THE UNIVERSITY OF MICHIGAN
COMPUTING RESEARCH LABORATORY

THE GRAPH LABELING MODEL AND
ITS APPLICATION TO THE PROBLEM
OF EDGE LINKING

Marc David Qiamond

CRL-TR-30-83

AUGUST 1983

Room 1079, East Engineering Building
Ann Arbor, Michigan 48109

USA '

Tel: (313) 763-8000

/DG
/7

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

CHAPTER

INTRODUCTION
1.1. Computer Vision and The Edée Linking Problem
1.2. The Graph Labeling Approach
1.3. Research Overview
1.4. The Organization
BACKGROUND AND OVERVIEW
2.1. The Edge Linking Problem
2.2. The Graph Labeling Model and the Edge Linking broblem
2.3. Past and Present Approaches to Graph Labeling
2.3.1. The Relaxation Labeling Processes

2.8.2. Optimization Approaches to the Graph Labeling
Problem

2.4. The Foundations of a Formal Model
THE PROBLEM AND RELATED DEFINITIONS
3.1. Constraint Networks

3.2. Discrete Relaxation

vi

ix

10

13

13

20

22

24

24

31

v.

3.3. The Graph Labeling Problem

3.3.1. Definition

3.3.2. Example Problem

3.3.3. PMI Constraints

3.3.4. Related Problems: Covering, Partitioning, and Packing
3.4. The Complexity of the Graph Labeling Problem
3.5. The Basic Approach to the Graph Labeling Problem
THEORY
4.1. Discrete Relaxation

4.1.1. Supporting Sets of Labels

4.1.2. Observations for the General Case

4.1.3. The Case in which the Underlying Graph Does Not
Contain Cycles

4.1.4. Simulation Results
4.2. The Structure of the Graph Labeling Problem
4.2.1. The LP Relaxation of the Graph Labeling Problem
4.2.1.1. Original Form of the Problem
4.2.1.2. The Feasible Region Under PMI Constraints
4.2.2. The Structure of the Graph Labeling Problem: Summary
ALGORITHMS
56.1. Dynamic Programming Approaches

6.1.1. The Case Where the Underlying Graph is a Path

iv

33

33

36

37

38

43

45

60

60

62

64

66

64

69

70

70

73

85

85

6.2. Dual Approaches to the Graph Labeling Problem
6.2.1. Example Problem
86.2.2. Minimizing the Dual
6.2.3. General Algorithm for PMI Constraints
6.2.4. Extension to the General Graph
6.3. Problems with Special Structure
56.3.1. Hybrid Formulation: Columns vs. Columns Case
6.3.2. Hybrid Formulation, Rows vs Columns Case
6.4. Summary
Vi. EXPERIMENTS
6.1. The Full Enumerative Scheme
6.2. Heuristic Approaches
VI. SUMMARY AND CONCLUSIONS |
7.1. Summary and Conclusions
7.2. Suggestions for Further Work
APPENDIX

BIBLIOGRAPHY

92

94

95

104

108

109

110

116

121

122

122

123

124

126

126

134

143

Figure

2.1a.

2.1b.

2.2a.

2.2b.

2.3a.

2.3b.

2.4

2.5.

2.6.

3.1a.
3.1b.
3.1c.
3.2a.
3.2b.
3.2c.
3.2d.
3.3a.
3.3b.

3.3c.

LIST OF FIGURES

The Underlying Graph of the Graph Searching Approaches
The Immediate Neighborhood of a Given Vertex

Initial labeling From a Set of Hypothetical Values

The Desired Resulting Labeling

A 5x5 Image With an Initial Labeling

The Desired Resulting Labeling of the 5x5 Image
Hypothetical Labeling Values for Figure 2.3a

An Overview of the Basic Relaxation Labeling Apprcach
Compatibility Between Pairs of Labels

Underlying Graph for the Constraint Network of Example 3.1
Product Graph for.the Constraint Network of Example 3.1
Complement Graph for the Constraint Network of Example 3.1
Discrete Relaxation: Iteration O

Discrete Relaxation: Iteration 1

Discrete Relaxation: Iteration 2

Discrete Relaxation: Iteration 3

Constraint Network for Example 3.4

Constraint Network for Example 3.4: Initial Labeling

Constraint Network for Example 3.4: Final Labeling

vi

12

12

13

13

14

15

16

27

27

27

29

29

29

29

356

36

36

3.3d.

3.4.

4.1a.

4.1b.

4.1c.

4.2a.

4.2b.

4.3.

4.4,

4.5.

4.6.

4.7.

4.8.

4.9.

4.10.

6.1.

5.2.

56.8.

5.4.

6.5.

6.6.

6.7.

6.8.

56.0.

Fundamental Cycle Derived From Final Labeling

Complement Graph for Example Problem 3.3.2

Constraint Network for Example 4.1

Constraint Network for Example 4.1: Initial Labeling
Constraint Network for Example 4.1: Final Labeling
Underlying Graph for the Constraint Network of Example 4.2
Product Graph for the Constraint Network of Example 4.2
Constraint Network for Example 4.3

The constraint network for Example 4.4

Constraint Network for Theorem 4.4

Constraint Network for Example 4.5

Plot of settling times vs. network size for p=0.5

Covering Cliques for the Proof of Lemma 4.12

Covering Cliéues for the Proof of Theorem 4.13
Fundamental Cycle for Result 4.16

Underlying Graph for the Dynamic Programming Approach
Updating Rule for the Dynamic Programming Approach: One Direction
Updating Rule for the Dynamic Programming Approach: Both Directions
®(u) as a function of U111

Covering Cliques With Global Descent Direction

Major Directions in the Raster for the Hybrid Approach
Column Reduced Constraint Network for the Hybrid Approach
Constraint Generated in Reduced Constraint Network

Reduced Constraint Network for the Row vs. Column Case

vii

36
37
53
53
53
57
57
568
62
63
65
68
78
79
82
86
88
80
99

109

112

113

115

117

6.1.

6.2.

6.3.

A1,

A.2.

A.3.

Initial Consistent Labeling
Demonstration of the Average-Max Updating Rule

Demonstration of Average-Max/Lagrange Dual Updating Rule

‘on a Real World Image

Label Set for the Edge Linking Application
Examples of Locally Consistent Pairs of Labels

Examples of Locally Inconsistent Pairs of Labels

viii

127

128

129

137

138

138

CHAPTER |

INTRODUCTION

1.1. Computer Vision and The Edge Linking Problem

The inability to obtain and interpret sensory feedback rapidly and accurately
is often considered to be one of the biggest obstacles in the further development
of automated manufacturing systems [DoR79]. Although computer vision is
considered to be an important potential source of such sensory feedback, current
vision systems are generally restricted to the processing of binary images, which
are usually of practical value only wh.en obtained under structured lighting
conditions. It is generally accepted, however, that vision systems based on grey
level images are necessary in order to satisfy the requirements of most flexible

automation systems [TBB79].

Major difficulties exist with the use of grey level imagery in a real time
environment. Most of these difficulties can in one way or another be related to
the amount of data which must be processed in the typical visual recognition
task. This fact has motivated research into parallel algorithms to apply to the
various stagés of a typical visual information processing task [DaR80], as well as
the proposal, design, and implementation of several SIMD, and other special

purpose architectures for computer vision tasks [COM83].

There is a sequence of the three basic processes, inciuding edge detection,

edge linking, and the recognition of objects from their shape, which are

incorporated into most approaches to the computer vision problem. Edge
detection is, by its nature, a local operation, and hence there are no major
computational barriers in performing this operation in real time on a cellular
architecture. Although the recognition of objects from shape requires global
knowledge, the consensus appears to be that the problem is not computationally
intensive and can be solved on a general purpose computer in real time with

existing techniques [Per78].

Edge linking, which is the process of grouping primitive features to describe
the outlines of objects, is considered to be both the most difficult and the most
important problem [BaB81,Mar75,Per78]. As with most pattern recognition tasks
involving the grouping of primitive features, the edge linking problem is inherently
complex, and a majority of the current approaches involve an enumerative search
of some form. Thus, because of its combinatorial nature, it cannot currently be
solved in a reasonable amount of time on existing hardware when taken in the
context of most real world applications. Unlike the edge detection operation,
there has been no prior attempt to develop formal techniques which could lead to

the development of speciai purpose hardware to solve the edge linking problem.

1.2, The Graph Labeling Approgch

A major direction of the current investigation is into the development of
hardware based algorithms for the rapid solution of the edge linking problem. The
approach taken here is based on a mathematical formulation, referred to as the
graph labeling model. Although a heuristic concept of graph labeling and its
application to syntactical grouping problems in pattern recognition have been
proposed elsewhere [RHZ76,ZHR77], a formal sense of this concept is
established for the first time as part of the current work. The result is a
definition for the graph labeling problem as a specially structured set partitioning

problem [Sai75,Mur76,BaP74]. As such, estab'ished techniques for 0-1 integer

programs can be brought to bear on its solution. The theory for the basic
components of the algorithms which are proposed here - Lagrange duality,
dynamic programming, implicit enumeration search strategies, and discrete
relaxation - are well established. However, the use of the graph labeling model
will allow the application of these techniques to the edge linking problem in a
manner not possible with previous approaches. Furthermore, the special structure
of the edge linking application is brought to bear on the development of means by

which these techniques can be integrated into an implicit enumeration strategy.

The formal definition of a graph labeling model, and its application to the
edge linking problem are the major contributions made within the context of this
work. However, an initial investigation has also been made into certain aspects of
the the structure of the graph labeling problem itself. There are several factors
which have motivated this investigation. With current techniques, set partitioning
probiems involving 1,000 to 2,000 variables can usually be solved in a reasonable
amount of time on a genera! purpose computer [BaP74,Mar74]. However, the
equivalent set partioning probiem applied to an edge linking task would involve on
the order of 100,000 variables. Thus it is not clear that even special purpose
hardware would be sufficient for this application and. this then implies the use of
heuristic approaches. Since thié wortk emphasizes the rélationship between the
model and the application, as a contras: to past work in this area, it is desirable
that the user have full knowledge of the behavior of a heuristic algorithm. For
this reason an attempt has been made to develop a theory for the graph labeling
model. It was our intent to include, for example, a description of the facets of
the graph labeling polytope, and the linear programming relaxation of the graph
labeling problem. Although this work is far from complete, some initial results have
been established, and several conjectures, supported by simu!ation results are

presented.

4

Thebretical work on the gfaph labeling problem .is important for another
reason: a great deal of research is currently in progress on the general set
partioning problem because of its wide range of applications to problems in
operations research [BaP74]. Since the graph labeling problem is a special case
of set partioning, results pertaining to the latter would support this effort, in
particular since special case studies can sometime lead to insights into the more
general problem. Perhaps more important is the fact that, any set partioning
problem can be transformed into an equivalent graph labeling probiam, as will be
shown. In many cases this transformation is not particularly useful. However,
some applications, in particular those in which the associated constraint matrices
are sparse, are well suited to be represented in this manner. Then the results and

algorithms presented here can be applied directly.

1.3. Research Overview

The above discussion can be summarized by stating the major areas which

are covered in the following chapters.

(1) The graph labeling problem is formulated as a special case of the general
class of set partitioning problems, and some initial theory related to this

problem is developed.

(2) The resulting graph labeling model is applied of the problem of edge linking in

computer vision.

(3) The use of established techniques for the solution of set partitioning
problems to the special case of the graph labeling problem and in particular
to the special case of the edge linking application is discussed. The form
that these algorithms take when they are applied to the structure of the
graph labeling problem is studied with the general objective to exploit the
parallelism of the underlying space, to the extent possible, to allow for

decentralization of some aspects of these algorithms.

(4) Experimental results pertaining to the proposed approach to the edge linking
problem are presented. Solutions to real world problems were not obtained
even with the specialized techniques which have been developed here,
because of the inherent size of the problems. However, the results of
several experiments based on heuristic approaches are presented. The
purpose of this is to demonstrate the potential in the proposed approéch t6

the edge linking problem, and to encourage further work.

(8) For theoretical and experimental results which were not obtained but which
are considered important for the further development of this topic,
suggestions which hopefully will guide further work have been given both

within the individual chapters and in the summary and conclusions.

1.4. The Organization

The remainder of this document is organized as follows: Chapter Il is a
discussion of both the edge linking problem and the graph labeling model as well
as the relationship between the twon. The origin of this model, which includes a
survey of the past work which has lead to the proposition of the graph labeling
approach to the edge linking problem, is covered. Finally, the justification for the
form of the graph labeling model which is proposed_ here, is given. Chapter_lll
contains the background and definitions required in the formal statement of the
proposed graph labeling problem. The relationship between the graph labeling
problem and well established problems in operations research are also given.
Chapter IV discusses the theory of the graph labeling problem to the extent
which has been developed within the context of this fhesis. Chapter V covers
the form of the various approaches to combinatorial problems cited above when
applied to problems structured in accordance with the graph labeling model.
Chapter VI illustrates the use of the graph labeling approach on real world

problems. The work is summarized in chapter VI, in which suggestions for further

research are also given. Details concerning the application graph labeling model

to the edge linking probiem as well as other issues are contained in the Appendix.

CHAPTER Ii

BACKGROUND AND OVERVIEW

This chapter covers the basic aspects of the of past and present research
which has lead to the current topic. It starts with a brief overview of the target
application: the edge linking problem. In particular, the basic nature of the
problem and means by which it is currently being approached will be discussed. A
review of graph labeling approaches to the edge linking problem will be given.
Difficulties with a lack of a theory associated with early approaches to graph
labeling has lead to work on a means for formalizing this subject. In the context
of this discussion, an argument is made for a formal model which is based on the

assertion that graph labeling is in fact a classification problem.

2.1. The Edge Linking Problem

The function of a general vision system is assumed here to be one of
recognizing the objects in a scene which is represented initially as a matrix of
grey level values. In order to discuss the role played by the edge linking process
within the context of such a vision system, the machine perception procblem must
be approached by interpreting the environment through muitiple levels of
description. The initial level of description is given as a primitive feature map,
edge map, or primal sketch [Mar76], which results from the apgplication o.f
detectors sensitive to a basic set of primitive features at a local level. The next

level of description is achieved by grouping these features into sets of

continuous contours. The function of a contour is to delineate points in the
original image which separate an object from its background. The resu!t of this
grouping process Is referred to as a line drawing or cartoon. Once a line drawing
representing the original image has been extracted, objects can usually be easily
recognized from the shape of the boundaries which circumscribe them. Even
though most actual approaches are more involved than this basic descripticn
suggests, it is within the context of this approach that the current work derives

its relevance.

The problem of edge linking in computer vision addresses itself to the
intermediate level problem of grouping primitives to form smooth contours. Current
and past approaches to edge linking belong to a continuum of strategies which
range from procedural to formal, i.e., where a mathematical model defining the
correct grouping is specified. On another dimension, these strategies may
attempt to incorporate global knowledge (top-down, model-based’, or
knowledge-based approaches) or may perform the linking process based strictly
on local information. Procedural approaches are characterized by the line tracking
algorithms such as, for example, the Binford-Horn line finder [Hor71], as well as
other linking strategies including the relaxation labeling processes descrited
below. The knowledge based ap‘proaches are represented by the work of Shirdi,
[Shi75] and includes, for example, the Hough transforms [DuH72], and the

generalized Hough transforms [Bal81].

in the discussion presented below, an approach to the problem of edge
linking is considered in which & formal mode! is specified and relationships
between primitives in the grouping process are defined on a locai basis. This

approach is best represented in past and present work by graph searching

TThe reference to the "model” in this case may not necessarily refer to a formal mathematical
modei, but rather may be some rortour based description of wha- ctjects can actuany exist In the im-
age.

methods [BaB82] wherein the image raster is viewed as a graph in which each
pixel is a vertex connected to some subset of the pixels in ils immediate
neighborhood, as illustrated in figure 2.1. In a state space search applied to this
graph, weights are placed on transitions, which are intended to reflect the
likelihood of a contour actually existing between two adjacent pixels in the
image. These weights are usually derived in conjunction with the output of the
primitive feature detection process. A formal definition of the prchlem results,
which is equivalent to finding a maximum weighted path through a graph, cften

between two predefined points.

Most of the weli-established implicit enumeration strategies, appearing in

one form or another, have been applied to the underlying graph searching problem.

Figure 2.1a (left): The underlying graph in the graph searching approaches and its
relationship to the original image raster.

Figure 2.1b (right): The immediate neighborhood of a given vertex (ce::ter pixel).

10

Although, because of the size of the underlying space, heuristics are almost
always used to augment the search process. Thus, it has been generaily
accepted that limitations on the success of the graph seerching approaches are
not bascd as much on the relationship between the model and the applicatior. (i.e.,
how these maximally weighted paths result in a useful definition of the contours
in the image) as the fact that they must ultimately deal with the combinatorics of
the optimization process itself. As noted previously, it is expected that the
approach to edge linking based on the graph labeling model will also involve
heuristics, however, it is hoped that the resulting approaches will be more robust,
and the effect of the heuristics better understood. Comparitive studies and
surveys on the various search strategies applied to this problem can be found, for

example, in [AsM78,LWW78,Ros81].

2.2. The Graph Labeling Model and thé Edge Linking Problem

In the graph labeling approach studied here, the relationship between the
model and the application is essentially the same as in the graph searching
approaches discussed above. However, the form the particular model is better
suited to take advantage of some of the structure which is inherent in the
underlying problem. Furthermore, this model allows for the application of certain
techniques to the solution of the optimization problem, which cannot be directly

applied within the context of the graph searching model.

A graph labeling problem involves the assignment of a single label A; from

some set, A = {Aq, A2, ..., Am}, Of possible labels to every vertex of a graph.

The result is referred to as a /abeling of the grasuph.2 The assignment process is

2This use of the term "labeling” is unfortunate because it corresponds to another definition in
graph theory. The more common definition of a labeled graph is one in which the vertices are dis-
tinguished from each other [Har72], as they are here anyway. However, this word will be used in the
sense defined above throughout, in order to be consistent with past and present work in graph iabeling
problems in the pattern recognit'on area. It Is suggested that in further work a different term be
found.

11

performed in conjunction with initial information as to the correct label to choose
for each vertex, and often in cornjunction with ccntextual information as to how
labels on adjacent vertices interact. In the graph labeling approaches to the
edge linking problem the underlying graph is defined in the same as it was for the
search'strategies discussed above. The label set corresponds to a set of
_ primitive features, and the initial information is taken to be a strength measure,
merit figure, or cost, c;;, associated with each feature or label Aj on each pixel or
vertex, v;, of the graph. As was the case in the graph searching methods, the
costs are assumed to have been derived from the output of the primitive feature
extraction process. Examples of scene events or primitive features
corresponding to possible label sets for the edge linking application are given in

the Appendix,

Given the initial costs, one means by which labels can be assigned to the
vertices of a graph is simply to choose a label at each vertex such that the
corresponding strength measure is maximal. This strategy is often referred to as
a “local maxima selection” rule [ZLM81]. A local maxima selection rule i1s usually
not, in and of itself, sufficient to derive a "meaningful” labeling, however. Figure
2.2a showls a typical resu'lt of using this strategy on a set of initial costs.® The
underlying label set in this case corresponds to the scene events of the Appendix,
Figure 2.2b is the desired result of the edge linking process. This line drawing
results from the correct assignment of labels to every pixel in the image. The
basic assumption that is being made here is that the correct label can be
assigned to a given pixel by considering the initial labeling values for each label
on every pixel in the image. However, this process requires more information than

is available strictly among the labeling values for labels at that pixel.

3The detalls on the derivation of these costs are covered in Chapter V

12

Figure 2.2a (left): Initial labeling derived from a set of hypothetical labeling
values based on the label set of Appendix A.

Figure 2.2b (right): The desired labeling, showing a completed contour.

This point is considered further in figure 2.3a which shows a § x § image.
Hypothetical values for the initial costs from which, by a local maxima selection
process, the labeling of this figure has been defived are given in figure2.4. If itis
assumed that the signal generating the costs is in fact an encoding of a scene
involving only smooth contours, then it seems reasonable to conclude that the
correct labeling is the one shown in figure 2.8b. This is an assertion that the
center pixel was initially mislabeled. There is a great deal ot evidence supporting
this assertion in the labeling values associated with neighboring pixels. The
problem is how this evidence should be integrated into a pixel labeling correction
scheme. The central issue of the work described in this thesis is the

development of models upon which such schemes can be based and the

13
development of hardware efficient algorithms to implement them.
2.3. Past and Present Approaches to Graph Labeling

2.3.1. The Relaxation Labeling Processes

The graph labeling approach to edge linking described above was initiated
with an investigation into relaxation labeling processes and their apﬁlicatbn to
the problem of curve and line enhancement [Wal75,RHZ76,ZHR77]. The
relaxation labeling processes refer to a class of algorithms in which the costs
associated with each label on a given vertex of the graph are updated in an
iterative parallel manner based on the current labeling values at that vertex and

the costs associated with labels on adjacent vertices. Let

Figure 2.3a (left): A & x § image labeled from the hypothetucal labeling values of
figure 2.4 using the labels of the Appendix.

Figure 2.3b (right): The desired labeling.

14

et = (c}y, ez, ..., ein) be the cost vector at a given iteration, t. Then, for a
labe! A; on a vertex v;, the cost c}} is a function, ¢} = Fjj(c*~'), where F;; depends
only on the components ¢}~ and ¢! for all i' € N(i) and all Aj € A, where N(i) is

the set of vertices adjacent in the graph to vertex v;.

The stated goal of these procedures is to incorporate information about the
correct labeling of a particular vertex, which is assumed to be distributed
throughout the network, into the labeling vaiues at that vertex. An overview of

the apparent strategy is shown in figure 2.5. The global enhancement process is

represented as a map s: R™™ - R™™ (note?) which is defined as s = lim F"(c°)

Moo

0.143 0.038 0.142 0.069 0.1:9
0.075 0.101 0.100 0.03: £.0:9
0.782 0.861 0.758 0.900 0.862
0.15: 0.126 0.096 0.0:8 0.020
0.02: 0063 0.036 0.067 0:i5 |
0.828 0.8:: 0.868 0.9:5 0865 |
i
0.799 0.803 0.:34 0.779 0751 |
0.082 0.154 0.7:: 0.152 0.165
0.119 0.0¢3 0.155 C 069 oos: |
. o 1
0.154 0033 | 0.16¢ 0.16: 0.:5: |
0.1:6 0.105 0.109 0.087 0:67
0720 | 0862 072" 0.752 0.682 |
|
|
0.138 0.060 0.062 0.162 0136 |
0.079 0.110 0.157 0.007 0129 |
0.783 0.830 0.781 0.89: 0.735 |
|

Figure 2.4: Hypothetical (but typical) labeling values which lead to the mislabeling
of the center pixel of figure 2.3. Within each pixel, the labeling values are shown
for labels A1, A\1g, and A\21 of the label set of the Appendix.

4|t is assumed that there are n vertices in the underiying graph for the graph labeling labeling
problem, and m labeis in the label set.

L

assuming this limit exists, where F = (Fy4, F12, ..., Fam). The function m maps
from the current labeling values into a labeling according to tﬁe local maxima
selection rule. The labeling X is derived directly from the initial costs whereas the
labeling \' is derived from the updated costs, assuming the process converges.
The hope is that the labeling X' will be an improvement, in some sense, over the

labeling, A.

Two forms of labeling processes, discrete and continuous, are distinguished
in the literature by the nature of the local information and the representation of
the contextual information. !n a discrete labeling process the initial costs take on
only values of O or 1, where ¢;; = 1 if it is possible to assign label Aj to vertex v;,
and c¢j = 0 otherwise (based on some external criteria). The contextual

‘information is expressed in terms of binary relations defined on the label set, A,

LoCatL
- MAXIMA .:\
SELECTION
m
GLOBAL LOCAL
<3
c°. o] ENHANCEMENT ¢ . MAXIMA >\
PROCESS : SELECTION
$ m

Figure 2.5: An overview of the basic approach incorporated into the relaxation la-
beling processes.

16

which make explicit those pairs of labels which can occur simultaneously on
adjacent vertices. In a continuous labeling process, the costs are taken to be
real numbers, usually c;; € [0,1] and the contextual information is represented by
compatibility coefficients, rj()\;,\;), between pairs of labels)A; and A; or
adjacent vertices v; and v;, where in most cases either r;(};,xj) € [0,1], or
rilA\j,Aj) € [-1,1). For highly compatible features the corresponding
compatibility measure would be 1, and highly incompatible features the
compatibility measure would be O, or -1, depending on the range that thess
values are allowed to assume. For example, in the curve and line enhancement
application, the compatibility measure for the labels corresponding to twc
horizontal edge segments on horizontally adjacent pixels would be 1, whereas the
compatibility measure for an horizontal edge segment and en adjacent vertical

edge segment would be, say -1, as shown in figure 2.6.

Figure 2.6: Compatibility between two pairs of labels according to the approach
of the relaxation labeling processes.

17

Relaxation techniques for discrete labeling problems were discovered first.
They were derived from early work in computer vision, specifically, Waltz's
filtering algoritam [Wai72] for the implementation of the Huffman-Clowes line
labeling scheme [Huf71,Clo71]. Aithough Wa!tz described a sequential search
process, subsequent work [Mon74,RH276] cast Waltz filtering in terms of a set of
parallel, iterative equations; that is, as a cooperative process. Most of the
theory of constraint networks and discrete relaxation which has been established
to date appears in a paper by Montanari [Mon74] and Rosenfeld et al. [RHZ76].
Aithough some further contributions can be found in the work of Freuder [Fre78],
Mackworth [Mac77], Haralick et al. [HDR78], and Haralick and Shapiro
[HaS79,HaS80]. Applications of constraint propagation techniques have been
proposed for such areas as game playing [Chu79], problem solving
[Sac79,BaT76], theorem proving [Gas74], search strategies
[HaE79,HaS79,HaS80], database management [Gro76], graph theory
[Mon74,UlI76], syntactic pattern recognition [DaR78], and scene analysis
[Wal72]. Further applications can also be found in surveys by Davis and
Rosenfeld [DaR80], and Haralick and Shapiro [HaS79]. Because of their
importance to the work pursued in this thesis, issues related to constraint
networks and the discrete relaxation labeling processes are treated further in

the next chapter.

The updating rules for the continuous relaxation labeling processes were
originally derived as a direct extension of the discrete relaxation labeling
process. However, whereas the discrete relaxation labeling processes are well
understood the extension to the continuous case has proven to be without basis.
An example of such an updating rule is the one which was originally proposed with

for the edge enhancement problem given as [RHZ76]:

18

el [1+4q]
C't'+1 = Fr(ct) - renN(i) U] il 21
’ ‘ > > [ed[1+ail]
AjEA FENG)
where
ot = Y ey ek 2.2

A EA

Equation 2.2 expresses the "'support” for a label Aj on pixel i as a average of the
current labeling values on adjacent pixels weighted by the compatibility
coefficients. Equation 2.1 is a means for combining these support measures into
an updated labeling value. As before, Ais the set of all possible labels, ci} are the

costs at iteration t and r;j(A\,A) are the compatibility coefficients.

The basis for the design of the continuous relaxation labeling processes is
the assumption that a label which is more compatible with the current labeling on
its neighborhood will receive a greaier share of the support sc that its vaiue will
increase on the next iteration. However the behavior of the updating rule is
dependenti, among other things, upon the actual values given to the compatibility
coefficients. There is currently no formal means for assigning these values,
although ad hoc approaches based on sample correlation coefficients or mutual

information [PeR78], as well as others [Yam79] have been used.

Other updating rules have been proposed. For example, in the product rule

updating method [Kir80], equation 2.1 has been replaced by

t t
ci q. *
t+1 _ g l'El_NI(i) 4 2.3

c
: [Tei II af

Aj ‘€A FEN(i)

Another updating rule which has been proposed [Pel80] is given by replacing

equation 2.1 with:

i o o rENG) 2.4

AEA - FEN(D)

Equations 2.3 and 2.4 followed from certain assumptions which were made in
attempt to put at least some aspects of the relaxation labeling processes on a
formel basis. It is felt however [HuZ80,DiG82,DNG82] that these assumptions are
not justifiable and certain basic aspects of the processes are still not well
understood. One of the problems in designing a numerical procedure in an ad hoc
manner is that there is no guarantee that the labeling values will ever converge to
a fixed point. It has been our experience, in fact, that they usuaily do not. Even
if they did, there is still no understanding as to the relevance of the final labeling
values to the original application. Clearly, for this to happen, models must be
developed which can related the meaning of a given labeling to the related

application.

Despite the apparent lack of theory, the application of continuous relaxation
labeling techniques to problems in scene analysis and pattern recognition has
generated a large volume of literature in recent years [DaR80,Ros78,Rcs81]. In
fact, the graph labeling model is quite robust, and suitable for a wide range cf
problems in pattern recognition. The parallel nature of the solution algorithm, and
the implications this has for herdware implementation seems also to have had
some effect on its growth. Finally, evidence that relaxation like mechanisms can
be used to explain certain phenomena in human visual perception
[WeM?B,MoW?Q,MaP76] has further contributed to the popularity of this topic.
It seems evident then that the relaxation labeling techniques will play an
important role in the developing fields of artificial intelligence and pattern

recognition.

20

A survey of recent applications for continuous relaxation labeling techniques
would require an unreasonable amount of space. Reference tu only a few of these
applications are made here, while surveys by Rosenfeld [Ros79,Ros81] and Davis
and Rosenfeld [DaR80] are more complete. One of the earliest applications of
" relaxation labeling was to curve and line enhancement [ZHR77] a$ discussed
above. Marr et al. [MaP76,MPP77] emplocys relaxation in the correspondence
problem for stereo vision. Uliman [Uli78a,b] applies relaxation techniques to time
varying imagery. Other applications include multispectral pixel classifications
[EYR80], template matching [DaR77], segmentation [HaR78], and shape matching
[Dav79]. For areas other than computer vision, applications include handwriting

recognition [Hay79], and the solution to substitution ciphers [PeR79].

2.3.2. Optimization Approaches to the Graph Labeling Probiem

The problem of the numerical behavior of existing labeling algorithms as well
as a lack of theory for the continuous relaxation labeling processes was
addressed in the development of what will be referred to here as optimization
approaches, to the definition of the mapping s of figure 2.5. For example, in one
such definition [HuZ80], a given initial labeling vector ¢ = (€11, €12, .« ., Cnm), IS

combined with the matrix of compatibility values:

[r11(0.A1) F11(A,A2) r11CmeAm) |
r12(A1,A1) r12(Aq,22) r12(AmsAm)
R =
Fan(A1,A1) Tan(Aq,A2) Pan{AmsAm)]

to define the quadratic program:
s = max ¢c'Rec

subject to:

21

m\

Yooey =1, i=1,..,n

i=1

Research into other optimization based means for defining the enhancement map
have appeared in several recent publications [FaB81,Fau81]. In most cases, the
associated objective functions are designed so as to allow for (at least partiai)
decomposition of the optimization procedure, in order to maintain the cooperative
spirit of the relaxation labeling processes, or the objective function is defined

locally at the outset.
2.4. The Foundations of a Formal Model

Although the optimization approaches address the problem of putting the
enhancement map on a formal basis, an important fact concerning these methods
is still being ignored: the overall process is in actuality a map m(s(c®)) from a
continuous subset of R"™ into the discrete set cf all possible labelings. The
argument which is Being made here is that in order for the graph labeling
model to be in some sense useful, the user should have an understanding as to
what that mapping is, and how it relates to a given application. This essential
feature is missing from the graph labeling algorithms discussed above. Mappings
from a continuous domain into a discrete domain, when defined within the context
of problems of pattem recognition are usually treated as classification rules.
Thus, in order to put the entire subject on a formal basis, the approach which is
taken here is to first specify which labelings are legal and which are illegal in a
manner consistent with a given application, so as to define a set of classes.
Then the classification rule will be specified. Finally, the problem of implementing
the given ruie (in a hardware efficient manner, to the exient possibie) will be

addressed.

The mapping which will be studied within the context of this thesis will be

the "max-sum” classification rule. That is, the goal will be to choose a legal

22

labeling such that the sum of the Initial labeling values is maximal. The reason for
this choice is that it can be related to several well established classification
rules from statistical decision theory. For example, assume the input to the
feature detection process is a 0-1 labeling vector observed in the presence of
noise, that s, Cjj =‘1 if Aj is the actual label assigned to vertex v; and c;=0

otherwise. Then a simple transformation of the form

ey = -(1-¢;)2 -) cf 2.5
=1y, |’ j

converts this process into the well established nearest neighbor classification

rule. A transformation of the form
c'yj = log (Pr(cjlA;)) 2.6

converts the max-sum decision rule into the well established maximum likelihood
classification rule, so long as all the labeling values, given the associated label,

are conditionally independent.

After the classification rule has been selected, the issue remains as to how
to specify the classes. This will in general be problem dependent, however, it is
assumed here that the problem domain can be modeled in such a way as to
specify an underlying constraint network. As discussed in the next chapter, a
constraint network divides the set of all possible labelings into those which are
consistent (i.e. legal) and those which are Inconsistent. Consistency is a global
property which is, however, defined on a local basis. In the edge linking
application a pair of labels are considered to be locally consistent if the scene
events they represent db not have an edge segment broken across a pixel
boundary, and inconsistent otherwise. Examples of consistent and inconsistent
pairs of labels are given in the Appendix. A labeling is considered to globally
consistent so long as every pair of labels in it are locally consistent. The

consistent labelings will be then taken to be the classes in the classification

23

process.

in the graph labeling approaches to the curve and line enhancement and
edge linking problems discussed above, the criterea used to judge the
effectiveness of a given procedure has been with past approaches basically
subjective, e.g. how good the resulting line drawing looks. This is symptomatic of
the lack of connection between the application and any formal methodology. With
just a little reflection however, one can establish a more formal basis for the edge
linking application, since a line drawing looks good if it in some sense represents
the objects in the image and if there are no broken line segments in it. The set of
all consistent labelings defined here are those which do not contain broken lines.
Evidence for the fact that the result of using this model should accurately reflect
the objects in the image is taken from the success of the graph searching

methods and the relationship between this model and the mode! used here.

CHAPTER Il

THE PROBLEM AND RELATED DEFINITIONS

The focus of this chapter is on the proposed definition of the graph labeling
problem and its relationship to certain classes of O-1 integer programs. In order
to present this formulation, a review the basic definitions and ideas related to
constraint networks is necessary. We give here a brief discussion of those
aspects of the topic which are important to theAwork described in following
chapters. However, it should be noted that constraint networks are in themselves
an important topic relevant to problems in almost every major area of artificial
intelligence. More detailed treatments of this subject can be found in [Dia82]
and in the references given in the survey of chapter Il. Finally, it shouid be noted
that the treatment of the topic given here is not necessarily consistent with the
treatments found elsewhere. This discussion is structured to the use of

constraint networks in the definition of the graph labeling problem itself.
3.1. Constraint Networks

Definition: A constraint network is defined here to be a triple, C(G,A,R) consisting

of:

(1) A graph G = (V,E), with vertex set V={vq,vy ..., v, |, and edge set

ECVxV,

(2) Aset,A={Ay, A2, ..., Am | Of symbols, called /abels, and,

24

25

(3) A class, R = { Ry}, of binary relations, referred to as constraint relations,

defined on the label set: R;y C A x A, for all ii' wherein there is one such

relation for every edge vyv;' € E (note').

Although a more general case may be considered, it will be assumed here that the
constraint relations are symmetric, that is R;; = R{'ri. The graph labeling problem
involves assigning a unique label, or sét of labels to each vertex of the graph. A
label, A; assigned to vertex v; is considered to be (pairwise, or locally) consistent

with a label A;' assigned to vertex v;', if (Aj,Aj') € Rji and inconsistent otherwise.

Example 3.1: Consider the graph G = (V,E) with V = {vq, vz, v3, v4)], and
E = { vqvp, VoV3, V3Vga] (i.e., G is a path with four vertices). Let A = § A\q, A2, A3,

and define:
(@) Riz = § (A,A1),(A2,A2),(A3,A3) §,
(b) R23 - i (A‘l ’h)’(h'M)O(ASIA1) ;’

(c) R34 = i (A1 tAI)’(Moh)’(AZ’M)t(Mth) ;)

Figure 3.1a illustrates the graph G, and the associated constraint relations. In
general, G willlbe referred to as the underlying or coarse graph for the constraint
network C. The form of the underlying graph defines the network topology and
has important implications for algorithms for the graph labeling problem as is
discussed in chapter IV. Figure 3.1b is the direct graph corresponding to the
given constraint network. In this n-partite graph, (here n = 4), there is a vertex,
vjj, for every label A\; on each vertex v, An edge exists between a pair of
vertices v;; and v;j- if and only if v; is adjacent, in G, to v, and (A\;,\;') € Rji, that

is, if and only if (A\;,);') is a locally consistent pair of labels. Figure 3.1c shows a

TNote: an edge with end points V; and V;' willbe denoted as V;V;' throughout.

26

graph, which like the direct graph, has a vertex for every label on every vertex of
the underlying graph G. However, in this case, there is an edge between a pair of
vertices vj; and vy If and only if v; is adjacent, in G, to vi, and ();,);') notelof R,
that is, if and only if ()\j,)\j') is a locally inconsistent pair of labels. This graph will
be referred to as the comp/ement of the product graph, or simply, the complement
graph. A convention which will be used thrc.)ughout is to shbw edges between
invalid pairs of labels as dashed lines. Finally, the graph obtained from the
complement graph by adding an edge between every pair of labels on a given

vertex will be referred to as the augmented complement graph.

Labelings: Associate with each vertex, v; € V, a subset A; C A, of the label set.
An n-tuple L = (Aq, Az, ..., Ay) of such subsets will be called a /abeling of G.
For a given vertex, v;, each label Aj € A Is referred to as being assigned to that
vertex. In order to resolve possible ambiguity, a specific label, say,)\j associated

with a specific vertex, say v; will occasionally be referred to as Aij-

Consistency: A labeling, L, is considered to be (globally) consistent, if the following
condition holds: for all i=1,...,n and for all Aj € A associated with vertex v;, there
exists for .every adjacent vertex, v;', at least one label Aj' in the associated label
subset Ay’ such that ();,A;) € R, that is, such that (A;,);") is a consistent pair of
labels. In other words, every label in each label subset associated with the
vertices of G must be consistent with at least one label in the label subsets

associated with every adjacent vertex.

Ambiguity: A labeling, L will be called unambiguous if |A] = 1 for all A; € A, and
ambiguous if there exists an i such that | A;] > 1. A labeling such that |A;] = 0
for all i will be referred to as the empty, or null labeling. An unambiguous labeling L

will often be denoted as A = ATAZ: - - A" where A is the unique member of A;. By

27

X1 o— v —0
A, O

Figure 3.1b: Product graph for the constraint network of example 3.1.

‘k--_----------'go, ®’
O - - - < e e*®y
1 - - L4 “w o -~ - - o
N - P “eo - - .,.' o
Seg o»<l Ss¢? sl
- - - - - o -
"’<~ P - o” See o" “ (4 :O
oz’ SaZ %027 - APy
x “» Pk Y o - - rd o’
2 - - . o - - g P
sa?, < Sepe” R4 - -
Pid el PL TS P o LN
- - -~ Y d e P Ld -
- - -~ - hat N o -~
’o - et - ‘3 . v
x “"’ “Prtecccccconca= -20%
v1 v2 V3 v4

Figure 3.1c: Product graph for the constraint network of example 3.1.

28

convention, the notation A! will be used to denote a specific label assigned to

vertex v;.

Example 3.2: In diagrams involving constraint networks, a given labeling of that
constraint network will be illustrated by filling in the circles representing the
labels associated with each vertex of the‘ graph, if they are elements of that
labeling. Consider the constraint network of example 3.1. Let

L = (A4, A2, As, Ag) be a labeling with

A=) Az = As) A = s A2, A3l Ag = A, NS
The representation of this network is shown in figure 3.2a. L is an unambiguous
labeling which is, however, inconsistent. In particular, the label A\, on vertex v3
has no support on vertex vp. That is, there is no label Aj J=1,2,3, in the label
subset Az such that ();,A2) is consistent. The labeling in figure 3.2d is however,

a consistent labeling.

lattice structure of labelings: The set of all possible labelings of a given
constraint network defines a lattice. Let L =(Ay, Az,..., Ay), and

L'=(Ay, A2, ..., Ap) be labelings. The lattice operations are given as:

(1) labeling intersection (meet):
LNAL =1 NAL A2NA2...0 An N AR
(2) labeling union (join): .
LUV =AM UAN, A2U A2 .00 An U AD)

The partial order is defined by labeling containment: L C L' if and only if A; C A
for all |. Other set operations will be extended to labelings in the same manner,

that is, on a component by component basis. For example

29

Ay
A,

A,
v‘ v! v: V‘

Figure 3.2a: Discrete relaxation: iteration O.

Figure 3.2b: Discrete relaxation: iteration 1.

Va Va Vs Vs

Figure 3.2c: Discrete relaxation: iteration 2.

Ay

A2 a —0

A,
V, v, Vy \A

Figure 3.2d: Discrete relaxation: iteration 3.

30

L-L =(1 -A1, A2-A2,..., Aa =AW
The null labeling is Lg= (¢ ¢s...,¢), the wuniversali labeling is
Ly= (AbA - » N.

Induced graphs, projections, labeling Induced subnetworks: Let G = (V,E) be a
graph. A subgraph induced by a subset A C V of the label set is the graph
Ga = (A,E,) such that (v4,v2) is in E, if and only if (v4,v2) € E and {v4,vp] C A.
The projection of the constraint network C onto the subgraph G, is a constraint
network: C, = (Ga,A,Ra) with underlying graph Gs and R; € Ry if and only if
(vi,vi) € E5o. The projection of a labeling L = (A1, A2, ..., Ay) onto A, is the
labeling, Lo of the projected constraint network C, with A; € Ay if and only if
A € A and v; € A. The subnetwork induced by the labeling A is the subgraph of

the product graph induced by the vertices corresponding to the labels in L.

Minimal constraint networks: A constraint network, in which every label on every
vertex participates in an unambiguous labeling is called minima/. A labeling
induced subnetwork may not be minimal even considering the labels participating
in the labeling itself. It turns out that this fact alone accounts for the difficulty

of the graph labeling problem (i.e. the fact that it is NP-complete).

Fundamental cycles, fundamental anticycles: Let C = (G,A,R) be a constraint
network in which the underlying graph G is a cycle. A fundamental cycle, F(p) in
C is a cycle without cords in the product graph which "passes through'" a given
vertex in the underlying graph exactly p times. That is, the labeling of the
equivalent labeling induced subnetwork has |A;] = p for all i. A fundamental
anticycle, F(p) is a cycle without cords in the complement graph which passes

though each vertex in the underlying graph exactly p times.

31

3.2. Discrete Relaxation

Given an initial (possibly inconsistent) labeling L = (Ay, A2, . .., An) there
exists an [terative, parallel, and decentralized algorithm for finding the largest

(possibly ambiguous) consistent labeling L® = (Af, AS, « -+, AS) contained in L

(notaz). _The basic strategy involved in this algorithm is to iteratively remove
those labels from the label set of a given vertex which are not consistent with
the labeling on the neighborhood of that vertex. Removing a label from a label set
at a given iteration may cause the removal of a label from the label set of an
adjacent vertex at the next iteration, so th&t the effect is seen as propagating
through the extent of the network (hence the term 'constraint propagation”
4which has often been applied "to algorithms that resolve inconsistency in this

way).

The algorithm proceeds in an lock step manner and changes the composition
of the label set at each iteration. Denote the current labeling at an iteration t by
Lt = (A}, AL, - - -, AY). Define:

q If ngAit
ci} =

O otherwise
to be the predicate, or indicator function for label A; being a member of labei set
Al at iteration t. Also, define:
1 if (Ajykj') € Rii'
rn'()\j.Rj') =
O otherwise
to be the predicate, or indicator function for the pair ()\j,)\j') € Rji. Then the

iterative equations which describe the discrete relaxation labeling process are

2Because the union of two consistent labelings In a consistent labeling, the largest consistent la-
beling Lc C L is unique

32

given as:

e’ = ¢ At [V, ey ACh 13 3.1

l'Ee(i)
In words: a label A; will be removed from the label set A} for vertex v; at a given

iteration t if there exists a neighboring vertex v’ such that, for no ;' € Alis the

labeling pair (A\j,\j:) consistent.

Clearly, Lt+1 c Lt Also, if Lt = L7 for some iteration t then Lt = L* for all
r= 1. The smallest t = 0 at which then Lt = L**1 will be called the settling time
for the network, for the given input L. Since labels can only be removed from the
label set, the algorithm is guaranteed to converge. Obviously, |A] x |[V] = mn s
an upper bound on the settling time of a network for any initial labeling. In fact, it
appears that better bounds can be obtained, both in the Vgeneral case, and in
problems with specific structure. This issue will be discussed further in chapter

.

Example 3.3: Applying the discrete relaxation operator to the constraint network
of example 3.1 with the labeling shown in figure 3.2a results in the labeling shown
in figure 3.2d. The iterations of the discrete relaxation operations which lead to

this labeling are shown in figures 3.2a through 3.2d.

Example 3.4: Consider the constraint network illustrated in figures 3.3a through
3.3d. The discrete relaxation operaticn applied to the constraint network with
the initial labeling shown in figure 3.3b results in the labeling of figure 3.3c. This
labeling is consistent but not unambiguous. Furthermore, if a label were to be
removed from any label set the result would be the null labeling. The labeling
induced subnetwork of figure 3.3c, which is shown in figure 3.3d is a fundamental

cycle.

33

Although the discrete relaxation labeling process does not guarantee an
unambiguous consistent labeling, it can however be used as a means to reduce
the search space in an Implicit enumeration aigorithm for the graph labeling

problem as Is discussed below.
3.3. The Graph Labeling Problem

3.3.1. Definition

Let C(G,A,R) be a constraint network, where G is a graph with n vertices,
and A is a set with m labels. Associate with each label, A; on each vertex v; a

real cost cj; € R. A graph labeling problem (GLP) defined on C is given as:

n m : - .
maximize: Y Y e xi 3.2
=1 j=1
m
subjectto:) x; = 1, i=1,..,n, 3.3
=
X + X0 < 1 3.4

for every pair of inconsistent labels (),A;") on adjacent vertices v; and v;,

Xij € 30,1; - 3.5

Constraint 3.3 serves to guarantee that exactly one label is chosen for each
vertex in the graph. Constraint 3.4 specifies that a label chosen for a given
vertex will be consistent with the labels chosen for adjacent vertices. Finally,
constra_lnt 3.5 requires that the x;; be maintained as 0-1 (decision) variables.
The resulting problem is, therefore, one of selecting an unambiguous consistent

labeling such that the sum of the initial labeling values is maximal.

Let the cost vector be denoted as ¢! =(€11 €12y ¢+ ++s Cnm)
x' = (X914, X125 « + « » Xnm) Will denote the vector of 0-1 variables. In matrix-

vector form the graph labeling problem can be expressed as:

Figure 3.3b: Constraint Network for Example 3.4: Initial Labeling

Figure 3.3d: Fundamental Cycle Derived From Final Labeling

T

maximize: c' x
subject to: Ajx=e
Az X< e,

with x; € {0,1], and e is a compatibly dimensioned vector of all ones:

e=(1,1,.. 1). The matrix Ay has the block diagonal form:

111...1 W
111...1 3.6

>
n

111...1

where all blank entries are assumed to be equal to zero.

A, is aiso a block structured (usually spar;e) matrix with blocks at the
intersection of columns corresponding to all the labels for a given vertex and
rows corresponding to constraints between a given vertex and one or more of its
neighbors. It is the incidence matrix of the complement graph for the underlying

constraint network.

3.3.2. Example Problem

An example is given to illustrafe the definitions given above. The underlying
constraint network for this problem is given in complement graph of figure 3.4.
The initial values associated which each label is shown in parentheses next to
the respective label. The solution to this problem is to select label A2 on vertex
vy and A2 on vertex vz. The optimal objective value is 17. The primal statement

of the problem is:

Maximize: 12x91 + 9%x92 + 3x13 + 10x21 + 8x22 + 2X23

Subject to:xyq + X312 + X913 = 1

37

X271 + X22 + X23 = 1

X1 + X291 < 1
X114 +ng$1

X12 + X219 < 1

x; € {0,1}, 1=1,2, j=1,2,3
3.3.3. PMI Constraints

The constraints derived from the constraint network for a given graph
labeling problem imply other constraints which cannot be derived from an algebraic
combination of, but are nontheless implied by the original constraints. A class of
such constraints referred to as pairwise maximally inconsistent (PM!) constraints

are discussed further in the following chapters. PMI constraints for a given pair

(12) A, O =0), (10
\::"::'
(9) A, ©O° o A, (8)
(3) A\, © 0), (2]
Vi v

Figure 3.4: Complement graph for example problem 3.3.2.

of vertices are derived from the cliques of the augmented complement graph
corresponding to pairs of adjacent vertices. For example, in the problem of
section 3.3.2 there are four cliques in the augmented complement graph. One
contains the labels A;1, A2, and Az4. Another contains the labels Ay;, A21, and
)\zz. The other two correspond to all the.labels on a given vertex, that is, Aj1, A2,
and)\ for i=1,2. Note that at most one label can be chosen frdm any clique in a
consistent labeling. The problem expressed in terms of PM| constraints is given

maximize: 12xqq + 9x12 + 3x913 + 10x21 + 8X%22 + 2x23

subject to: X9 + X2 + X13 =1

]
Yy

X21 + X22 + X23

X171 + X2 + X219 < 1

X1 + X21 +X22$1

Xij € !0,1;, i=1,2, j=1,2,3

Certainly, other constraints can be formed in a similar manner for the general
graph labeling problem. There appears, however, to be a computational advantage
in formulating the problem in terms of PMI constraints. Furthermore, certain
characteristics of special case graph labeling problems can be derived when the

problem is formulated in this manner as will be discussed in the following chapters.

3.3.4. Related Problems: Covering, Partitioning, and Packing

Three closely related and well established classes of 0-1 linear integer

programs are given as follows:
[SC] Set covering [BaP74,Sal75,Bar81,Etc77,Sly82]:

minimize: c

39
subject to: Ax > e ,xcf{0,1].

[SPP] Set partioning [BaP74,Sal75Mar74 NTN74]:

T

minimize: c'x

subject to: Ax = e ,xc€{0,1].

[sP] Set packing [BaP74,Sal75,Pad73]:

T

maximize: c'x

subject to: Ax < e, xci{0,1]

A is a 0-1 matrix (with no other structure assumed), c" = (¢4, ¢2,..., ¢,) is a

cost vector and, x' = (X1, X2, ..., Xq) Is a 0-1 vector.3 The reference to the
"set"” in these problem definitions is derived by interpreting a column, aj of the
m X n matrix A as being the indicator vector for a subset Sjof S = 1, 2,..., m.
If a cost c; is associated with each S;, the problems become those of finding an
optimal cost covering, partioning, and packing of these subsets. Set packing

problems are often expressed as equivalent vertex packing problems
[NeT74,NeT75,PiQ77] defined on the derived graph of the matrix A.?
By adding the appropriate slack variables to the inequality constraints, GLP

Is easily seen to be a special case of SPP. In this case the constraint matrix has

the form;

Sin discussing the graph labeling problem, double Iindices (e.g. Xijs cij) wili be used to emphasize
the structure of the probiem. In other other cases, variables and constants will be singly subscripted.

4Given a 0-1 matrix A, the derived graph Is the graph G wherein each column, aj, of A
corresponds to a vertex v; and there is an edge between two vertices vj and vj it and only If
aj-aj >0.

3.7

>
[
I

There are also well known transformations from SPP to SC and SP [BaP74]. To

transform GLP directly to. SP, write GLP as:

[P1] minimize: c™x + se'y
subject to: Alx + y=e

Aax < o

X € {0,13.

where y' = (¥1, Y2, « - . » Ya), and yi = 0. Note that any solution to [P1] in which
y = O is also a solution to the corresponding graph labeling problem. Pricing out y

as: y = e — Ay x, results in the problem:
[P2] maximize: —Tx + 9e"(A; x — e)
= (de"Ay —cT) - 8m
A

subject to: Ax = | ...|x < e, x;; €10,1].

Az

If 8 is sufficiently large, say 3 > 2 cj; then y = 0 so long as the original problem
Is feasible, so that a solution to [P2] is guaranteed to be a solution to the original

problem. Given the structure of A, this problem can be expressed as:
[P3] maximize: (9 + ¢)'x

subject to: Ax < e, x;c{0,1].

41

where, 3= (3,3, ..., 3).

In order to transform GLP into SC, first it is necessary to add slack variables
to the inequality constraints thus converting it to SPP as in equation 3.7. Let A3
be the resulting constraint matrix. Then, in a transformation similar to that given

above [BaP74] GLP is expressed as:
[P4] minimize: c’x + ve'y

subject to: A3 x —y = e
where x;; € {0,1} and y> 0. y is priced out as: y = Az x — e resulting in the
equivalent problem:

[P§] minimize: (c’ + veTA3) x

subject to: Azgx > e

Perhaps the most important relationship between the current work and the
established classes of 0-1 integer programs is found in the following
transformation from SPP to GLP. Let A be the constraint matrix of a set

partitioning problem. The columns and rows of A are permuted to bring it into the

block form [Mar74]:
As 3.8
A4 = (YY1}
Ag
where Ag the block form
,
111...1
1 1 1 (LX) 1
As = .

111...1

42

A block Is set of columns which correspond to a row of 1's in the matrix As.
Matrix As now has the form as A, in equation 3.6, except that the number of 1's
in a given row of matrix A4 may vary, whereas the number of 1's in a given row of
A, is equal to m (the number of labels in A). Assume that the maximum number of
columns in a given block of As (Is equal to m. Then for each block with m' <m
columns, m — m' columns with a 1 only in the appropriate row and the rest of the
components set equal to O, can be added. The cost vector component
associated with the added columns are set to an arbitrarily small number. It is
assumed that this preconditioning of the constraint matrix has been performed

resulting in the constraint matrix

and that the resulting problem is expressed as:

[P6] maximize:5

subject to: Agx = e

Assume that A's has n rows or blocks. Each block WIII represent the labels
assoclated with a particular vertex in the equivalent graph labeling problem. The
graph derived from the matrix A'g is the complement graph for the equivalent
graph labeling problem. Hence, there is an edge between two "vertices" (blocks)
in the underlying graph, if and only if there is a pair of inconsistent labels on
those vertices, as defined by the complement graph. The complement graph then
defines a constraint matrix A"g. Note that A'g and A's need not necessarily be

the same. The transformed, but equivalent set partitioning problem is given as:

ENote that the set partioning problem [P6] Is expressed here as a maxim!zation problem.

43

[P7] maximize: c' x
subject to: Asx = e.
A'gx = e.

Assume that A's has n rows or blocks, so that there would be n vertices in the
equivalent graph labeling problem. Assume A''g has mg rows. Problem [P7] would
be a graph labeling problem on n vertices except that the second set of
constraints are equality constraints. Then using the same approach as in the

transformations described above, [P7] can be expressed as:

[P8] maximize: e’ x
subject to: Agx = e.
A'gx < e.

where€ =c + 9 mg — Ag, and 5 = (9, B, - -+, ¥) with 3 >) ¢y

It would be difficult to overstate the implications of these transformations, in
particular, the transformations from SPP to GLP and vica-versa. As stated in

[PaB74]:

Among all special structures in integer programming, there are three which
have the most wide-spread applications: set partitioning, set covering,
and the traveling salesman problem; and if we were to rank the three, set
partitioning would probably be number one.

3.4. The Complexity of the Graph Labeling Problem

Consider a variation of the graph labeling problem stated as follows: Given a
constraint network, C, assume the costs ¢; take on only values of O or 1. Then
the problem is to find a (any) unambiguous consistent labeling such that the sum
of the Initial strength measures is equal to n (the number of vertices in the

underlying graph). This problem is equivalent to deiermining if a labeling induced

44

subnetwork contains a globally consistent unambiguous labeling. As has been
stated in the literature several times, this problem, often referred to as the
discrete graph labeling problem or the consistent labeling problem, is NP-complete

[HDR78,HaS78].

It is not difficult to find a polynomial time reduction from the discrete graph
labeling problem to nm satisfiablility (n is the number of vertices in fhe graph, and
m is the number of elements in the label set). A more common argument is to
reduce It directly to the K-coloring problem, which is known to be NP-complete
[GaJ78,Gol80]. Given an arbitrary graph, G, the probiem is to determine whether
or not that graph can be properly colored with K colors. Equivalently, the
underlying graph labeling problem is defined on a constraint network with the
underlying graph G. The labels correspond to colors, and each label is
inconsistent only with the label representing the same color on every adjacent
vertex. Thus, if there exists a globally consistent labeling, the graph can be

colored with K or fewer colors.

The extension to the continuous graph labeling problem is direct. It remains
to assign initial costs to the labels in such a way as to guarantee that the
globally consistent labeling with the maximal labeling value, if it exists, is unique.
Otherwise, it could be argued that the difficulty in the discrete graph labeling
problem is in the fact that every globally consistent unambiguous labeling has the
same value. To do this, assign a unique index, i, from the set {1, 2,..., n] to each
vertex of the graph. Furthermore, assign a unique number, ¢, from the set
{1, 2,..., K] to each color. Finally, assign an initial cost of ¢ iX to each color, ¢, on
each vertex v;. It is clear that with these costs, every unambiguous labeling
(both consistent and inconsistent) has a unique total cost. It can be concluded
that a polynomial time solution to this graph labeling problem implies therefore, a

polynomial time solution to the general K coloring problem.

45

It should be noted that this argument points to a fundamental difficulty with
the solutions to graph labeling, which holds as well for the set partioning problem:
determining the existence of any feasible solution is NP-complete, in the general
case. This is not the case, however, for the set packing and set covering
problems although, the problems of finding a maximal packing or minimal covering is

still NP-compiete [BaP74]. Special cases in which the graph problem is not can

be solved efficiently° will be discussed in chapter IV.

3.5. The Basic Approach to the Graph Labeling Problem

In the previous chapters and in the previous sections of this chapter the
nature of the graph labeling problem was discussed. The origin of the proposed
definition, its relationship to the application as well as other problems in
combinitorial optimization have been covered. In this section the basic approach

to the solution of the graph labeling problem will be outlined.

Integer programming approaches fall into three broad catagories: implicit
enumeration (branch and bound), cutting plane, and group theoretic. Group
theoretic approaches can not in general be applied to 0-1 integer programs
[Bal73] although a variation of the dynamic programming methods often used in
conjunction with the group theoretic approaches is discussed in chapter V.
Furthermore, the cutting plane techniques do not appear to be suited for the
types of hardware implementation which motivates the design of algorithms which
are discussed below. Thus the basic strategy involved will be based on some

form of implicit enumeration.

An enumeration scheme involves the orderly generation of partial solutions,
where a partial solution, or candidate subproblem is derived from the original

problem by fixing or restricting the values of some subset of the variables. The

€ That is with the simplex algorithm.

46

generation Is performed In a branching operation which generates subproblems
from the candidate problem by further restricting or fixing the values of some of
the variables. In most cases, the set of feasible solutions need only be implicit!y
enumerated, since the derivation of bounds on the best and worst case
completions can be used to remove (fathom) subproblems from further
consideration. In particular, in any stage of the algorithm, it is assumed that there
exists (1) a current best possible solution, with an objective value of z', and (2)
a set P of candidate subproblems. Then the derivation of these bounds can be
used to greatly reduce the generation of partial solution since if it can be
determined that the best possible complete solution derived from an element of P
is no better than the best known solution, then that subproblem can removed from

P.

The branch and bound algorithms which have been the most effective in
solving set partitioning problems involve preconditioning the constraint matrix by
first ordering the columns into a staircase, or block form in which all columns with
the first non-zero entry in a given row are grouped together as discussed above
[Pie68,Mar74]. This is done so as to allow for easy seperation of the set of
feasible solutions, since exactly one column must be chosen from each block.
Noté thgt in the case of GLP the A, matrix in addition with a square identity
matrix representing the slack variables gives the constraint matrix this form to
start with (refer to equation 3.7). However, in this case, no particular advantage
is gained because the resulting seperation has given by edict. That is, the
problem is designed to in fact allow for those solutions which specify exactly one

label per vertex.

For the case of the graph labeling problem, the seperation of the set of
feasible solutions will be done in a more direct manner. In this case, each partial
solution, or candidate problem will be referred to ‘as a restriction. Formally, a

restriction, R is a 3-tuple, R = <S0,81,Sf>, where SO is a set of variables fixed

47

at 0, S1 is a set of variables fixed at 1, and Sf is the set remaining variables, for
which values have not been specified. The variables for which values have been
assigned, in a given restriction R must satisfy the constraints. In particular, for
the graph labeling problem, it will be assumed that if a given variable
cor}esponding label, say)\j'on a vertex, say v; is set to 1 (which'is equivélent to
selecting that label at that vertex), then the variables corresponding to the rest
of the labels at that vertex must be set to zero. Thus in this case, an equivalent
formulation of a restriction is that of a (possibly ambiguous) labeling
L = {A1, Az, * * +, Aq) where xj; = 0 or xj; € SO if Aj, x;j =1 or x;; € 81 if \j € A
and |A| = 1, and x;; is free, or x;; € ST if if \; € A and |A] > 1.

It will be assumed' that the basic model for the implicit enumeration scheme
which will be used here has the following components.
[1] A starting point function, which selects an initial best objective value, z".

[2] A restriction choice rule, which chooses a restriction from a set P of current

restrictions to examine next.

[3] A lower bound function, which determines a feasible completion of a given

restriction and the corresponding cost.

[4] An upper bound function which finds a upper bound on the cost of completing

the current restriction.

[6] A branching variable choice rule, which determines how to branch the

current restriction (i.e. which variable to fix next).

[6] A feasibility test, which determines whether or not there is a feasible

completion of the current restriction.

For the application of the graph labeling model to the edge linking problem,

both the starting point function and the lower bound functions will be derived from

a ''rounding” process discussed further in chapter 6. The upper bound is usually

48

determined by some form of relaxation of the candidate problem. The most

common forms of relaxations are:

[1] Constraint subset relaxation, wherein some of the constraints which affect
the elements of Sf are relaxed, thus making it relatively easy to find a

completion of the current restriction,

[2] Linear programming relaxation, wherein the integrality constraints of the

elements of Sf are relaxed,

[38] LaGrangian relaxation, wherein the constraints affecting the elements of Sf

are relaxed via LaGrange multipliers.

Of these three, we will consider here only the constraint subset relaxations and
the Lagrangian relaxation. It will turn out that compution of bounds based on
these two relaxétion sirategies can be performed very rapidly based on the
assumption that they are implemented in special purpose hardware. The
branching rule will be based on heuristics discussed in chapter 6, and the
feasibility tests will be implemented with the discrete relaxation operation as

discussed in the following chapter.

The basic strategy in the implicit enumeration step which will be considered

here is given as:

[1] Use the restriction choice rule to choose a restriction, R, from the current

set, P, of restrictions,

[2] Use the feasibility test to determine whether or not a completion of the

current restriction exists. If not, remove R from P.
[3] Use the upper bound function to find U(R), If U(R) < 2", remove R from P.

[4] Use the lower bound function to find L(R), as well as a feasible solution, x' at

which the lower bound is obtained.

49

[7] Otherwise, use the branching variable choice rule to select a j € Sf. Set
RO = <SO {J {j}, S1, Sf — {j}>, and R1 = <S80, S1 {J {j}, Sf — {j]>. Add RO

and R1 to P.

The focus of the work in the following chapters is on issues related to the
various components of this basic approach, as well as its applicability to the
original problem, that of edge linking. Although the enumeration strategy itself
cannot be implemented in parallel, many of the fundemental components can, and
it is in the hope that by doing so the rapid derivation of line drawings will be

possible, that these issues are being pursued.

CHAPTER IV

THEORY

The following chapter is divided into two subsections. In the first, the
convergence properties of the discrete relaxation processes are discussed. The
second subsection covers issues related to the structure of the graph labeling

problem itself.

4.1. Discrete relaxation

One consistent feature of the algorithms which will be examined and
developed further in the following chapter is that they will proceed to a point
which results in a labeling, L, which is ambiguous. As will be discussed, the
performance of these algorithms could be greatly enhanced if it were possible
very rapidly either to derive from L the maximal consistent labeling, L¢ ¢ L,
contained therein, or to determine whether or not there is in fact an unambiguous
consistent labeling contained in L. For example, in an implicit enumeration
strategy, a restriction, R = <S80,81,Sf> is equivalent to a labeling,
L = (A4, Az, * * +, Ag) In which A; = {5, if the vertex v; is fixed in R, where) is
the unique label at vertex v; such that x;; = 1, and A; = A otherwise (i.e. x;; € Sf
for all j). If there is not an unambiguous consistent labeling within L, then R is
infeasible and can be pruned. If there is, we could immediately add to the set SO

the variables corresponding to labels not in LC.

80

61

For an arbitrary labeling L, the derivation of L® can be accomplished through
the use of the discrete relaxation operator alone. Determining whether or not
there exists an unambiguous consistent labeling within L can be accomplished by
repeatedly using discrete relaxation in conjunction with an enumerative scheme
(e.g. with a stack). Even though it can be easily implemented in harc_iware, the
speed of convergence of the discrete relaxation process may become an issue if
a large number of such operations are required. Obviously, the settling time bound
of n x m for a problem defined on a constraint network with n vertices and m
labels, would be unacceptable. For example, a graph labeling problem defined on
a 128 x 128 raster with |A] = 16 might require (in the worst case) about a
quarter million iterations or propagation delays per test. Even if implemented in
combinatorial logic, the convergence time, under these conditions could be
unacceptable. It appears, however, that the both the worst case, and the
expected settling times can be assumed to be much more tightly constrained.
This assertion is based both on results generated from_ simulations and from

bounds derived for restricted forms of the graph labeling problem.

It should be noted that in general, one need not wait until the network has
settled. In particular, if at some point, there exists a vertex v; such that the
corresponding label set is empty, | A;] = ¢, then it can immediately be determined
that the fixed point of the process will be the null labeling. In the following
discussion, the first iteration at which this condition is recognized will be referred
to as the null time of the process. If the largest consistent labeling contained
within the initial labeling is not null, the null time is infinite. Finally, the detection
time of the process is defined to be the minimum of the settling time and the null
time. It is clear that it is the detection time which is important in evaluating the

performance of the discrete relaxation process.

62

4.1.1. Supporting sets of labels

The setting, null, and detection times will be referred to collectively as the
critical times for the network. Worst case bounds and expected values for the
critical times are difficult to derive for general constraint networks. However, an
analysis is presented which will hopefully be a contribution to further work. This
analysis is based on the concept of a supporting set of labels, which is defined
as follows: A label A; on a given vertex v; is said to support another label Aj'on a
vertex v;' (v; and v;' may be the same vertices) if there exists a consistent
labeling L’ and a maximal consistent sublabeling L® ¢ LS such that both Aj' and
A are in L — LS. The importance of this definition is in that starting at the
consistent labeling L and removing the label A; from the label set A at iteration t
will eventually “cause” the removal. of the label);' from the label set A; at some
later iteration t' > t. This follows directly from the fact that the discrete
relaxation operator applied to the labeling L® — {);;} will result in the labeling L€,

which does not contain Aj;.

Since two labels may either support or not support each other, this condition
Is a relation defined on the set of all possible labels on every vertex of the graph.
Obviously, the supporting relation is symmetric and reflexive, but it is not
transitive, that is, it is a compatibility relation. It is important to note that the
supporting relation specifies a sufficient condition for the situation where the
removal of a label at a given vertex will cause the removal of another label at
some later time only under certain conditions. In particular, the entire initial

labeling must be taken into consideration.

Example 4.1: It may appear to be a contradiction that the supporting relation is
not transitive, since if the removal of a label Aj will cause the removal of a label
Aj', and the removal of the label Aj' will cause the removal of another label A;-,

then the removal of the label)\j should cause the r-emoval of the label 7\,-". This

63

Figure 4.1a: Constraint Network for Example 4.1

A1 o— —
xz * Y
A *

A, ©O— —e
Xz] 4\ﬁo
Ay &

Figure 4.1c: Constraint Network for Example 4.1: Final Labeling

64

results, however, from the fact that the removal of }; is only a sufficient condition
for the removal of JA;', given the proper initial labeling. Consider a network the
product graph for which is shown in figure 4.1a. Label A\42 supports the label A3>
since, given the consistent labeling L® shown in figure 4.1b, the removal of the
label A\42 will result in the maximal consistent sublabeling shown in figure 4.1c.
Likewise, Aq3 supports label A\3,. However, it is easily verified that there is no
difference L — LC between a consistent labeling LS and a maximal consistent
sublabeling LS which contains both Aa2 and Ag3. Furthermore, removal of the label
A42 from any consistent labeling which contains both A43 and A42 will never result

in a labeling which does not contain A\43.

. 4,1.2. Observations for the general case

The discrete relaxation operator maps a given labeling, L into the maximum
consistent labeling L® such that L® ¢ L. Furthermore, in order for the process to
remain active, at least one label must be removed from some label set Al at each
iteration t. Thus, it appears worthwhile to pursue an analysis of the maximum
difference L] - |L°| between a given labeling L and the largest consistent
labeling LC contained in L. In particular, we shall consider the differences of the
form |JL¢] - JL¢| = |L® - L} .between any consistent labeling L and a

maximal consistent labeling LS properly contained in LS.

One means in which a bound on the worst case settling time could be
determined would be to consider every labeling LS consistent with respect to the
given constraint network, and then every maximal sublabeling, LS contained in LC'.
Then for every such pair, experimentally determine the worst case settling time
by applying the discrete relaxation operator to thg labeling L¢ - {)\ij} over all

Ajj € LS - LC. Obviously, this bound would be tight.

66

Given a particular class of constraint networks one might be able to derive
these bounds by considering the special structures involved. Looser, but perhaps
easier to determine bounds, might be derived as follows: Let Ly denote the set of
all labelings resulting from differences of the form L¢ — L¢". One obvious bound on
the worst case settling time is given as:

max fLelg : | L] -1

Note that this bound may in fact be larger than the one suggested in the previous

paragraph.

One further means of determining settling time bounds is given as follows: If
LS is a consistent labeling, and L is a maximal consistent labeling contained in
LS, then it follows that L = LS — LC is either a minimal consistent labeling L € Ly,
or it is an inconsistent labeling L. Were this not the case, L could be expressed
as the union of a non-empty consistent labeling L', and a non-empty labeling L"
such that L"-L'#¢. Then L® c L® L < L® and L U L is
consistent, so that LC is not a maximal consistent sublabeling. If L is
inconsistent, then It is contained in a minimal consistent labeling. Therefore, it
follows that the settling time for a given constraint network is always bounded

by:

max fLely ¢ L} -13

Example 4.2: Consider the case of a constraint network C(G,A,R) where G is the
cycle Cg4, and a labeling induced subnetwork which is a fundamental cycle (refer
to figure 4.2). This labeling is consistent, and the largest consistent sublabeling
contained in it is the null labeling. Hence, every label on this cycle supports
every other label. This is true for any fundamental cycle contained in a constraint
network. Note that the removal of any label from this labeling will eventually

result in the removal of all labels from the labeling, if the discrete relaxation

operator is applied. The worst case settling time is easily seen to be | -I%l- -1),

66

where |L] is the number of elements in the labeling. Note that this bound is lower
than any of the bounds (except those derived from direct experimentation)

discussed above.

Example 4.3: The labeling induced subnetwork shown in figure 4.3 is also defined
on a network where the underlying graph is the cycle C4. The subnetwork results
from the union of two fundamental cycles, whose intersection is not empty. The
worst case settling time, which occurs when the label A3, is removed is easily
seen to be n—2, where n is the number of labels in the second fundamental cycle.
Although each label on a fundamental cycle supports every other label one that
fundamental cycle, a label A\, for example, on the fundamental cycle A, does not
support a label A\ on fundamental cycle B, unless those labels happen fo be

contained in the intersection of the two cycles.

4,1.3. The case in which the underlying graph does not contain cycles

These two examples show how the effect of removing a label at a given time
step can eventually cause the removal of another label, if the first label supports
- the second. Before continuing to discuss the general case, we consider a class
of constraint networks for which strong statements about the critical time bounds -

can be made.

Llemma 4.1: In the case where the underlying graph is a tree (or forest), the
network does not contain any fundamental cycles, and the set L, of minimal
consistent labelings is exactly the set L, of unambiguous consistent labelings.
Furthermore, the set of all consistent labelings is a sup-semilatticé, with the join
operation being the union of labelings and with the atoms being the elements of

Lyc.

67

Vv,

Figure 4.2a: Underlying graph for the constraint network of example 4.2.

Figure 4.2b: Product graph for the constraint network of example 4.2.

Figure 4.3: The constraint network for example , which is the union of two
fundamental cycles, F(2), A and B, where:

A = A1, A215 A315 Aa1,M120 A2z, Asz, A2}
B = {12, A22, A32, Aa2,A13 A23, A33; Aa3)

Proof: Obviously, L,c C Ly, and any element of L, has at least one element in the
label set associated with each vertex of the underlying graph. Assume
L=(A, A2, ..., Ay) is an element of L, and that L has a component, say A; such
that |Aj] > 2. Let A\j be an element of A;. Considering v; to be the root of the
tree, we will define a recursive procet{ure for finding a globally consistent
unambiguous labeling, L' C L in which the label A; on vertex v; participates. From

this it can be concluded that L is not minimal.

By the definition of consistency, for each neighbor v;' of v;, there exists an
element of A;' of A’ such that (A;,);') is a consistent pair of labels. We can apply
this argument recursively for the neighboring vertices v;' and the associated
labels Aj'. However, we need never reconsider a vertex which has been
previously considered, since the underlying graph contains no cycles, and
because the consistency relation is symmetric. Thus, the selection of consistent
labels by this process will branch outward from the root node, and the will
terminate when all pendant nodes have been reached. The result then, is a

globally consistent unambiguous labeling contained in L as desired.

TJo prove the last part of the lemma, it must be shown that any consistent
labeling can be expressed as the union of the unambiguous consistent labelings.
Let v; be any vertex of G, A; € A the associated label set, and A; € A; be any label
in Ai. The recursive procedure defined above can be used to generate an atom
L' € Lyc which contains the label Aj on vertex v; and which is contained in the
original consistent labeling L. The union over the set of all labels in L of the atoms
generated by this procedure is obviously equal to L, and the lemma has been

proved.

This lemma can be used directly to derive the following result:

Lemma 4.2: Let C(G,A,R) be any constraint network such that the underlying
graph G is a tree. Let v; be any vertex of G. Then there is no label associated

with v; which supports any other label on vertex v;.

Comment: The effect of the removal of a label at a particular vertex v; at time t is
seen as propagating through the extent of the network. What this lemma says, in
essence, is that in this class of networks, the effect cannot return to cause the

removal of a different label from the label set for vertex v; at some future time.

Proof: Let L® be any consistent labeling, and let LS be any maximal consistent

sublabeling, LC c LS. Then, from a basic result in lattice theory, LS - LC is an

60

atom, say, L' C L,. Hence, any such difference contains exactly one label on
each vertex of the graph. Then no label on any vertex can support any other

label on that vertex.

In other words, if a labeling contains the label A;' on vertex v; and if that
labeling is consistent (and hence a fixed point of the relaxation operator), the
label A;' will remain in the label set for all future time. For that matter, so will all
the other labels in that labeling, since the labeling is a fixed point. If, on the
other hand, there is no consistent labeling which contains the label A;' on vertex
v; then A;’ must necessarily be removed at some future time step. The existence
of such labeling, of course, is independent of the state of any of the other labels

on vertex v;.

The two lemmas shown above can be used directly to prove the following

result.

Theorem 4.3: Let G be the underlying graph associated with the constraint
network C, where G is a tree. Let I, be the iength of the longest open path in G.
Then the discrete relaxation operator applied to C must settle in no more than

I, -~ 1 iterations.

Proof: Consider the worst case situation stafting with a consistent labeling from
which exactly one label, say A; on some vertex, say v;, is removed. Consider v; to
be the root node of the tree, G. In order for the discrete relaxation operator to
remain active, at least one label \;', on an adjacent vertex v;' must be removed at
the next iteration. This can happen only if A\j on vertex v; supports A’ on vertex
v;'. The argument is applied recursively to the neighboring vertex v;,. However,
no vertex from which a label was removed at a some iteration t, can have another
label removed at some future iteration t' > t since this implies that two labels on a

given vertex support each other, in violation of lemma 4.2.

61

Let C(G,A,R) be a constraint network. Let v; be a vertex of G and let \; be a
label associated with v;. The label A\; on vertex v;is said to support the vertex v;
If A\; supports every label A;' € A/, on vertex v;. The distance between two
vertices in a connected graph G is defined to be the minimum length of all paths in
G having those vertices as endpoints. Given a vertex v; and a label)\; associated
with that vertex, a supporting path defined with respect to the label A; on vertex
v;, is a path in G from v; to another vertex v;' such that Aj supports v;'. The
supporting path is called minimal if its only supported vertex v;' is an endpoint.
The radius of convergence of a label A\; on a vertex v; is defined to be the
maximum length of a minimal supporting path defined with respect to A; on vertex

Vi.

Example 4.4: Consider the constraint network C(G,A,R) of figure 4.4. G is a path
of length 7. The radius of convergence for label A on vertex v4 is 4. The two
minimal length convergence paths from A2 on this vertex are vg4, vs, Vg, and v, to

the right, and vg4, v3, and vz to the left.

With these definitions, the following theorem can be stated and proved:

Theorem 4.4: Let G be the underlying graph of a constraint network C(G,A,R)
where G is a tree. If L is a labeling (possibly inconsistent) which contains at
least one minimal labeling L € L, then the settling time is bounded by rc - 1,

where r¢ is the radius of convergence for C.

Proof: Consider a worst case situation which starts at a given consistent labeling
LS from which a given label Ay on vertex v; is removed. The result of applying the
discrete relaxation operator to L® — §A,] is the largest consistent labeling
LC c LS. By assumption, LC is not the null labeling. Therefore, let L be a minimal
consistent labeling L c LS (refer to figure 4.5), which contains the label A; on

vertex v;. Let vi' be the first vertex to the left, such that A;; supports v;'. Let v;

62

Figure 4.4: The constraint network for example 4.4. The minimal supporting
paths for label \42 are (to the left) v4, v3, and vz, and (to the right) vg4, vs, v,
and v;.
be the first vertex to the right such that Aj; supports v;. Now the removal of Aik
cannot cause the removal of any label from either of the vertices v; or v; since

there there is a path (through the product graph) from \;; to every label on v;' and

Vijr.

Corollary: The bound of | — 1 of theorem 4.3 is achieved only if the initial labeling

Ais contained in a minimal consistent labeling, or if r¢ = 1.

We note that the analysis applied to the class of constraint networks in
which the underlying graph does not contain a cycle cannot be extended to the
general case. In the first place, if the underlying graph contains a cycle, then
there is the possibility that the product graph will contain a fundamental cycle,
and the recursive argument used in lemmas 4.1 and 4.2 will not hold. In the
second place, the set L, of minimal labelings of the constraint network does not
necessarily generate the set of all consistent labelings, as shown in the following

example.

63

o o
o e o o e o o (]
) L
L4 .
L4 .
. .
(] o

Vi, e o o vi e o o vi”

Figure 4.5: Constraint network for theorem 4.4.

Example 4.5: Consider a constraint network C(G,A,R) with G = C4. A labeling
induced subnetwork of C is shown in figure 4.6. The labeling is consistent, and is
the union of the fundamental cycles F; and F2 and the path P. Since P is not a
subgraph of a fundamental cycle, the given labeling could not be generated by

the union of Lp,.

4.1.4. Simulation Results

We have not been able to extend the results of the previous subsection to
the general case (that is, to the case where the underlying graph contains a

cycle). In leu of analytical results, simulation experiments were performed on the

constraint networks designed for the edge linking application of the Appendi)g, The

objective was to examine the rate at which the critical times, both average and

Tlabel A\24, the "knot” was ommitted for this experiment.

64

worst case, increase with the size of the network. Other important questions,
such as how the critical times depend on the nature of the network (i.e., the
underlying graph and constraint relations), certainly exist. However, an

examination into such issues was not attempted.

The simulation was performed on networks corresponding to square rasters
of size ixi fori=4,86,8,---, 18. Initial labelings were generated randomly.
Experiments were conducted with the probability that a given label on a given
vertex was in the initial label set in the range p = 0.1, 0.2, ---, 0.8. For each
value of | and p given above a total of 1024 experiments were conducted. A
larger number of experiments for each case would have been more desirable,

however the resources needed to conduct these experiments were not available.

The fact that the’ limitation on the number of experiments greatly affected
the outcome is reflected in the worst case settling time results, which are shown
in table 4.1. This table contains the worst case overall settling times and the
worst case detection times. The worst case critical times for a given i x i
network is taken over the set of all experiments conducted for all labeling
densities p. Thus, this table reflects the results of 9216 experiments per
network size. Despite this, the results obviously do not reflect in any way the
actual values. This is not too surprising, however, when considering the fact that
there are 21'2 possible labelings for a square raster with i rows and i columns. If
nothing else, it is appears reasonable to conclude from the resulting data that the
number of "bad" situations, that is, initial labelings such that the settling times

are large, are very limited.

There is further evidence for this in the way in which the settling time are
distributed. Table 4.2 gives the histogram for an 8 x 8 network with p = 0.5.
The shape of the distribution shown here is typical of the other experiments.

Finally, a series of simulations designed specifically to determine the worst case

65

Figure 4.6: Constraint network generated by two fundamental cycles Fy and
F2, and an inconsistent labeling P, where:

F1 = {A11, X215 A31s Aa1,M125 A225 A32, Aa2)s
F2 = {A14, A\24, A34: Aaa,M15, A25, A35, Aas),
P = {14, A23s A33s Ag2-

critical times was performed. These simulations started with the universal
labeling from which a randomly chosen label, on a randomly chosen vertex was
removed. The discrete relaxation operation was then applied to this labeling until
the network settled, resulting in a consistent labeling. A randomly chosen label

was then removed from the resulting labeling and the discrete relaxation
operation was applied again. This process was repeated until the null labeling
resulted. However, the worst case settling times for these experiments turned

out in fact to be lower than the ones for the original experiments. This again

points to the apparent difficulty in finding the worst case settling times for a
complex constraint network. As before, the conclusion to be drawn is that the

relative number of Initial labelings resulting in large settling times is small.

The average critical time results appeared to be more reasonable. Table 4.3
shows the average critical time results for the different size networks for various
initial labeling densities p. Figure 4.7 is a plot of the critical times vs. network
size for p = 0.5, which shows that both the average settling time and the
average detection time increases approximately linearly with an increase in the
number of rows or columns and linearly with the square root of the overall size.
Note that the critical times for are almost constant in the size of the network, for
p = 0.8. This result is consistent with other experiments with high labeling

densities conducted on networks of this type. Finally, note that the detection

size settling times detection times
4 x4 186 186
6 x 6 27 27
8 x6 32 32
10 x 10 36 36
12 x12 33 33
14 x 14 39 35
16 x 16 36 51
18 x 18 41 41

Table 4.1: Observed worst case critical times for the discrete relaxation process.

67

times for p = 0.2 in fact decrease for the networks of size 16 x 16 and 18 x 18.
This can be explained by the fact that the detection time is the minimum of the
settling and null time and at low densities, the probability that a particular vertex

is assigned the null labeling to start with is relatively high.

settling number of settling number of settling number of
time occurrences time occurrences time occurrences
1 (o) 8 14 16 1
2 4 8 2 16 2
3 336 10 a4 17 1
4 418 11 2 18 1
6 1566 12 3 19 0
6 49 13 3 20 0
7 27 14 (o] 21 1

Table 4.2: Distribution of worst case settling times for a 16 x 16 network with
p = 0.5.

size p = 0.2 p = 0.5 p = 0.8
settling detection settling detection settling detection

time time time time time time
4 x4 4.554 0.535 2.213 2.213 2.000 2.000
6 x6 4.760 0.784 2.658 2.655 2.000 2.000
8x8 4.870 0.650 3.049 3.038 2.000___ 2.000
10 x 10 4.919 0.510 3.361 3.361 2.002 2.002
12 x12 4.907 0.349 3.671 3.653 2.000 2.000
14 x 14 4.982 0.225 3.973 3.905 2.001 2.001
16 X 16 6.045 0.175 4.219 4.172 2.004 2.004
18 x 18 6.049 0.110 4.439 4.274 2.001 2.001

Table 4.3: Average critical times for p = 0.2, p = 0.5, and p = 0.8.

509

407 .

2.0 9

1.0 ¢

Y

Y

2

2 a

>

Y

4x4

10x10 12x12

14x14

16x16 18x18

Figure 4.7: Plot of settling times vs. network size for p = 0.5.

4.2, The Structure of the Graph Labeling Problem

‘ A basic description of the extrema and facets of the bounding polytope of a
class of O-1 integer programs is usually sought after in order to increase the
understanding of the nature of the problem and to aid in the development of more
efficient ways to solve it. This information is useful in the generation of cutting
planes for example, and in the derivation of heuristic solutions. Of further
interest is the study of the linear programming relaxation of the original problem,

that is, the original problem without integrality constraints on the variables. Let:
[P1] maximize: c’ x

subject to: Ax = e, xjj € {0,1}

be a set partitioning“problem and X be a solution to the linear programming

relaxation of [P1]. Let
€E=c-cgB'A

be the reduced costs from an optimal basis B. Then, the problem:

[P2] maximize: c x

" subject to: Ax = e x;€{0,1}

is equivalent to [P1], since, Eg B-' Ax is constant for any feasible x.
Furthermore it has been reported [BaP74] that the performance of the implicit
enumeration techniques applied to this p;oblem is greatly enhanced if [P2] is
solved instead of [P1]. This suggests a possible benifit in finding efficient ways

for solving (LGLP).

Finally, the behavior of the Lagrange dual approaches discussed in the
following section are thought to be related to the polytope of the linear

programming relaxation of the graph labeling problem. The intent was to be able

70

to describe the values of the primal variables in the LP relaxation of the graph
labeling problem directly from the results of this algorithm. The analysis of the
following section is not complete to the degree that such a tasks can be pursued.
It Is hoped, however, that the results which are presened will motivate further

work.

There are two basic approaches to characterizing the polytopes of a class
of O-1 integer programs. In the first case, these characterizations can be based
on the constraint matrix, and in particular, based on the existence (or absence)
of submatrices of a particular form. Equivalently, but perhaps more useful
because the results are easier to visualize, are the topological characterizations
which are based on the derived graph of the constraint matrix. Efforts in this
area seem equally divided between these two approachs, and depend for the
most part on ‘ the underlying application. Obviously, the topological

characterizations are the natural approach for the graph labeling problem.

An important element in current work.on topological characterizations is the
perfect graph, and related theorems [Gol80] which specify necessary and
sufficient conditions for the linear programming relaxation to have all integer
extrema. Work on characterizing the non-integer extrema related to O-1 matrices
Is found in the theory of blocking and anti-blocking polyhedra [Ful71] as well as in
studies of special classes of problems such as the vertex and set packing

problems [NeT74,NeT75,Pad73].
4.2.1. The LP Relaxation of the Graph Labeling Problem

4.2.1.1. Original Form of the Problem

As a trivial extension to established results concerning the vertex packing
polytope, the polytope for (LGLP) can be completely characterized. Let C(G,A,R)

be a constraint network, where G is a graph with n vertices, and A is a set withm

71

labels. Let [P3] be the LP relaxation of a graph labeling problem, with the first

constraint (equation 3.3 of chapter 3) replaced with an inequality as:

- BB a.1
[P3] maximize: Y Y eixi :
=1 j=1
- < 4.2
subject to: Yxj = 1, i=1,..,n, .
=1
xu + xi'j' < 1 4.3

Problem [P3] with the integrality constraints imposed on the variables will be
referred to below as the set packing relaxation of the associated graph labeling
problem. Clearly, any extreme point of the associated graph labeling problem
(where equation 4.2 is rgplaced with an equality) is an extreme point of [P3].
Integer extrema of [P3] in which the inequality 4.2 is strict correspond to
solutions in which there exists a vertex to which no label has been assigned (i.e.
X; =0 for all j=1,---,m for a given vertex v;). Consider the following

modification of [P3]:

SRR 4.4
[P4] maximize: > X Sij Xijs '
i=1 j=1
subjec‘t to: Xjj + x5 < 1, jj=1,..,.m, Ii=1,..,n, 4.5
x,j + xrj' < 1 4.6

for every pair of inconsistent labels (Aj,)\j') on adjacent vertices v; and

xjj € {0,1} 4.7
Problem [P4] is similar to [P3] except that equation 4.2 has been replaced by
equation 4.5. Replacing equation 4.2 with 4.5 obviously does not change the
integer programming polytope. Furthermore, every extrema of [P3] is an extrema

of [P4]. In order to show this the following, which result from the work found in

72

[Pad73] is needed.

Llemma 4.5: The inequality

m
2 Xij < 1, i=1,...,n
i=1

is a facet of the integer programming formulation of [P4].

From this, the following lemma can be proved directly:
Lemma 4.6: Every extrema of [P3] is an extrema of [P4].

proof: Let constraints of the form

m

Y ox; < 1, i=1,..,n 4.8

=1
be added as a cutting plane to the polytope of problem [P4]. From the previous
lemma, these hyperplane intersects the polytope of [P4] only at integer points.
Furthermore, the polytope described by the hyperplanes of equation 4.8
themselves obviously has only integer extrema. Therefore, since the integer

extrema of [P3] and [P4] are the same, the result follows.

Problem [P4] is a vertex packing problem. Therefore, the following result
from from [NeT74] can be used to completely characterize the polytope of the

graph labeling problem:
Theorem 4.7: Let Xij be an extreme point of the LP relaxation of a graph labeling

problem. Then x; = 0, -15, or 1 for all x;;.

It is not difficult to see that what this theorem means in terms of a graph
labeling problem is that the LP solutions will break into connected "regions" of
either all integer solutions (corresponding to a choice of a single label at those
vertices) and or solutions with two variables, say x;; and Xx;: equal to 1.

Obviously, internal to any all integer region, each label choice is consistent with

73

all its neighbors. Consistency is also obviously maintained at the boundaries.
That is, at the labels corresponding to the non-zero basic variables are consistent

at the boundaries.

4.2.1.2, The Feasible Region Under PMI Constraints

Throughout this section, it will be assumed that the continuous graph labeling
problem will be formulated in terms of PMI constraints. We have the following

basic results:

Theorem 4.8: The non-zero basic vectors in any optimal solution to the LP
relaxation of a graph labeling problem are consistent in the discrete sense. That
Is, If Xij be a non-zero basic variable in an optimal solution, then for each
neighboring vertex v; there exists a non-zero basic variable Xyj» such that
ridA\pA) = 1.

Proof: Assume otherwise. Then there exists a pair of adjacent vertices, v; and v;
and a non-zero basic variable x;; associated with vertex v; which is inconsistent
with every non-zero basic variable on vertex vj. Let Xijgs Xijgs « + o5 Xijg be the
non-zero basic vectors on vertex vjy. Then by the nature of the PMI| constraints,
the variable x;; as well the set of non-zero basic vectofs on vertex vy must be

contained in at least on PMI set. Therefore,
Xij + Xiigs Xitjgs oo o0 Xijg < 1 4.9
Furthermore, the sum of all variables at a given vertex must be 1:
Xijgr Xijpr o+ o» Xijg = 1 4.10

Equations 4.4 and 4.2 imply that x;; = O contradicting the assumption that x;; is

a non-zero basic variable.

The following discussion gives a sufficient condition for the polytope of

(LGLP) to have all integer extrema. This discussion depends on the results

74

related to the extrema associated with O-1 matrices. A brief outline of the
necessary definition and results are given here. A more thorough treatment can

be found in [Gol80].
Definitions: Let G be an undirected graph.
The clique number, c(G), of G is the number of vertices in a maximum clique of G.

The clique cover number, k(G), of G is the smallest number of cliques (not

necessarily maximal) needed to cover the vertices of G.

The stability number, a(G), of G is the cardinality of a maximal stable set in G,
where a stable set (or independent set) of a graph is a subset of the vertex set in

which no element is adjacent to any other element.

The chromatic number, X(G), of G is the smallest number of colors required to

properly color G.

Let G = (V,E) be a graph with vertex set V and let A C V. The subgraph induced
by A is a graph G, = (A,E,) where a pair (vi,vj) is in E, if and only v; €A, vj €A,

and (v;,v;) € E.

A perfect graph [Ber73] is one in which

[1] o(Ga) = X(Ga) forall A cCV,
and
[2] a(Ga) = «(Gp) for all A CV,

The importance of this class of graphs is found in the theorem given below.

Let A be the clique matrix of an undirected graph G. Define:

P(A) = {x]| Ax<1]}
and

P(A) = convex hull { x | x € P(A), x integral }.

Theorem 4.9 [Chv75]: If A is the clique matrix? of an undirected graph G, then G

76

is perfect if and only if Pj(A) = P(A).

From this, the following result is obtained:

lemma 4.10: The augmented complement graph of a constraint network with only

two vertices is a perfect graph.

Proof: It is straightforward to show that a(G) = x(G). If there exists a
consistent pair of labels, say A; on vertex v, and label A on vertex vz, then
clearly £(G) = 2, since no maximal clique will cover all the labels on both vertices.
Furthermore, a(G) = 2. Label Aj on vertex v, and label Aj- on vertex vz form a
stable set. If there does not exist a consistent pair of labels, then a single PMI
sqt covers all the labels on both vertices, so that a(G) = x(G) = 1. Since this
holds for any two vertex constraint network G, it will also hold for any induced

subgraph of G.

Thus, the node-clique matrix, A of the product graph of a given two-vertex
constraint network is perfect. Then the polytope defined by

x>0, Ax < 1 4.11

contains only (0-1) integer extrema. In the continuous graph labeling problem,

the first two rows of Ax < 1 are constrained to be equalities, that is:

X919 + X2 + *°* + Xy = 1,

X219 + X2 + *°** + X2m = 1.
It is easy to see, however, that the resulting region will be a facet of the
polytope described by equation (4.11). By a basic result [Mur76], every extreme

point of a facet of a polytope is an extreme point of the polytope, therefore:

Lemma 4.11: For a continuous graph labeling problem based on a constraint

network with only two vertices, the feasible region has all O-1 integer extreme

z’nie clique matrix of G has a row for every clique of G and a column for every vertex. The en-
try for row | and column Jis 1 If vertex v] Is In clique | and O otherwise.

76

points.

This result can be extended directly to any graph labeling problem in which

the underlying graph is a path:

lemma 4.12: The feasible region for a graph labeling problem for which the

underlying graph is a path has all integer extrema when expressed in terms of

PMI constraints.

Proof: Let G be the augmented complement graph of the constraint network. It
must be shown that a(G') = x(G') for every induced subgraph G' of G. Let G’ be
any induced subgraph of G. Assume G' is connected (otherwise each component
can be treated separately). We show that there i; an independent set of
vertices, V', and a clique cover K', as well as a one-to-one correspondence

between the elements of V' and K'.

The theorem is proven by induction on the number of vertices in the
underlying graph. The case |V|] = 2 is lemma 4.11. First note that if G' contains
a globally consistent labeling A = ATAZ - -+ A", then G' is perfect. In this case, the
n' vertices of the induced graph G' corresponding to the labels in A form an
independent set. Therefore G’ can by covered by n' cliques, that is, those cliques

corresponding to the set of all labels at a given vertex.

Now assume that G' does not contain a globally consistent labeling. Let
A € A be the set of labels currently associated with vertex v; € V'. Let Ly = A;.
Let L, be the set of all A2 € A, which are consistent with at least one A' € L;.
Likewise, let L3 be the set of all A3 which are consistent with at least one

A2 e L2. In the same manner, define L4, Ls, and so forth.

Let t be the first vertex such that L; is empty. Note that such a t must
exist, otherwise, we could find a consistent path through the product graph, that

Is, there would exist a globally consistent labeling in G' to be derived as follows:

77

pick an element, A" of L,. Pick an element of A"=1 of L,—1 which is consistent
with label \" on vertex v, (the existence of such an element is guaranteed by
construction). Likewise pick a label A"~2 from L,-2 which is consistent with label
A"-1 on vertex v,_;. Continue in a similar manner until a globally consistent

labeling A = A'A2 - - « A" has been constructed.

Now consider the graph G" induced from G' by considering all vertices in the
product graph corresponding to the labels in the sets, A4, Az,--.s Ay We show that
a(G") = x(G") =t — 1. Since the sets L; through L,_i are not empty, there
exists a consistent path through the first t — 1 vertices of the underlying graph
of G", and it follows easily that a(G"") = t — 1. Define [; = A; — L;, and note that
{1 and L; forms a partition of A;. Likewise, Ly, L1, L2, L2, - » Ly, Lt forms a partition
of all the vertices in the complement graph of G''. Note finally that every element
of {i+1 is inconsistent with every element of L Thus the elements in the set
L; U Li+1 are contained in some clique, say, K;. Since |1 = L: = ¢, the cliques
K;, i=1,...,t—1 cover the vertices (labels) of G" (refer to figure 4.8), so

(G)=t-1.

To complete the proof, let g" = G' — G". It is clear that any set of vertices
(labels) in a stable set of g is independent of the independent set selected by
the process given above. Thus, a(G) = «(G) if and only if a(g) = x(G), which

follows from the induction hypothesis.

The above theorem can be generalized to any graph labeling problem where
the underlying graph does not contain a cycle. Obviously, only connected

components (trees) need be considered.

Theorem 4.13: Let A be the constraint matrix under PMI constraints for any graph

labeling problem where the underlying graph is a tree. Then P(A,e) = Pi(A,e).

Comment: The strategy used here, will be the same as that used in the above

lemma. That is, a subtree G" will be found in which a(G"”) = £(G") =t — 1, where

78

Lt Les

Kt.2

Figure 4.8: Covering Cliques for the Proof of Lemma 4.12,

t is the number of vertices in the graph underlying G"'. A maximal independent set
will be derived which will be independent of any of the vertices of G=G' - G".

The result will then follow by induction.

Proof: Assume the theorem .holds for any graph labeling problem where the
underlying graph is a tree with n—1 or fewer vertices. Let G be the augmented
complement graph corresponding to a graph labeling problem where the underlying
graph has n vertices. Let G' be an induced subgraph of G. Assume without loss
of generality that G’ is connected. As above, if there is a globally consistent
labeling in G' then the result follows because a(G') = k(G') =n. So assume

otherwise.

Arbitrarily choose a root node in the underlying graph. Let V; be the set of
leaf nodes of the graph thus rooted. For each vertex v; €V, let L, = A,

Likewise, let V, be the set of all predecessors of vertices in V;. Let vy € Vy, let

79

Vigr Vigs + « o » Vi be the successors in the underlying graph of vz, and let
Li;» Ligs - - . » Li, be the associated label sets. Let L C A2 be the set of labels A
on vertex vz where A\ is consistent with at least one label in each of
L51. Liz' ceey Lir (refer to figure 4.9). The label sets, L, for the set V3 of
predecessors of the vertices in V, are defined in a s_imilar manner. At some point,
a level will be reached in which there exists a label set, say L;, associated with a
vertex v which is empty. Otherwise, using the same construction as in the lemma

above, there would have to exist a globally consistent labeling within L.

Consider the subtree G" rooted at ;. For this subtree,
a(G") = x(G") = p — 1, where p is the number of vertices in G, and a maximal

Indepedent set exists in which no label is assigned to vertex vg, which is shown

Figure 4.9: Covering Cliques for the Proof of Theorem 4.13.

80

as follows: Let [; = A; — L. With all vertices, v; in the set V; of leaf nodes,
associate the clique K; which contains the elements of L; and all the labels in the

predecessor v, which are inconsistent with each label in L;. Evidently,

Lz = U Ki N Az

vj successor of vo

The cliques associated with the vertices in the set V2 are defined in a similar
manner. Because Lg = ¢, the set of cliques for the successors of vg "cover” As.
As in the lemma above, for each of the subtrees rooted at each of the successors

of v, there exists a globally consistent labeling. The result then follows.

Note that the PMI constraints are all the cliques of the augmented
complement graph of a graph labeling problem only when the underlying graph
does not contain a clique with more than 2 vertices. When the underlying graph
does contain a cycle of length 3, a clique of the augmented compiement graph
may in fact span all vertices vertices in the clique of the underlying graph. With
respect to the more general situation where the graph labeling probiem is
expressed in terms of the cliques of the augmented complement graph, we pose

the following conjecture:

Conjecture 4.14: Let C(G,A,R) be a constraint network with underlying graph G.

If the clique graph of G does not contain any cycles, then the polytope of the
associated graph labeling problem expressed in terms of the cliques of the

augmented complement graph has all integer extrema.

When cycles are introduced into the underlying graph of a constraint
network, the associated polytope expressed in terms of PMI constraints will have
non-integer extrema. An attempt was made to characterize the non-integer
extrema of a graph labeling problem in this case in a manner similar to the

characterization of theorem 4.7. Initial work towards this goal has produced the

81

following result and the conjectures of the following subsection:

Result 4.15 : Let C(G,A,R) be a constraint network, in which the underlying graph,

G, is a cycle. If the labels in the fine graph corresponding to the non-zero basic

variables form a fundamental cycle, say F(p), then x;; = %, x;j € F(p), and x;; = 0
is an extreme point of the corresponding polytope. Furthermore, it is the only

extreme point in which x;; > 0, x;; € F(p), and x;; = 0 otherwise holds.
Proof: First it is shown that this is the only feasible solution for which the stated
conditions hold. Assume otherwise: Then there exists an Xjj = % - &jj, with

g > 0. Assume, without loss of generality, that x4y = % - £19 Wwith £g99 > 0.
Assume furthermore, that Ay¢ is consistent with Az¢, and so forth, as shown in

figure 4.10. Then, sinue

p-1
X1j = - &11
jg:z ! P

it can be concluded that xz¢ = % — t21 with £27 > 0, since the labels
A12, A\13, - - - » A1p, A21 are covered by a clique. Continuing in this manner results
in x;; = % — g with g > 0 for all x;; € F(p). This is impossible, since it implies
| that:

lgxﬁ=1—§:£ﬁ<1.

=1

4.2.2. The Structure of the Graph Labeling Problem: Summary

Initial theoretical results related to some aspects of the graph labeling
problem have been presented above. The following chapter covers algorithms for
solving it. The discussion of algorithms is based on what is known about the
graph labeling problem at this point. It is felt, however, that better algorithms,
Including good heuristic approaches would be possible if more were known about

the basic nature of this problem. What we hoped could be accomplished was a

82

At

Vn-z

Figure 4.10: Fundamental Cycle for Result 4.15,

complete specification of the polytope for linear programming relaxations of the
graph labeling problem as well as for the original (integer) program. In that sense,
the work presented here is far from complete. The approach which was to be
taken was to specify the extrema first for the graph labeling problem where the
underlying graph was a cycle and then extend these results to the more general
case. The results which were anticipated from this work are expressed in the

following two conjectures:

Conjecture 4.16: For a constraint network under PM| constraints where the

underlying graph is a cycle, the only fractional extrema correspond to the

fundamental cycles, F(p) with Xjj = —;- as in lemma 4.15 above, and the fractional

extrema of lemma 4.7.

83

Conjecture 4.17: In a solution to the linear programming relaxation of a graph
labeling problem, the vertices of the underlying graph can be separated into
connected regions, where the non-zero basic variables associated with the

vertices of a given region all take on the same value.

More important to thel theory developed here is a characterization of the
facets of the polytope of the (integer) graph labeling problem. Note that because
the probiem is defined in terms of equality as well as inequality constraints, this
polytope will be degenerate in most cases. Thus there may be in fact an infinite
number of ways to specify the bounding polytope. It would be worthwhile to be
able to specify this polytope in a manner such that a sufficient set of constraints
can be easily recognized by reference to either the product graph or the
(augmented) complement graph of a given graph labeling problem. Most
descriptions of the facets of the set partitioning and set (vertex) packing
polytopes are given in terms of the forms of certain subgraphs of the derived
graph of the constraint matrix. As noted before, one of the aspects of the graph
labeling model which makes issues like this easy to approach is the direct
relationship between the problem definition and the graphical characterization. As
a final note on the work towards a theory for the graph labeling problem, the

following conjecture is presented:

Conjecture 4.18: Consider the case of a constraint network C = (G,A,R) in which
the underlying graph is a cycle with n vertices. Let A be the set of fundamental
anti-cycles defined on G. Let S be a subset of 4 such that the union of all the
labels in each of the cycles does not contain within it a unambiguous globally
consistent labeling, and which is maximal in that sense. Then the set of

constraints of the form:

2 xijsn-—1
luES

84

for all subsets S C A which satisfy this critera, along with the PMI constraints,
are sufficient to guarantee only integer extrema of the associated graph labeling

polytope.

CHAPTER V

ALGORITHMS

The following chapter presents a discussion of various approaches to the
graph labeling problem. As noted previously, an algorithm which guarantees a
primal feasible solution must in the general case involve an enumeration scheme.
The question is how ;xnd to what extent can this enumeration process can be
augmented by other techniques. The discussion here focuses on means by which
the structure of this particular problem can be used to generate upper bounds for

a given candidate subproblem in a basic branch and bound approach.

8§.1. Dynamic Programming Approaches

Dynamic programming can be used in the solution of combinatorial
optimization problems when the problem constraints are posed in a group theoretic
manner. Although group theoretic approaches cannot be used to solve the
general O-1 integer program, a dynamic programming approach, similar to the Vitirbi
algorithm, can be used to solve a graph labeling problem when the underlying
graph is a path. This algorithm can then be used as a building block in the further

development of algorithms for the generation of bounds for tlie original problem.

5.1.1. The Case Where the Underlying Graph is a Path

In the case where the underlying graph is a path a decentralized process for

solving the graph labeling problem does exist. In order to describe the dynamic

85

programming algorithm used solve the problem under these conditions, assume
that a graph G = (V,E) with n vertices vq, vz, ..., v, is given. The graph is a
path with vertex v, adjacent to vertex vz and vertex v, adjacent to vertex vz
and so forth. For the sake of discussion, assume the path is oriented from left to
right with vertex v; on the left and vertex v, on the right as is shown in figure
6.1. The assumption is that the architecture used to solve this problem specifies
a processor for each label on every vertex of the graph, which is performing the

updating of the current labeling value for the associated label on that vertex.

In fact, two independent processes are needed. One will transmit labeling
information to the right, and the other will transmit information to the left. The
current labeling values for the process with data moving to the right wi!l be
denoted as Rjj for the value associated with label A; on vertex v; at iteration t.’

Likewise the current labeling values for the process with data moving to the left

will be denoted as L.

vy V2 V3 Va-1 Vn

Figure 6.1: Graph underlying the graph labeling problem for the dynamic pro-
gramming approach.

1The current labeling value Ri} should not be confused with tha constraint relation Rjj. The form-
or will ailways be shown with the superscript t, while the latter will not.

87

Initially, these values will be set equal to the labeling value inputs for the

original problem:
Li? = Ri? = ci? for all i,j. 51

In order to describe the updating procedure, consider first the process with data
moving to the right, and a given précessor performing the updéting for label Aj on
vertex v;. This processor looks to its left and considers the set K‘_, ,j of labels on
vertex vj_; with which the label A\; on vertex v; is consistent. That is,
Kl—hj = A € Al (Aju)y) €Rij_q,i}. Of those labels, it takes the maximum of the
associated labeling values and adds it to the initial labeling value, ci?. The result

Is the updated labeling value Ri}“. In other words the updating rule is given as:
Ri}” = °i? + max R, Jr° Fie1,iAn) 3 5.2
Aj'EA

where, as given in section 2 of chapter 3

[4
1 If (\uAy) €Rjq 6.3

Fi-1,i(AjuA) =
0 otherwise

This updating rule is shown schematically in figure 5.2 below. The strategy for
the process with data transmitted to the left is similar except that each
processor refers to the set of consistent labels on the vertex to the immediate

right. The updating rule is then given as:
LJ“ = ci? + max iLit.n,j" riis1 (N Ay § 5.4
AjIEA

This is an inherently sequential process. However, there is no reason that it
cannot be implemented in tel;ms of a parallel iterative procedure. Assume that
there is a unique solution to the problem as defined, that is, there is a unique
unambiguous consistent labeling with a maximum sum of the initial labeling values.
Then, given the updated labeling values for the process with data flow to the

right for any iteration t> n, we can make a correct decision by choosing that

v

REIA) ‘
.l‘-.xl(“z) o

l—ll(lg) O e ’ MAX i 2 e) I,"(A)

) /
R A,) /

RX(A) = ¢P(A) for all i, A

Figure 5.2: lllustration of updating rule for the dynamic programming approach
for process with data flow to the right.
label Aj on vertex v, such that the corresponding labeling value R,fj is maximum.
This statement is implied by the following stronger result, which in fact, is just a
restatement of the fundamental principal of dynamic programming applied to this

particular case:

Lemma 5.1: Let v; be a vertex, 1 <i<n, and); a label on that vertex. Let Li(A;)
be the set of all partial labelings which assign labels from A to vertices
V1, V2, . .., Vi—1 and the specific label \j to vertex v; in such a way so that the
resulting labeling is consistent. For a given consistent partial labeling
A= A2, .\ Aj, associate a value c()\;) which is the sum of the initial labeling

values for the labels that participate in that labeling:

_ i=1
e(\) = ¢ + k21 ex(A%)

Then the algorithm given above for information transmitted to the right, assigns to

Ri} the value:

R\ = X.?LT(’)S,) § e(\))

forall t > 1.

Proof: By induction. The assertion clearly holds fori = 1. Assume it also holds for
i-1. Let t=i—-1. Any consistent partial labeling, A; € Li(A;) with the label Aj on
vertex v; is made up of a partial consistent labeling A\;_; € Li-1(}j) along with the
label A; on vertex v; provided that the label A; assigned to vertex vi_; is
consistent with label Aj on vertex v;. By the induction hypothesis, for t > i—1 for

every label A;- on vertex v;_; the value of R,_, j is given by:

Rit-1,j: = &_1'3:51 oy § c(Ai=1) | \' assigned to Vi-1)}

Sothatatt=>|,
Rt(K) = ci°()\) + max 2 Rit.1,j'| Aj' € A. ri—I,i(A")\) =1 ;
=_max (e + R} | Ay € A ricq i{OVA) = 13

NeLi(ny)
= max § e(\) }

In order to domplete the algorithm both the process with data transmitted to
the right, and the process with data transmitted to the left are run in parallel, as
shown in figure 5.3 below. The output of the labeling process for a given label Aj
on a given vertex v;, at each iteration t is given by the sum of the labeling value
for data flow to the left plus the current labeling value for the network with data

flow to the right minus the initial labeling value. Formally:
ci} = Li} + Ri} - ci? 5.5

In the case where the underlying graph is a path the process described by

equations 5.2 through 6.5 will solve the problem with data initialized according to

80

RHA)

eoccoscce sonccccodinn

—<{(A) ———— Z — cl(A)

L)

Figure 5.3: Updating process for the parallel iterative scheme derived from
dynamic programming.
eqhations 6.1. That is, for any iteration t > n, we can choose, by local maxima
selection, at each vertex that label such that the corresponding labeling value is
maximum. The resulting labeling is (a) consistent, and (b) a solution to the graph
labeling problem. Again, this statgment follows from a stronger result which is

given below:

Theorem 5.2: The process described by equations 5.2 through 5.5 will assign to
each labeling value ci} for label A; on vertex v; for all v;, Aj the sum of the initial

labeling values for the best consistent labeling in which the label Aj on vertex v;

81

participates.?

Proof: Let X = ATA2 - - - A" be the best consistent labeling in which the label A on
vertex v; participates. Clearly then, the consistent partial labeling for vertices
Vi, V2, * = *, vj given by A'A2 - - - Alis the best consistent partial labeling of these
vertices in which the label A\' on vertex v; participates. Otherwise, there must
exist another consistent partial labeling A=A, 5 Aj such that

c(X) > ¢(X). In this case, if we define
N = R1R2 ... RI-IRFIRIH2 ... K0
then ¢(X) > c¢()\). By lemma 5.1 above:
e(\) =R} t=i.

By a similar argument, the consistent partial labeling of vertices v;, Vit+1, ..., Vp
given by AA*TA2...)\" is the best consistent partial labeling of these

vertices,
c(A) = L) t=i-1.
Thus:

- t t 0
.Ci} = RU + LU - ci‘-

c(N)
The initial labeling value ci‘,’ must be subtracted since it occurs both of the terms

Ry and L}. The result then follows.

Corollary: In the case that there are no ties for the best consistent labeling the

process described by equations §.2 through 5.5 solves the problem.

2Note that this holds whether or not)\j on vertex Vjparticipates in the solution to the problem or
not.

82

6.2. Dual Approaches to the Graph Labeling Problem

Lagrange duality and price directed decomposition theory serve as a second
building block in the enumerative schemes described below. In order to motivate
the dual formulation, we consider first the naive approach to the labeling problem
which is to simply choose that label at each vertex such that the initial labeling
value is maximal. Obviously, if there are no constraints violated in the resulting
labeling then the problem has been solved. However, in general, invalid labelings
will result. One approach that could be taken in this case would be to penalize
the labeling values associated with labels participating in constraint violations,
thereby reducing them so that at the next iteration, another overall labeling would
result. Hopefully, there would be fewer constraint violations in the new labeling.
An iteration of the algorithms which will result from the application of these

techniques will have the following form:

[1] Choose a labeling XA = A'A2 - - - A" by selecting a label at each vertex such

that the corresponding strength measure cij is maximal.
[2] If the resulting labeling is consistent, then stop. Otherwise,

[8] Reduce the labeling value cj for every vertex v; such that the label Al

participates in an invalid labeling pair (A, A") on adjacent vertices v; and v;.
[4] Goto 1.

The use of the theory of the Lagrange dual relaxation below is a systematic
means by which this strategy can be implemented. The way in which this is done
is to associate a non-negative dual variable ujjijr With every inconsistent pair of
labels (Xj,Aj)) on adjacent vertices v; and vj. The value of a dual variable can be
interpreted as the penalty assigned to the associated invalid pair of labels. In
accordance with the theory, penalty values are multiplied by the indicator
variables associated with those invalid labels resulting in the definition of an

auxiliary function:

o3
¢()-(,ﬁ) =2 c;j Xij - 2 uim-r (xij + Xi'j' - 1) 5.6
ij lji'i'en
where u is the set of all four-tuples, iji'j’ corresponding to inconsistent pairs of
labels (Aj,A\j) on adjacent vertices v; and v;. By rearranging terms, ¢(X,0) is

represented as:

PR = Y 3 omyxj + Y uyy 6.7
VIiEV €A Bi§ eudii)
where
rp=C— Y Wiy
1y €galini)

is the current cost or payoff, relative to the dual vector G, or simply, the current
relative cost. Here u(ij) is the set of all 4-tuple iji'j' corresponding to invalid pairs
of labels in which the label \; on vertex v; participates. The Lagrange dual form

of the original problem [BaS79] is defined as:

minimize 8(u), =0 ' 6.8
where: B(u) = sup;p(i',ﬁ) 5.9
XeX
= sup} 2 Cij Xjj — 2 Uijirj * (xij + x;'j' — 1)}
XEX iii'ep
= supf{) r X + Uijirj §
Sup § ij Xij MZ:E# iji'j

Here X is the vector of decision variables:

X = (X11, X125 co o9y Xims X213 X225 e 009 X2ms oo 05 Xn1s Xn2s o o o » xnm)

and X is defined to be the set of all X which conform to cohstraints (3.3) and

(8.5) of the original problem definition.

For any u > U, the weak law of duality guarantees that 0(ua) = f(X), for all
feasible X. Thus, if @(d) = f(Xx), for some pair (4,X) then U must solve the dual
problem and X must solve the primal. That is, those elements of X equal to 1

correspond to labels to be selected in the solution of the original problem. In this

84

case, by constraint (1) none of the constraint relations will be violated, and by

(2) and the definition of X only 1 label will be selected at each vertex.

5.2.1. Example Problem

Using the example of section 3.3.2 of chapter 3, the Lagrange dual form of

this problem is:

minimize: B(), u=0 6.10

where: 8(u) = sup ¢(X,0)
XeX

and

¢(i,l_l) = 12)(11 + 9X12 + 3X13 + 10x21 + 8)(22 + 2X23 -
Ugq21 (X917 + x21 — 1) —uqg122 (X171 + x22 — 1) —

ui221 (X912 + x29 — 1)
So that

@(X,0) = (12 — U927 — U1122)%11 + (9 — u1221)%12 + 3%xqq +
(10 —uj121 — U1221)%x21 + (8 —ug221)x22 + 2X23 +

U121 + U122 + U221,
As in equation 6.7 above, ¢(X,u) has the form:

p(x,u) =) X FjXij + Uq129 + Uj922 + Ug22q
i=1,2 j=1,2,3 .

where

O Rl M

Ii'euli,j)
In particular,
ri9 =12 —uq —ug, . for label A\q on vertex vy,
ri2 =9 - us, for label A\2 on vertex vi,

™

riz =3, for label A3 on vertex v,,

95

rz1 = 10 — uq - ug, for label Ay on vertex vy,
rzz =8 — up, for label A2 on vertex vy,
ri3 = 2, for label A3 on vertex v,

Here the set X is defined to be:

X = {@1,0,0,1,0,0), (1,0,0,0,1,0), (1,0,0,0,0,1), (0,1,0,1,0,0), (0,1,0,0,1,0),

(0’1’0’0,0'1), (0’0’1119030)’ (0,0.1’0,1’0), (030'1,030!1);’

For example, X = (0,1,0,0,0,1) corresponds to choosing label A2 on vertex v,

and label A3 on vertex v3.

86.2.2. Minimizing the Dual

The goal of the following algorithms are to minimize the dual function O(a)
subject to U non-negative. The objective, nominally, is to derive a solution to the
original problem by finding the vector XX corresponding to the point G at which
the function ®(u) is minimized. However, this strategy will not always work.
Because of the discrete (i.e. non-convex) nature of the primal space, a duality
gap will exist in the general case, so that the minimum value of the dual! function
will be strictly greafer than the maximum vélue of the primal. When this occurs, it
will be impossible to derive a primal feasible solution from the current point in the
dual space. The process of ;nlnimizing the dual function is still of interest,
however, since the minimum value of the dual can always be used as an upper
bound on the best solution of a current candidate problem in a branch and bound

approach.

Standard algorithms for minimizing the dual are discussed in [BaS79]. In
general, these methods are directed towards finding the steepest descent
direction at each iteration, and do not address the issue of the decentralization

of the computation. Since the issue of decentralized computation is important to

the goal of implementing as much of the solution as possible in parallel hardware,
we do not make specific use of these techniques, but rather concentrate on
showing how and when a descent direction can be determined on a local basis. In
order to do this, we make some observation about the behavior of p(x,u) and

hence B(i) as a function u.

The value assigned to the function 8(G) = rg:: p(x,0) for a given U results
from two factors: one which generates a set, S, of values for the function
@(X,0) = pz(0) for every X € X and the other which selects the maximum value of
the elements of S. Alternatively, we may, for all XX consider the set, &, of
functions gz(u) and examine those closed intervals of R™ on which a particular
element of ¢ is selected. Because each ¢gz(U) € @ is a linear function of u, 6(T)

is piecewise linear and from the theory, it is convex.

For the sake of further discussion, we consider ¢(X,i) as the sum of two

functions a and 8:

p(x,u) = a(x,u) + B(a@)
with

az(ﬁ) = a(x,u) 2 Tij Xij
vieVv AJEA
and

p@ = 3y uij.i'j'-
ijili'en

Note that for all X

2 4@ _ |,

0 ujjiy

for all components u;j;- of the dual vector.
Let X(u) be the set of all € X such that
(R,U) = maxp(x,u)
v XeX 4
for a given fixed value of U. Let ® € X(G). Define g:R™ - RP to be the vector

valued function constructed from the inequality constraints of the original problem

87

(p is the total number of constraints). That is, if Xij, + Xij, — 1 < 0 is the rt"
constraint (according to some arbitrary ordering), then g,(x) = Xij, + Xij, — 1.
A well-known result states that @ = g(R) is a subgradient of ® at G. If
| X(@) | =1 then @ =g(R) is the gradient of ® at i4. Note that B(u) is
independent of X, so that the derivation of X(u) can be performed completely by
inspection of a(X,u). In particular, if A; is defined to be the set of all labels Aj on
vertex v; such that the corresponding reduced value rj; is maximal, then it is not

difficult to see that

X(UW) = Ay xA2x == Ap
We start by considering the generation of the descent directions for the
‘case where the underlying graph contains only two vertices, say v; and v;', and
use example problem 5.2.1 for the sake of illustration. Table 5.1 shows gz(u) for
X € X as a function of 7] for this example. Assume
0 = (uy1121, U1122, Ui221) = (0, 0, 0). Here, O(ud) =12 + 10 = 22. This occurs

at
X(d) = §*} = {(1,0,0,1,0,0) }.

Note that R is not primal feasible (constraint 1a is violated). Because |X(u)]|
contains a single element, g(X) =(1,0,0) is the gradient of &(u) at

u = (o0, 0, 0).
A descent step is taken by increasing uy from 0 to 2. Atu = (2,0,0),

x(a) = 221) 22; = 5(1 9090’1'010)' (1’0’010’120);

and B(d) = 20. The reason that a descent step is generated by increasing uj111
is because such an increase causes a decrease in both j_t_qaz 5 {rij} and

jln}a{s trij. That is, the relative cost of the best choice on both vertex v; and

V|’ decrease so that

X - gx{u)

(1,0,0,1,0,0) 22 — uy124

(1,0,0,0,1,0) 20 + ug4p1 — U3122

- (1,0,0,0,0,1) 14 + U4221

(0,1,0,1,0,0) 19 — U021 + Ug122
(0,1,0,0,1,0) 17 + uq121

(0,1,0,0,0,1) 11 + Uq121 + Uq122
(0,0,1,1,0,0) 13 + U410

(0,0,1,0,1,0) 11 + ug121 + Uy921
(0,0,1,0,0,1) § + uj121 + Uyo21 + U312

Table 6.1: pz(u) for all possible X € X for example problem 5.2.1.

3 a(X,u) = -2
0 uiji'j'

Therefore, even though the value of B(u) increases from O to 2, the value of

’ a(i,ﬁj, for X = (1,0,0,1,0,0) decreases from 22 to 18, so the net chance is a

decreases of 2.

Increasing uq471¢y beyond 2, say to a value of 2 + Auq111, for 0 < Auqyq¢9¢1 <1
causes a net change of Aujq1¢ In (@) and —A uy914 in a(@). For 2 <uqq99 <3,

9 a(x,u)

= -1
9 ug111

since the maximum relative cost on vertex v4 which is 10, does not change, while
the relative cost on vertex v, decreases by a factor of A uj119. Thus the value

of @(4) is independent of uyq9¢ for U = (uy711, 0, 0) with 2 <uqy711 <3. For

U111 > 3,

9 a(x,u)

o uy111
and

8 g _
dui111
so that

3 8@m _ ,

dui11q

This analysis is summarized in the graph of figure 5.4, which shows ®(d) as a
function of uj;q1¢9 for uy122 = uj227 = 0, as well as the functions in the set ¢
which are "selected” in each of the regions 0 <uy; <2, 2 <uyq <3, and

3 <uip1.

The analysis'givén above can be easily extended to account for the effect
on changes in U on @(u) for other points in the dual space. Let A; be the set of
labels Aj on vertex v; such that the relative cost rj; = . max fric]. Thatis, A;

- =1,...,m

(uq121)1
22

u
#(1,0,0,1,0,0)(U1121) 6(01,0,0,1,0U1121)

#(1,0,0,0,1,00(U1121)

. >
1 2 3 s YN

Figure 6.4: 8(0) as a function of uyy¢¢ for uj122 and uy 221 equal to zero.

100

is the set of best choices to be made at vertex v;. Let u, be a component of the
dual vector whose associated constraint is Xiejp + Xipj, — 1 = 0. Using the same

reasoning as above, it can easily be concluded that, for example:

[1] 1t Ayj, € Aand A, € A then: (1) increasing the value of u, causes the
value of the dual to increase, and (2) decreasing the value of u, cases the

value of the dual to decrease.

[2] If Apj, €Aiand Ay o € Ay and if | Al > 1 and |A'] > 1 then: (1) increasing
u, results in a increase in the value of the dual, and (2) decreasing u, also

causes an increase in the value of the dual.

(8] If Ay, € A and Ny €A and if |Aj] =1 and |A’] > 1 then: (1) increasing
- up results in no change in the value of the dual, and (2) decreasing u,

causes an increase in the value of the dual.

[4] If Ny, € A and XAy, €A’ and if [A] =1 and [A’] >1 then: (1)
increasing u, results in an increase in the value of the dual, and (2)

decreasing u, causes no change in the value of the dual.

The effect of increasing (respectively, decreasing) the value of the
component u, for each of the set of 16 possible situations for the two vertex
case are summarized in table 5.2a (respectively 6.2b). This information c;an then
be used in the following descent algorithm for a graph labeling problem defined on

an underlying graph with two verices:

Algorithm 5.1

[1] For all vertices, v; €V, let A; be the set of all labels Aj € A such that the

associated current relative payoffs rjj are maximal.

[2] If a feasible, or consistent labeling exists among the current labeling

L = (A, Ay) then output that labeling as a solution and terminate.

101

N €A T A Aip € Ao | T A] = change in 8(u,)
no no no no increase
no no no yes increase
no no yes no increase
no no yes yes no change
no yes no no increase
no yes no yes increase
no yes yes no increase
no yes yes yes no change
yes no no no increase
yes no no yes increase
yes no yes no increase
yes no yes yes no change
yes yes no no no change
yes yes no yes no change
yes yes yes no no change
yes yes yes yes decrease

Table 6.2a: Change in ®(u,) as a function of an increase in the dual variable u,

depending on the various conditions of the labeling on adjacent vertices v

Vi'r.

iy

and

102

A, € Ay | A, | =1 Ny € Ai, | Ay, | change in B(u,)
no no no no decrease
no no no yes decrease
no no yes no no change
no no yes yes no change
no yes no no decrease
no yes no yes decrease
no yes yes no no change
no yes yes yes no change

yes no no no no change
yes no no yes no change
yes no yes no increase
yes no yes yes increase
yes | yes no no no change
yes yes no yes no change
yes yes yes no increase
yes yes yes yes increase

Table 5.2b: Change in ®(u,) as a function of a decrease in the dual variable u,

depending on the various conditions of the labeling on adjacent vertices v;

vi,. Note: uy > O is assumed.

Iy

and

[3]

[4]

[s]

[6]

[6]
(7]

[8]

[e]

103

Use tables §.2a and 5.2b to determine if a descent direction exists. If not,
goto[11]. ‘

If a descent direction exists which involves decreasing the value of some u,
go to [7].

Let A\; be the best choice at vertex v; and let)\;' be the best choice at
vertex vi'. Let m; = r;; and let mj’ = ry;-

Let m; be the second best relative cost at vertex v; and m;' be the second

best relative cost at vertex v;'. Define

6 = mj—m;, 46 = my —my
and

6 = min {&;, &;'}
Set rj; « rjj — 6 and ryj « ryj — 0, that is, add 6 to u, and go to step [1].

Let A;j and let)\y;y be the label associated with u, on vertex v; and vy

respectively.

Let Ax be the best choice at vertex v; and let A\¢' be the best choice at

vertex vi'. Let m; = rg and my' = rjx-.
i ik

Set

and

6 = min 2(5i, 6{;

[10]Set rjj « rjj + 6 and ryj « ryj + 6, that is, subtract ¢ from u, and go to step

[1].

[11]A duality gap exists. Terminate with no solution.

104

5.2.3. General Algorithm for PMI Constraints

The algorithm given above can easily be extended to minimizing the dual
problem formulated in terms of PMI constraints. This extension requires modifying
the conditions of tables 5.2a and 6.2b somewhat. In particular, there now may be
several labels associated with a given dual variable u, on each vertex. Thus, for
a given set, A; of best choices at a given vertex Vj, several situations are
significant and must be distinguished depending on whether or not the clique

associated with u,:

(1) covers all of the labels in A,
(2) contains at least one but not all of the labels in A;, or

(3) contains no of the labels in A;.

Again, using the analysis of the previous section, a decision chart giving
conditions under which a descent (or ascent) direction for the dual exists can be
constructed. This is given in tables 5.3a and 5.3b. A descent algorithm for the
problem formulated under PMI constraints is easily derived by making the
necessary modifications to algorithm 5.1. Note that in general there will be fewer
PMI constraints than original constraints between a pair of vertices, so that by
bit encoding indicator vectors for the PMI sets a great deal of computational
efficiency can be gained in reducing the amount of search required to verify the

various conditions found in the decision tables.

There is another descent algorithm based on PMI constraints, which is
probably not as robust as the approach described above, but which is useful in
generating upper bounds because of its relative simplicity. Given a PMI

constraint, such as

2 xij < 1 5.11
ijeK

where K is some set of vertices in the product graph, one can arbitrarily add

105

elements of A|r elements of Ayr change in 8(u,)
covered by u, covered by u,
none none increase
none some’ increase
none all no change
some none increase
some some increase
some all no change
all none no change
all some no change
all all decrease

Table 5.3a: Change in @(u,) as a function of an increase in the dual variable u,
depending on the various conditions of the labeling on adjacent vertices v; and
Vyr.

1"some" refers the condition where at least one but not all labels are covered.

106

elements of A;
covered by u,

elements of A,-'r
covered by u,

change in 8(u,)

none

none

none

some

some

some

all

all

none

some

none

some

all

none

some

decrease

no change
no change
no change
increase
increase
no change
increase

increase

Table 5.3b: Change in ®(u,) as a function of a decrease in the dual variable u,

depending on the various conditions of the labeling on adjacent vertices v
Vi,. Note: u, > O is assumed.

Ir

and

1n

some' refers the condition where at least one but not all labels are covered.

107

constraints of the form

Y x5 <1 5.12
ijes

for all subsets S ¢ K. The constraints of equation 5.12 will not change the

feasible region for the problem formulated in terms of PMI constraints and are

thus valid inequalities. However, if one views the problem conceptually as being

formulated in this manner, then the following aigorithm, in which the dual variables

are not maintained explicitly, can be used:

[1]

[2]

[3]
[4]

[51

(6]
[7]

Algorithm 5.2

For all vertices, v; € V, let M; be the set of all labels Aj € A, such that the

associated current relative payoffs rjj are maximal.

If a feasible, or consistent labeling exists among the current labeling

L = (M;, M;), then output that labeling as a solution and terminate.
If the sets M; and M;' cannot be covered by a PMI constraint, then stop.

Let m; be the value of the current payoffs for elements of M; and let m;' be

the value of the current payoffs for elements of M;'.

Let m; be the second best relative cost at vertex v; and let m;' be the

second best relative cost at vertex v;. Define

6i = mj—m;, 4 = m —my

and

6 = min {6; 6;i'}
Set ry « rij — 6 for all Ajj € M; and ryj « ryj — 4, for all Ay € My
Goto[1].

This algorithm is useful in finding local minima starting from the point

u=(0,0,---,0) only, since the number of dual variables is prohibitively large

and would be difficult to maintain. The relative simplicity is in the fact that there

108

are much fewer conditions to check in determining a local descent direction.

86.2.4. Extension to the General Graph

Algorithm 5.1 and its equivalent form for PMI constraints, as well as algorithm
6.2 can be extended to the case where the underlying graph contains more than
two vertices. In this case, an iteration of the algorithm involves a single "pass”
over the entire graph, where a pass involves separate consideration of every pair
of adjacent vertices (edges) in the graph. In each pass any set of dis joint edges
(stable set) in the graph can be considered simultaneously, hence the partial
decomposition of the computation. It should be noted that the minima found by
this process will not necessary correspond to the minima of the dual function
itself. In particular, it may be possible in the case of algorithm 5.1, and its
equivalent PMI formulation that a situation is achieved in which no local descent
direction exists but yet for which a sequence of local non-ascent, non-descent
(degenerate pivots) exists which would eventually lead to a global descent

direction.

Consider the constraint network of figure 5.5, for example, which shows
some of the cliques corresponding to PMI sets as being circled. Assume that the
labels corresponding to these PMI sets all take on the same value which is the
maximal value at that vertex. From the rules of table 5.3a and 5.3b no local
descent direction exists. All labels at the n vertices which take on the maximum
value are covered by the n — 1 cliques, so that a global descent direction exists
if the n — 1 associated dual variables are increased simultaneously. Furthermore,
if one were to perform the n — 1 degenerate pivots corresponding to first
increasing the value of the dual variable associated with the first clique, then
increasing the value of the dual variable corresponding to the second clique and

so forth, a descent direction would eventually be found.

109

4

Figure 5.5: Covering Cliques With Global Descent Direction.

56.3. Problems with Special Structure

In the previous section, approaches based on both dynamic and integer
programming were introduced. In this section, an approach to generating upper
bounds based on a combination of the integer and dynamic programming
techniques will be presented. This approach will apply only to the case where the
underlying graph presents a structure which gives it a set of significant major
directions, for example, a square image with each pixel considered to be adjacent

to its four or eight immediate neighbors, or a hexagonal grid.

In order to develop this hybrid approach, we start by making some
observations about both the Lagrange dual and dynamic programming approaches

described in the previous sections.

With respect to the integer programming approach:

110

[11] The minimization algorithm requires knowledge only of those labels with the

best and second best relative payoff at each iteration.

[12] The output gives information only as to which labei(s) to choose at each

vertex.

With respect to the dynamic programming approach when the underlying graph is a

path:

[D1]The dynamic programming algorithm requires full knowledge of every label on

each vertex at every iteration.
[D2] The algorithm responds to changes in input without re-initialization.

[D3] The algorithm assigns to every label on each vertex, the sum of the initial
labeling values for the maximum consistent labeling that contains that label,
this being the case regardless of whether or not that label participates in

the maximum consistent labeling.

[D4]If a given label Aj on a vertex v; participates in the best consistent labeling
along the path, then it is assigned a labeling value Cij, equal to the sum of
the initial labeling values of those labels (one for each vertex), which
participate in that optimal labeling. Thus, for every label which participates

in the optimal consistent labeling, the output labeling value will be the same.

5.3.1. Hybrid Formulation: Columns vs. Columns Case

In order to develop this approach, consider the case of a square raster, with
each grid element considered to be connected to its four immediate neighbors.
Thus, this graph has two major directions: one corresponding to the rows, and the
other corresponding to the columns. Let V.c denote the vertex corresponding to

the pixel which is at the intersection of row r and column c.

111

By initially Ignoring the constraints between labels along the rows, we may
start by applying the dynamic programming approach independently along each
“column;, as shown in figure 5.6 below. From the results of section 5.1, the labeling
decisions will be consistent from row to row along each column, assuming there
are no ties for the best consistent labeling along that column. That is, a label
chosen for vertex v, . will be consistent with the label chosen for the vertex
Vr-1,c 8bove it, and with the label chosen for the vertex v, c, below it. If the
labeling decisions are also consistent from column to column along each row, then
the probiem has been solved for the given input. However, in general, this will not
be the case: the label chosen for vertex v, . will be inconsistent with the label
chosen for vertex v, .1 to the left, or the label chosen for vertex v, 41 to the

right, for at least a few vertices in the graph.

An alternate view towards the problem is, therefore, one of finding a /abeling
for each column, such that each labeling is 'consistent” with labelings on
"adjacent”" columns. The result is the definition of an auxiliary or 'reduced”
constraint network in which each vertex is identified with a column in the original
(or basic problem as it will be referred to here) and each "macro" label
corresponds to a consistent labeling of that column in the original constraint
network (refer to figure 5.?).\‘Note that, in this c.ase, the reduced constraint
network is a path, so that one might be tempted to try to solve the reduced
problem using the dynamic programming approach. Unfortunately, by observation
D2, this would require explicit knowledge of the labeling values associated with
all macro labels, at each vertex, and this information is not available within the
context of the particular problem. However, what is available at each vertex in
the reduced graph, and by observation D3, at every vertex in the original graph,
is the labeling value associated with the maximal macro label. That macro label is
simply that consistent /abeling such that the sum of the initial labeling value is

maximal. This then suggests that enough information may be available to apply

112

Figure 6.6: Major directions in the raster for the hybrid approach.

the integer programming approach to this problem.

Let A be the set of macro labels associated with each vertex in the
reduced constraint network. That is, A. is the set of consistent labelings for
each column in the basic problem), which for simplicity are assumed here to be the
same for all vertices. Denote the k™ macro label on vertex (column) j by

Ojk = ATA2... An Where M\ is the label corresponding to row i for vertex (column)

n .
J» and let x;x be the associated indicator variable. Let Cik = Z c,-(A') be the

initial cost associated with macro label Ojk- The integer programming formulation
of the reduced problem, which is equivalent to the original problem statement is

given as:

113

col, W‘z °0|3 eol,.-, col,.

Figure 6.7 : Column reduced constraint network for the hybrid approach.

n
maximize: Y ¥ xxCi 5.13
i=1 oxeAc
subject to: Xjk + Xjx: < 1, 6.14

for every infeasible pair of macro labels (Ujk,ﬂ'j‘k') on adjacent columns

col; and col;’,

Y Xk = 1, j=1,++-,n, 5.15
ox€AC
Xjk € 50,1;. 5.16

As before (see section 5.1), constraint (5.14) serves to guarantee that a
pair of inconsistent macro labels gx and ok’ are not simultaneously assigned to
adjacent columns and constraint (6.15) serves to guarantee that only one macro

label is assigned to each column.

114

Consider a macro label gx = ATA2 .- \M assigned to column j, and a macro
label gx' = ATAZ « .+« 2\ assigned to the adjacent column j+1. Assume that Ojk is
‘inconsistent with Oj+1,k’- Then there must exist at least one row in the raster of
the original problem, say i, such that Al is inconsistent with A" in the basic
-problem. That is, the local inconsistencies in the basic problem correspond to
inconsistencies in the reduced problem. Now let Si,-(}\') be the set of all macro
labels ojx € Ac associated with column j in which the basic label Al on vertex Vii
participates (vertex vj,j occurs at the intersection of row i and column j) and let
8,,j+1(A\") be the set of all macro labels 0j+1,k’ € Ac associated with column j+1 in
which the basic label A" on vertex Vi,j+1 participates. Since no macro label

Ojk € Sq()\') is consistent with a macro label gj.1 - € Sijr()\") we have

Z Xjx + E Xk = 1 | 6.17
ijeslj ’j'k'esij'

as a valid inequality (refer to figure 5.8). Formulating the constraints in this
manner results in a one-to-one correspondence between the constraints in the
reduced problem and the constraints between adjacent vertices from column to
column along a given row in the original problem. Furthermore, the descent step
taken by increasing the value of a dual variable associated with a constraint of
the form of equation 5.17 is equivalent to reducing the original values
associated with the inconsistent pair of labels (AL, A). This then motivates the

following hybrid approach for the two column case.

Algorithm 5.3

[1] Apply the dynamic programming approach to the original labeling values

independently along each column.

[2] Using the updated labeling values, choose the best label at each vertex

along each column.

1156

col, coly’

Figure 5.8 : Constraint generated by the set of macro labels on adjacent
columns which have labels inconsistent across an intersecting row. Label A on
vertex v, ; is locally inconsistent with label A" on vertex Vij+1-

[3] If each label thus chosen is consistent with the label chosen on the other

column for each row, then exit with a solution, or at least an upper bound

(refer to the further discussion below).

[4] Consider differences between the best and second best of the updated
labeling values along those rows in which the individual labeling choices are
inconsistent. Let i be the row in which the minimum of these values occurs.

Let this difference be equal to 6.

[6] Subtract 6 from the original labeling values (that is, add 6 to the dual
variable associated with that constraint) for the vertices on that row, for

both columns.

116
Goto[1].

The extension of this approach both to the multi-column case and to the
case where PMI constraints are used (on a local basis, that is along individual
rows) s straightforward. In the case of a graph labeling probilem where the
underlying graph is a path, it is always possible to chose an unambiguous
consistent labeling from a consistent (ambiguous) labeling. It is important to note,
however, that in the reduced constraint network approach described above, local
consistency (in the original problem) of an unambiguous labeling does not
guarantee the existence of a globally consistent macro labeling. In order for this
to be the case, the macro labels would have to be explicitly enumerated. It is for
this reason that algorithm 5.3 will only guarantee an upper bound on the best

consistent labeling in the reduced problem.

§.3.2. Hybrid Formulation, Rows vs Columns Case

As an extension of the ideas present;ed in the previous section, an alternate
means by which the dynamic and integer programming approaches can be
combined, which involves the application of the dynamic programming approach
Independently along rows and columns, can be developed. As before, a reduced
constraint network will result. In the reduced constraint network, there is a
vertex for every row and every column of the original problem. The constraints
from row to row and from column to column as well as the procedure for
generating descent steps are straightforward extensions of those for the case
discussed above. In addition, at every vertex in the original problem, there will be
an associated constraint between the row and column that intersect at that'
vertex. This occurs because the dynamic programming algorithm applied to a row
is required to generate the same label selection at the vertex as the dynamic
programming algorithm applied to the intersecting column. The reduced constraint

network for this case is depicted in figure5.8.

117

- Yow, col, -
m: ‘) col 2
row, col,
b ®
L4 °
b4 [}
row,_; & col, _,
row, col

Figure 5.9 : Reduced constraint network for the row vs. column case

Let Ac denote the set of all macro labels associated with each column and Ag
denote the set of macro labels associated with each row. The costs for the
macro labels on each row and column will be defined in a manner analogous to that
given in the previous section. Let SCijO\’) be the set of macro-labels for row i in
which the label A! on vertex v;j participates. Let SRijO\') be the set of macro-
labels for column j in which the label Al on vertex v j participates. Associate with
the k™ macro-label Pik On row i a zero-oné decision variable x,(i,k). -Likewise,
associate with the k™ macro-label Xjk on column j a zero-one decision variable
xx(j,k). The equivalent integer programming statement of the graph labeling

problem is then given as:

maximize:

DY Y XK G+ Y Y x(c,k) Cey

rerows prx €AR cecols xck€EAC

N

118

associate with the k™ macro-label Xjk on column j a zero-one decision variable

xx(j,k). The equivalent integer programming statement of the graph labeling

problem is then given as:)

‘maximize: % DY Y X(RK)C + Y 2 Xy(c,k) Cey)

TErows prx€AR cecols x.x EAC
subject to: b x,(r,i) = Y x,(c,k’) 5.18
Prk€SRrc(A) Xck'escrc(xl)

whenever macro-label p,x on row r uses the same primitive label, A’, as

macro label x. ' on column ¢ for the vertex at the intersection of row r and
column c.
x,(l,k) + xp(i',k') < 1,
for every infeasible pair of macro labels (piksPik’) on adjacent rows row; and
row;',
xx(j,k) + xx(j’,k') < 1, 5.20

for every infeasible pair of macro labels (Xjk-Xjx’) on adjacent columns col;

and colj',

> xH(ik) = 1 for all rows, 5.21
PikEAR

Y X (k) = 1 for all columns, 5.22
Xik €AR

As before, descent steps can be taken for the constraints between
adjacent columns and/or rows simultaneously, so long as the edges in the

underlying graph (the reduced constraint network of figure 5.12) are

119

a simple means for generating descent steps, consider the case of a graph with a
single row and single column. Let the vertex at the intersection of that row and
column be denoted as v, .. We start by showing that in this case, an optimal
feasible descent step is by obtained averaging the two values developed for
each label on the intersecting vertex. Consider the integer programming problem

given above with only constraints 5.18, 5.21, and §.22 taken into account:

maximize: %—i Y xg(r,K) Cp + Y x,(c,k) Cex 6.23
Prk €AR Xrk €AR
subject to: Y X)) = Y xle,k)forall NleA 5.24
Prk€SRrc(A) Xck’€SCre(\)
Y %(i,k) = 1 for all rows, 6.25
PikE€AR '
X x,(i,k) = 1 for all columns, 5.26
Xik €AR

Let C,', be the maximum value of the initial costs for all macro labels assigned to
row r in which the label X' on vertex v, . participates. Likewise, let C} be the
maximum value of the initial costs for all macro labels assigned to column ¢ in
which the label Al on vertex vr c Participates. Note that the dynamic programming
approach will automatically generate fhese values. Then the objective function,

equation 5.23 can be expressed as:

maximize: -;— fY {Coxy + Cx})
AleA

| -
where : Xp = 2 xa(r,k).
’ Prk€SR . (A
In other words, x; is the indicator variable for all macro labels for row r which
assign label Al to vertex Vr.c» and x)i‘ is the indicator variabie for all macro labels

for column ¢ which assign label Al to vertex Vi,c- Note that by equations 6.25 and

6.26, the problem is constrained so that exactly one macro label can be chosen

120

for each row and each column. Thus, even though the the use of the consolidated
decision variables x,i, and x)i‘ by themselves result in an ambiguous choice of
labels, the combination of these decision variables along with constraints 5.25

and 5.26 result in a unique choice of iabels for the given row and column.

The auxiliary function for the dual form is given by multiplying equation 5.24
by the dual variable v; and subtracting the right hand side of the resulting
equation from the left and adding equation §.27. By regrouping terms in v; the

dual can be seen to have the form:

p(x,v) = 3 {(Ch+v)x) + (CL—v)x!] 5.28
AleA

The Lagrange dua! statement of the problem is:

minimize: ev) = lga;c fp(x,v)}
X E.
where the set X consists of all primal vectors X which correspond to assigning

exactly one macro-label to row r and exactly one macro label to column ¢.

Because v is unrestricted, we can make the substitution v = C)i‘ —vy;in

equation 6.28. Thus

(X, 0) = Y { (Co+Cl—w)x) + vix)) 5.29
Nea
If we set

G 5.30
= Spt O

2

then we have assigned a relative cost to each macro label, equal to the average
of the corresponding macro labels with the given label \! for the row and column.

We have the following resuit:

Theorem 5.3: The minimum value of

121

0(v) = max { ¢(X,7V) } 5.831
XeX
=max { ¥, [(C)+Cl-v)x} + wvix}]
_ xXeX AiEA B . h
occurs at
. c;+c,"), ci+ch y Ci+CQ))
2 2 2

Proof: For the sake of notational convenience define fq; = C}, + C)i‘—v; and

f2; = v;. Then because of the definition of the set X,

min (V) = min { max {f1q, f12,..., fim} + max {f2q, f22, ..., f2m} 5.832
[v

min § | (f11,F12,..., fim lo + | (f24,f22,..., fom lo
v .
where | ¥1 |o is the "sup” norm of the vector ¥;. By the Cauchy-Schwartz

inequality:

| (P11 F12s oo Fim) lo + | (P24, F22, ..., f2m) o 5.33

2 | (fqq + 20, F12+f20,..., fim + f2m) lo

1 1 R~2 2
| (c; +C;,Cco+C ,...,c;,“+c;')|o

1 1 2 2
_ C, +Cy; CF+Cf cr+cCh
=2](YR IR —-‘-’——-’-‘—2 dlo

which is just a restatement of the first part of the theorem.

The algorithm which incorporates the additional inequality constraint is the
straightforward extension of algorithm 6.3 in which after generating the values
for the macro labels, the initial labeling values for at the intersection of a given
row and column are changed (increased for rows, decreased for columns) by a

factor of the average values of the corresponding macro labels.

122

8.4, Summary

The discussions of the previous sections of this chapter have covered
various means b_y which uppe; bounds on a _given candidate subproblem can be
generated. These techniques have been selected because they appear to be
adapted to generated these bounds very rapidly if special purpose hardware
were to be constructed for this purpose. In the following chapter, experimental
experience with these techniques, along with certain heuristics will be described.
The other fundamental components of the branch and bound approach, the test
for feasibility and generation of lower bounds can similarly be generated very
efficiently. The test for feasibility involves the discrete relaxation operation and
the generation of lower bounds involves the use of the bi-direction dynamic
programming algorithm both of which will be described further in the following

chapter.

CHAPTER VI

EXPERIMENTS

6.1. The Full Enumerative Scheme

As part of the current work, an implicit enumeration approach was attempted
using the basic strategy described in section 3.5. For these experiments, the
constraint network of the 'Appendix was used. It is easily verifed that for this
constraint network any consistent labeling of a given row allows at least one
consistent labeling of an adjacent row. Thus, a "greedy'’ approach to generating
lower bounds on a given restriction and on an initial incumbent solution can be
generated by solving the problem using the dynamic programming approach along
the first row and then, consistent with the best solution for the first row, solve
the problem for the second row, and so forth. As might be expected, the solutions
generated in this manner are not reasonable approximations of an expected line
drawing. What happens, in fact, is that the choice of spurious edge segments
(such as)\;g) tends to propagate down successive rows. A better approximation
Is probably achieved by using the (possibly inconsistent) labelings derived from
the upper bound function, which in this case, was implemented by applying the

dynamic programming approach along rows and the Lagrange dual formulation of

the rows as macro-labels.

In order to be of practical value, the technique must be able to solve
problems on at least a 64 x 64 image. It was determined that, running on a

VAX11/780 under UNIX, a problem defined on an 8 x 8 image took approximately

123

124

one and one half hours of computer time for a test image that was only slightly
perturbed from an the original integer solution, despite the fact that the programs
were very tightly coded. Experiments on larger images were not even attempted.
Such experiments would be left to larger machines or special purpose hardware
which might make this approach more feasible. Nonetheless, labelings derived
from the fixed points of the dual descent algorithms defined on the reduced
constraint networks often seemed to be much 'cleaner" (i.e. there were fewer

Inconsistencies than in the original image).
68.2. Heuristic Approaches

As a conclusion, we make note of several apparently "effective" heuristic
approaches which were discovered during the course of this project. These
approaches are based on the use of a 'relaxation-like" u'pdating rule which was
discovered as a result of experimentation with ad hoc extensions of the dynamic
programming approach to the case where the underlying graph corresponds to an
image raster. This approach, referred to here as the "average-max' updating rule
(Diamond, 1983) updates the current labeling value ci} of a label Aj on vertex v;
by:

cft! = _'_‘_:7 [(vjezh:l(i) ;‘nk%ﬁ § ri,-O\,}\') cki) + ¢}l
Where N(i) is the set of vertices adjacent to vertex v;, rii(Aj,Aj?) is one if label };
on vertex v; is consistent with label Aj» on vertex vj» and zero otherwise, and
N = | N(i) |. Thus, a processor performing the updating for label Aj on vertex v;
would generate N values to be averaged (along with the current labeling value
ci}), one such value corresponding to each vertex in the neighborhood, by taking
the maximum of the current labeling values associated with labels consistent with

Aj on vertex v;.

If At is the current labeling chosen by the local maxima selection process

and c(}!) is the sum of the associated current labeling values, then the average-

126

max updating rule can be easily be seen to have the following properties:

[1] If it is not a consistent labeling, then the sum of the current labeling values

with Xt will have decreased after the next iteration, that is c(A**1) < c(AY.

[2] If Atis consistent then c(A™') = c(X") and the labeling selected at each

iteration t' = t will be the same.

[8] From [1] and [2] the value c¢(AY) is a non-increasing function of t.
Furthermore, it can be shown that the value associated with a consistent
labeling will increase at each iteration, if that labeling is not the one

selected by the local maxima selection process.

From these observations, it can be concluded that if the labeling values selected
by the local maxima selection process is not consistent, then the difference
between the current labeling value associated with a given consistent labeling
and the labeling chosen by the local maxima selection process will strictly
decrease at each Iteration. This does not mean, however, that the application of
this process will necessarily result in a consistent labeling. In fact what may
happen is that the sum of the current costs of the chosen (inconsistent) labeling

and a given inconsistent labeling will converge to the same value.

Despite this, it has been observed that the "average-max'' updating rule will
almost always derive a consistent labeling in experiments performed ona 16 x 16
image starting with an initial (artifically created) line drawing which is perturbed
by adding noise to the initial labeling values. Figure 6.1 is an initial consistent
labeling representing a contour. The initial labeling values which represent this
figure assigns a value of 1.0 to each label shown and a value of 0.0 to the other
labels at the g_iven pixel. Figure 6.2a is the result of adding values sampled from
a uniform distribution with lower bound of 0.0 and a maximum possible value of 2.2
to the Initial labeling values, and then selecting that label at each pixel such that

the current labeling value is maximum. lIterations of this process are shown in

126

figure 6.2b through 6.2e.

Another ad hoc updating rule which was tried involves alternating a step of
the average-max updating rule with a step of the descent procedure of algorithm
6.1. Again no explanation for the behavior of this algorithm can be given,
however, in practically all cases, a consistent labeling resulted. The application

of this last technique to a real world problem is shown in figure 6.3a though 6.3e.

There may be some promise in the graph labeling approach to the edge linking
problem discussed in the preceding sections of this report. Much difficulty has
resulted, however, in the application of the ad hoc techniques to real world

images. We cite the following problems:

(1) The ad hoc techniques applied to this problem are extremely sensitive to the
way in which the initial labeling values are derived. It is expected that even
if the probiem itseif could in fact be solved for a real world example that this

would still be the case.

(2) The original experiments were based on the assumption that the initial image
could be represented as a complete contour (consistent labeling) to which
noise has been added. Given this basis, the ad hoc approaches described
above performed extremely well in rederiving the original line drawings in an
image. In the case of the initial line drawing derived from a real world
images, however, '"good" contours were derived only when the initial
labelings were derived in conjunction with a a great deal of initial processing.
In particular, in many cases the output of the thinning operation applied to
the results of the threholded Sobel operator, were in fact better that the

results of the linking operation for most images used.

In summary, one of the goals of this project was to give meaning to the
apparent strategy of the relaxation labeling processes. The conclusion that can

be drawn from our experience with the applications of such techniques to real

127

world im'ages is however, that even if a formal basis is given to the problem, and
even if the problem could be solved as defined, the results would not be very
relevant to the ultimate goal of recognizing objects from line drawings, in most
situations. It is felt that the type of information which is integrated into the
visual recognition process is much more global than is afforded by the local
processing Inherent in these techniques by themselves. Nonetheless, the
optimization approach to the problem of edge linking proposed here may be useful
if integrated into a model based approach to computer vision, such as found in the
generalized Hough transforms for example. Furthermore there may be classes of
Images for which the local edge linking approach described here may be useful.
For example, it is believed that the contour extraction problem defined on some

classes of medical images may be good candidates for these approaches.

[
imlin]) [
U4 N hh
-— | =
= T =
N
7 np
T =
O h
- O
o
[-
up

Fig. 6.2a: Initial labeling.

Fig. 8.2c: Iteration 4.

Fig. 6.2e: Iteration 12.

I SN

128

NN

Fig. 8.2b: Iteration 2.

Fig. 6.2d: Iteration 8.

Figure 6.2: Application of the
"average-max" updating pro-
cedure to the contour. of figure
6.1.

Fig. 6.3e: lteration 20.

129

Fig. 6.3d: Iteration 16.

Figure 6.3: Application of the
combination "average-max'" and
Lagrange dual updating pro-
cedure to a scene from the GM
"bin-of-parts'' database.

CHAPTER VI

SUMMARY AND CONCLUSIONS

7.1. Summary and Conclusions

The work that has been presented in the previous six chapters represents
the introduction of an approach to the problem of edge linking when it is
formulated in terms of the graph labeling model. This work aiso contains the
proposal for the definition of the graph labeling problem on which the aigorithms
and theory pre§ented here are based. In contrast to prior views towards graph
labeling schemes, which are for the most part ad hoc, the approach here has been
to specify the meaning of the graph labeling model and its relation to a given
application in a formal manner. The goal has been to develop means by which a
solution to the edgeilinking problem can be implemented in hardware so as to
provide a real time line drawing extraction scheme. The motivation for this work is
obvious when considering the importance of segmentation in generai to problems
of machine perception, and the importance of the problem of line drawing
extraction to the problem of computer vision in particular. We have attempted to
explore the feasibility of this approach in solving the edge linking problem.
- However, in order to do so, it is felt that hardware sufficient to solve the problem

which was not available to us would have to be used.

Besides the introduction of a new approach to the application itself, this

work further contains initial results related to the graph labeling model. In

130

131

particular, time bounds on the convergence of the discrete relaxation operator,
under restricted conditions have been derived. These restrictions pertain to the
situation where the underlying graph does not contain cycles. Under these
conditions, results related to the polytope of the graph labeling problem were also
derived. In particular, it has been demonstrated that the feasible region for the
near programming relaxation of the graph labeling polytope has all integer (0-1)
extrema. Although it appears that most graph labeling problems of practical value
will be based on a graph which contains cycles, these restricted case results may
be Iimportant in constraint relaxation approaches to generating upper bounds in a

branch and bound approach to the more general case problem.

The application of the theory of dynamic programming and Lagrange duality
to the graph labeling problem has’been presented. Altnou'gh the basic building
blocks of these approaches are well-established, the means by which the
components are put together for the particular application is a contributicii which
has been made here. The algorithms whic.h have resulted from this combination of
approaches could be used in the generation of upper bounds in an implicit
enumeration scheme. The specific motivation behind their design is that they be

adaptable to implementation in a highly paralle! manner.

In each of the issues related to the graph labeling problem presented above,
the work is clearly far from complete. As such, this thesis represents an
exploration of some of the basic issues involved, and hence is more broad than
deep. This work represents an initial investigation intc a new class of problems
and its application to the problem of edge linking. It is felt that the graph labeling
model is also relevant to problems in other areas of pattern recognition and
artificial intelligence. Beyond the definition of this class of problems and the
related analytical results which have been presented in the previous chapter, the
real contribution which we hope to have made is in motivating others to pursue

this topic futher.

132

7.2. Suggestions for further work

In most caées, those areas requiring extensions to the current work were
noted in the 'appmpriate sections of the preceding chapters. The following lists,

by way of summary, areas which it is feit should be pursued further.

Theoretical: Perhaps most important, It is felt that work is needed to further
extend the theory of the structure of the graph labeling problem itself. .In
particular, the nature of the linear programming relaxation of the graph labeliny
problem should be further explored, as well as a specification of the related
facets. Furthermore, the relationship between the fixed points of the dual
descent procedure and the LP relaxation should be fully characterized. As noted
in the chapter on experiments (chapter 6) there exists a means, in the case
where the underlying graph has specific major directions, to "round” to an integer
solution. Understanding the nature of this rounding process, as well as devising
other ways to find nearby integer solutions can be pursued only once this wcrk is
complete. Conjectures which might lead to results are stated at the end of

chapter 4.

Of the algorithms discussed in chapters § and 6, it is felt that it might be
good if a greater understanding of the "'average-max"'updating procedure could
be obtained. It is somewhat difficult, perhaps, to justify this suggestion since it
was in answer to the relaxation labeling processes that this entire work was
started. However, it is felt that the apparent success of this updating procedure

Justifies this.

Experimental: The section covering the experimental aspects of this project was
necessarily brief. Should the resources become available, it would be interesting
to see If full (or at least closer) solutions to the graph labeling problem could be

obtained as a means for determining whether or not this entire approach to the

133

original application, the extraction of line drawings from grey level images, should
be pursued further. As noted in the previous chapter, these experiments would
be better pursued in conjunction with an array processor. With respect to the
hybrid approaches discussed in chapter V, it is felt that several question must
still be answered, most important is whether or not the bounds generated from
these strategies are tighter than the bounds generated, for example, by the

original form of the Lagrange dual minimization procedure.

Finally, there are several crucial questions to be addressed from an
applications perspective, which were not even considered here. These issues
include, for example, (1) how the initial labeling values should be derived for a
given application, (2) how the constraint network shouid be defined for a given
application, and (3) for what classes of images are the techniques derived here

relevant, and for what classes of images are they not relevant.

APPENDIX

134

1386

APPENDIX

CONSTRAINT NETWORK FOR THE

EDGE LINKING APPLICATION

There are three basic components to the constraint network for the edge
linking application. They are (1) the underlying graph, (2) the label set, and (3)
the constraint relations. The underlying graph for this constraint network is given
in figure 3.1. In this case each label corresponds to a scene event, iﬁcluding
comers, elbows, and straight lines at various orientations as shown in figure A.1.
There are 22 labels in ail. Label Ao (not shown) is a "knot", The knot is
consistent with any incident line segment and is meant to allow for the
intersection of several contours in the scene. Label A21 corresponds to a blank

pixel, that is, a pixel with no contour running through it.

The constraint relations for this constraint network are shown in table A.1.
This table gives for each label, the consistent labels in each of the four
neighboring vertices, (1) immediately to the right, (2) upper right hand corner, (3)
immediately above, and (4) upper left hand corner. This table completely
specifies the constraint network, since the constraint relations are symmetric.
Thus, the constraint relation between the a vertex and the vertex immediately
below it, is the transpose of the constraint relation for a vertex and the vertex
immediately above it. Because the objective is to implicitly define the set of all
possible unbroken contours, a pair of labels on adjacent vertices will be

considered to be inconsistent if the scene events they represent have line

136

segments broken across a pixel boundary. Examples of consistent pairs of labels
are shown in figure A.2. Examples of inconsistent pairs of labels are shown in

figure A.3.

Note that even by this criterion, there is still some ambiguity in the definition
of the constraint relations. For example, it is pbssible to allow the label As on a
given vertex to be either consistent or inconsistent with the label A1g on the
vertex to the immediate right. The constraint relations given above were
selected because they define the constraint network in such a way so that given
a consistent labeling on a given row of the raster, there exists at least one
consistent labeling of the row immediately below and above it. This allows for the
use of "rounding” to generate lower bounds in a basic branch and bound

approach.

137

N
r[<

M
>

N
=
7
N

Ag Ag Ao A

PARIEEEN

A1 2 A13 A14

7

=
/]

A A1z Ag

Figure A.1: Scene events and the associated labels for the edge linking
application.

138

N\

Figure A.2: Examples of locally consistent pairs of labels.

Figure A.3: Examples of locally inconsistent pairs of labels.

130

fabel set of consistent labels on the vertex to the immediate right
Ao As M1, My Mg

A A21

A2 As: M1y M Mis

As A21

e A21

As A21

As A21

A7 A21

As A21

Ao A21

Ao Aas Ae» A1y Aas Ms A20
M1 | Az

M2 | A

Ms | Az

Ma | A

Ms | A Aes M1y Mar Mas Azo
Mo | Az

M7z | A2

A1 | A4 A8 A11s A4 Aiss A20
Mo | A21

Azo | M1 AMas Ass A2d

A21 Ao: A1, A2, A3, Ass A7y A8y Aes A0s A12, A13, Miss M6 M7y Aves A200 A21

Table A.1: Definition of constraint relation for

a vert i i
immediate right. ex and its neighbor to the

140

label set of consistent labels on the vertex to the upper right

&
§

A, A2, A3, Aas A8s A8y Aps Mo, M1, At3, Avas AM1ss A7, A1ss A2
M Ass M2y M5 Mg

2or My A20 Ass A4s A6y Ass Aas Atos A11, M3, Avas Aves A170 Arss Az
A7y M2, M5 Mo

AMs A2, A3, Ads Ass Ass Mgy Aos A1 Avss Mas A1es A7 Ass A2
2o, Mo A2 A3y Aas Asr Aar Aar Aos A1, Av3s Atas Miss AM17v Avss Azs
Ao, A, A2, As, A4y Aes Asy Mgy A10s A1, A3, A1as A6 A17, A1s, Az
A2: A3 Aas Aes Ass Aer Mov AM1s A3, Atas A1es M17s Avss Az
As Asr A7, M2y Mss A1e A20

Ao Aos A1, A2, A3, A4y A6s A8y Agy Mo, A11, A13, A1as Ats, A7, M3, A2
Mo | Ao My A20 A3 Aas Aes Ass Aas Aos AM1s A13s Avas A6 M7e AM1ss A2:
M1 | s Az M2s A5 Mgs Az0

Mz | Do, My A2, A3, Ay A6s Ass Aes A10s A1, A3, A1as At A7, Avs, A2
M3 | Mo My A2, A3y Aas Aes Asi Aes Mos A1, A13s Mas M1e M7y A1l A2y
Ma | Aor My A2s Ass Aas Ass Ase Aer Mos A1y A13s Mvas Aes A7, Arss Az
Me | Ao M A2, Ase Aas Ay Ass Aas Atos A1, Avas Atas Aves Mi7s Ass Azi
Me | Mo My A2, A3y Aas Aes Ass Mg Mos A1 M3s Atae M6 M7, Ass Azs
Mz | Aos My A2, A3y Aas Aer Ass Aer Atos M1y Mas Mas Aves A7, A1ss Az
Ms | Ao M, A2y A3y Aas Aes Ass Aer M1os A1, A3 Mas A1 M17, Mis, Az
Mo | Xss A7zs M20 Mg Aves A2o

A20 | M2 Ms Mg A2

A21 Ao, A1y A2, A3, Aa, Aes Ass Mgy A1os A11, A13, A1as A6 A7, Aiss Azos Azt

TR
g

=4
&
4

Table A.2: Definition of constraint relation for a vertex and its neighbor to the upper
right.

141

{abel ‘ set of consistent labels on the vertex immediately above
2o A21
M Az1
A2 | s A8 M3y Mg
As Az21
A4 Ao; A8y M3, Mg
As Az21
As A21
A7 | A21
As A2
Ae Ao Ae: Asy M3, M6 Az0
Mo | Az21
M1 | Az
M2 | Ao, A6 Ass A3, Aies A20
M3 | A2
Ma | A1
"Ms | Az
M6 | Dos Ae: Ass A3, Msr Az20
M7z | Az
Ms | Az
Mo | Az
A20 | As» M3, M6 Azn
A21 AMs A2e A3 Aas Ass A7y Aer A1or M1s Mz Mar At M7e Aiss A1es Azos A2t

Table A.3: Definition of constraint relation for a vertex and its neighbor immediately
above.

BIBLIOGRAPHY

143

. [AsM78]

[BaB82]

[BaP74]

[Bas79]
[BaT76]
[Bal81]

[Bar80]

[Ber73]

144

BIBLIOGRAPHY

G.P. Ashkar, and J.W. Modestino, '"The contour extraction problem with
biomedical applications,” Computer Graphics and Image Processing, 7,
1978, 331-356.

D.H. Ballard, and C.M. Brown, Computer Vision, Englewood Cliffs, New
Jersey: Prentice-Hall, 1982.

E. Balas, and MW. Padberg, 'Set partitioning,” in Combinatorial
Programming: Methods and Applications, B. Roy (ed.), Dordrecht-
Holland, D. Reidel, 1974.

M.S. Bazarra and C.M. Shetty, Nonlinear Programming: Theory and
Algorithms, New York, John Wiley and Sons, 1979.

H. Barrow and J. M. Tennenbaum, "MSYS: a system for reasoning about
scenes," Stanford Research Institute Al Center Tech. Note 1217, 1976.

Ballard, D.H., ''Generalized Hough transform to detect arbitrary shapes,"
Pattern Recognition, 12, 2, pp. 111-122, 1981.

J.J. Bartholdi Ill, "A guaranteed-accuracy round-off algorithm for cyclic
scheduling and set covering,” Operations Research vol. 29, pp. 501-
610, 1981.

C. Berge, Graphs and Hypergraphs, Amsterdam, North-Holland, 1973.

[COM83] Computer, January 1983, Special issue on "Computer Architectures for

[Chu‘79]
[Chv75]
[Clo71]

[DiG82]
[DNG82]
[Dia82]

[DaR77]

Image Processing."

K. W. Church, "Co-ordinate squares: a solution to many chess-pawn
endgames,"

V. Chvatal, "On certain polytopes associated with graphs,” J. Combin.
Theory 18, 138-154. ”

M. B. Clowes, ""On seeing things," Artificial Intelligence, vol. 2, pp. 79-
116, 1971.

M.D. Diamond, and S. Ganapathy, ‘''Cooperative solutions to the
continuous graph labeling problem: review and reformulation,"” Proc.
1982 IEEE Conf. Pattern Recognition and Image Processing, Las Vegas,
pp. 64-71, July 1982.

M.D. Diamond, N. Narasimhamurthi, and S. Ganapathy, "A systematic
approach to continuous graph labeling with application to computer
vision" Proc. 1982 AAA! Nat. Conf. on Art. Intell., Pittsburgh, pp. 50-54,
August 1982.

M.D. Diamond, "The graph labeling problem and the relaxation labeling
processes," RSD-TR-13-82, Center for Robotics and Integrated
Manufacturing, Robot System Division, University of Michigan, Ann Arbor,
October, 1982.

L. S. Davis and A. Rosenfeld, "An application of relaxation labeling to
spring-loaded template matching,” Proc. Third Intl. Joint Conf. on Pattern
Recognition, pp. 591-597, November, 1977.

[DaR78]

[DaR80]

[DoR79]

[DuH72]
[Dav79]

[EYR80]

[Etc?77]

[FaB81]

[Fau81]

[Fre78]
[Ful71]
[GaJ78]

[Gas74]

[Gol80]

[Gro76]

[HDR78]

[HaE79]

145

L. S. Davis and A. Rosenfeld, ''Hierarchical relaxation for waveform
parsing,” in Computer Vision Systems, A. R. Hanson and E. M. Riseman,
Eds. New York: Academic, 1978, pp. 101-109.

L. S. Davis, and A. Rosenfeld, "Cooperating processes for low-level
vision: a survey,"” TR-123, Dept. of Computer Science, University of
Texas, Austin, 1980.

G.G. Dodd, and L. Rossol (eds.), Symposium on Computer Vision and
Sensor-Based Robots, General Motors Research Laboratories, Warren,
Michigan, New York: Plenum Press, 1979.

R.O. Duda, and P.E. Hart, "Unse of the Hough transformation to detect
lines and curves in pictures,”"” Commun. ACM, 15, 1, pp. 11-15, 1872.

L. S. Davis, "Shape matching using relaxation techniques," IEEE Trans.
Pattern Anal. Machine Intell., vol. PAMI-1, pp. 60-72, 1979.

J. O. Eklundh, H. Yamamoto, and A. Rosenfeld, ""A relaxation method for
multispectral pixel classification,” /EEE Trans. Pattern Anal. Machine
intell., vol. PAMI-2, pp. 72-75, 1980.

J. Etcheberry, "The set-covering problem: a new implicit enumeration
algorithm,” Operations Research vol. 25, pp. 760-772, 1977.

O. D. Faugeras, and M. Berthod, "Improving consistency and reducing
ambiguity in stochastic labeling: an optimization approach," /EEE Trans.
Pattern Anal. Machine intell., vol. PAMI-3, pp. 412-424, 1981.

0.D. Faugeras, "Decomposition and Decentralization Techniques in
Relaxation labeling," Comput. Graphics Image Processing, vol. 13, pp.
341-355, 1981.

E. C. Freuder, "Synthesizing constraint expressions,”" Comm. ACM, vol.
21, pp.958-966, 1978.

D. R. Fulkerson, "Blocking and anti-blocking pairs of polyhedra,”
Mathematical Programming vol. 3, pp. 168-194, 1971.

M.R. Garey, and D.S. Johnson Computers and Intractability: A guade to
the Theory of NP-completeness San Francisco; Freeman, 1978.

J. A. Gashnig, "Constraint satisfaction method for inferencé making,"
Proc. 12th Allerton Conf. Circ. Syst. Theory, Urbana-Champaign, IL,
1974.

M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, New York;
Academic Press, 1980.

R. M. Grossman, 'Some database applications of constraint
expressions,” 7. R. 758, Laboratory for Computer Science, M.IL.T.,
Cambridge, MA, 1976.

R. M. Haralick, L. S. Davis, A. Rosenfeld, and D. L. Milgram, ""Reduction
operations for constraint satisfaction,” /nformation Sciences, vol. 14,
pp. 199-219, 1978.

R. M. Haralick, and G. L. Elliot, "Increasing tree search efficiency for
constraint satisfaction problems,” Proc. 6th Int. Joint Conf. Artificial
intell., pp. 356-364, Tokyo, Japan, 1979.

[HaR78a]Computer Vision Systems, New York: Academic, 1978.
[HaR78b]A. R. Hanson and E. M. Riseman, "Segmentation of natural scenes,” in

Computer Vision Systems, A. R. Hanson and E. M. Riseman, Eds. New

146

York: Academic, 1978, pp. 129-163.

[HaS79] R. M. Haralick and L. G. Shapiro, The consistent labeling problem: part I,"
IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-1, pp. 173-184,
1979. _

[HaS80] R. M. Haralick and L. G. Shapiro, The consistent labeling problem: part Il,"
IEEE Trans. Pattern Anal. Machine Intell., IEEE Trans. Pattern Anal.
Machine Intell., vol. PAMI-2, pp. 193-203, 1980.

[Har72] F. Harary, Graph Theory, Reading, Massachusetts; Addison-Wesley, -
1872.

[Hay79] K. C. Hayes, "Reading handwritten words using hierarchical relaxation,"
TR-783, Computer Science Center, University of Maryland, College Park,
MD, 1979.

[Hor71] B.XK.P. Horn, "The Binford-Horn line finder’, AIM-285, Artificial
Intelligence Laboratory, MIT, 1971.

[Huz80] R. A. Hummel, and S. W. Zucker, "On the foundations of relaxation
labeling processes,” 7r-80-7, Dept. of Elect. Eng., McGill University,
Montreal, Quebec, Canada.

[Huf71] D. A. Huffman, "Impossible objects and nonsense sentences," Machine
Intelligence, vol. 6, pp. 295-323, 1971.

[Kir8O] R. L. Kirby, "A product rule relaxation method," Comput. Graphics Image
Processing, vol. 12, pp. 158-189, 1980.

[LWW78]J.M. Lester, HA. Williams, B.A. Wientraub, J.F. Brenner, '"Two graph
searching techniques for boundary finding in white blood cells,”
Computers in Biology and Medicine, 8, 1978, 293-308.

[MPP77] D. Marr, G. Palm, and T. Poggio, "Analysis of a cooperative stereo
algorithm,” A. I. Memo No. 446, A. |. Lab., Massachusetts institute of
Technology, 1977.

[MaP76] D. Marr and T. Poggio, ""Cooperative computation of stereo disparity,"
Science, vol. 194, pp. 283-287, 1976.

[Mac77] A. K. Mackworth, 'Consistency in networks of relations,” Artificial
Intelligence, vol. 8, pp. 99-118, 1977.

[Mar74] R.E. Marsten, "An algorithm for large set partitioning problems,"
Management Science, 20, 5, 774-787, 1974.

[Mar75] D. Marr, "Analyzing natural images; a computational theory of texture
vision," TR 334, Al Lab, MIT, June 1975. D. Marr, "Early processing of
visual information,” Philosphical Transactions of the Royal society of
London, vol. 2785, no. 942, October 19, 1976.

[Mar80] P. Marks, "Low-level vision using an array processor," CG 80 281 292

[MoW?Q] F. S. Montalvo, and N. Weisstein, "An empirical method that provides a
basis for the organization of relaxation labeling processes for vision,"”
Proc. 6th Int. Joint Conf. Artificial Intell., pp. 595-597, Tokyo, Japan,
1979.

[Mon74] U. Montanari, "Networks of constraints: fundamental properties and
application to picture processing," Information Sciences, vol. 7, pp. 95-
132, 1974.

[Mur76] K. Murty, Linear and Combinatorial Programming, New York: Wiley and
Sons, 1976.

[NTN74]

[NeT74]

[NeT75]
[Pad73]

[Pad74]

[PeR78]

[PeR79]

[Pel80]
[Per78]

[PiQ77]

[Pie68]

[RHZ76]

[Ros79]

[Ros81]

[Sac79]
[Sal75]

[Shi75]

[Sha79]

[Sly82]

147

G.L. Nenhauser, L.E. Trotter, and R.M. Nauss, "Set partitioning and chain
decomposition,” Mathematical Programming wvol. 6, pp. 1413-1423,
1974.

G.L. Nemhauser, and L.E. Trotter, "Properties of vertex packing and
independence system polyhedra,”" Mathematical Programming vol. 6, pp.
48-61, 1974.

G.L. Nemhauser, and L.E. Trotter, '"Vertex packings: structural properties
and algorithms," Mathematical Programming vol. 7, pp. 232-248, 1975.

M.W. Padberg, "On the facial structure of set packing polyhedra,"
Mathematical Programming vol. 5, pp. 199-215, 1973.

M.W. Padberg, "Characterisations of totally unimodular, balanced and
perfect matrices,” in Combinatorial Programming: Methods and
Applications, B. Roy (ed.), Dordrecht-Holland, D. Reidel, 1974.

S. Peleg and A. Rosenfeld, "Determining compatibility coefficients for
curve enhancement relaxation processes," IEEE Trans. Syst., Man,
Cybern., vol. SMC-8, pp. 548-555, 1978.

S. Peleg, and A. Rosenfeld, "Breaking substitution ciphers using a
relaxation algorithm,” 7R-7217, Computer Science Center, University of
Maryland, College Park, MD, 1979. :

S. Peleg, "A new probabilistic relaiation scheme," IEEE Trans. Pattern
Anal. Machine Intell., vol. PAMI-2, pp. 362-369, 1980.

W.A. Perkins, '""A model-based vision system for industrial parts," /EEE
Trans. Comput., vol. C-27, pp. 126-143, 1978.

J.C. Picard, and M. Queyranne, ''On the integer-valued variables in the
linear vertex packing problem,” Mathematical Programming vol. 9, pp.
87-101, 1977.

J.F. Pierce, "Application of combinatorial programming to a class of all
zero-one integer programs,” Management Science, 15, 191-209, 1968.

A. Rosenfeld, R. A. Hummel, and S. W. Zucker, "Scene labeling by
relaxation operations,” /EEE Trans. Syst., Man, Cybern., vol. SMC-6, pp.
420-433.

A. Rosenfeld, "Survey; Picture processing: 1978", Comput. Graphics
Image Processing, vol. 11, pp. 354-393, 19709. .

A. Rosenfeld, "Survey: picture processing: 1980," Computer Graphics
and Image Processing, Comput. Graphics Image Processing, vol. 13, pp.
652-89, 1981.

E. D. Sacerdoti, "Problem solving tactics,” Proc. 6th Int. Joint Conf.
Artificial Intell., pp. 1077-1085, Tokyo, Japan, 1979.

H.M. Salkin, Integer Programming, Reading, Mass.: Addison-Wesley,
1976.

Y. Sharai, "Analyzing intensity arrays using knowledge about scenes," in

(P.H. Winston, ed.) The Psychology of Computer Vision, New York;
McGraw-Hill, 1975

J.F. Shapiro, Mathematical Programming: Structures and Algorithms, New
York, John Wiley and Sons, 1979.

R.V. Slyke, "Redundant set covering in telecommunications networks,"
Proc. IEEE 1982 Intern. Large Scale Systems Symposium, Virginia Beach,

[StR71]

[TBB79]

[unze]

[wWal72]
[Wal75]

148

Virginia, October, 1982.

A. Stefanelli, and A. Rosenfeld, "Some parallel thinning algorithms for
digital pictures," Journ. of ACM, Vol. 18, No.2, April 1971, pp 255-264.

J.M. Tenenbaum, H.E. Barrow, R.C. Bolles, ""Prospects for -industrial
vision', in (G.G. Dodd and L. Rossol, eds.) Symposium on Computer Vision
and Sensor-Based Robots, General Motors Research Laboratories,
Warren, Michigan, New York: Plenum Press, 1979.

S. Uliman, "Relaxation and constrained optimization by local procésses,"
Comput. Graphics Image Processing, vol. 11, pp. 116-12§, 1979.

D. L. Waltz, "Generating semantic descriptions from drawings of scenes
with shadows," Technical Report Al27 1, M.L.T., 1872.

D. L. Waltz, "Understanding line drawings of scenes with shadows," in
The Psychology of Computer Vision (P. H. Winston, ed.), McGraw-Hill,
New York, 1975.

[WeM78]N. Weisstein, and W. Maguire, "Computing the next step:

[Wil78]
[Yam79]
[ZHR%?]

[zZLM81]

psychophysical measures of representation and interpretation,” in
Computer Vision Systems, A. R. Hanson and E. M. Riseman, Eds. New
York: Academic, 1978, pp. 243-260.

T. J. Willett, "Hardware Implementation of Image Processihg Overlays:
Relaxation", Proc. DARPA Image Understanding Workshop, (L. 8.
Baumann, ed.), Science Applications, Inc., Arlington, Virginia, 1978.

H. Yamamoto, "A method of deriving compatibility coefficients for
relaxation operators," Comput. Graphics Image Processing, vol. 10, pp.
256-271, 1978.

S. W. Zucker, R. A. Hummel, and A. Rosenfeld, "An application of
relaxation labeling to line and curve enhancement," JEEE Trans. Comput.,
vol. C-26, pp. 394-403, 1977.

S.W. Zucker, Y.G. Leclerc, and J.L. Mohammed, ''Continuous relaxation
and local maxima selection: conditions for equivalence,"” /EEE Trans.
Pattern Analysis and Machine Intelligence, vol. PAMI-3, 2, pp. 117-128,
1981.

UNIVER MICHIGAN

\\\\\N\\\\\\\\\\\\\M\T\i@ﬂj\\\@\\\\\\\\\\\ I

3 901 827 4655

THE UNIVERSITY OF MICHIGAN

22 16

