -{- G.~(I  - -  K ~ o ) - ' M ~ .  

Next, consider the submatrix V.° . Since transitions among error states 
are not affected by the difference between the state spaces, 

(4) V,, = F,.. 

Let 
To find W,o we need to develop expressions for the individual elements. 

w , i  = P(S~ . .+I  1 R , . , )  

--  P(Cj. , ,+I and an error sometime after n q- 1 I E~..), 

where the subscript n or n q- 1 on the state indicates the trial number. 
Also let g~ be the element of Goo corresponding to w ,  . Finally, define the 
vectors H~ and K~ as the ith row vectors of the matrices H,,  and Koo, respec- 
tively. Then 
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(5) 
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w .  = g .HiY.°~ "4- g . K i ( I  - -  Koo)-IH~°F-,°I 

= g . [ H i  -Jr- K i ( I  - -  Koo)-IH~.]Y..~ 

where Z,~ is the e )< 1 uni t  vector  for which postmult ipl icat ion is used to 
obtain the sum of terms in a 1 X e vector.  A complicated t e rm in (5) arises 
later. We define 

(6) a, = [H, -k  K , ( I  - -  K,o)-~Ho.]~°~ ; 

a~ is the probabil i ty  of a t  least one error following an occurrence of s tate  C~. 
Then, instead of (5) we have 

(7) w .  = g~ia i .  

I t  is convenient to have an expression for W.o in terms of matrices. Define 
5 . (a~)  as the c X c diagonal matr ix  whose nonzero elements are a~ , a2 , 

• . . , a , . T h e n  

(8) W..  = G..[Aoo(a~)]. 

The  remaining matrices in P* are obtained as follows. Let  

Then  

x , i  ~ X . °  = P(Ei . , ,+I  [ C~,,, and an error sometime af ter  n) 
Y,i  ~ Y~. = P(Ci, , ,+I [ C~,,, and an error sometime af ter  n). 

X i i  - -  

(9) a, 
k . a ~  

y .  - 
a~ 

where h .  and k .  are elements of He. and Koo , respectively. The desired 
matrices can be obtained as 

(10) X. .  = [ A . ( 1 / a , ) ] H o . ,  

Y .  = [Aoo(1/a, )]Koo[A.(a , )] .  

The initial probabilities can be obtained easily. 

(11) Rx. = E l ° .  

To obtain $1o , note tha t  for P ( S ~ )  ~ Sxo and P(C~) t CIo , 

P ( S , )  = P ( C , ) a , .  
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Therefore, 

(12) $1, -= CIo[Aoo(a,)], 

Tx, = Dll -}- CI~[A~o(1 - -  a,)]~o, . 

The derivation of ~ is now complete. The function ~ consists of equa- 
tions (3), (4), (8), (10), (11), and (12). Any point w e ~ generates a probability 
measure on the outcome space of ~ which corresponds to a probability 
measure on an empirical outcome space of sequences of correct responses 
and errors. The point in ~* corresponding to ~, that  is, ~* = ~(~), generates 
a probability measure on the outcome space of ~T~* that Mac corresponds to a 
probability measure on the same empirical ou~ome space. And the two 
probability measures on the empirical outcome space are the same, since 
all of the observable differences between outcomes in ~ ' s  outcome space 
correspond to differences between outcomes in 9T~*'s outcome space. 

The construction of ~ *  according to the function ~ represents a general 
solution for an important part of the problem of identifiability for finite 
absorbing Markov models. We have restricted ourselves to models in which 
only correct responses occur after absorption. But within that class, any 
model with a finite number of transient states yielding only correct responses 
and errors can be translated into a theory with an observable absorbing 
state. As we will show below, when e = c -- 1, construction of 9~* provides 
a direct solution of the identifiability problem. When either e or c is greater 
thau one, construction of 9T~* leaves some questions about identifiability to 
be dealt with, but it provides an important step in the analysis of identi- 
fiability. For example, (2) says something about the maximum number 
of identifiable parameters for ~ .  The maximum number of parameters for 

is (e + c)(e ~ c ~ 1), and the maximum number of parameters for ~ *  
is (e -{- e) 2 -{- e. (These quantities include the e -{- c parameters of the initial 
vectors.) This does not imply that the number of identifiable parameters 
of any model will be c less than the number of theoretical parameters, but 
it does relate to the general fact that parameters may be nonidentifiable 
because of inability to distinguish in data between occurrences of an absorb- 
ing state and some occurrences of transient correct states. The specific 
implications of this general fact have to be worked out for individual models. 
The remainder of this paper consists of three relatively specific analyses, 
all of which use the methods developed above. 

2. Simple All-or-None Learning 

The results developed in Section 1 provide an immediate solution for 
the problem of identifiability when there is a single error state, and a single 
transient correct state. This is the model analyzed by Greeno and Steiner 
[1964] with transition probabilities 
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D 

(13)  P -- El  

C~ 

w h e r e t + s  = p + q - -  1. 
Using (3) and  (4), 

(14)  

F r o m  (6) 
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D E1 C1 

1 0 0 

d (1--d)t  ( 1 - d ) 8  

c ( 1 - - c ) q  ( 1 - - c ) p  

z ~ ,  = (d  + (1 - d)s [1  - (1 - c)p]-Ic) 

(d  + (1 -- d)sc~ 
q+~,l 

Vn = ((1 - d)t). 

a~ = ( i  - -  c)q + (1 --  c)p[1 --  (1 -- c)p]-~(1 -- c)q 

(wll) = ((1-- :~( lpc  C)q) 

X11 -- (x,O -- (q + pc), 

Yll -- (yl0 -- ((1 - - c )p ) .  

The  initial probabil i t ies are ob ta ined  using (11) and (12). 

Rll  -- E11 , 

(16) S~1 = Cl1(1 - c)q 
q +pc 

Vii : D11 -~- C l l l I  -- (1 --  c)q 1 
q + pc_i 

C1 lc 
= Dll  -~= q +pc" 

Thus,  in this case 9~* has the initial probabil i t ies given in (16), and t ransi t ion 
probabili t ies 

= (1 - -  c) q. 
q+pc  

Then ,  with (7)-(10),  

Wll 

(15) 
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T R S 

I 
T I 1 0 0 

(17) P* = R i d +  (1--d)sc  ( 1 - - d ) t  (1--  d)s ( l y -c )q  
q + pc q + pc 

S 0 q + pc (1 - c)p 

in agreement with Greeno and Steiner [1964, equation (43)]. 
Equations (16) and (17) show that the model of (13) can have at most 

five identifiable parameters; two in the initial vector and three in the transi- 
tion matrix. These may be labelled 

Cllc 
~r = Tll = Dll + q-'~="-pc 

0 = R , ~ / ( 1  - -  T . )  = EI~ 
~11 --~- Cll (q(1 --C)~ ' 

\ q + p c /  

( (l = d)sc~ 
(18) u = Z n  = d +  q + p c / '  

v =  V l i / ( 1 -  z ~ )  = q + c ( p  s) ' 

w = X ~  = (q + pc). 

Now that the identifiable parameters are known, it is possible to consider 
restrictions on and dependencies among the original theoretical parameters. 
If ~ is larger than f~*, then some of the theoretical parameters must be related. 
One important result of this analysis is a clear specification of such de- 
pendencies. Restrictions on the theoretical parameters lead to two possible 
results: (1) Testable Assumptions. The restrictions on the parameters in 
~2 can, in turn, yield a relationship between the identifiable parameters 
in ~2", and this relationship is open to experimental tests. (2) The restrictions 
can impose no restrictions on the identifiable parameters. In this case they 
simply serve to select a particular model or class of models. If a restriction 
on the theoretical parameters has the property that the theoretical param- 
eters are identifiable when the restriction is imposed, the restriction is called 
an identifiable restriction. Greeno and Steiner showed that if p = s is assumed 
in the theoretical parameters of (13), then the identifiable parameters must 
satisfy v -- w, hence, p = s is a testable assmnption. However, restrictions 
involving the learning parameters such as c = d or c = 0 do not generally 
impose restrictions on the identifiable parameters; hence, these are identifying 
restrictions. 
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Greeno and Steiner presented very little analysis of assumptions about 
the initial vector. A few brief comments can be presented here to make that  
picture more complete. We will examine three assumptions about the initial 
probabilities. 

First, it often is natural to assume that no items begin in State D. 
That is, Dll -- 0. If this assumption is made, we have 

C:lc 
7r - -  

q -l-pc 

(19) 1 -- C,, 
8 - -  

C11¢ 
1 

q W p c  

Since q --I- pc = w, an identifiable parameter, (19) shows that  assuming 
Dll -- 0 would permit estimates of C~1 and c. Hence, Dll = 0 is an identify- 
ing restriction, not a testable assumption. 

Next, consider the possibility that some items may start in State D, 
but of those that do not the probability of a correct response on the first 
trial is g, a known guessing probability. This imposes the restriction 

C,, = g--  El, , C : , + E l l  g, or Cll = 1 -  g 

which leads to the relationship 

(20) 0 ---- 
1 - g  

1 - - .  gc 
q - t - p c  

Equation (20) shows that the assumption of guessing on the first trial permits 
us to estimate c. Hence, this too is an identifying restriction, not a testable 
assumption. 

Finally, consider the possibility that for items not in State D at the 
beginning, the probability of a correct response is p, the probability of a 
correct response on later trials following correct responses. This imposes 
the restriction 

which leads to the relationship 

(21) 

Cll = P-q E:: , 

O = w .  

Thus, this restriction is a testable assumption, and if it is accepted the 
number of identifiable parameters is reduced. 
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8. All-or-None Learning with Short Term Retention 

A somewhat more complicated case was analyzed by  Greeno [1967]. 
The model is given in (22); E~ and C1 represent states producing wrong and 
correct responses, respectively, and C2 represents short-term retention of 
an item. Again, D is the learned state. 

II = It, ( 1 - t ) ( 1 - b ) ( 1 - g ) ,  (1-t)(1-b)g,  (1-t)b] 

D C1 C~ 

(22) ~1 11_ o o 
El d-k( d)a ( 1 - d ) ( 1 - a ) ( 1 - h ) 9  (1--d)(1--a)h 

P =  
Ca [ d-t-(1-d)a (1-d)(1-a)(1-h)g (1--d)(1--a)h 

I 
C~ [ c-b(1--c)a (1-c)(1-a)(1-h)g (1-c)(1--a)h 

To make calculations simpler, we use the notation of (1). 

.El 

0 
(1 -d)(1 -a)(1-h)(1-g)  

(l--d)(l-a)(l-h)(l--g) 

(i--c)(i--a)(1-h)(1-g) 

D E1 CI 6'2 

(23) 

D 1 

p = E1 ~11 

Ci m i l  

C2 m21 

0 0 0 

fll g .  g12 

hn kll k12 

h21 k21 k~ 

( I  -/{22)-' = 

Then 

We will illustrate the algebraic work by sketching the application of 
(3). We have 

1 [l-k~ k. 1 

Z l l  

This gives 

I  21f i 1 k21 1 -- kllJ lm211 
, -b (1 -- ku)(1 -- k22) --  k,2k:, 

(~ ",,-- ( ' -  [ ,= ~(,-(' z ( , t  ~' z _a~('(, - ~(,~(,-_~>~(, - a])  
in agreement with Greeno [1967, equation (7)]. 

Carrying out the rema~nlng algebraic work, we obtain the following: 

(25) V,, = ((1 -- d)(1 - a)(1 -- h)(1 - g)). 
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T h e  e lements  of W12 are  

(1 - -  d)~(1 --  a)~(1 - -  h)2g(1 - g) 
wl~ = 1 h i l - - c ) ( i -  a) - -  (1 h)g(1 - -  d)(1 - - -a )  

(26) 
(1 - -  d)(1 - -  a)2h(1 - -  c)(1 - -  h ) ( 1 .  g) 

w ~  -- 1 --  h(1 - -  c)(1 - -  a) - -  (1 - h)g(1 - -  d)(1 ~ a) 

T h e  e lements  of X2~ are equal.  

(27) x~  = x~l -- 1 - h(1 - c)(1 - a) - -  (1 - h)g(1 --  d)(1 - -  a).  

A n d  the  four  e lements  of Y~2 are 

(28) y~  = Y2, = (1 - -  d)(1 - -  a)(1 --  h)g 

y~2 = y22 = (1 - - c ) ( 1  - -  a)h. 

T h e  equali t ies  in the  X ~  a n d  Y2~ mat r ices  p rov ide  an  exp lana t ion  for  
a n o t h e r  p a r t  of t he  ident i f iabiI i ty  p r o b l e m  in this  model .  T o  see this,  consider  
the  following r ep resen ta t ion  of (2). 

T R1 $1 S~ 

(29) 

T 1 

p ,  = R1 zll 

$1 0 

$2 0 

0 0 0 

~)11 ~011 'W12 

xH Yll y~2 

x21 Y21 y~2 

E q u a t i o n  (28) shows t h a t  the  two  b o t t o m  rows are  identical;  thus ,  s t a t e s  
$1 a n d  $2 can  be  combined  into  a single s ta te ,  a n d  the  resul t ing process  will 
still  be  a M a r k o v  cha in  [Burke & Rosenb la t t ,  1958]. A n d  since the  response  
t h a t  occurs in $1 is the  s ame  as in $ 2 ,  we will no t  be  able  to  dis t inguish the  
l u m p e d  M a r k o v  cha in  f r o m  the  one descr ibed b y  (29). T h a t  is, the  m o d e l  
m a y  be expressed as 

T R1 S. 

I: T 1 0 0 

(30) P* = R1 1 Vll wl l  + w12 

S.  x.1 y.1 • y.2 

w i thou t  losing a n y  of i ts  empir ica l  content .  B u t  the re  is one add i t iona l  
cons t ra in t .  F r o m  (24), (25), and  (27), i t  m a y  be no t ed  t h a t  

(31) ( 1  - z l l ) x  , = V l l  , 
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which means that only two parameters are needed to specify the empi~cal 
transition probabilities. Equation (31) corresponds to having v = w in 
the notation of (18). Two more parameters are needed to specify the initial 
vector, so the model has four identifiable parameters. Greeno [1967] pointed 
out that b = 0 and b = h are testable assumptions, and that hypotheses 
about t are testable under either of these assumptions about b. 

I t  turns out, then, that (22) has the same identifiable parameter space 
as does a model of simple all-or-none learning. The identifiab]e parameters 
of (22) are the same as those of (13) when p = s in the latter. I t  was not 
obvious at the outset that this would be the case. In (22), States C1 and C2 
are not lumpable. However, the present analysis, using the matrix equations 
of Section 1, makes it clear why this addition of a short term memory state 
does not add to the number of identifiable parameters in this model. Once 
the model is put into a form with an observable absorbing state, as in (29), 
then the two transient states leading to correct responses are lumpable. 

A more general analysis of models of this type was given by Steiner 
and Greeno [1969]. The model analyzed was 

D E C1 C2 

D Pols 0 0 0 
(32) p = E Poo Pol Po2 

C1 Pls Plo Pll P12 

C2 P2s P2o P21 P22 

Steiner and Greeno showed that (32) has the same identifiable parameter 
space as an all-or-none model if and only if there exists a ~ between zero 
and one such that 

(33) [K22-  A2~(~)]H~I = (00) 

where K22 and H21 are the matrices defined in (1) and As2(~) is the diagonal 
matrix with the diagonal elements both equal to/7. Equation (33) is satisfied 
if H21 is an eigenvector of K22 corresponding to the eigenvalue 8. 

(Steiner and Greeno's analysis was restricted to responses starting 
with the first error. This effectively suppresses considerations 
involving initial probabilities. Analysis taking all possible initial 
vectors into account is usually cumbersome, and often can be carried 
out more usefully in connection with specific applications.) 

When the entries in (32) are substituted in (33), we obtain the following 
equations: 
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(34) P21P, o + P22P,o = P~oB, PllPlo + P,~P2o = P~o~. 

The most interesting case has Plo aud P2o nonzero. In that case, (33) is 
satisfied if and only if 

/P2A - [ P l o ~  
(35) P" + = .22 + 

and when (35) is satisfied the value of each expression equals ~. 
Recall that (33) must be satisfied with # _< 1. We can show that if 

(35) is satisfied, then ~ _< 1. Suppose that the left side is greater than one. 
Then 

~--~2]O0)~ (X=Pll"~ : (P12"~'P13-~--Pio)~ 1, 
, PI~ ] P12 

since we have assumed that P1o is nonzero. Therefore, 

(36) \P2o] < 1. 

Now consider the right side of (35). 

p (e,o  
P2~ + 2 ~ o /  < 1 - P .  + r~--~-~o ) < 1. 

because of (36). Thus, if the left side of (35) is greater than one, the right 
side is less than one; hence, (35) cannot be satisfied unless/~ < 1. 

Additional cases satisfying (34) and the resulting values of ~ are 

Plo = P12 --= O, P2o > O; B = P22 • 

(37) P2o =P21 = O, P,o > O; 3 = P , I .  

P~o = P2o = 0; ~ arbitrary. 

Equations (35) and (37) give the conditions under which (32) has the 
same parameter space as an all-or-none model. Earlier, we showed that (22) 
has the same parameter space as an all-or-none model. The earlier argument 
was based on (27) and (28), which showed that (29) was lumpable to a 
theory with just one transient success state. 

Equations (27) and (28) apply only to a specific model. We now show a 
more general result. Let i)~ be a model in the form of (32), and let i)~* be 
the model obtained by applying the function ~, given in Section 1. Note that 
~ *  will have the form of (29). If Plo and P~o are both nonzero in 9~, then 
9~ has the same identifiable parameter space as an all-or-none model if 
and only if S1 and S~ are lumpable in ~* .  

Equation (35) gives the conditioa for i)~ to have the same parameter 
space as an all-or-none model, when xl~ and x~ are equal in (29). Thus, to 
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prove  the  claim made  above,  we need to  show t h a t  (35) is satisfied if and  
only  if Xll = x~, in (29). 

Firs t ,  we calculate  the  va lue  of Xxx • T h e  re levan t  equat ions  are  (6) 
and  (9), where  

H I  = P l o , K I =  ( P I I P ~ 2 ) , H 2 ~ =  IPI°/ , 
lP~oJ 

o [1- 1 - '_  

= (1 --  Pn ) (1  ---P2,)  --  P12P2t P21 1 - -  P ~ J  

( I  --  K2~) -1 will a lways  exist in the  case we are  considering. T h e  condi t ion 
we need is 

( 1  - -  P ~ l ) ( 1  - -  P,=) - P,2P21 ~ O. 

( 1  - -  P~I)(1 - P22) - Pl=P21 = (P~o q- P ~  q- P~s)(P2o -4- P2~ + P~s) - P,2P2, 

which is clearly grea ter  t h a n  zero, since Plo and  P2o are  nonzero.  Now,  
a p p l y  (6), 

Plo(1 - P22) "I- P12P2o 
a,  = (1 - P~l)(1 - P22) - P~2P2, 

Then ,  b y  (9), 

(38) Plo P,o[(1 - -  P , , ) (1  - P22) - -  P12P2,]. 
Z,l --- --a, = ---:----Plo~Y-"~-P22")----FP12 2-P~--o 

Similar  calculat ions lead to  

P2o[(1 - -  P1,)(1 --  P22) - -  P12P2,] 
(39) x21 = P2o(1  - -  P ~ )  + P~,P~o " 

Now,  if (35) is satisfied, s imple a lgebra  yields 

P12 = k G o / L  '~ - P ' '  + P2, • 

Subs t i tu t ing  this in the  denomina to r  of (38), 

( 1  - -  P~l)(1 - -  P2~) - -  P12P2~ 
Xll 

[ P , o \  l - P , ,  + 

Thus ,  if (32) has  the  same  identif iable p a r a m e t e r s  as an  all-or-none model,  
t hen  S~ and  $2 are l umpab le  in (29). 
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Working the other way, since (1 -- Pll)(1 -- P22) -- P~2P2~ is nonzero, 
ifxll = x ~ ,  

Plo P2o 
Pio(1 -- P2~) + P~P2o P2o(1 -- Ply) + P2~P~o 

Equation (35) is then obtained by taking reciprocals on both sides 
and carrying out simple algebra. Thus, if S~ and 82 are lumpable in (29), 
then (32) has the same identifiable parameters as an all-or-none model. 

Recall that the above argument applies when P~o and P2o are nonzero. 
When any of the conditions of (37) occur, different kinds of Iumpability 
arise, For example, when 

Plo = PI~ = 0, P2o > 0, 

(32) becomes 

D E CI C2 

(40) P =  

D 1 

E Pos 

C~ P13 

C~ P~  

0 0 0 

Poo Pol Po2 

0 Pll 0 

P~o P21 P22 

States D and C~ constitute an absorbing class, and can be lumped to form 
the chain 

D' E C2 

D' 1 0 0 

(41) P '  = E Pol -~- P03 Poo P02 

C2 P21+P2~ P2o P22 

When the function g is applied to (41), tile result clearly will be a chain 
with only three states. Similar degeneracies occur in the other cases given 
in (37). Thus, we conclude that the following theorem holds: 

A model ~ of the ]orm o] equation (32) has the same parameter space as 
an all-or-none model, i] and only i] application of # yields a model Y~* 
which is lumpable into a Ma@ov chain with three states. 

An interesting special case of the all-or-none parameters often occurs. 
This is the case where v = w, using the notation of (18). Equation (22) 
satisfies this condition, as we remarked earlier. If the more general model 
given as (32) reduces to an all-or-none model, then it will satisfy tile further 
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restriction of v = w if equation (31) is satisfied. Carrying out the calcula- 
tions using (3) and (5), this happens if 

1 = x.1 ~ PolPlo + Po2P2o 
/)oo 

where x.1 has the value given in (38) and (39). 

4. Two-Stage Learning with No Successes in the Initial Stage 

The final model to be discussed here was analyzed by Greeno [1968]. 
It  is given in (42); E2 is the initial state, E1 and C~ represent errors and cor- 
rect responses in the intermediate state, and D is the learned state. 

II = [t, ( 1 - -  s - -  t)r, s, ( 1 - -  s - -  t ) ( 1 - - r ) ] ,  

D E1 E2 C1 

(42) 

D 1 

p -- E1 d 

E2 ab 

Cx c 

0 0 0 

( 1  - -  d)q 0 ( 1  - -  d)p 

a(1- -  b)e 1 -  a a ( 1 -  b)(1--e)  

( 1  - -  c)q 0 ( 1  - -  c)p 

When we apply the function ~ we obtain values for parameters of Y~* 
as ~ollows: 

(43) 

(t + ( 1 - s - t l -  r)c~ 
T l l  = \ q ~ p c  ] 

- 1 " 
Sn = ( ( i -  s - - t ) ( l  ~ r ) ( 1 -  c)q) 

q-I- ' 

1 
q -]- pc [ Z~I 

! 

a(1 -- b)(1 --e)c[ 
~b -t- q -[-pc J 

V22-- ( 1 - - d ) q  0 ] 

~(1-- b)e 1 - -  a J 

W21 -= q + pc 
a(1 -- b)(1 -- e)(1 -- c)q 

q + p c  
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x ,2  = (q + pc o), 

Yll = ((1 -- c)p). 

When (43) is arranged as an initial vector and a transition matrix, 
it has the form 

I I =  ( t~,r l ,r~,sO 

T R, R2 S~ 

(44) P *  = 

T 1 

R1 Zll 

R2 z21 

S~ 0 

0 0 0 

vu 0 Wll 

Y~i P~2 ~D21 

Xu 0 Yu 

There are nine theoretical parameters in (42). In (44) it appears that there 
might be nine identifiable parameters. However, Greene [1968] showed 
that there are only seven identifiable parameters. The reduction occurs 
because of dependencies among the various quantities in (43). 

The first of these is straightforward. 

x,, - 1 -- Zll ; 

that is 

(1 - d )q  
q - t - p c  = 

1 - -  q d + ~  
q--l-pc 

The remaining restriction is more devious. To explain how it comes 
about, we consider a system that has two transient states and an absorbing 
state, 

P I ( A ,  R~ ,R2)  = (0, 1 --  ~, ~), 

A R1 R2 

A 1 0 0 

(45) P = R 1  V 1 - - ~  0 

If R1 and R2 represent indistinguishable error states, and A is entered 
on the trial of the first correct response, then (45) will produce data cor- 
responding to the initial string of errors produced by (42). 
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Let  X be the number  of trials before absorption; tha t  is, State A is 
entered on Trial X -t- 1. The probabili ty distribution of X constitutes the 
only observable data  tha t  (45) ~dll produce. When ~, ~ a, the probabili ty 
distribution is 

(46) P ( X = n ) =  ~ ( ~ ) ~ ( 1  -- a)~-~ ~ - [ 1 -  ~ ( ~ ) 1 ~ ( 1 -  ~/)~-~. 

Equat ion (45) has four parameters,  but  (46) shows that  only three 
are identifiable. Values of a, ~, and ~[(~ - ~a)/('~ - a)] are sufficient to deter- 
mine the probabilities of all data. 

In  the form of (46), the loss of a parameter  comes about because the 
coefficients of two terms are complementary. This may  seem coincidental, 
but  further  thought shows why it  must be true. Since P ( X  = n) is a prob- 
ability distribution, the sum of all its terms must equal one. This sum involves 
the terms 

a(1 -- ,) .-1,  E ~(1 -- ~) ' - ' ,  
n~l n~l 

both of which equal one. Thus, in order tha t  the probability distribution 
should sum to one, the coefficients of these two terms must also sum to one. 

Of course, (45) represents only a par t  of what  is going on in the model 
of (42). In  addition to observing the number of trials before the first correct 
response, we also can observe whether an i tem has errors after the first 
correct response. This gives a probabili ty distribution with two main com- 
ponents: P(n errors before first correct and no errors afterward) and P(n 
errors before first correct and one or more errors afterward). Each of these 
is an expression like (46) in t tmt it  has a te rm with a(1 -- a) "-~ and ~(1 -- ~/)'-~; 
the coefficients of these terms are more complicated than in (46). In  tha t  
case, the four coefficients are restricted because they must  sum to one, 
and tha t  restriction results in the loss of the remaining parameter.  
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