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We present an hierarchical Bayes approach to modeling parameter heterogeneity in generalized 
linear models. The model assumes that there are relevant subpopulations and that within each subpopu- 
lation the individual-level regression coefficients have a multivariate normal distribution. However, class 
membership is not known a priori, so the heterogeneity in the regression coefficients becomes a finite 
mixture of normal distributions. This approach combines the flexibility of semiparametric, latent class 
models that assume common parameters for each sub-population and the parsimony of random effects 
models that assume normal distributions for the regression parameters. The number of subpopulations is 
selected to maximize the posterior probability of the model being true. Simulations are presented which 
document the performance of the methodology for synthetic data with known heterogeneity and number 
of sub-populations. An application is presented concerning preferences for various aspects of personal 
computers. 
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1. Introduction 

Finite mixture or latent class models have been discussed in the statistical literature as early 
as the classic works of Newcomb (1886) and Pearson (1894). These semiparametric models 
assume that the sample of observations arises from a specified number of underlying subpop- 
ulations where the relative proportions of the subpopulations are unknown. The forms of the 
densities in each of these subpopulations are specified. However, subpopulation or class mem- 
bership is not known a priori, so the density for a randomly selected observation is the convex 
sum of the component densities for the subpopulations. The primary inferential goals are to de- 
compose the sample into its mixture components and to estimate the mixture probabilities and 
the unknown parameters of each component density. Everitt and Hand (1981) and Titterington, 
Smith, and Makov (1985) review the various types of distributions involved in such mixtures and 
discuss identification issues, as well as method of moments and maximum likelihood estimators. 

DeSarbo and Cron (1988) propose a conditional mixture model that postulates separate re- 
gression functions within each of K subpopulations. Their procedure simultaneously partitions 
the population into K subpopulations and estimates the separate regression parameters per sub- 
population. This model generalizes the Quandt (1972), Hosmer (1974), and Quandt and Ramsey 
(1978) stochastic switching regression models to more than two classes. DeSarbo and Cron use 
an EM algorithm (Dempster, Laird, & Rubin, 1977) to obtain maximum likelihood estimates of 
the K regression functions and posterior probabilities of an subject's memberships to the subpop- 
ulations. A large number of mixture regression models have since been developed (see Wedel & 
DeSarbo, 1994, for a review). Lwin and Martin (1989), De Soete and DeSarbo (1991) and Wedel 
and DeSarbo (1993) developed conditional mixture binomial probit and logit regression models. 
Kamakura and Russell (1989) and Kamakura (1991), respectively, develop conditional mixture 
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multinomial logit and probit regression models. Wang, Cockburn, and Puterman (1998); Wang, 
Puterman, Le, and Cockburn (1996); and Wedel, DeSarbo, Bult, and Ramaswamy (1993) pro- 
posed conditional univariate Poisson mixture regression models, and Wang and Puterman (in 
press) present a mixture of logistic regression models. DeSarbo, Ramaswamy, Reibstein, and 
Robinson (1993), DeSarbo, Wedel, Vriens, and Ramaswamy (1992), and Jones and McLachlan 
(1992) developed conditional multivariate normal regression mixtures. 

An important aspect that has not been adequately addressed in these various finite mix- 
ture approaches concerns heterogeneity within each latent class or subpopulation. Traditional fi- 
nite mixture specifications have been employed to implicitly model sample heterogeneity where 
each component density or latent class is often interpreted in many applications as separate sub- 
populations or response modes (e.g., segments of consumers). Although mixture models have 
seen a wide number of applications, accumulated empirical evidence suggests the need to reflect 
the diversity of characteristics, preferences, sensitivities, etc. within each component class (Al- 
lenby, Aftra, & Ginter, 1998). That is, common coefficients for each subpopulation often do not 
accurately summarize the within-class variation. 

In the presence of substantial, within-class heterogeneity in the coefficients, the finite mix- 
ture solution often requires an excessive number of latent classes or subpopulations to repre- 
sent the heterogeneity adequately in the data, leading to over parameterization and many, rela- 
tively small, latent classes. An alternative formulation is a random effects model that assumes the 
subject-level coefficients are a random sample from a normal distribution. These models accom- 
modate more extensive heterogeneity with fewer parameters than latent class models, provided 
that the normal assumption holds. (See Lenk, DeSarbo, Green, & Young, 1996, for a comparison 
and further references.) However, they may be inadequate in the presence of sizable subpopula- 
tions. 

As a remedy, this paper proposes to extend the assumption of the traditional random effects 
model by using a finite mixture of normal distributions for the distribution of the coefficients. 
This model provides both the flexibility of the latent class model and the parsimony of the tra- 
ditional random effects model. Indeed, both models are special cases of the proposed model: the 
latent class model corresponds to letting the within-class variances go to zero, and the traditional 
random effects model corresponds to using only one class or component. 

The paper assumes that the dependent observations are from a generalized linear model 
(GLM; McCullagh & Nelder, 1983), which includes commonly used distributions such as bino- 
mial, Poisson, normal, and gamma. Wedel and DeSarbo (1995) recently proposed latent class, 
generalized linear models. Special cases of this framework are binomial probit and logit re- 
gression mixtures (DeSoete & DeSarbo, 1991; Wedel & DeSarbo, 1993), univariate Poisson 
regression mixtures (Wedel et al., 1993), and latent class analysis (Goodman, 1974). Zeger and 
Karim (1991) propose a Bayesian analysis of GLM which have random effects, and Breslow and 
Clayton (1993) propose an approximate Bayes procedure. 

The paper assumes that the individual-specific regression parameters for the linear predictor 
in GLM are distributed across the population according to a finite mixture of multivariate normal 
distributions. Also, each member of the population has a different scale parameter. The hetero- 
geneity in the individual-level scale parameters is described by a normal distribution (cf. Lenk, 
DeSarbo, Green, and Young 1996). 

The paper uses Markov Chain Monte Carlo (MCMC; Gelfand & Smith, 1990; and Smith 
& Roberts, 1993) to approximate the Bayesian inference. Diebolt and Robert (1994) propose a 
MCMC for mixture models of univariate observations, and its model is not identified because 
permutations of the class labels, called "label switching", result in the same value of the like- 
lihood function (Titterington, Smith, & Makov, 1985). Label switching results in misleading 
estimators when using MCMC procedures. Suppose that there are K subpopulations. A well de- 
signed Markov chain should explore the full parameter space, which includes K! regions defined 
by permuting the mixture components' labels. When iterations are averaged over these visits, 
the MCMC estimator for a component's parameter converges to a weighted average of that pa- 
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rameter in all components where the weights are proportional to the number of iterations in each 
region• In contrast, the EM algorithm always moves in a direction that maximizes the likelihood 
function and does not face this problem. For a given starting point, EM terminates at one of the 
K! modes and reports only the final results, ignoring previous iterations that may have had label 
switches. This paper identifies the model by ordering the mixture probabilities and modifies the 
standard MCMC algorithm to include these order restrictions. 

An outstanding problem for mixture models is the choice of the number of mixture com- 
ponents. Currently, choice heuristics are based on information measures such as AIC (Akaike, 
1973), consistent AIC or CAIC (Bozdogan, 1987), and BIC (Schwarz, 1978)• These measures 
penalize the likelihood of the models where the penalty term is a function of the number of pa- 
rameters, thus balancing fit with parsimony. This paper proposes computing the posterior prob- 
abilities for the number of mixture components. Jeffreys (1961, chap. V, VI) is frequently cited 
as the first instance of Bayesian hypothesis testing by using posterior probabilities of the hy- 
potheses. BIC is a large sample approximation of the marginal distribution, which integrates the 
likelihood by the prior distribution of the parameters. Kass and Raftery (1995) review the vast 
literature on Bayes factors for model selection, and recent work by Carlin and Chib (1995), Chib 
(1995), Lewis and Raftery (1997), and Verdinelli and Wasserman (1995) considered their com- 
putation via Markov chain methods. We adapt the method of Gelfand and Dey (1994) to select 
the number of mixture components. 

The next section illustrates the inadequacy of the latent class model in the presence of sub- 
stantial, within-class heterogeneity in the coefficients, and introduces the mixture, random effects 
model in the special case of normal, linear regression. Section 3 presents the generalized linear 
model and discusses respective identification issues. Section 4 approximates the marginal distri- 
bution of the number of components. Section 5 summarizes two simulation studies using normal 
and Bernoulli 0/1 data. The simulations demonstrate that the Bayesian analysis recovers the true 
model and that the posterior probabilities indicate the correct number of mixture components• 
Section 5 also applies the proposed methodology to actual data collected on subjects' prefer- 
ences for personal computer. Finally, we mention several areas for future research, as well as 
additional potential applications• 

2. Latent Class Mixture Models and Misspecification 

This section motivates the mixture, random effects model by highlighting some of the short- 
comings of the latent class mixture model when there is substantial, within-class heterogeneity. 
The data consist of observations on n subjects or experimental units. There are multiple obser- 
vations on each subject: subject i has mi observations. Let Yij be the j-th dependent observation 
on subject i and xij be the corresponding p x 1 vector of independent variables, which usually 
includes 'T '  for the intercept. Define 

1 Yi = Yimi 
and Xi  = 

E ! Xi 1 

I Ximi 
f o r / =  1 . . . . .  n 

where Yi is a mi x 1 vector of dependent observations, and Xi is a mi × p design matrix for 
subject i. 

The latent class model assumes that the population consists of K subpopulations and that 
there are separate regression models within each subpopulation. Suppose that the i-th subject or 
experimental unit belongs to class k. The latent class regression model specifies: 

Yi  = XiOk q- 6ik for i = 1 . . . . .  n 

where Ok is a p x 1 vector of regression parameters for latent class k, and ~ik is a mi × 1 vector 
that has a multivariate normal distribution with mean 0 and covariance matrix tr~I where I is the 
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identity matrix. The error terms are mutually independent across subjects. The proportion of the 
population who belongs to class k is ~k. If  class membership is not known, the unconditional 
(on class membership) density of Yi is a finite mixture model with K component densities: 

K 
ft'(Y/) = E ~kqrni (yi[XiOk, t72I), (1) 

k=l 

where qml (" tXiOk, trkl) is the mi dimensional, multivariate normal density with mean XiOk and 
covariance matrix a~ I .  

Instead of assuming a common coefficient Ok for all subjects in class k, the mixture, ran- 
dom effects model assumes that the regression coefficients are subject specific; these coefficients 
belong to one of K classes; and within a class the coefficients vary according to a normal distri- 
bution. For subject i: 

Yi -- Xi fll + Ei for i = 1 . . . . .  n (2) 

where Yi is a m i x  1 vector; Xi is a mi × p design matrix; fli is a p x 1 vector of unknown 
regression coefficients, and Ei is a mi × 1 vector of error terms that has a multivariate normal 
distribution with mean 0 and covariance matrix tr/2 I.  The error terms are mutually independent. 

Further, we assume that the log error variances {$i = log(cry)} are a random sample.from a 
normal distribution with mean ot and variance r 2. 

If subject i belongs to class k, then ~i has a normal distribution with mean Ok and covariance 
matrix Ak, and the proportion of the population who belong to class k is ~Pk- If class membership 
is not known, then the regression coefficients are a random sample from a mixture distribution 
with the following density: 

K 

g(fli) "~ E ~kqP([Ji ]Ok, Ak), (3) 
k=l 

where qp(']Ok, Ak) is the p dimensional, multivariate normal density with mean 0k and covari- 
ance matrix Ak. The unconditional mean and covariance of ~i are: 

K 
E(~i) = 0 = ~_, ~kOk (4) 

k=l 

K 
Var(~i) = A = E ~k(Ak + OkO~) -- 00'. (5) 

k=l 

After integrating over/~i, the marginal distribution of Yi is also a mixture model: 

K 

J~ (Yi) = E l~kqmi (yi ]XiOk, e;i 2I + Xi Ak X~). (6) 
k=l 

The covariance matrix for component k in (6) allows for a nonzero covariance structure, while 
the latent class model in (1) assumes that observations for subject i are mutually independent. 
The means for both models are the same. 

To demonstrate the inadequacy of the latent class model in the presence of substantial 
within-class heterogeneity, we simulated data according to (2) and (3). There were 100 "sub- 
jects" and 10 observations per subject. First, we independently generated an independent vari- 
able xiy from a normal distribution with mean two and standard deviation one. Each subject is 
then independently assigned to one of three classes with probabilities ~Pl = .2, ¢2 = .3, and 
~k3 = .5. Conditional on class assignment, the intercept 131i and slope 132i were generated from 
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FIGURE 1. 
True Regression Coefficients for a Simulated Data Set 

a bivariate normal distribution. Figure 1 plots the true, individual-level slopes versus the true 
intercepts. Next, for each subject an error variance was generated from a lognormal distribution. 
Finally, the dependent variables were constructed with normally distributed errors. 

The top half of Table 1 reports the simulation parameters, and the bottom half reports the 
results for the finite mixture regression model (1) that uses three latent classes. This model is 
estimated with the EM algorithm (DeSarbo & Cron, 1988), which is an iterative, maximum 
likelihood method. Subjects are assigned to classes based on their posterior probability of  mem- 
bership given the current parameters estimates from the EM algorithm. Next, the parameters 
are re-estimated based on the current assignment. The procedure is repeated until the likelihood 
function no longer increases. This solution severely distorts the sizes of the derived classes and 
biases the estimated class coefficients Ok. In addition, ignoring the within-class heterogeneity in 
the regression coefficients inflates the error variances. 

TABLE 1. 
Parameters for the Simulated data and the Latent Class Regression Estimates 

Component One Two Three 

Size 14 33 53 
Intercepts' Mean 0 -10  5 
Slopes' Mean 0 7 5 
Intercepts' Variance 1 25 9 
Slopes' Variance t 4 5 
Intercept-Slope Covariance 0 9 - 5  
Error Variances' Mean 9.49 9.49 9.49 
Error Variances' 7.64 7.64 7.64 
Standard Deviation 

Latent Class Regression 

Size 20 36 44 
Intercept 3.62 --7.50 4.10 
Slope 7.80 3.30 4.60 
Error Variance 19.72 43.01 21.58 
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One response to the inadequate representation of the heterogeneity provided by the three 
class solution is to increase the number of support points. We fitted models with one to 12 la- 
tent classes. The 11 support-point solution minimized three common information criterion: AIC 
(Akaike, 1973), consistent AIC or CAIC (Bozdogan, 1987), and BIC (Schwarz, 1978). These 
information criterion unambiguously indicate a 11 class solution, which has 43 parameters: 11 
intercepts, 11 slopes, 11 error variances, and 10 mixture probabilities. Many of the classes are 
very small and some only have three members, resulting in large standard errors. In addition, 
if these models were used to identify subpopulations, 11 classes would be difficult to interpret, 
especially since the data have only one independent variable. 

Another approach would be to use a random effects model with K equal to one in (3). Using 
(4) and (5) for the example, we would fit a model where fli has a normal distribution with mean 
and covariance matrix: 

0 = 4.6 and A = -6 .00  9.94 " 

We can see in Figure 1 that the mean 0 is in a region without subjects, and the 95% ellipsoid 
would contain unusually many subjects along its north-west to north-east boundary and unusually 
few subjects in the south-west quadrant. 

The mixture, random effects model is more parsimonious than the latent class model and 
more flexible than the random effect model with one component. Both are special cases of the 
mixture, random effects model. By setting At = 0 in the marginal density in (6), one obtains 
the marginal density for the latent class model in (1). Also, setting K equal to one results in the 
traditional random effects model. 

3. Finite Mixtures of Generalized Linear Models 

The j - th dependent variable for the i-th subject, Yij, is from the generalized linear model 
(McCullagh & Nelder, 1983) with density: 

f (Yij lfli ) = e x p  I yijh(x~jfli ) -- b[h(x~j fli ) ] ] ~r.4,. x -~- c(Yij , qbi ) (7) 
L ~ k Y ' l  ? 

f o r / =  1 . . . . .  n a n d j  = 1 . . . . .  mi 

where xij is a p x 1 vector of independent variables;/~i is a p x 1 vector of regression coeffi- 
cients; h(x~j1~i) = ~ij is the natural parameter, and ~b i is the scale parameter that may depend 
on the subject. The functions a, b, and h are univariate and real-valued. For the normal distfi- 

X t bution, h(i j t~i)  is  the mean; a(cPi) = exp(~bi) is the variance; b[h(xtijfli)] = 71 h (xijl fli)2", and 
c(Yij, dpi) = --1 (y2 exp( -~b i )  + ln(2zr) + ~bi). We will assume that the observations are mutu- 
ally independent. The mean and variance of Yi y are b l ( ~i j ) and b2 ( ~i j )a ( dpi ) respectively, where 

d 2 
bl = ~ b ( ~ )  is the first derivative of b, and bz = d--~b(~) is the second derivative of b. We will 

assume that the regression coefficients follow the mixture model in Equation (3). The subject 
specific scale parameters {tPi } form a random sample from a normal distribution with mean 
and variance ~.2. 

As mentioned in the Introduction, the above model is not identified because permutations 
of the class labels result in the same value of the likelihood function. Titterington, Smith, and 
Makov (1985) remark that there does not exist one set of parameter restriction that will identify 
the model for all possible choices of parameters in the multivariate setting. This paper identifies 
the model by ordering the mixture probabilities: @1 < "'" < ~PK. If none of the true mixture 
probabilities are equal, then this ordering identifies the model. If two or more components have 
the same mixture probabilities, then this restriction is inappropriate. However, simulation studies 
using equal probabilities indicate that the algorithm is not adversely affected because parameter 
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uncertainty masks the equality of the mixture probabilities. If one believed that some probabil- 
ities are equal, then Titterington, Smith, and Makov recommend additional restrictions such as 
ordering the intercepts or variances. Clearly, there may be situations were combinations of these 
restrictions will not, in theory, identify the model. 

The prior distributions for the remaining parameters are mutually independent and have the 
following specification: ~p has a Dirichlet distribution constrained to the region ~1 < " ' "  < ~ K ,  

and the distributions for ok and Ak for k = 1 . . . . .  K are multivariate normals and Inverted 
Wishart, respectively. ~ has a normal distribution, and r2 has an inverse gamma distribution. 
K has a discrete probability function on the integers 1 . . . . .  M where M is specified by the 
researcher. These prior distributions were selected for three reasons: they facilitate the posterior 
analysis; they are fairly flexible families; and their prior parameters can be selected so that the 
posterior analysis is relatively insensitive to the prior for data sets with a moderate number of 
subjects and observations per subject. Lenk, DeSarbo, Green, and Young (1996) illustrate this 
point with a hierarchical Bayes linear regression model by randomly deleting observations within 
subjects. 

Appendix A provides details about the joint distribution of the data and the unknown param- 
eters. Appendix B presents the prior parameters used in the empirical examples, and Appendix 
C describes the MCMC algorithm, which is an iterative method of generating random deviates 
from the posterior distribution of the parameters. The basic idea is to generate random deviates 
from a Markov chain such that its stationary distribution is the posterior distribution. 

4. Model Selection 

The number of mixture components can be selected by choosing the model with the largest 
posterior probability. If the number of components are a priori equally likely, then choosing the 
model with the largest Bayes factor is an equivalent procedure. Both Procedures require com- 
puting the marginal density of the data given the number of mixture components. The marginal 
density integrates the likelihood function times the prior density over the parameter space. 

We use the method of Gelfand and Dey (1994) to approximate the marginal density from 
the output of the Markov chain. For the model with K components, indicate all of the parameters 
by f2K. The marginal density of the data given K components is 

fK(Y) = [ fK(Yl~2x)Px(~2g)d~2K 
a ~2 K 

{ [ gK(aK) q]-i 
= E / f K ( Y ~ ( f 2 K ) J /  ' 

where fK is the density of the data given the parameters for model K; PK is the prior density 
of the parameters; gx is an arbitrary density on the support of f2X, and the expectation is with 
respect to the posterior distribution of f2K. The MCMC approximation is 

where f2~ ) is the value of f2K on the iteration u of the Markov chain, and the last U - B 
iterations of U iterations are used. If gx is the posterior density of f2K, then the approxima- 
tion is exact. However, we only know the posterior density to a normalizing constant, and the 
unknown normalizing constant is exactly the quantity that we need to compute. Consequently, 
one needs to specify a gx that is completely known. The estimated, posterior probabilities are 
fi(KIY) cx p(K)fK (Y) where p(K) is the prior probability for K mixture components. Inde- 
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pendent Markov chains are run for each of the mixture models with 1 to M components. In the 
empirical work of this paper, the prior probabilities are equally likely. 

Kass and Raftery (1995) recommend that gk should be close to the posterior density. We 
specify gh" either by using the property that posterior distributions are asymptotically normal or 
else by using the fact that distributions are conjugate given the other parameters. For example, if 
the class membership and {/3/} were know, then A/¢ would have an Inverted Wishart distribution. 
The parameters of g/¢ are estimated from the output of the Markov chain by the method of 
moments. For example, gx (/3i) is assumed to be the normal density. On iteration u of MCMC, 
the draw/3{ u) is saved. Then the mean and covariance of these random deviates are used to 
estimate the mean and covariance of gK(13i). Appendix D provides further details about the 
choice of gK. 

5. Empirical Studies 

Section 5.1 reports two simulation experiments using normal and Bernoulli data, Section 
5.2 applies the methodology to analyze empirical preference data for personal computers. 

5.1. Simulations 

The purposes of the simulations are two-fold. First, they verify that for a known number 
of mixture components the MCMC procedure recovers the unknown parameters. Second, they 
demonstrate that the posterior probabilities of the models indicate the correct model. The first 
simulation generates data from a linear regression model with normal error, and the second gen- 
erate 0/1 data from a logistic regression model. 

Fifty data sets are generate for the simulation study of the linear regression model. As in 
section 2, (2) has a slope and intercept, and the true model has three mixture components. The 
parameters for the simulated data are the same as section 2 except that ot is - 1  and [2 is 4. Each 
data set consists of 100 subjects and 10 observations per subject. The procedure was initialized 
by randomly assigning subjects to groups. The MCMC ran for 2000 iterates and utilized the last 
1000 for estimation. 

Figure 2 graphs the MCMC iterations for the means and standard deviations of the regres- 
sion coefficients, the scale parameters, and the mixture probabilities from one of the simulated 
data sets, The initial, transitory period in the graphs is due to the algorithm searching for the best 
classification of subjects, after which the procedure quickly settles into the stationary distribu- 
tion. 

Despite much recent work, convergence diagnostics for MCMC remains an open question, 
which is beyond the scope of this paper. See, for example, Gelman and Rubin (1992), Geyer 
(1992), Polson (1996), and Roberts and Poison (1994). As a practical matter, researchers fre- 
quently plot the MCMC iterations to verify convergence. For example, the plots in Figure 2 seem 
to indicate that the chain has converged to its stationary distribution by iteration 1000. The con- 
vergence issue with MCMC is similar to that for maximum likelihood estimation: the chain can 
become stuck in a region of the parameter space corresponding to a local mode of the likelihood 
function. Then convergence diagnostics based on the chain may falsely signal convergence. Ad- 
ditional s&feguards are to run multiple chains from different starting points to verify that they 
result in similar answers and to perform simulation studies where the true parameters are known. 
We used these last two methods, along with visual inspection of the random deviates plotted 
against iteration, to decide that the chain has run sufficiently long. 

Table 2 reports the results for 50 simulated data sets for the three component solution. The 
Bayesian analysis is compared to an ad-hoc, three-stage procedure, which is sometimes used by 
practitioners. First, individual-level maximum likelihood (ML) estimates of the coefficients are 
obtained. Second, subjects are clustered based on their ML estimates. The clustering is performed 
by nearest neighbor agglomerative clustering (Seber 1984, pp. 360 to 361). Third, the means and 
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FIGURE 2. 
Iterations from the MCMC Sampler for the Three Class Solution. (2.a) mean of the regression coefficents, (2.b) standar 
deviation of the regression coefficents, (2.c) mixture probabilities, and (2.d) mean and variance of the log error variances. 

covariance matrices for a cluster are estimated from the estimated regression coefficients for 
subjects assigned to that cluster. 

Table 2 first shows that the estimated mixture probabilities from MCMC are close to their 
true values and are more accurate than those obtained from the three stage, clustering algorithm. 
The expected number of subjects in the classes are 20, 30, and 50. On average, 19 of the 20 
subjects expected in class one are correctly classified; approximately 0.6 of the subjects in class 
one are assigned to class two and 0.02 to class three. The numbers do not add to 20 because 
there are not 20 subjects in class one on every simulation. Likewise, 27 of the 30 subjects in class 
two are correctly classified, as are 48 of the 50 subjects in class three. In contrast, the clustering 
algorithm has much higher misclassification counts. 

Table 2 then reports the estimated parameters of each mixture component. The estimators 
depend on the classification of the observations. The MCMC estimators are the posterior means. 
The posterior standard deviations provide a measure of the uncertainty about the parameters: they 
are used in the same way that standard errors are used. The posterior means tend to be within one 
or two posterior standard deviations across the simulations. Also, averaging over simulations, 
they are within one or two simulation standard deviations. The three-stage cluster estimates are 
less accurate, which reflects their larger misclassification rates. 

The reason for the inferior performance of the ad hoc three-stage procedure is that it treats 
the estimated regression coefficients as if they were the true parameters and ignores their sam- 
pling variation. Invariably, with 100 subjects some of the estimated regression coefficients are 
very inaccurate, which results in a poor cluster solution. Other simulations indicate that when 
the number of observations per subject is large relative to the number of regressors, the ad hoc 
three-stage procedure performs nearly as well as the Bayesian model. 
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TABLE 2. 
Classification Rates and Parameter Estimates from the Simulation Study of the Mixture, Normal Regression 
Model with Three Components 

Mixture Probabilities 

Hierarchical Bayes Cluster the MLEs 
Component One Two Three One Two Three 

True 0.200 0,300 0.500 0.200 0.300 0.500 
Estimate 0.198 0.310 0.492 0.164 0.284 0,552 

(0.004) (0.004) (0.006) (0.011) (0.011) (0.017) 

Classification Rates 
Number Hierarchical Bayes Cluster the MLEs 

Assigned to One Two Three One Two Three 

One 19.327 0.531 0.146 6.240 7.900 2.260 
(0.632) (0.413) (0,038) (1.370) (1.153) (0.700) 

Two 0,558 26.988 2,077 4,540 14.560 9.320 
(0.438) (0,931) (0.789) (1.210) (1.587) (1.961) 

Three 0.155 2 , 3 0 1  47.916 9.260 7.360 38,560 
(0.038) (0.681) (1.076) (1.409) (1.299) (2,212) 

Parameter Estimates 
Posterior Posterior Cluster Posterior Posterior Cluster 

Component True Mean STD the MLEs True Mean STD the MLEs 

One 

Two 

Three 

Intercepts' Mean Intercepts' Variance 
0 -0,209 0.288 -5.987 1 1.238 0.599 28.222 

(0,220) (0.016) (1,067) (0,189) (0.106) (11.033) 
-10 -9.400 0,995 -4.072 25 23.413 7.311 16.164 

(0,378) (0.030) (0,918) (1.129) (0.349) (2.375) 
5 4.599 0,503 2,291 9 9,640 2.503 22,510 

(0.281) (0.012) (0.457) (0.224) (0.093) (3.109) 

One 0 

Two 7 

Three 5 

Slopes' Mean Slopes' Variance 
0.146 0,243 4,177 1 1.0t6 0.438 2.388 

(0.133) (0.008) (0,467) (0.054) (0.032) (0,284) 
6.806 0.389 5,439 4 3.700 1,127 4,562 

(0.156) (0.009) (0.341) (0.149) (0.046) (0.704) 
5,108 0.359 4.548 5 5,280 1.252 7,600 

(0,069) (0.006) (0.166) (0.189) (0,039) (0,572) 

Intercepts and 
One 0 0.085 

(0.093) 

Two 9 8,047 
(0,466) 

Three - 5  -5.114 
(0.290) 

Slopes' Covariance Mean Log Error Variance 
0.360 -2.308 -1  -1.007 0.204 -1.352 

(0,044) (1.452) (0.031) (0.002) (0,032) 

2.632 -0.430 Variance Log Error Variance 
(0,110) (0,885) 4 3.973 0.604 4,243 
1,557 -4.032 (0.077) ((3.011) (0.075) 

(0,047) (0.745) 

The means across 50 simulations are reported. The simulation standard errors for the means are reported in 
parenthesis. 



PETER J. LENK AND WAYNE S. DESARBO 103 

TABLE 3. 
Performance of Individual-level Estimates from the Simulation Study of the Mixture, Normal Regression Model 
with Three Components 

Intercept Slope 

RMSE CORR RMSE CORR 

Log Error Variance 

RMSE CORR 

Posterior Mean 0.908 0.992 0.428 0.990 0.521 0.967 
(0.035) (0.001) (0,017) (0.001) (0.005) (0.001) 

Maximum Likelihood 1.184 0.986 0.541 0.984 0.632 0.967 
(0.051) (0.001) (0.024) (0.002) (0.007) (0.001) 

"RMSE" is the root mean squared error between the true values and their estimators, and "CORR" is the 
correlation. The performance measures are averaged across the 50 simulated data sets. Simulation standard 
errors are in parentheses. 

Table 3 reports the performance of the individual-level parameter estimates. The Bayes 
estimates have smaller RMSE and larger correlations with the true individual-level parameters 
than do the individual-level ML estimates. Table 4 summarizes the model selection criterion for 
the simulation study. The models are estimated with one to five components. Each of the five 
models are assumed to be equally likely. The posterior probabilities correctly identify 48 of the 
50 simulations as having three clusters. 

The second simulation study generated 50 data sets from a logistic regression model. The 
dependent variables {Yij } take the values zero or one with the following probabilities: 

! 

exp(xij~i) and P ( Y i j  = O) = 1 - P ( Y i j  = 1). 
P(Yij = 1) = 1 I ~ w  ijl.-'iJ 

Logistic regression is in the exponential family with 

I . I I h(x~j~i) = X i j g i ,  a(~bi) = 1; b[h(xij#i)] = ln[1 + exp(xij#i)]; and c(Yij, ¢ i )  "~" O. 

Each of the 50 data sets has 100 "subjects" and 40 observations per subject. The predictors are 
2 x 1 vectors whose first element is a "1", and the second element is drawn from a standard 
normal distribution. The true model has two mixture components, which represent 40% and 60% 
of the data. 

The true parameters along with the simulation results are given in Table 5. The simulation 
indicates that the procedure correctly classifies subjects and accurately estimates the parameters 
of the model. The model selection criterion are given in Table 6. The posterior probabilities 
correctly identified all 50 data sets. 

TABLE 4. 
Model Choice for the Simulation Study of the Mixture, Normal Regression Model 

Number of  Mixture Components 
One Two Three Four Five 

Log P(Data) --1730.4 -1707 .5  -1673 .7  -1687 .8  -1694 .3  
(87.0) (88.3) (88.3) (86.5) (87.5) 

Posterior Probability 0.000 0.000 0.958 0.022 0.020 
(0.000) (0.000) (0.185) (0.124) (0.141) 

Choice Counts 0 0 48 1 1 

"Choice Counts" is the number of times in 50 simulated data sets that the posterior probability was maximum 
for the corresponding mixture model. The measures are averaged across the 50 simulated data sets. Simulation 
standard errors are in parentheses. 
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TABLE 5. 
Classification Rates and Parameter Estimates from the Simulation Study of the Logistic Regression Model 

Classification Rates 
Probability Classification Counts 

Component One Two Component One Two 
True 0.400 0.600 One 39.826 1.352 

Estimate 0.403 0.597 (1.057) (0.995) 
(0.006) (0.006) Two 1.174 57.648 

(0.977) (1.341) 

Parameter Estimates 
Posterior Posterior Posterior Posterior 

Component True Mean STD True Mean STD 

Intercepts' Mean Intercepts' Variance 
One 0 -0.026 0.070 0.01 0.078 0.028 

(0.022) (0.001) (0.002) (0.001) 
Two - 1 - 1.000 0.064 0.04 0.082 0.029 

(0.021) (0.001) (0.003) (0.001) 

Slopes' Mean Slopes' Variance 
One - 1 -0.993 0.083 0.01 0.092 0.039 

(0.043) (0.001) (0.002) (0.001) 
Two 1 0.988 0.071 0.04 0.089 0.034 

(0.042) (0.001) (0.002) (0.001) 

Intercepts and Slopes' Covariance 
One 0.000 -0.003 0.023 

(0.002) (0.001) 
Two -0.028 -0.021 0.024 

(0.002) (0.001) 

The means across 50 simulations are reported. The simulation standard error for the means are reported in 
parenthesis. 

TABLE 6. 
Model Choice for the Simulation Study of the Logistic Regression Model 

Number of Mixture Components 
One Two Three Four 

Log P(Data) -2373.8 -2319.5 -2336.8 -2349.9 
(36.4) (38.4) (38.7) (39.1) 

Posterior Probability 0.000 1.000 0.000 0.000 
(0.000) ( l e - 5 )  ( l e - 5 )  (0.000) 

Choice Counts 0 50 0 0 

"Choice Counts" is the number of times in 50 simulated data sets that the posterior probability was maximum 
for the corresponding mixture model. The measures are averaged across the 50 simulated data sets. Simulation 
standard errors are in parentheses. 

5.2. Preferences for Personal Computers 

The subjects  for the study were 170 M B A  students at tending The  Univers i ty  o f  Michigan 

Business School  in 1994. Each student evaluated descr ipt ions of  20 hypothet ical  personal  com- 
puters. They were  asked i f  ttiey would consider  purchas ing the descr ibed  computer .  "Yes" was 
coded as "1", and "no" was coded as "0". The personal  computers  were  descr ibed  by  13 binary 



PETER J. LENK AND WAYNE S. DESARBO 105 

factors in a conjoint analysis framework. After an initial analysis, the following factors were re- 
tained in the analysis: CPU, CD-ROM, software, and price. There were slow or fast speeds of 
CPU, the absence or presence CD-ROM, the absence or presence of  bundled software, and low 
or high price levels. The lower level was coded as " - 1 " ,  and the high level was coded as "1". 
The Bayesian mixture logistic regression was fitted with one to four components. MCMC was 
ran for 11,000 iterations, and the last 1000 iterates were used in the analysis. The Bayesian model 
selection procedure selected the two component solution, which had a posterior probability of 
one. 

Table 7 reports the posterior means and standard deviations of  the parameters for the models 
with one to three components. The four component model is not reported due to space limita- 
tions. The four component solution has class probabilities of 0.029, 0.091, 0.317, and 0.563. The 
three and four component solutions each have two moderately sized classes, while the remaining 
classes are very small. This behavior frequently occurs when the model is over fitted: the small 
classes usually consist of  subjects whose estimated coefficients are outliers relative to their true 
component. 

Table 7 then reports the posterior means of the component means {Ok} for the regression 
coefficients. For the two component solution, subjects' mean coefficients within each class are 
nearly the same for CPU, CD-ROM, and software. The major distinguishing factors are the mean 
intercept and price coefficient. Holding the computer's features and price constant, the first group 
is more likely, on average, to purchase the computer because they have significantly larger inter- 

TABLE 7. 
Estimated Mixture Logistic Regression Model for Computer Preference Study 

Components One Two Three 

Class 1 1 2 1 2 3 
Probability 1.000 0.291 0.709 0.118 0.371 0.511 

(0.000) (0.030) (0.030) (0.021) (0.027) (0.032) 

Coefficients' Means (0) 

Intercept - 1.829 -0.673 -2.463 -0.076 - 1.611 -2.322 
(0.t39) (0.116) (0.123) (0.173) (0.163) (0.174) 

CPU 0.463 0.427 0.533 0.478 0.925 0.159 
(0.057) (0.087) (0.086) (0.164) (0.151) (0.080) 

CD-ROM 0.618 0.525 0.688 0.871 0.554 0.712 
(0.056) (0.120) (0.075) (0.198) (0.125) (0.101) 

Software 0.168 0.229 0.165 0.578 0.133 0.075 
(0.063) (0.085) (0.089) (0.191) (0.111) (0.084) 

Price - 1.870 -0.632 -2.488 - 1.087 -2.557 - 1.442 
(0.126) (0.100) (0.129) (0.149) (0.181) (0.186) 

Coefficients' Variances (A) 

Intercept 1.159 0.358 0.431 0.107 0.157 0.520 
(0.226) (0.126) (0.108) (0.081 ) (0.189) (0.220) 

CPU 0.104 0.088 0.208 0.056 0.364 0.041 
(0.045) (0.042) (0.080) (0.032) (0.146) (0.017) 

CD-ROM 0.155 0.240 0.103 0.191 0.048 0.195 
(0.056) (0.118) (0.051) (0.173) (0.023) (0.080) 

Software 0.066 0.100 0.075 0.062 0.053 0.062 
(0.020) (0.045) (0.037) (0.039) (0.026) (0.027) 

Price 0.897 0.108 0.412 0.070 0.277 0.553 
(0.207) (0.057) (0.114) (0.045) (0.132) (0.251) 

Parameter estimates are the posterior means, and the posterior standard deviations are in parentheses. 
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cepts. The second group is very sensitive to price. Next, Table 7 gives the within-class variances 
(diagonal of A/~) of the regression coefficients. For the two component solution, subjects in class 
one have more dispersion in their coefficients for CD-ROM and software, while the subjects in 
class two have more dispersion in their coefficients for the intercept, CPU, and price. The extent 
of the within-class variances indicates that an ordinary latent class model would need more than 
two classes to describe the heterogeneity in the coefficients, as. will be documented. 

Table 8 presents the within component correlation matrices for the two class solution. In 
class one, subjects' coefficient for intercept, CPU, CD-ROM, and software are positively cor- 
related, and they are negatively correlated with price. In contrast, the preference for CPU is 
negatively correlated with the preferences for CD-ROM and software in class two, and prefer- 
ences for CD-ROM are negative correlated with the intercept and positively correlated with the 
price coefficient. 

As a basis of comparison to the MCMC based procedure illustrated above, we performed a 
latent class probit analysis utilizing the methodology in Wedel and DeSarbo (1995), a general- 
ization of De Soete and DeSarbo (1991). Both the logit and probit models can be derived from 
random utility models (Luce, 1959; and McFadden, 1974) with the same deterministic compo- 
nent and different error structures. The probit model has normally distributed errors, while the 
logit model has Type II extreme value errors. When the deterministic component is linear in 
its parameters, the coefficients in the probit and logit models are the ratio of the coefficients in 
the deterministic component and the scaling factor for the error distributions. Consequently, the 
estimated coefficients from the probit and logit models are not directly comparable on a ratio 
scale because the scaling factors differ in the two models. However, the sign of the coefficients 
have the same meaning in both models: if a coeffÉcient is positive, then the selection probability 
increases with the independent variable. 

The latent class probit analysis was performed with one to five support points or classes. 
The goodness of fit heuristics for model selection are presented in Table 9. According to these 
information theory based heuristics, four classes appears to summarize most parsimoniously the 
structure in this data. In general, these information heuristics need not provide the same model 
choices as the posterior probabilities; although, BIC was developed as an asymptotic approxi- 

TABLE 8. 
Within Component Correlations for the Two Component Solution of the Computer Preference Study 

Class One Class Two 
Intercept CPU CD-ROM Software Intercept CPU CD-ROM Software 

CPU 0.58 0.19 
CD ROM 0.63 0.27 -0.41 -0 .60  
Software 0.71 0.50 0.59 0.19 -0 .45  0.19 
Price -0 .71 -0 .53  --0.52 -0 .60  -0 .86  -0 .14  0.35 --0.30 

TABLE9. 
Goodnessof~tHeufisfics ~rtheLatentCl~sProbit Modelof~eComputerPreferenceSmdy 

Number of Logarithm of Number of 
Classes Likelihood Parameters BIC CAIC 

1 --3032.93 5 6106.51 6111.51 
2 --1979.32 11 4048.09 4059.08 
3 --1861.87 17 3861.98 3861.98 

t4  --1717.94 23 3622.91 3645.91 
5 --1713.35 29 3662.52 3691.52 

tDenotes solution with minimum BIC and minimum CAIC. 
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TABLE 10. 
Estimated Latent Class Probit Model for the Computer Preference Study 
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Class One Two Three Four 

Probability 0,05 0,75 0.06 0.14 
Intercept 1,175 - 1.116 0.278 -0.451 
CPU 0.673 0.531 0.599 0.596 
CD ROM 0.581 0.543 0.614 0.686 
Software 0.617 0.553 0.666 0.561 
Price - 1.707 - 1.021 - 1.892 - 1.490 

marion to the posterior probabilities. Table 10 presents the parameter estimates for each of the 
four classes, which consists of a large class, a medium class, and two small classes. According 
to this solution, most of the heterogeneity appears to lie with respect to the intercept and price 
sensitivity coefficients. As demonstrated in the simulation data, it evidently takes more classes 
to account for the heterogeneity in the parameters when one does not penrtit within-class vari- 
ability as compared to our proposed finite mixture model where only two classes were necessary. 
The analysis of the latent class probit model is not directly comparable to that of the mixture, 
logit model for at least three reasons: the link functions for the two models are different; the 
model choice criterion are different, and the inference methods are different--Bayesian versus 
maximum likelihood. Despite these difference, the qualitative results reinforce the finding that 
that latent class models require more classes to describe the heterogeneity in the subject-level 
parameters than mixture models. 

6. Discussion 

We have presented a finite mixture, random effects, generalized linear model where the 
individual-level coefficients for members of a class are a random sample from a normal distribu- 
tion. We show that both the traditional latent class and random effects models are special cases. 
If there is only one class, then the proposed model simplifies to the usual random effects model, 
and it becomes the latent class model as the within-class variances approach zero. 

A simulation study demonstrated that in the presence of substantial within-class heterogene- 
ity, the ordinary latent class approach tends to result in an excessive number of classes. The large 
number of estimated classes results in many, very small groups and a large number of model 
parameters. Although random effects models require fewer parameters, they lack the flexibility 
of latent class models: they cannot describe non-normal heterogeneity, such as multi-modal dis- 
tributions. The finite mixture, random effects model combines the flexibility of classical latent 
class models with the parsimony of random effects models. 

We have outlined the numerical procedure for coefficient estimation that uses recent devel- 
opments in Bayesian inference and Markov chain Monte Carlo. This approach also provides a 
method of selecting the number of mixture components via the computation of their posterior 
probabilities. A simulation study indicated that the method successfully identifies the known 
structure of the simulated data and that it is superior to an ad hoc three-stage procedure that 
clusters the individual-level maximum likelihood estimates. The paper presented an application 
concerning an analysis of revealed preferences for personal computers. Two latent classes were 
identified--the larger class is more price sensitive and less likely to purchase a computer with 
given features. 

Further work needs to be accomplished in this area of research: 

• More extensive Monte Carlo analyses should be undertaken in order to fully test the perfor- 
mance of the proposed hierarchical Bayes numerical approach; 
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• More extensive model comparison tests with ordinary latent class methods, maximum likeli- 
hood procedures, and naive multistage procedures, (e.g. clustering individual-level estimators) 
should be fruitful ground for additional research; 

• Alterations in the Markov chain Monte Carlo estimation procedure need to be tested for po- 
tentially more efficient numerical methods for this particular framework; 

• The convergence properties of the algorithm need to be further explored in a more systematic 
fashion; 

• Additional empirical applications with comparisons with traditional methods must be ex- 
plored in future research. 

Appendix A: Joint Distribution 

The joint distribution of the data and unknown parameters in hierarchical Bayes models 
is given by a series of condition distributions. Notation is problematic because one runs out of 
symbols for the different distributions. We will adopt the "bracket" notation in Gelfand and Smith 
(1990): "[YIX]" means the conditional density of Y given X. The arguments provide the context 
that resolves the ambiguity of using "[.]" for different density functions. 

The conditional distributions of the hierarchical model are: 

1. There are n subjects and rni observations from subject i. The distribution for observation j of 
subject i is from the exponential family: 

I Yijh(x~jfli)_ - -  b[h (x~j/3i)] ] 
[Y i j l f l i ,  ~bi] ---~ exp l e,t,h.~ + c ( Y i j ,  ~)i) 

f o r / =  1 . . . . .  n a n d j  = 1 . . . . .  mi 

. 

where xii is a p x 1 vector of covariates; fli is a p x 1 vector of regression coefficients, and 
4~i is the scale parameter. All observations are assumed to be mutually independent. 
Define the random variables zi to be zi = k if subject i belongs to class k for k = 1 . . . . .  K. 
The distribution of zi are the  mixture probabilities: 

n n K 

I-lt ,l*  = I-I 1-Itz, = 
i=1 i=1 k=l 

n k  .~- 

K 
II ; k 
k=! 

n 

I (zi = k)  for k = 1 . . . . .  K. 
i=1 

where I (zi = k )  is one if zi = k and zero otherwise, and n~ is the number of subjects 
assigned to class k. 

3. If class membership is not known, the subject-specific regression coefficients,/~i, are mu- 
tually independent and identically distributed from the mixture of K multivariate normal 
distributions: 

fli I ( ~rk, Ok, Ak)k=l  "- ~ ~ k ( 2 ~ )  - ~  tAkl - ~  exp - (fli - Ok)' A ; '  (t~i - -  Ok) 
k=l 

for/---- 1 . . . .  ,n 
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where Ok is the mean vector of component k; Ak is the covariance matrix of component k, 
and aPk is the mixture probability of component k. Conditional on the class memberships {zi }, 
the regression coefficients are random samples from normal distributions: 

[fli[Ok, Ak, Zi = k ] =  (2zr)-~lAkl-½ exp [--~(fli  -- Ok)tAkl(fli -- Ok)] for i  = 1 n .  

4. The {Ok } are mutually independent with a p dimensional normal distribution with prior mean 
vectors {uo,k} and prior covariance matrices {V0,k}: 

[Ok] (2:¢)-~ I Vo,kl- ½ exp [ -  ~ (0k , -1 ] = - uo,k) Vo, k (Ok - uo,k) for k = 1 . . . . .  K. 

5. The {Ak} are mutually independent p x p random covariance matrices from Inverted Wishart 
distributions with prior shaper parameters {fo,k } and prior scale parameters {Go,k }: 

IGo'klf°'k/2 exp [ ] 
[Ak] = ci~"~'l(fo.k+p+l)/2 - l t r ( h / , - I G o k )  fo rk  = l, r ~ . o o ~  

P 

C -1 = 2fO'kp/27cP(P--1)/41-- I F[(fo,k + 1 - i)/2], 
i=1  

where fO,k > P, and Go,k is a p x p positive definite matrix. 
6. The mixture probabilities ~p have an ordered Dirichlet distribution with prior parameters 

t00 ,1 ,  • • • ,  WO,K: 

IlL, C °''-1 
[~1  = 

fs,, I l L ,  . s k " a s l a s 2 . . ,  dSK- ,  

SK = (~1 . . . . .  ~ P K ) : 0 < ~ t  < ' " < $ K a n d  * P k = l  . 
k = l  

7. The subject-specific scale parameters {¢i } are mutually independent from a normal distribu- 
tion with mean ot and standard deviation r: 

1 

[$i lot, v2] = (2zrr2)-~ exp 2r  2 j for /  = 1 . . . . .  n. 

8. The mean a of the subject-level scale parameters {¢i } has a normal distribution with prior 

. 

mean a0 and prior variance d~: 

1 (a - ao) 2 ] 

The variance r2 of the subject-level scale parameters {¢i } has an inverse gamma distribution 
with prior shape parameter ro/2 and prior scale parameter s0/2: 
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The joint density of the data and unknown parameters is given by: 

IHl-I[Yij[fli,qbi] X I-I[~ilOk, Ak, Zi =k][zi = kll~r] 
t i = l  j = l  J i=1 k=l  

x [0kl[Ak] x [~1 x [4,ilot, r21 x [od[r21. 

Appendix B: Prior Parameters 

The MCMC procedure of this paper requires proper prior distributions for the parameters. 
This section gives these prior parameters for the empirical examples. The prior parameters were 
set to be nearly noninformative. That is, the prior standard deviation was selected so that the range 
of variability in the prior distribution is much larger than the anticipated range of variability in the 
actual parameters. The consequence of this choice is that the prior distribution is fairly flat in the 
region where the likelihood function has most of its mass, and the posterior analysis gives more 
weight to the likelihood than the prior. These choices of the prior parameters are for illustration 
purposes. If a researcher had information based on previous studies, then that information could 
be introduced via the prior parameters. 

The prior parameters are: 

1. The heterogeneity in the scale parameters ~i is described by a normal distribution with mean 
ot and variance r 2. The prior distribution of ct has a normal distribution with prior mean 
a0 = 0 and prior variance d 2 = 10. The prior distribution for "t "2 is an inverse gamma 
distribution with prior shape ro/2 = 1/2 and prior scale so~2 = 1/2. 

2. For each mixture component Ok has a normal distribution with prior mean uo,k = 0 and prior 
covariance matrix V0,k = 1001, where I is the identity matrix. 

3. Ak has an Inverted Wishart distribution with prior shape parameter f0,k = P + 1 where p is 
the number of regression coefficients and prior scale parameter G0,k = pI.  

4. The mixture probabilities are from an ordered Dirichlet distribution with prior parameters 
WO,k = 1. 

A sensitivity analysis for the simulation study and computer survey indicated that the pos- 
terior distributions are insensitive to these prior parameters when there is a moderate number of 
members in each mixture component. If the number in class k is small, then the posterior distri- 
bution for Ak is sensitive to the choice of f0,k and Go,k. The above choice for these parameters 
imply that large values of the diagonal elements of Ak are probable. If a class has a small number 
of members, the posterior means tend to overestimate the true values of Ak. One alternative, in 
this case, is to reconsider the likely range for the diagonal elements of Ak and to use a more 
informative prior that puts less mass on very large values. 

Appendix C: Markov Chain Monte Carlo Algorithm 

This section describes the MCMC procedure assuming that the number of mixture compo- 
nents is known to be K. Those readers who are not familiar with MCMC should see Gelfand and 
Smith (1990) or Smith and Roberts (1993) for an introduction. 

Following Diebolt and Robert (1994), the key to analyzing latent class models is to generate 
a variable zi for subject i that indicates class membership. 

The sequence of draws from the full, conditional distributions follows: 
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1. The full conditional distribution of zi is: 

[zi = klAll other parameters] 

= [/~i Izi = k ,  0h, A k ] [ z ;  = k] 

cx V/klAkl-1 exp [ - -1 ( /~ i -  Ok) 'Ak'(f l i -  Oh)]. 

We randomly generate zi from the integers 1 to K where the probability that zi = k is: 

IA/,I-I/:z 
~i,k = 

I .  

y~qg=l [Ajl- ' /Zexp -O.5(fli -Oj)'A71(fli  --Oj)] ~pj 
(8) 

2. Given that zi = k, we generate ~i- For the important, special case of linear regression with 
normally distributed errors given by (2), the full conditional distribution of/~i is: 

[fli I All other parameters] 

o¢ [Yil/3i, cri][~ilzi = k, Ok, A/~] [l__ 
c~ exp -2--~7 (yi - Xi~i)'(Yi - Xifli) - 

oc exp [ 1(]~ i , -1 ] -- -- bi,k) Di, k (fli - Di,k) 

Oi, k -~- (X~Xi/ (7  ? -[- A ; 1 )  -1 

ag,k = V~,k(X;yg/o~ + A;~Ok). 

(fli -- Ok)t A k  1 (fli -- Ok)] 

Thus, we generate fli from a multidimensional normal distribution with mean vector bi,k and 
covariance matrix Di,k. 

For the nonnormal, generalized linear model in (7), the full conditional distribution is: 

[/3i IAll other parameters] 

o~ [Yilfli, (bi][flilzi = k, Ok, Ak] 

o c e x p [ ~ [  yijh(xlijfli)-b[h(x~j~i)] I 1 --Ok)] 

fli is generated with the aid of a Metropolis step. One possibility would be to use a sym- 
metric random walk (Gelman, Roberts, & Gilks, 1996) for a jump distribution. This class of 
procedures is simple to implement but does not use the structure of the problem. Instead, we 
propose a jump distribution that uses local information about the posterior distribution. 

The log density of/~i, ignoring terms that do not depend on ~i, is 

I 
T(~i) = 

a(Oi) 
[Yijh(x;jfl,) - b[h(x;jfl,)]] - 0 XtA-I ra ( f l i -  k) k ~Pi--Ok) .  

We will use a quadratic approximation of T to generate a candidate value of 13. The approxi- 
mation will be centered around an approximate mode, which is updated on each iteration. 
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Assume that the maximum of T exists and that the Hessian is negative definite in a neigh- 
borhood of/}i. The gradient or vector of partial derivatives of T is 

1 m_~[ ] 
VT(/3i )  = a(q~i) j=l Yijhl  (xtij/3i) - bl [h(x~j/3i)]hl (x~j/3i) xij - A-k l(/3i -- Ok), 

where hi and bl are the first derivatives of h and b. The Hessian or matrix of second deriva- 
tives is: 

1 ~--~[Yijh2(x I "/3i) -- b2[h(x~j/3i)][hl (xtij/3i)] 2 H(/3i) = a(cpi) ~=1 k J 

- bl [h(x~j/3i)]h2(xlj/3i)]xijx~j - Ak 1 , 

where h2 and b2 are the second derivatives of h and b. The quadratic approximation of T 
about the vector/~ is: 

T(/3i) ~ T (~ i )  -I- V T ( ~ i ) ' ( ~ i  - ~i) q- ~(/3i - ~i) 'H(~i)( /3i  - ~i) 

1{/3 i - -[~i -  H(fli)-lVT(fli)l]' [-H(fli)] {/3i-[~i -- H(fli)-lVT(fli)]} " ~ C - - ' ~  

where c is a constant that does not depend on t3. 
If/~i is the mode of T, then VT(~) is 0. In general, the mode is not known, and its estimate 

each iteration. Suppose that/~{u) is the estimate of the mode on iteration u. Then is updated on 
it is updated on iteration u + 1 with Newton-Raphson step: 

1 
The quadratic approximation of T on iteration u + 1 becomes: 

T(/3) .~ c + ~X [/3i - ~u+l)] 'H [~u)] [~i - ~u+')] 

Define V (u) = - H  [ / ~ u ) ] - l . o  n iteration u + 1, the Metropolis step (Chib & Green- 

berg, 1995; Hastings, 1970; Tanner, 1993) then generates a candidate/3c from a normal dis- 

tribution with mean/~u+l) and covariance matrix V (u). Let/3(i u) be the value of/3i from the 

previous iteration of the chain. Then,/3~u+1) is set to/3 c with log probability (Hastings): 

{0 ½ I, E  u>I, _ 

[,r- }, 
else/3(#+D is set to/3~"). After an initial, transitory period, the values of/~(u) and V (u) stabi- 

lize. Then, the MCMC will run faster if/~(u) and V (u) are not updated on each iteration. 
It can be shown that the above procedure results in a reversible Markov chain with a tran- 

sition matrix that depends on the iteration through the approximate mode and Hessian. How- 
ever, the posterior distribution satisfies the detailed balanced equations for each iteration, so 
that it is the limiting distribution of the Markov chain. Although this algorithm is general, spe- 
cific cases, such as the multinomial-probit (Albert & Chib, 1993), have specialized algorithms 
that are more efficient. 
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. Define I (zi = k) to be the indicator function, which is one if subject i is assigned to class k 
and zero otherwise. Suppose that nk subjects are assigned to class k. Then the full conditional 
distribution of  Ok is: 

[Ok [All other parameters] 
n 

o~ N[j3i IZi = k, Ok, Ak] [0k]  

i=1 

o{exp[ ~ " ~ I ( z i  k)(fli Ok)'Akl(fli Ok, ~(Ok , -1 ] - = . . . .  uo,k~ Vo, k (ok - uo,kl  
i=1 

[1 l 0  ] ~x exp - ~ ( O k  - u~,k) V£,k ( k --  Un,k) 

Vn,k = (nkAk "1 q- V0,7) -1 

- 1  Un,k = Vn,k(nkAkl flk q- VO, k UO,k) 
n 

nk = ~ l(zi -~ k) 
i=1 

n 

~k = nk I ~ ~i I (Zi = k). 
i=1 

. 

We then generate Ok from a normal distribution with mean vector Un, k and covariance matrix 
Vn.k. 
With the definitions in the previous item, the full conditional distribution o f  Ak is: 

[Ak I All other parameters] 
n 

(X VI[fl i IZi ~-- k, Ok, A k ] [ A k ]  
i=1 

f . , k  = fO,k + nk 

n 
G . , k  = Go,k  + ~ I (Z~ = k ) ( ~  -- Ok)(~i  --  Ok)'. 

i=1 

We generate Ak from an Inverted Wishart distribution with shape parameter fn,k and scale 
matrix G n,k . 

5. The full conditional distribution of  the mixture probabilities ~p is: 

n K 

[~tAI1 other parameters] oc I ~  I-I  [zi = kI~P][~P] 
i=1 k=l  
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K 

(X [ 1  1Ilk n'k]O/ll < ' ' "  < ~'IK) 
k----1 

Wn,k ~ WO,k + nk 

n 
II k = ~ I (Zi = k), 

i=1 

where nk is the number of subjects assigned to class k. Thus, the full conditional distribution 
of the mixture probabilities is an ordered Dirichlet distribution. 

One method of generating an standard Dirichlet distribution is to first generate K random 
deviate from appropriate gamma distributions, and set the probabilities to the ratio of each 
deviate to their sum of the deviates. A similar method can be used for the ordered Dirichlet 
distribution. The algorithm first generates ordered gamma random deviates from the density: 

K 
r -[  Wn,k- I [X] c( l | x k  e x p ( - x k ) I ( X 1  < . . .  < X x ) .  
k=l 

The ordered Dirichlet is obtained from Cy = x j~  ~-]~=1 Xk. 
Random deviates are generated from the ordered gamma distribution with "slice sam- 

piing" (Poison, 1996, p. 307, Example 5, and Damien, Wakefield, & Walker, 1999), which 
is a Markov chain method to decompose a complex density into the product of uniform and 
exponential densities. Slice sampling introduces K uniform random variables, Vk, such that 
their joint density with the ordered gamma random variables is: 

K 
~ L  ( Wnk--1 [X, V] o¢ I (vl___<_ Xl n'l-l) exp(-xl)  vk < x k ' __, Vk-1 < Vk) exp(--xk). 
k=2 

The marginal density of X is the ordered gamma distribution. Slice sampling first generates 
V given X and then X given V. Given X, the conditional distribution of Vk is uniform on 

yWn,k -1 ] "vWn,k -1 r r [0, "~k j, so Vk = "~k tJk where Uk is uniform on [0, 1]. Given V1, the conditional 
density of X1 is: 

1 
Wn,l-I 

[XIIV1] (x exp(--Xl) forxl > v 1 

Given Vk and Xk- l, the conditional density of Xk is 

[XklVk,  Xk-1] (x exp(--Xk) for xk > max  k v  k , x k - 1 /  . 

These conditional distributions are truncated, exponential distributions and are easily gener- 
ated by inverting their cumulative distributions function. 

In practice, this method sometimes causes the Markov chain to stall because the current 
values of nk are inconsistent with the ordering of the ¢ .  If this state persists for consecutive 
iterations during the transitory stage of the Markov chain, then the algorithm for this paper 
reorders the classes according to nk and continues. 

6. The scale parameter ~i has full conditional distribution: 

[q~i IAll other parameters] 

0¢ [yi [fli, ~)i][~)i lot, r] 
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The scale parameter ~i is generated with the aid of a Metropolis step. Up to a constant, the 
natural logarithm of the full conditional is: 

mi L[ Yijh(x~J~i)- - b[h(xljfli)]a(dpi) ] ,.~1 
S(~ i )  = E dr" c(Yi j ,  ~i)  -- "~"~2 (q~i -- Of) 2" 

j = l  

S is approximated by a quadratic function in the same fashion that T was in item 2. The first 
and second derivatives are: 

d S(#)i) - S E  al(#~Q' mi _~ - -  :" E Cl (Yij ,  ~bi) - -  (d~i or) 
d(bi a(~b/) 2 q- - -  j = l  

d 2 [ a2(*i) 2al (~bi)21 mi 1 
Gifi(~i)  = - S e  La(~i)2 ~ J + E c2(YiJ ' #~i) ;2 

j----1 

m i  

S E  = E ( Y i J  h (x~j ~i) -- b[h (x~j fli )1) 
j=l  

al(~i)  = .a(~i) and a2(~i) = -~ia(d~i) 

0 0 2 
Cl (YU , ~i ) = -~i c(Yq , dpi ) and c2 (yu , qki ) = ~ i  c(yi j , ~i ). 

^ 

Next, expand S about q~i, the maximum of S. Define 

Then 

2 - I  ] o = , ,~ is (6 i )  

] 1 
S(~)i) ~ S(~i )  de S(~i )  (~)i - ~i)  - ~ ( ~ ) i  - 4i)  2 

. ~  c -  ~ ~i - ~i + d~i J /  

Because q~i is not known, let q~}u) be its estimate on iteration u. This estimate can be updated 
on iteration u -t- 1 by: 

d S (4 !uq  \ *  / 

ddpi 

o.u. = _ F , =  -' 

in which case 

1 ~[~+,~)~ 
s ( ~ i )  ~ c - ~ ( ~ i  - . 

On iteration u + 1, we generate a candidate #~c from a normal distribution with m e a n  ~u-I-1) 

and variance v (u). If ~b~ u) is the present value on iteration u, then set #~u+D = q~c with log 
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. 

probability: 

mini  O' s(~pr) - S(cp~'~)) - 2-~1 [4b~u) - ~ '+ l ) ]  7 + r+r - 

else retain qS} ") for 4~} u+l). 
The full conditional distribution of ~ is: 

n 
[oelAll other parameters] cx I 'I[¢i lot, r][a] 

i=1 

[ 1 i ~  1 1 ] cx exp - ~ T r  2 = (4~i - o0 2 - ~-~o2(~ - ao) 2 

1 
~x exp - ~ 5 7  (~ 

d 2 = (n~ -2 q- do2) -1 

an =a2n r-E y~.q~i +do2ao . 
i=1 

We thus generate oe from a normal distribution with mean an and variance dn 2. 
8. The full conditional distribution of r 2 is: 

[r 2 IAll other parameters] oc 

(x 

rn = 

S n 

n 
I-I[~bi lot, 1:2] ['t "21 
i=1 

(X('g2) -n/2-rO/2-1 exp [ y~4n=l (~bi - O ~ ) 2 "  "~2  

(r2)-r"/2-1 exp [ -  2@2 ] 

ro+n 
n 

SO a t- Z ( ~ i  -- 00 2. 
i = l  

so l 
2z 2 

We generate r 2 from an inverse gamma distribution with shape parameter rn/2 and scale 
parameter sn/2. 

The algorithm, after an initial transitory period, produces dependent draws from the poste- 
rior distribution of the parameters. These draws can then be used to estimate posterior expecta- 
tions. For instance, let fa be a parameter of interest, and let f2 (u) be the draw on the u-th iteration 
of MCMC. Then the posterior mean of a function g of fa can be estimated by: 

E[g(f2)l Data ] = 
1 U 

U -  B Z g(~2(u))' 
u=B+l 

where the last U--B of the U iterations are used. 
Open questions are the selection of U and B and appropriate convergence criterion, which 

is beyond the scope of this paper. See, for example, Gelman and Rubin (1992) and Geyer (1992) 
along with a discussion, Poison (1996), and Roberts and Poison (1994). 
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Appendix D: Marginal Densities 

This appendix provides details about the choice of  g r  and estimates of  its parameters for 
section 4. K is the number of  components in the mixture distribution, gK consists of  the product 
of  the following densities: 

1. gr  ([3i) is a multivariate normal density, and its mean and covariance matrices are estimated 
from the MCMC draws of fli; 

2. gr  (zi) is a multinomial distribution with probabilities ~p; 
3. gK(Ok) is the multivariate normal density, and its mean and covariance matrix are estimated 

from the MCMC draws of Ok; 
4. g~¢ (~bi) is the normal density, and its mean and variance are estimated form the MCMC draws 

of q~i; 
5. g r  (or, ln(w2)) is a bivariate normal density, and its mean and covariance matrix are estimated 

from the MCMC draws of  a and ln(r2); 
6. gr(Ak) is an Inverted Wishart density with hk degrees of  freedom and scale matrix Hk so 

that E(Ak l) = hkH~ 1 . If one knew that nk subjects belonged to class k, then the posterior 
degrees of  freedom for Ak would be f0,k + nk where f0,k is the prior degrees of  freedom. 
Because subject classifications are not known, a reasonable choice of hk is fO,k + ~kn where 
~k is the MCMC estimate of the posterior mean of ~Pk. A method of moments estimator of 

- 1 - 1  
Hk is hk (A  k ) where/kk 1 is the MCMC estimator of  the posterior mean of A~-I; 

7. g r ( ~ )  is a Dirichlet density with parameters Vk. Define v = )--~f-1 vk. Then E(~/j) = vj/v; 
Var(~j) = (v + 1) - I [ E ( ~ j )  - E(~j )2] ,  and ~f f= l  Var0p~) = (v + 1) -1[1 - )--~-~¢= 1 E ( ~  k)2]" 
A method of  moments estimator of  vk can be based on: 

1 - ~-~K=I g(l~rk)2 
v =  - 1  

)'-~= 1 Var(~tk) 

vj = vEOpj) 
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