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In many regression applications, users are often faced with difficulties due to nonlinear 
relationships, heterogeneous subjects, or time series which are best represented by splines. In 
such applications, two or more regression functions are often necessary to best summarize the 
underlying structure of the data. Unfortunately, in most cases, it is not known a priori which 
subset of observations should be approximated with which specific regression function. This 
paper presents a methodology which simultaneously clusters observations into a preset number 
of groups and estimates the corresponding regression functions' coefficients, all to optimize a 
common objective function. We describe the problem and discuss related procedures. A new 
simulated annealing-based methodology is described as well as program options to accommo- 
date overlapping or nonoverlapping clustering, replications per subject, univariat¢ or multivari- 
ate dependent variables, and constraints imposed on cluster membership. Extensive Monte 
Carlo analyses are reported which investigate the overall performance of the methodology. A 
consumer psychology application is provided concerning a conjoint analysis investigation of  
consumer satisfaction determinants. Finally, other applications and extensions of the method- 
ology are discussed. 

Key words: cluster analysis, combinatorial optimization, regression analysis, simulated anneal- 
ing, consumer psychology. 

1. I n t r o d u c t i o n  

L e a s t - s q u a r e s  m u l t i p l e  r e g r e s s i o n  is o n e  o f  t he  m o s t  f r e q u e n t l y  u t i l i z e d  t e c h n i q u e s  

t o  e x a m i n e  t h e  e f f e c t  o f  i n d e p e n d e n t  v a r i a b l e s  on  a spec i f i ed  d e p e n d e n t  v a r i a b l e .  L e t :  

i =  1 , . . .  , I o b s e r v a t i o n s / s u b j e c t s ;  

j =  1, . . . , J i n d e p e n d e n t  v a r i a b l e s ;  

Yi = t h e  i - th  o b s e r v a t i o n / s u b j e c t ' s  d e p e n d e n t  v a r i a b l e  v a l u e ;  

x O. = t h e  i- th o b s e r v a t i o n / s u b j e c t ' s  v a l u e  o n  t h e  j - t h  i n d e p e n d e n t  v a r i a b l e ;  

e i = error ;  
bj  = t h e  j - t h  r e g r e s s i o n  c o e f f i c i e n t  ( to  be  e s t i m a t e d ) .  

T h e n ,  t h e  t r a d i t i o n a l  l i n e a r  m o d e l  c a n  be  w r i t t e n  as:  
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J 

Y i =  E x(jbj + e i 
j = l  

(1) 

y = Xb + e, (2) 

o r  

where y = ((yi)), X = ((x0.)), b = ((bj)), and e = ((el)). Given a sample of observations 
for y and X, one is typically interested in solving for the regression coefficients bj in 
order to minimize the following error sums of squares: 

Min H = ~] Y i -  ~,  xijbj 
i=: j=l 

= ~ e/z. (3) 
i=1  

The closed form expression for estimating b that minimizes (3) is 

!~ = (X'X)-lX'y. (4) 

Maddala (1976) and others have reviewed the numerous statistical properties of such an 
estimator. 

There are several occasions where the estimation of a single set of regression 
coefficients via (4) may be problematic and potentially misleading. For example, sup- 
pose one were interested in utilizing linear regression to approximate a nonlinear rela- 
tionship as shown in Figure 1. Figure 1 presents an adaptation of Locke's  (1982) 
example of nonlinear performance response to increasingly difficult goal levels, a phe- 
nomenon which has been empirically demonstrated in the organizational psychology 
literature (Locke, 1967; Locke, Shaw, Saari, & Latham, 1981). One estimated linear 
regression function (approximated by the straight longer line in Figure 1) would give the 
impression that higher goal levels (even in the impossible range) would result in equiv- 
alently high performance. This one regression function would also result in a nonran- 
dom pattern of residuals. A more accurate representation here would be to estimate two 
regression functions (i.e., splines or switching regressions, Quandt, 1972) indicated by 
the two connected lines. Here, the observations can be arranged by goal levels after 
which those from the easy to difficult range can be used to estimate the first regression 
line with highly positive slope, and the obs, ervations from the difficult through impos- 
sible range can be used to estimate the second line with near zero slope. Often times, 
plotting such data can help determine such points of inflection. 

In other applications, this plotting is nearly impossible to accomplish. For exam- 
ple, Figure 2 presents consumer derived utility for a hypothetical product as a function 
of price. Such a representation is quite common as a result of conjoint analysis studies 
(Green & Rao, 1971) which decompose overall preference or intention to buy judg- 
ments into part worth utilities for the specified attributes and their levels of the stim- 
ulus. Figure 2 depicts a common result where, for one group of consumers, higher 
utility corresponds to lower prices while the opposite is true for the other group (as 
shown by the two dashed lines). The former reflects traditional microeconomic views 
of household utility and negative price elasticity (Henderson & Quandt, 1982) while the 
latter group may react to price as an indicator of brand quality (Gabor & Granger, 1966; 
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FIGURE I. 
Nonlinear performance response. 

Sowter, Gabor, & Granger, 1971). The solid horizontal line indicates the one regression 
line estimated for the total sample, indicating the need for two regression lines here. In 
such analyses of preference or demand, it may be impossible to a priori group the 
consumers into these two groups who react quite differently to price. 

There are several other examples (e.g, splines in time series work, market seg- 
mentation studies, etc.) where such natural groupings of the observations arise which 
have substantially different regression functions. In many cases, it is extremely difficult 
or impossible to a priori sort out these observations/subjects into groups and clusters, 
especially in those situations involving several independent variables. This paper pre- 
sents a methodology that simultaneously estimates cluster membership and corre- 
sponding regression functions for a sample of observations/subjects. We first review 
related procedures. Next, the new methodology is presented with its simulated anneal- 
ing based algorithm. An extensive set of Monte Carlo analyses are presented which 
examine the performance of the algorithm. A consumer psychology application con- 
cerning consumer satisfaction determinants is presented next. Lastly, a discussion of 
future research areas is provided. 

2. Related Methods 

If there are sufficient replications per subject which would allow the estimation of 
the b's per subject, one could attempt to solve this clustering-regression problem via a 
traditional three-step procedure. In step one, individual level b 's  are estimated by 
subject. In step two, these b coefficients are submitted to a cluster analysis to form 



710 PSYCHOMETRIKA 

uulity 

0 

t ' • q  

. 

• ~..%. ~... 

• ~..~-.:... 
• • ~lllbo • • o  

• ~ .~ - . - - .  

o , °  ~ I P  • 

. ".,,,~.... 
• 

• . -  ~ . ' p . . - "  • 

• •" : " Z : "  " 

" ~ ' . K - , : ;  " , , . . ' ;  - 

. *  . , ~ IP ' •  • • t .  

• :  ..~'. . ' .  • . ' R .  ~ -•. 
. .  ~ , . "  . . ' -  , ~ . . .  

• - ' :~ ' . . ' ;  " " "'.N.~'.. 

. . ' .  

• " ' . ~ . . ' ~  • 
• ~ o  • • 

• o . 

• ~- .~.--.. 
. - , ~ o  o .  

• ~..~.:-.. 

• ~..'.~:-.. 

. ~ ' . ~  

P r i c e  
FIGURE 2, 

Utility funct ions  and price. 

homogeneous groups. In step three, according to the resulting partitions derived from 
the cluster analysis from the previous step, one can then estimate a separate regression 
function for each cluster or group. There are, of course, several problems with this 
approach. One is that the resulting partitions would likely differ depending upon the 
specific clustering algorithm utilized. A second major drawback is that the regression 
and clustering procedures typically optimize different criteria and may not be congru- 
ent. Finally, most studies do not collect replications by subject, making such individual 
level estimation impossible. 

DeSarbo, Carroll, Clark, and Green (1984) developed the SYNCLUS methodology 
that simultaneously solves for a non-overlapping clustering and a set of rescaling con- 
stants for the variables, all to optimize one common objective function. DeSarbo and 
Mahajan (1984) later extended this SYNCLUS methodology to accommodate con- 
straints,'different types of clustering schemes, and a general linear transformation of the 
variables. De Soete, DeSarbo, and Carroll (1985) have derived an optimal variable 
weighting scheme for hierarchical clustering where both variable weights and ultramet- 
ric tree are simultaneously estimated. Note, however, that none of these approaches 
are appropriate for a regression context with dependent and independent variables. 

Haggerty (1985) recently devised a methodology to improve the predictive accu- 
racy of regression based preference or conjoint analysis by grouping respondents with 
similar preferences. Assume that I subjects each evaluate L stimuli (e.g., brands or 
products), where these L stimuli are defined by a design matrix X. Let Y be the L x I 
matrix of responses (dependent variable) where each column of Y is the data for an 
individual respondent. Haggerty assumes that X and Y are column standardized to zero 
mean and unit standard deviation. To compute individual-level regressions on Y, the 
least squares estimates are still B = (X'X)-lX'Y. However, Haggerty attempts to 
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"improve" on these columns of B by weighting similar subjects together in some 
fashion. He attempts to find a transformation matrix A which transforms the responses 
via: 

Z = YA = YS(S'S)-1St, (5) 

where S is an I × K matrix (K = the number of factors or clusters), in order to maximize 
predictive accuracy which is defined as the average (over all subjects and validation 
trials) expected mean squared error (EMSE) between prediction and validation trial 
(i.e., from a holdout sample): 

Qs = E "~ ~ (Vim - ~'im) 2 
i = 1  =1 

(I - p2) j  tr (A) tr [(I - A)Y~-YT] 

= (! _ p2) + MI + m I  ' (6) 

where: 

Vim = subject i's m-th validation trial response, 
~'i = subject i's predicted value for the response on the m-th validation trial, 
/~r~ = the true proportion of variance accounted for by the regression in the 

population, 
Y'TYT/M = the matrix of true correlation between respondents over the M valida- 

tion trials. 

Assuming S'S = I, Haggerty (1986) estimates S* to minimize Qs as the first C* 
eigenvectors of the correlation matrix between subjects, where C* is the number of 
eigenvalues greater than 1/I(1 - P2)j/M. Hence, Haggerty's optimal weighting scheme 
reduces to a principal axis factor analysis of the correlation matrix of respondents. As 
such, one would rarely end up with an overlapping or nonoverlapping clustering 
scheme in S* unless explicit constraints were placed on the elements in S* which would 
result in a more complicated algorithm. In addition, there are the typical interpretive 
problems associated with nonunique solutions given the well-known rotational indeter- 
minacy of such factor solutions. Finally, the procedure has been tailored for conjoint 
analysis with replications per subject which are not typically collected in most regres- 
sion problems. Similar adaptations to conjoint analysis include Ogawa's (1987) logit 
approach and Kamakura's (1988) hierarchical clustering least-squares procedure. 

One of the two most successful treatments of the problem to date is the "cluster- 
wise regression" methodology due to Sp~ith (1979, 1981, 1982, 1985). He devised an 
exchange algorithm to form a partition of length K and corresponding sets of parame- 
ters bk such that the sum of the error sums of squares over all clusters is minimized: 

K 

Min F = ~] lIXkbk - ykII2. 
k = l  

(7) 

where 

X k = the observations of the vector of independent variables for the objects clas- 
sified in cluster k; 

yk = the observations of the dependent variable for the objects classified in cluster 
k. 
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Note, to guarantee the existence of a solution bk, it is required that the rank X k = J. A 
necessary condition for this is I k >- J ~ I >- KJ. This procedure simultaneously solves 
for the optimal feasible partition P(K, I) and regression weights per cluster bk that 
minimize (7). For the L 2 norm (e.g., the error sums of squares) in (7), Sp/ith (1982, 1985) 
has developed efficient up- and down-dating formulas for the solution of these regres- 
sion problems when an observation is added or removed utilizing QR-decompositions. 
This stepwise-optimal method works sequentially on the observations and is concep- 
tually similar to K-means (MacQueen, 1967). The procedure can be summarized as 
follows: 

1. Choose some initial partition P1 . . . . .  PK such that IPkl >-- J, and some starting 
observation; 

2. Set t = t + 1 and reset t = I if t > I. For i E Pj and Iejl > Ik(I  k > J), examine 
whether there are clusters Pk with k # j such that shifting observation i from Pj to Pk 
reduces the objective function, (7). If so, then choose Pr such that the reduction 
becomes maximal and redefine Pj:Pj - {i}, Pr = Pr U {i}. Otherwise return to Step 2. 

3. Repeat Step 2 as long as you get any reduction in the objective function, else 
stop. 

According to Sp~ith (1982), the final result depends on the initial partition, on the 
starting observation, and on the choice of I],  a minimum number of observations in 
each cluster. Because of severe problems with locally optimal solutions, Sp/ith recom- 
mends running multiple analyses for a prespecified K altering the initial starting parti- 
tion and several values for the starting observation and I].  (Sp~ith (1987) has since 
updated his clusterwise linear regression procedure given a "slight error" in the pre- 
vious version.) While Sp/ith's procedure renders a non-overlapping partitioning of the 
observations and simultaneous estimates of bk, it is somewhat limited in its use. In its 
present form, it cannot readily accommodate multivariate specifications in Y, that is, 
the collection and use of multiple dependent variables. It is unable to render overlap- 
ping clusters. It cannot handle replications per subject such as those found in conjoint 
analyses of preference. In its present form, it cannot accommodate user-specified con- 
straints on cluster membership such as those discussed in DeSarbo and Mahajan (1984). 

The other successful treatment of this problem is the conditional mixture, maxi- 
mum likelihood methodology recently proposed by DeSarbo and Cron (1988). The 
authors model the dependent variable, Yi, as a finite sum or mixture of conditional 
univariate normal densities: 

K 

2 bsD (8) Yi E Akfik(YilXo', o-k, 
k=l 

K 

Z Ak(27ro-2) -1/2 exp 
k = l  I - E xob k) 2] 

• J = |  

2o.2 
(9) 

where 

bjk = the value of the j-th regression coefficient for the k-th cluster; 
o -2 = the variance term for the k-th cluster; and 
Ak =the (unknown) mixture proportion where 0 -< A k -< 1 and Eff=lA k = 1. 
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Given a sample of I independent subjects or observations, K, y, and X, DeSarbo and 
Cron (1988) estimate A/,, °2 ,  and bjk that maximize the following log-likelihood expres- 
sion: 

1 K - ( Y i -  ~ xijbjk) 2 
j = l  

In L = _~ In ~ Ak(27ro-~) -1/2 exp 2o-~ ' 
I 1 k = l  

(10) 

using a modified EM-algorithm. This methodology produces a "fuzzy" clustering of the 
subjects/observations via application of Bayes' rule. While this approach displays con- 
siderable merit, especially given its performance in Monte Carlo experiments, it is 
limited in terms of being unable to accommodate multiple dependent measures, over- 
lapping clusters, user-imposed membership constraints, or multiple replications per 
subject. 

The goals of this research are to provide a flexible methodology for clusterwise 
regression which can simultaneously estimate regression parameters b k and a parti- 
tioning P(I, K) which accommodates: 

1. univariate or multivariate Y, 
2. overlapping or nonoverlapping clusters, 
3. replications per subject, 
4. user-specified constraints on cluster membership. 

3. Methodology 

The Model 
Let: 

s = l ,  
r = l ,  

i=1,  
j = l ,  
k = l ,  
/=1 ,  

, S subjects, 
, R replications per subject, 
, I total observations = SR, 
, J independent variables, 
, K prespecified number of clusters, 
, L dependent variables. 

The full general clusterwise-regression model can be written as: 

K J 

Yi' : E ~ aikxo'bjkt + ei,, 
k = l j = l  

(11) 

where: 

Yit = the i-th observation of the/oth dependent variable; 
x~/=the i-th observation of thej-th independent variable; 
bj~ = the value of the j-th regression coefficient for predicting the/-th dependent 

variable in the k-th cluster;0 

I I if observation i is assigned to cluster k, 
aik = else 

eil = error. 
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Given Y = ( ( Y / l ) ) ,  X = ( ( x t j ) )  , and K, the objective is to estimate A = ((aik)) and B = 
((bj~)) in order to minimize: 

I L 

* = Z E  
i=1  t = l  

K , 

Y i l -  E E aikX(i • , (12) 
k = l j = l  

subject to I k > J for all k, where 1 k is the number of observations assigned to cluster k, 
and subject to any user specified constraints concerning cluster membership (DeSarbo 
& Mahajan, 1984). Given the model in (11) and the objective function in (12), one can 
calculate a variance accounted for statistic for the total data set, as well as one for each 
dependent variable. (Given the form of (12), for multiple dependent variables, it is 
assumed that the dependent measures are comparably scaled.) Note, for L = I, R = 1, 
nonoverlapping clusters, and no constraints, (12) reduces to (7) in the sense of handling 
Sp~ith's (1985) model as a special case. 

The Algor i thm 

A generalized simulated annealing procedure is utilized in combination with mul- 
tiple regression to estimate aik and bj~ in (11) in order to either maximize total variance 
accounted for (E/G2), or minimize d9 in (12) or a bounded minimand (given possible 
scale differences in the measurement of multiple dependent variables, Y) Z = L - 
EIG?, where G 2 is defined as an r-square measure: 

( G~= 1 -~-. (-~i/_--;.-~j (13) 

where Pit = Ek~,jaikXijbj k and Y.I is the mean of the l-th dependent variable. The sim- 
ulated annealing procedure historically derives its name from the "annealing" or cool- 
ing process of heated metals in which many final crystalline configurations which cor- 
respond to different energy states are possible depending upon the rate of the associated 
cooling process. According to Kirkpatrick, Gelatt, and Vecchi (1983), this procedure 
can be traced to Metropolis who originally attempted to simulate the behavior of an 
ensemble of atoms in equilibrium at a given temperature. Metropolis constructed a 
mathematical model of the behavior of such a system that contained a method for 
minimizing the total energy of the system. 

It is a fact that the atoms of a molten metal when cooled to a freezing temperature 
will tend to assume relative positions in a lattice in such a way as to minimize the 
potential energy of their mutual forces. Because of the huge number of atoms and 
resulting possible lattice arrangements (a combinatorial problem), the final derived state 
will typically correspond to only a local optimum and not a global one. The resulting 
solidified metal can be reheated and cooled again slowly with the hope that it will then 
move to a lower state of energy. This metallurgic process is called annealing and the 
mathematical modeling of this process is called simulated annealing. 

Computationally, simulated annealing has been devised as a general optimization 
methodology to find the extremum of a function that may have several local extrema 
and may not be regular (continuous or smooth). The technique is based on a controlled 
random search that samples the objective function in a feasible region of the parameter 
space. In our clusterwise-regression methodology, simulated annealing is utilized to 
estimate aik. At each accepted step, it is followed by multiple regression to estimate bj~. 
According to Kirkpatrick, Gelatt, and Vechhi (1983), Levy and Montalvo (1985), 
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Lundy (1986), Bohachevsky, Johnson, and Stein (1986), and van Laarhoven and Aarts 
(1987), the traditional simulated annealing procedure can be summarized (for a mini- 
mization problem) in general as follows (see Bohachevsky, et al.). 

Starting with an initial feasible solution selected randomly, the corresponding 
value of the objective function, Z0, is calculated. Next, a random point is selected on 
the surface of the unit m-dimensional hypersphere, where m is the dimensionality of the 
optimization problem. This specifies a random direction in which a step of size A is 
taken. Now, the new value of the objective function, Z1, is calculated and this new 
solution is accepted with probability p where: 

1 if AZ=  Z1 - Z0--< 0 

P = exp ( - aAZ)  if ~uT,>0, 
(14) 

where a > 0. This differentiates simulated annealing from most other combinatorial 
optimization procedures. Here, a detrimental step may be accepted according to some 
probability distribution. A random number/3 is generated from a uniform distribution, 
t3(0, 1), and compared to exp ( -aAZ) .  If/3 < exp ( -aAZ) ,  then the step is accepted; 
else the step is rejected and a move in a different random direction is attempted. Thus, 
the probability of accepting a worse solution is inversely related to the amount of the 
increase in the objective function. Note that the expression for the conditional accep- 
tance probability p is motivated by the physical process modeled by simulated anneal- 
ing. In statistical mechanics, the probability that the system will move from energy 
state E 1 to energy state E2 with E2 - E1 = AE > 0 is exp (-AE/yT), where 3' is the 
Boltzmann constant and T is the absolute temperature. Thus, a = 1/3"T, and the lower 
the temperature, the smaller the probability of movement to a higher energy state. This 
nonzero probability of moving away from potential locally optimal solutions differen- 
tiates the simulated annealing procedure from most other combinatorial optimization 
methods and has been cited as the primary reason for the "success"  in the overall 
performance of this procedure. 

Bohachevsky, Johnson, and Stein (1986) have recently examined the performance 
of this simulated annealing algorithm in the solution of continuous statistical-related 
optimization problems. They found that the random solution path wanders excessively 
in and out of various extremes and does not provide a logical termination criterion. The 
authors state that because of this undesirable property, the method tends to require an 
excessively large number of steps to find a satisfactory solution. To overcome these 
numerical problems, Bohachevsky, Johnson, and Stein have extended simulated an- 
nealing by making the probability of accepting a detrimental step tend to zero as the 
random walk approaches the extremum. They found that this modification leads to a 
solution path that more often terminates at the global extremum and requires fewer 
steps than the standard annealing method. Our experimentation with a related modifi- 
cation and the traditional approach with clusterwise regression also bears this out, and 
it is our related modification described below which we adopt for use. 

The specific modified combinatorial simulated annealing and OLS procedure uti- 
lized for our generalized clusterwise regression problem is summarized as follows: 

1. K, Y, X, S, R, constraints, and type of clustering is specified as input (desired 
constraints are embedded in a subroutine). 

2. Depending upon K the type of clustering selected, and type of constraints, a 
matrix of feasible binary row vectors is created in V which render feasible cluster 
memberships for any subject. Thus, V contains the complete set of feasible binary row 
vectors, indicating cluster membership, over which the simulated annealing procedure 
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will search. V will contain D rows and K columns where D will depend on K, the type 
of clustering, and the constraints desired. 

3. An initial solution A ° is randomly generated from V and the associated b ° are 
estimated via OLS. The objective function Z 0 is calculated. Set t = 0. 

4. Now, r rows (subjects) in A ° are randomly altered to create A I. A 1 is again 
checked for feasibility in terms of satisfying any set of user specified constraints. If not 
feasible, a different A l is generated until feasible. If feasible, b2 is calculated via OLS 
and so is Z1. 

5. If Z 1 - Z0, and A ° = A 1 and Z 0 = Z1, return to Step 4. 
6. If  Z1 > Z0, calculate p = exp ( -a&Z) where a = 1 + (7 × t), with 7 = 0.95 

(here, 3, controls the speed or "cooling schedule" at which the annealing process 
approaches the final solution). Generate a uniform 0 - 1 variate Ix; if tx - p, set t = t 
+ 1; if t < maxit, go to Step 4; else stop. If Ix < p, set A ° = A 1, Z 0 = Z 1 , and go to 
Step 4. 

Program Options 
A number of options exist for preprocessing data, selecting different model spec- 

ifications, and specifying values for the algorithm's operation. Concerning data prepro- 
cessing, program options currently exist to center, normalize, or standardize Y and/or 
X (rows or columns). In addition, an option exists to initially orthogonalize X via 
principal components and use the derived principal component scores as independent 
variables. With respect to model specification, the user can fit either overlapping or 
nonoverlapping clusters, with or without (prespecified) constraints (DeSarbo & Ma- 
hajan, 1984). In addition, more than one dependent variable can be used, as well as 
having replications per subject/observation. Finally, concerning algorithm control pa- 
rameters, the user can specify maxit, y, the number of rows to be perturbed in A, and 
the number of "cooking iterations' ' -- the maximum number of times the procedure will 
accept an inferior solution. An option for combinatorial polishing is provided where 
singleton changes are allowed to attempt to improve the loss function using the Lin and 
Kernighan (1973) procedure. 

While theoretical results for simulated annealing have been devised concerning 
convergence to global versus local optima given 3' and maxit (Gidas, 1985; Mitra, 
Romeo, and Sangiovanni-Vincentelli, in press), the computational effort necessary to 
guarantee these results tends to be considerable from a practical standpoint. This is 
particularly relevant given the recent experience of De Soete, Hubert, and Arabie 
(1988a, I988b) with simulated annealing in solving combinatorial data analysis problems 
in unidimensional seriation and Dubes and Klein (1987) regarding its use in data anal- 
ysis. (Also, see Aarts & Korst, 1989; Davis, 1987; Goldberg, 1989; Johnson, 1989; and 
van Laarhoven & Aarts, 1987). There is, therefore, a considerable need to investigate 
these properties on real and/or synthetic data. 

4. Monte Carlo Analyses 

Simulated Annealing Methodology Tests 
In order to rigorously examine the performance of this simulated annealing based 

methodology, a Monte Carlo analysis was designed to analyze a number of syntheti- 
cally constructed data sets as a variety of data, error, and model factors were experi- 
mentally manipulated. DeSarbo (1982), DeSarbo and Carroll (1985), and De Soete, 
DeSarbo, Carroll, and Furnas (1984) have utilized such an approach in testing the 
performance of various clustering and multidmensional scaling algorithms. Table 1 
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presents a list of some twelve factors and the associated levels tested. As shown, these 
twelve factors span the areas of data size, type of clustering, single or multiple depen- 
dent variables, replications, error in the data, as well as a number of algorithm control 
parameters which may impact the performance of the simulated annealing methodol- 
ogy. As in the previous psychometric and classification literature cited above where 
such studies have been historically performed, an asymmetric fractional factorial de- 
sign (Addelman, t962) is devised for main effects estimation. Table 2 presents the 
specific 3527 design and the specific trials used to create the synthetic data and algo- 
rithm parameter settings in this Monte Carlo analysis. The four dependent measures 
collected were: 

I. the root mean square (RMS) between Yil and Pit = ZkEjaikxijb~; 
2. the RMS between B and I~ after appropriate permutation; 
3. the simple matching coefficient between A and A after appropriate permutation; 
4. elapsed CPU time measured in minutes on a Vax 8550. 

These measures deal with the major areas of data recovery, parameter recovery, and 
computational effort. 

Tables 3 through 6 present the four ANOVAs performed for the various dependent 
measures. Table 3 displays the table for the first dependent variable: the root mean 
square (RMS) between Y and ~'. As can be seen, no main effect is significant in 
predicting this RMS dependent variable, indicating somewhat consistent fitting over 
different data types and model specifications. Of particular surprise here is the fact that 
the error factor (X 7) is not significant. While inspection of the cell means indicates 
higher RMS values for higher error levels, the differences are not significant. 

Table 4 presents the ANOVA results on the A recovery measure. Here, the num- 
ber of replications (Xs), combinatorial polishing (X12), number of rows (X1), and value 
of 3' (X8) are significant factors. Upon inspection of the cell means for these factors, 
recovery of the true A matrix of cluster membership deteriorates as: there are fewer 
replications per subject, there is no combinatorial polishing requested, there are more 
subjects or rows in the data, and smaller values of 3t are specified in the simulated 
annealing process. (Note, similar results were found using logit and arcsin transforma- 
tions on this dependent measure.) 

Table 5 presents the ANOVA results for the RMS dependent measure between B 
and 13. The only significant factor present is the number of clusters (X3). Upon inspec- 
tion of the cell means, it appears that B recovery is somewhat more difficult for larger 
cluster specifications, although this result is significant at only p -< .10. 

Finally, Table 6 presents the ANOVA results concerning the CPU time dependent 
measure. Here, the number of clusters (X3), number of replications (Xs), 3' values (X8), 
and the number of rows altered in the simulated annealing process (X9) are significant 
factors. From a cursory examination of the cell means, it appears that CPU time 
significantly increases when there are larger cluster specifications, larger number of 
replications per subject are present, 3' is set at .95, and only one row in A is altered at 
a time. 

While these Monte Carlo results look promising, a number of legitimate concerns 
must be raised. Given the complexity of the design with so many different factors, a full 
factorial design with replications, while more rigorous, was computationally impossi- 
ble. There may be significant interactions present that we cannot measure with a main 
effect design. The next Monte Carlo analysis examines a smaller full factorial design in 
comparing the Sp~ith (1985, 1987) procedure with our simulated annealing methodology 
for a restricted class of models. 



718 PSYCHOMETRIKA 

TABLE i 

Experimental Design Factors for First Monte Carlo Analysis 

X I • 

X 2 • 

X 3 • 

X 4 • 

X 5 • 

X 6 • 

X 7 . 

Factor 

No. of Rows 

No. of Independent Variables 

Levels Codes 

I - 40 0 

I = 65 I 

J= 3 0 

J=6 i 

No. of Clusters K = 2 0 

K = 4 I 

Clustering Type Nonoverlapping 0 

Overlapping i 

No. of Replications 

No. of Dependent Variables 

Error in Data 

(v = the variance of Yil ) 

R= i 0 

R= 3 i 

L- I 0 
L- 2 i 

None 0 
N(O, .3v) i 
N(O, .6v) 2 

X 8 • 7 .35 0 
.65 I 

.95 2 

X 9. No. of Rows Altered i 0 
2 I 
3 2 

XIO. No. of Cooking Iterations 

Xll. No. of Major Iterations 

I00 0 
200 i 
300 2 

I00 0 
200 i 
300 2 

X12. Combinatorial Polishing No 0 
Yes I 
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Trial 

ID,dependent Factor: 

X I X 2 X 3 X 4 X 5 X 6 X 7 X 8 X 9 Xlo Xll X12 

I 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 1 1 2 I 2 I 2 0 

3 0 0 0 0 0 0 1 2 I 2 1 i 

4 0 1 1 0 0 0 i I i 2 2 0 

5 0 1 1 0 1 1 0 2 0 0 1 0 

6 0 1 i 0 0 0 2 0 2 1 0 1 

7 0 0 0 i 0 0 2 2 2 i i 0 

8 0 0 0 I I i I 0 i 2 0 0 

9 0 0 0 i 0 0 0 i 0 0 2 i 

i0 I 0 I i 0 i 0 i I i i I 

ii i 0 i I i 0 2 2 0 2 0 0 

12 i 0 i I 0 0 i 0 2 0 2 0 

13 i i 0 0 0 I i 2 2 0 0 i 

14 I i 0 0 i 0 0 0 i I 2 0 

15 i I 0 0 0 0 2 I 0 2 i 0 

16 i 0 0 0 0 i 2 0 0 2 2 i 

17 i 0 0 0 I 0 I I 2 0 i 0 

18 I 0 0 0 0 0 0 2 i I 0 0 

19 0 0 0 0 0 0 0 2 2 2 2 0 

20 0 0 0 0 i 0 2 0 i 0 I i 

21 0 0 0 0 0 I i i 0 i 0 0 

22 0 i 0 I 0 0 i 0 0 i i 0 

23 0 I 0 i I 0 0 I 2 2 0 i 

24 0 I 0 I 0 I 2 2 I 0 2 0 

25 0 0 I 0 0 0 2 I I 0 0 0 

26 0 0 i 0 I 0 i 2 0 I 2 I 

27 0 0 I 0 0 I 0 0 2 2 i 0 

Comparison Tests with Spath's Methodology 

We performed comparison tests with the single dependent variable, only one rep- 
lication, no constraints, and the nonoverlapping cluster option of  our methodology with 
that of  Sp/ith's (1987). Table 7 presents the list of factors used in the full factorial 
experiment with two replications per trial (i.e., 162 runs were performed with each 
methodology). As before, the specific trial designated the size of the synthetic data set, 
as well as the amount of error to be introduced. Each of the 162 data sets was then 
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TABLE 3 

ANOVA Results on Y Recovery 

Source S_~S D_EF M__SS 

X I .048 i .048 

X 2 .040 i .040 

X 3 .010 i .010 

X 4 .005 I .005 

X 5 .009 I .009 

X 6 .070 I .070 

X 7 .096 2 .048 

X 8 .115 2 .057 

X 9 .145 2 .072 

XI0 .020 2 .010 

XII .001 2 .000 

XI2 .002 I .002 

Explained: .571 17 

Unexplained: .306 9 

Total: .877 26 

r-square = 0.652 

.034 

.034 

F 

1.41 

1 18 

0 29 

0 15 

0 26 

2 06 

1 18 

1 68 

2 12 

0 29 

0 02 

0 O6 

1.00 

* p S .I0 
** p ~ .05 

*** p S .01 

analyzed with the two methodologies. The dependent measures collected were the 
same four dependent measures collected in the first Monte Carlo analysis previously 
reported: RMS (Y, Y), RMS (B, II), simple matching coetficient of  A and A, and CPU 
time. Table 8 presents the means and standard deviations for these four dependent 
measures across all 162 trials. As can be seen, the performance of  both procedures are 
nearly identical for the first three dependent measures involving data and parameter 
recovery. The real significant difference occurs in CPU time where the Sp/ith procedure 
clearly dominates the simulated annealing approach. Thus, it appears that the simulated 
annealing methodology will perform nearly the same as Sp/ith's for the specialized case 
of  a single dependent variable with nonoverlapping clusters, no constraints, and no 
replications with respect to data and parameter recovery, but with much higher com- 
putational effort (a finding very consistent with the work of De Soete, et al., 1987; 
Dubes & Klein (1987); and van Laarhoven & Aarts, 1987). 

Tables 9 through 12 present the ANOVAs for each dependent measure on the 
difference (simulated annealing--Sp~ith, 1987, procedure) of the results. Table 9 dis- 
plays the full factorial ANOVA results for the RMS (¥, ~') differences. As seen, there 
are a number of significant higher order interactions which account for differences in 
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Source S__SS D_EF M_SS E 

X I .038 i .038 4.07* 

X 2 .000 I .000 0.00 

X 3 .019 I .019 2.04 

X 4 .014 I .014 1.50 

X 5 .094 i .094 10.07"** 

X 6 .000 I .000 0.00 

X 7 .015 2 .008 0 . 8 6  

X 8 .065 2 .032 3 . 4 3 *  

X 9 .054  2 .027 2 . 8 9  

Xlo .048 2 .024 2.57 

XII .008 2 .004 0.43 

XI2 .104 I ,104 11.14,** 

Explained: .464 17 .027 

Unexplained: .084 9 .009 

Total: .548 26 

r-square = 0.847 

2.99** 

*p -< .I0 
** p -< .05 

*** p -< ,01 

the performance o f  these two methodologies .  Based upon an inspect ion o f  the cross  
classified cell means ,  one  observes  that the simulated annealing m e t h o d o l o g y  outper- 
forms Sp~ith's procedure (mean = - 0 . 4 9 )  where there is no  error (X4 = 1), I = 35 
(X1 = 1), and J = 6 (X 2 = 3), whereas  the reverse  holds true (mean = 1.40) for no  error 
(X4 = 1), I = 100 (X 1 = 3), and J = 6 (X 2 = 3). Similarly, the simulated annealing 
procedure outperforms Sp~ith's procedure in the no error case  (X4 = 1) with K = 2 
clusters (X 3 = 1), and J = 4 or 6 (X2 = 2, 3) (means = - . 3 9 ,  - . 4 5 ) .  The reverse  is true 
for X4 = 1, X2 = 1, X3 = 2 or 3 (i.e.,  K = 3 or 4 clusters) (means = .77, .89). 

Table  10 displays the A N O V A  results on the differences in the simple matching 
coefficient for (A, 3,) recovery .  While no interactions appear to be significant at p -< .05, 
there are two  significant main effects involving I and K. U p o n  inspect ion o f  the cell 
means ,  it appears that the s imulated annealing m e t h o d o l o g y  outperforms the Sp~ith 
procedure  here w h e n  I = 35 (X 1 = 1) (mean = 0.04) and w h e n  K = 2 (X 3 = I, mean  = 
0.04),  where  the reverse  is true for I = 100 (Xl = 3, mean = - 0 . 0 2 )  and K = 4 (X 3 = 
3, mean = - 0 . 0 2 ) ,  although these differences are indeed small. 

Table 11 presents  the A N O V A  results on the R M S  (B, 1~) difference. Here ,  there 
is one  significant main effect, t w o - w a y  interaction, three-way interaction, and four-way 
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TABLE 5 

ANOVA Results on B Recovery 

Source 

X I 

X 2 

X 3 

X 4 

X 5 

X 6 

X 7 

X 8 

X 9 

Xl0 

Xll 

XI2 

s_s 

12.498 

37.603 

53.309 

4.937 

16 843 

8 402 

42 854 

28 469 

21 880 

33 320 

33.948 

21.829 

D_!F M_!S E 

I 12.498 0.96 

I 37.603 2.88 

i 53. 309 4.08* 

i 4.937 0.38 

I 16. 843 i. 29 

i 8. 402 O. 64 

2 21.427 1.64 

2 14. 234 i. 09 

2 10.940 0.84 

2 16.660 1.28 

2 16. 974 i. 30 

i 21.829 1.66 

Explained: 317.04 17 18.65 

Unexplained: 117.53 9 13.06 

Total: 424.57 26 

r-square = 0.731 

i .428 

* p-< .i0 
** p _< .05 

*** p -< .01 

i n t e r ac t i on ,  all  o f  w h i c h  i nvo lve  K (X3). U p o n  i n spe c t i on  o f  the  a s s o c i a t e d  cel l  m e a n s ,  
the  s i m u l a t e d  annea l ing  p r o c e d u r e  o u t p e r f o r m s  the  Sp~ith m e t h o d o l o g y  w h e n :  

1. I = 35 (X 1 = 1), J = 6 (X 2 = 3), K = 3 (X 3 = 2), and  no  e r r o r  ( S  4 = 1),  

m e a n  = - 2.25); 
2. 1 = 65 (X 1 = 2), J = 6 (X 2 = 3), K = 4 (X 3 = 2), and  the  low e r r o r  c o n d i t i o n  

(X 4 = 2), m e a n  = - 2 . 1 9 ) ;  
3. I = 100 (X1 = 3), J = 6 (X2 = 3), K = 4 (X3 = 3), and  the  high e r r o r  c o n d i t i o n  

(X4 = 3, m e a n  = - 2 . 8 0 ) .  

The  Sp~ith p r o c e d u r e  s ignif icant ly  o u t p e r f o r m s  the  s i m u l a t e d  annea l ing  m e t h o d o l o g y  

when :  

1. I = 35 (X 1 = 1), J = 6 (X 2 = 3), K = 4 (X 3 = 3), and  no  e r r o r  ( S  4 = I ,  

m e a n  = 3.65); 
2. / =  3 5 ( X  1 = 1 ) , J = 4 o r 6 ( X  2 = 2 , 3 ) , K =  4 ( X 3  = 4), and  the  high e r r o r  

(X4 = 3) cond i t i on  ( m e a n s  = 2.31 and  3.05). 
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ANOVA Results on CPU Time 

Source 

X I 

X 2 

X 3 

X 4 

X 5 

X 6 

X7 

X 8 

X 9 

Xl0 

Xll 

X12 

s_zs 
1987.203 

3183.155 

15128.179 

1372. 749 

10415. 667 

2 5 . 0 0 0  

1663 531 

9427 208 

11479 952 

4015 263 

2077 243 

653 941 

D F MS F 
i 1987. 203 i. 65 

i 3183.155 2.64 

i 15128. 179 12.53*** 

I 1372. 749 i. 14 

i 10415. 667 8.63*** 

1 2 5 . 0 0 0  0 . 0 2  

2 8 3 1 . 7 6 5  0 . 6 9  

2 4713 .  604 3 . 9 1 -  

2 5739. 976 4 .75*  

2 2007. 632 1.66 

2 1038. 622 0.86 

i 653. 941 0.54 

Explained: 63094.700 17 3711.45 

Unexplained: 10866.223 9 1207.36 

Total: 73960.923 26 

r-square = 0.853 

3.074** 

* p _< .i0 
** p _< .05 

*** p _< .01 

Finally, Table 12 presents the ANOVA results on the CPU difference measure. 
Note, how all but two interactions are significant. Upon inspecting the complete set of 
cross classified cell means, in no cell did the simulated annealing procedure run quicker 
than the Sp~ith methodology, although the difference was smaller for smaller data sets. 

In conclusion, while there are some scenarios which appear to favor the use of one 
of the two procedures, there do not appear to be systematic differences found with 
respect to the first three performance measures. The real, clear distinction occurs with 
respect to computational efficiency where the Sp~tth procedure clearly outperforms this 
simulated annealing approach. However, as previously discussed, the simulated an- 
nealing methodology can accommodate more general clusterwise linear regression for- 
mulations that the present Sp~ith (1987) methodology cannot handle involving: 

1. multiple dependent variables, 
2. constraints on cluster membership, 
3. replications by subject (as in conjoint analyses), 
4. overlapping and nonoverlapping clusters. 

The next section presents an application involving many of these commonplace spec- 
ifications. 
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TABLE 7 

Second Monte Carlo Design Factors 

Independent Factors 

Code 

X I No. of Subjects I = 35 X I = i 

I = 65 X 2 = 2 

I = I00 X 3 = 3 

X 2 No. of Independent Variables J= 2 x 2 = I 

J = 4 x 2 = 2 

J = 6 x 2 = 3 

x 3 No. of Clusters K = 2 X 3 = I 

K = 3 X 3 = 2 

K = 4 X 3 = 3 

X 4 Error None X 4 = I 

N(0, .3v) X 4 = 2 

N(0, .6v) X 4 = 3 

5. Application 

Oliver and DeSarbo (1988) and DeSarbo, Oliver, and De Soete (1986) have recently 
performed consumer psychology-related experimental studies to quantify the impact of 
five hypothesized determinants of consumer satisfaction: 

1. Expectations--prepurchase beliefs about how the product/service will perform; 
2. Performance---how the purchased product/service actually performs; 
3. Disconfirmation--whether the purchased product/service performed better 

than expected (positive disconfirmation), the same as expected (zero disconfirmation), 
or worse than expected (negative disconfirmation; see Oliver, 1980); 

TABLE 8 

Univariate Results of Second Monte Carlo Analysis 

Dependent Measure: 

1. RMS (Y, ~) 
^ 

2. Match (4, 4) 

3. ~s (B, ~) 

4. CPU time 

Mean S.D. 

Sim.An. Spath Sim.An. Sp~th 

1.327 1.301 1.200 1.097 

0.798 0.766 0.147 0.141 

0.882 0.863 1.465 1.209 

1.048 0.053 1.163 0.039 
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Source of Variation 
Sum of Mean 

Squares D F Square 

Main Effects 2.358 8 

X I .899 2 
X 2 .818 2 
X 3 .308 2 
X 4 .334 2 

2-way Interactions 12.792 24 

X I X 2 2 . 5 5 8  4 
X 1 X 3 1.906 4 
X 1 X 4 1,469 4 
X 2 X 3 .648 4 
X 2 X 4 3.047 4 
X 3 X 4 3,164 4 

3-way Interactions 17,106 32 

X 1 X 2 X 3 2.693 8 
X 1 X 2 X 4 7.614 8 
X I X 3 X 4 2.238 8 
X 2 X 3 X 4 4.561 8 

4-way Interactions 2,991 16 

X 1 X 2 X 3 X 4 2.991 16 

.295 1.280 

.449 1.951 

.409 1.776 

.154 .669 

.167 ,725 

.533 2.315"** 
639 2.778** 
476 2.069* 
367 1.595 
162 .704 
762 3,309** 
791 3,436** 

.535 2.322*** 

.337 1.462 

.952 4.134"** 

.280 1,215 

.570 2,476** 

.187 .812 

.187 .812 

Explained 35.247 80 .441 

Residual 18.648 81 .230 

Total 53.895 161 .335 

1.914"** 

* p-< .i0 
** p _< .05 

*** p -< .01 

4. Attribution--whether the outcome of the purchase, construed as either a suc- 
cess or failure, is attributed to oneself or to some external agent; 

5. Inequity--how one party's outcomes in an exchange compare to those received 
by the other party. 

In the former study, performance was varied while, in the latter, it was held constant. 
We will examine an unpublished third study where performance was varied as an 
independent factor and disconfirmation was tested at all three levels. In the first study, 
disconfirmation was examined at only two levels (positive vs. negative). 

In these studies, the authors show that higher levels of consumer satisfaction are 
typically associated with high expectations, high performance, positive disconfirmation 
(product performs better than expected), internal (self) attribution, and "favorable 
inequity" (lower outcome ratio for the other party). In order to quantify these effects, 
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TABLE I0 

^ 

ANOVA Results on RMS (A, A) Difference 

Source of Variation 
Sum of Mean 

Squares D_~F Square F 

Main Effects .246 8 .031 2.101"* 
X I .102 2 .051 3.491"* 
X 2 .025 2 .013 .866 
X 3 .089 2 .044 3.025* 
X 4 .030 2 .015 1.023 

2-way Interactions .530 24 .022 1.509" 
X I X 2 .109 4 .027 1.855 
X I X 3 .096 4 .024 1,631 
X 1 X 4 .091 4 .023 1,547 
X 2 X 3 .084 4 .021 1.431 
X 2 X 4 .073 4 .018 1.251 
X 3 X 4 .078 4 .020 1.338 

3-way Interactions .617 32 .019 1.317 
X 1 X 2 X 3 .121 8 ,015 1.036 
X 1 X 2 X 4 ,087 8 ,011 .742 
X I X 3 X 4 .192 8 .024 1.638 
X 2 X 3 X 4 .217 8 .027 1.853" 

4-way Interactions .039 16 .002 .166 

X I X 2 X 3 X 4 .039 16 .002 .166 

Explained 1.433 80 .018 

Residual 1.187 81 .015 

Total 2.620 161 .016 

1.223 

* p_< .i0 
** p -< .05 

*** p _< .01 

the authors devised simulated stock market trading scenarios and successfully embod- 
ied these interrelated constructs via an experimental design. A stock market transaction 
was selected because it contained naturally all of the five factors listed above. These 
were expectations for the stock's performance, the ability to make the investment 
decision personally (internal attribution) or to rely on one's broker (external attribu- 
tion), a performance outcome easily compared to expectations (disconfirmation), and a 
comparison of the investor's outcome (gain) to that of the broker (the commission). 

The present example replicates the Oliver and DeSarbo (1988) and DeSarbo, Oliver 
and De Soete (1986) studies with modifications as noted. The basic design, shown in 
Table 13, consists of eight simulated stock market scenarios presented to subjects in 
paired comparison format using main effects only estimation. The main effect design 
was used to reduce the number of pairings and, hence, respondent fatigue. Further 
justification is provided in Oliver and DeSarbo where a full factorial interaction design 
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ANOVA Results on RMS (B, ~) Difference 

Source of Variation 

Main Effects 

X I 
X 2 
X3 
X 4 

2-way Interactions 

X I X 2 
X I X 3 
X I X 4 
X 2 X 3 
X 2 X 4 
X3 X 4 

3-way Interactions 

XI X 2 X 3 
X I X 2 X 4 
X I X 3 X 4 
X 2 X 3 X 4 

4-way Interactions 

Xl x 2 x3 x4 

Sum of Mean 
Squares D F Square 

11.306 8 1.413 1.393 
3.764 2 1.882 1.855 
.797 2 .399 .393 

6.610 2 3.305 3.258** 
.135 2 .068 .067 

37.185 24 1.54'9 1.527" 
4.011 4 1.003 .989 

18.012 4 4.503 6.439*** 
3.854 4 .963 .950 
6.638 4 1.660 1.636 
4.364 4 1.091 1.076 
.306 4 .076 .075 

41.493 32 1.297 1.278 
19.373 8 2.422 2.387** 
4.430 8 .554 .546 
8.687 8 1.086 1.070 
9.003 8 1.125 1.109 

31.195 16 1.950 1.922"* 
31.195 16 1.950 1.922"* 

Explained 

Residual 

Total 

121.179 80 1.515 

82.164 81 1.014 

203.343 161 1.263 

i. 493** 

* p_< .i0 
** p _< .05 

*** p _< .01 

was tested. No significant disordinal (crossover) interactions were found suggesting 
additive processing of the experimental factors. The orthogonal array used for the main 
effects presentation is from Addelman (1962). 

Details of the design scenarios are as follows. The attribution dimension was 
manipulated by suggesting to the subject that the decision to buy the stock was either 
his/her decision (internal attribution) or was that of a broker (external attribution). For 
the expectation treatment, the stock was predicted either to exceed the Standard and 
Poor's 500 index by 5% in six months ("high" expectations) or would just match the 
overall market in this time period (" low" expectations). Performance was manipulated 
by describing the stock as having risen 6% (regardless of the market's performance) in 
six months ("high" performance) or as having risen only half that amount (" low" 
performance). Disconfirmation was manipulated relative to the expectation treatment. 
For positive disconfirmation, the stock was described as exceeding the expectation 
treatment level by 5% (10% above the market for "high" expectations, 5% above for 
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TABLE 12 

ANOVA Results on CPU Difference 

Source of Variation 
Sum of Mean 

Squares D F Square 

Main Effects 114.735 8 14.342 
X I 55.478 2 27.739 
X 2 25.226 2 12.613 
X 3 32.486 2 16.243 
X 4 1.545 2 .773 

2-way Interactions 48.220 24 2.009 
X I X 2 14.736 4 3.684 
X 1 X 3 21.277 4 5,319 
X 1 X 4 3.154 4 .789 
X 2 X 3 5.419 4 1.355 
X 2 X 4 3.395 4 .849 
X 3 X 4 .240 4 .060 

3-way Interactions 21.507 32 .672 
X I X 2 X 3 8.421 8 1.053 
X I X 2 X 4 5.350 8 .669 
X I X 3 X 4 1.530 8 .191 
X 2 X 3 X 4 6.206 8 .776 

4-way Interactions 10.113 16 .632 

X I X 2 X 3 X 4 10.113 16 .632 

88.947*** 
172.033"** 
78.224*** 

100.738"** 
4.792** 

12.461"** 
22.848*** 
32.989*** 
4.891"** 
8.402*** 
5.264*** 

.371 

4.168-** 
6.528*** 
4.148.** 
1.186 
4.811-** 

3.920*** 
3.920*** 

Explained 194.575 80 2.432 

Residual 13.061 81 .161 

Total 207.636 161 1.290 

15.084"** 

*p_< .I0 
** p _< .05 

*** p -< .01 

"low" expectations); for negative disconfirmation, the stock was described as falling 
short of the expectation treatment by 5%; and for zero disconfirmation, the stock was 
described as matching expectations whether they were "high" or "low." Finally, for 
favorable inequity, the investor's commission structure was described so that the actual 
monetary outcome net of commissions was 20% above the broker's two-way (purchase, 
sale) commission while, for unfavorable inequity, the broker's commission exceeded 
the investor's gain by 20%. 

Business school students at a large northeastern United States university with 
stock market experience were recruited to participate in a study of responses to market 
transaction outcomes. Thirty subjects, including 20 males and 10 females, were pre- 
sented with the 28 pairs of the eight scenarios in random order. After reading and 
comparing the two scenarios, subjects indicated which one was "most satisfying to 
yOU." 

Utilizing the procedure discussed by Carroll (1972), the resulting 30 × 8 × 8 array 
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Consumer Satisfaction Study - The Data 

Trial Attribution 

Design Matrix 

Construct: 

Expectation Disconfirmation Performance Inequity 

External 
Internal 
External 
Internal 
External 
Internal 
External 
Internal 

Low None Low 
High None High 
Low Positive High 
High Positive Low 
High Negative Low 
Low Negative High 
High Positive High 
Low Positive Low 

Unfavorable 
Favorable 
Favorable 
Unfavorable 
Favorable 
Unfavorable 
Unfavorable 
Favorable 

Subject : 

Satisfaction Dominance Scores 

Trial: 

1 2 3 4 5 6 7 8 

1 -1 7 1 -7 -5 -3 5 3 
2 -3 7 1 -7 -5 -1 5 3 
3 -1 7 1 -5 -7 -3 5 3 

-3 3 7 -1 -3 -1  5 -7 
S -3 7 1 5 -3 -7 -3 3 
6 -5 7 -3 3 -7 1 1 3 
7 -5 3 1 7 -5 -5 1 3 

8 -5 5 -1 1 -1 -3 I 3 
g -I 5 1 S -5 -5 -3 3 

10 -3  7 3 -3 -7 3 1 -1 
11 -7 5 -i -1 -3 1 5 1 

12 -3 7 I S -7 1 -5 1 
13 -3 7 1 3 -1 -7 -5 5 

14 -5 1 3 1 -7 3 7 -3 

15 -3 3 -I 3 -7 1 7 -3 
16 -3 1 1 -1 -5 -1 5 3 
17 -5 3 -1 3 -7 l - t  7 
18 -5 7 3 1 -7 1 1 -1 
19 -3 3 5 -1 -7 1 3 "1 
20 -7 3 3 7 -.5 -1 "I I 

21 -5 5 3 1 -7 3 3 -3 
22 -5 7 3 -3 3 -7 1 1 
23 -5 7 1 -1 -5 1 5 -3 
24 -5 5 5 -5 -3 1 3 -I 

25 -5 7 -3 5 -7 3 "i 1 
2:5 -7 3 -1 5 -5 1 1 3 
27 -5 5 1 3 -7 -I 3 1 

28 -3 5 5 -3 -3 1 5 -7 
29 -3 7 5 -3 -S -5  3 1 
30 -3 7 3 -1 -5 -7 3 3 

of paired comparison judgments was converted into a 30 × 8 matrix of dominance 
judgments which denote the number of times a scenario was selected over others 
(positive) or others were selected over it (negative). The matrix of integer dominance 
counts is shown at the bottom of Table 13. Treating the experimental design (converted 
to dummy variables) as the design matrix of independent variables and these dominance 
counts as the dependent variable, each having eight replications/observations per sub- 
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TABLE 14 

Total Sample Regression Results for the Consumer Satisfaction Study 

Intercept 

X I 

X 2 

X3 

X 4 

X 5 

X 6 

S.E. 

r- square 

adj r-square 

F 

-4 000 

2 667*** 

1.400"** 

0 617 

-3 633*** 

3 833*** 

1 300*** 

2 860 

0 .545  

0 .533  

46.441"** 

0.455 

Self-attribution 

High expectation 

Positive disconfirmation 

Negative disconfirmation 

High performance 

Favorable Inequity 

* p ~ .I0 
** p ~ .05 

*** p ~ .01 

ject, a main-effect total sample regression analysis was performed and the results are 
shown in Table 14. Indeed, as hypothesized, higher satisfaction is related to self- 
attribution, high expectations, high performance, the absence of negative disconfirma- 
tion, and favorable inequity. The positive disconfirmation effect was not significantly 
different from zero disconfirmation. If we treat the entire sample as members of one 
cluster, we obtain Z = 0.455. 

Given the recent findings of Oliver and DeSarbo (1988) which demonstrate that 
different subjects can use a variety of different response styles in forming their satis- 
faction judgments, overlapping clusters were obtained for K = 1, 2, 3, and 4 clusters. 
(Note, neither Sp~ith's, 1985, 1987; nor the DeSarbo & Cron, 1988, procedure can be 
applied here given the replications from the design and the specification of  overlapping 
clusters.) Table 15 presents the results for the K = 3 solution which was selected on the 
basis of goodness of fit and interpretation. Note that because the clusters are overlap- 
ping, one cannot simply perform a multiple regression analysis on each cluster inde- 
pendently since the general clusterwise-regression model in (8) is additive between 
overlapping clusters. Thus, in order to obtain approximate standard errors for B, we 
approximated the Hessian matrix of second derivatives using the first derivatives 



WAYNE S. DESARBO, RICHARD L. OLIVER, AND ARVIND RANGASWAMY 

TABLE 15 
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Overlapping Cluster Solution for the Consumer Satisfaction Study 

Z = 0.226 

Subject ! II III 

I i i 1 
2 i 1 i 
3 i i i 

4 0 I 0 
5 i 0 I 
6 i 0 0 
7 i 0 0 
8 I 0 I 
9 I 0 I 

i0 i I 0 

ii I I 0 
12 I 0 0 

13 I 0 i 
14 i I 0 
15 I i 0 
16 I I 0 
17 i 0 0 

18 I I 0 
19 I I 0 
20 i o 0 

21 i I 0 
22 i I I 
23 I i 0 
24 i i i 

25 i 0 0 
26 I 0 0 
27 i i 0 
28 0 i 0 
29 i i i 
30 I i i 

Intercept 

X 1 

X 2 1.302"** -0.014 

X 3 1.836"** -0.522 -2 

X 4 -2,364*** -0,381 -2 

X 5 1.080"** 5.164"** -I 

X 6 0.148 -0.452 3 

r-square = 0.774 

Cluster: 

! I_!I III 

-4.605"** °0.272 1 778*** 

6.025*** -3.442*** -2.289"** 

0 161 

186"** 

939*** 

639*** 

867*** 

* p -< ,I0 
** p -< .05 

*** p _< .01 

(Judge, Griffiths, Hill, L~itkepohl, & Lee, 1985, p. 180) and calculated the asymptotic 
standard errors for B from the inverse of this approximated Hessian matrix. 

The first cluster depicts a group of investors mostly forming their satisfaction 
judgments on the basis of self-attribution, high expectations, positive disconfirmation, 
an absence of  negative disconfirmation, and favorable inequity. Note that this group 
(consisting of  28 of the 30 subjects) most resembles the response pattern of  the total 
sample as reported in Table 14 earlier. It is the response pattern that would be predicted 
from available consumer satisfaction theory (Oliver, 1980) and from the findings re- 
ported in Oliver and DeSarbo (1988). 

The second cluster, comprised of I9 subjects, has a quite different profile. Here, 
only attribution and performance are important constructs in their satisfaction judg- 
ments. In particular, external attribution to the broker and high performance lead to 
higher satisfaction derived from these stock market transactions. Note that the perfor- 
mance coefficient is highly significant showing that this group is "bottom-line" oriented 
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and concerned with how their simulated stock actually performed. The highly signifi- 
cant external attribution finding strongly suggests that these subjects were more satis- 
fied to the extent that their broker made the decision for them, perhaps because they 
demand that the broker "earn" the sales commission. This contrasts with cluster one 
where the opposite attribution tendency was displayed. 

Finally, the third cluster of eleven subjects displays a dominant inequity effect 
reflective of  individuals who see the client-broker relationship as one of proportionate 
exchange. Because the broker's funds are not at risk whereas the investor's are, these 
subjects may feel more satisfied when their gain exceeds that of the broker's fee. This 
is consistent with other research showing that satisfaction in sales encounters increases 
as the buyer's outcomes relative to those of the salesperson increase (see Oliver & 
Swan, in press). This is also consistent with the negative coefficient for attribution 
which indicates a desire for the broker to make the trade and with the Oliver and Swan 
results which show that satisfaction is associated with perceptions of high seller inputs 
to the transaction. The third cluster is apparently more sensitive to these interpersonal 
equity influences than are the other clusters. 

Of additional interest here are the disconfirmation and performance findings for 
this third group. While these members prefer to avoid negative disconfirmation as do 
the other subjects, they appear to tolerate well the absence of positive disconfirmation 
and to accept simple confirmation of their expectancies. This finding was facilitated by 
the fact that both performance conditions in the study were gains. Thus, the confirma- 
tion (no disconfirmation) treatment level still provided a gain to the subjects. Support- 
ive findings are also reported in the Oliver and Swan (in press) study where equity 
concerns were weighted more heavily than was disconfirmation. The negative perfor- 
mance condition is likewise understandable in that it suggests that this group appears to 
accept a smaller gain. Although the study design was orthogonal, the subjects may have 
consciously preferred the smaller of the two gains so as not to overbalance the reward 
ratio inordinately in their favor. In effect, they may have been attempting to strike the 
correct balance between what they received and what the broker received. Possibly the 
smaller gain appeared more "equitable" vis-a-vis the broker's commission. 

The multiple membership cluster findings are suggestive of multiple response 
styles on the part of those subjects exhibiting membership in more than one cluster. 
Whereas 28 of the 30 subjects expressed sensitivity to five of the six experimental 
factors, two-cluster memberships were apparent. Of these two-cluster subjects, ten 
were more oriented to external attribution and performance influences, and four to 
equity concerns than the sample as a whole. Additionally, seven subjects from the 28 
share memberships in all clusters, displaying greater influence from external attribu- 
tion, performance, and equity. Apparently, these seven exhibit the common profile, but 
are more oriented than most to these satisfaction determinants. Finally, two subjects 
appear to demonstrate sensitivity to external attribution and performance exclusively. 

The stability of this solution is shown in Table 16 which presents the R z values 
(i.e., goodness of fit statistics) for some fifty computer analyses performed for K = 3 
with ovedapping clusters for this application, each utilizing a different random starting 
initial solution. This was performed in order to examine the issue of locally optimal 
solutions and their degree of severity with real data. As shown, R 2 = 0.774 solution is 
recovered in 31 out of the 50 trials. The mean R 2 for these 50 analyses is 0.770 with a 
standard deviation of only 0.008. Thus, while this simulated annealing based method- 
ology can only guarantee locally optimal solutions, the overall performance on repeated 
analyses for this data set is indeed encouraging. However, as with Sp~ith's (1985, 1987) 
methodology, the user is encouraged to obtain multiple solutions with such applica- 
tions. 
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TABLE 16 

R-squares For Fifty Three-Cluster Solutions 
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Ru_..~n R 2 

1 0.774 
2 0.774 
3 0 .771  
4 0 .771  
5 0 .765  
6 0 .774  
7 0 .774 
8 0 .774  
9 0 .774  

10 0 .771  
11 0 .771  
12 0 .774 
13 0.774 
14 0 .774  
15 0.774 
16 0 .774  
17 0 .765  
16 0.774  
19 0 .774  
20 0 .774 
21 0 .765  
22 0 .771  
23 0 .771  
24 0 .765  
25 0 .774 
26 0 .765  
27 0 .774 
28 0 .774 
29 0 .771  
30 0 .732  
31 0 .774  
32 0 .774  
33 0 .771  
34 0 .771  
35 0 .774  
36 0 .774  
37 0 .774  
38 0 .774  
39 0 .732  
40 0 .774 
41 0.774 
62 0 .774 
43 0 .774 
64 0 .774  
45 0 .771  
46 0 .765  
47 0 .774  
48 0 .765  
4g 0 .776  
50 0 .774  

Mean: .770 

Standard Deviation: .006 

6. Discussion 

We have presented an alternative methodology for clusterwise linear regression, 
extending the work of Sp~ith (1985, 1987) and DeSarbo and Cron (1988) to accommodate 
replications, multiple dependent variables, constraints, and overlapping clusters. 
Monte Carlo analyses have been provided which demonstrate the somewhat consistent 
fitting of the simulated annealing procedure for various size data sets and different 
model specifications. In addition, it was found that the Sp~tth (1987) procedure and 
annealing-based methodology perform approximately equally well in terms of data and 
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parameter recovery for the special case of L = R = 1, no constraints, and nonover- 
lapping clusters, although Sp~ith's (1987) clusterwise linear regression procedure is 
computationally more efficient. An application in consumer psychology was provided 
investigating the various response styles present in the determination of consumer 
satisfaction judgments. A number of various research avenues exist as a result of this 
work. 

Potential Applications 

The clusterwise regression methodology presented here can be utilized in a large 
number of different applications. For example, in time series analysis, this procedure 
could be used to estimate splines for a given number of knots or connecting points. 
Constraints would have to be implemented to guarantee the same cluster membership 
for a continuing number of observations. In consumer psychology, this clusterwise 
linear regression methodology could aid in market segmentation studies where different 
groups of consumers or market segments could be defined directly in terms of demand 
characteristics. Another useful application here is the grouping of sales territories ac- 
cording to their response to marketing effort. Identifying territories with different re- 
sponse behavior can help management in the assignment of territories to salespeople as 
well as in the evaluation of sales performance. In psychological testing, this procedure 
can be gainfully utilized in formulating groups of subjects with similar personality 
profiles. Alternatively, in clinical practice, behavior disorders such as schizophrenia or 
others involving personality dysfunction may be more readily diagnosed. In the finan- 
cial markets, investors with different risk preferences may be identified based on their 
response to market movements and economic news. And, in education, students with 
differences in response to learning stimuli may be more easily identified. Clearly, other 
potential applications for such a methodology exist. 

Future Research 

Further research is required in a number of areas related to this research effort. 
Areas involving the generalization of the methodology to nonlinear regression, Lp norm 
based objective functions (e.g., Sp~tth, 1986a, t986b; and Meier, 1987 has generalized 
his procedure to clusterwise linear least absolute deviations regression), fuzzy cluster- 
ings, etc., are potential avenues of further research. Further, more extensive Monte 
Carlo analyses are also required to investigate more fully the performance of the algo- 
rithm as a number of data, error, user options, and algorithm parameters are altered. 
Finally, work in the area of developing faster and more efficient combinatorial algo- 
rithms is required given the potential local optimum problems associated with both 
annealing and Sp/ith's (1985, 1987) clusterwise regression procedure. 
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