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INTRODUCTION

Spectral analysis of stochastic processes and noises
plays an important role in multiple scientific, engineer-
ing, and technological applications including electro-
chemistry, electronics, hydrodynamics, econometrics,
biomedicine, and finances (see for example [1–13] and
references therein).

Traditionally, the spectral density of a stationary
stochastic process is determined in the form of a Fou-
rier transform of the correlation function. In other
words, only the information value of the imaginary axis
in the Laplace plane is used, albeit the information
value of this plane substantially exceeds that of a line.
In particular, the possibility emerges of using a power-
ful tool: complex-variable functions. For example, the
possibility emerges for directly measuring a derivative
of the spectral density of a stationary stochastic process
as an analytical function of the Laplace variable [14].

The method of discrete experiment [15] becomes
increasingly important in electrochemistry. A discrete
wavelet transform is widely applied in analysis, stor-
age, and reconstruction of determinate signals [16, 17].
At the same time, it is more convenient to analyze sta-
tionary stochastic processes using one-side continuous
wavelet transforms [18], which include the Haar trans-
form [19], the Laplace transform [20–22], and wavelet
transforms that utilize the Laguerre polynomials [23, 24].
It is essential that applying a wavelet transform to an
analysis of statistical fluctuations and noises makes an
inverse wavelet transform redundant, i.e. there is no
need to reconstruct the original after the compression
procedure. For this reason, many constraints drop out,
including the requirement that the first several moments
of a wavelet transform should vanish. Curiously
enough, the Morlet wavelets [24], which have already
turned classic, have a nontrivial initial moment.

The main aim of this work is to design an algorithm
for estimating an operational spectral density, defined

here as a quadrupled Laplace transform of a correlation
function for a stationary discrete-time stochastic pro-
cess.

To reach the goal to be sought we have introduced
and utilized the Meixner wavelets. Earlier, wavelets
based on Meixner polynomials were neither studied nor
used.

THE NOTATION

The Meixner polynomials [25–29] are discrete
orthogonal polynomials [30] first studied by Meixner in
his classic work published in 1934 [31]. The orthogo-
nality condition defines Meixner polynomials to within
an accuracy of a constant factor. That is why there exist
different forms of their representation in the literature.
As a rule it is assumed [26, 29] that a Meixner polyno-
mial of the 

 

n

 

th order at the origin takes on the value
equal to 

 

n

 

!

 

. We base this work on [29], where Meixner
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 =
1, Meixner polynomials represent a discrete version of
well-known continuous Laguerre polynomials [32].
Below, Meixner polynomials at 

 

γ

 

 = 1 are denoted as

 

m

 

n

 

(

 

x

 

, 

 

µ

 

)

 

; by definition,

 

(1)

 

The first three Meixner polynomials are:

 

m

 

0

 

(

 

x

 

, 

 

µ

 

) = 1

 

,

 

m

 

1

 

(

 

x

 

, 

 

µ

 

) = {1 – (1 – 

 

µ

 

)(

 

x

 

 + 1)}/

 

µ

 

1/2

 

,

and

 

m

 

2

 

(

 

x

 

, 

 

µ

 

) = {1 – 2(1 – 

 

µ

 

)(

 

x

 

 + 1)
+ (1 – 

 

µ

 

)

 

2

 

(

 

x

 

 + 2)(

 

x

 

 + 1)/2}/

 

µ

 

.

mn
γ µ,( )

mn x µ,( ) µn/2/n!( )mn
γ 1= µ,( ) x( ).=

 

Meixner Wavelet Transform: A Tool for Studying Stationary 
Discrete-Time Stochastic Processes

 

I. B. Grafova

 

1

 

 and B. M. Grafov

 

2

 

1

 

Department of Economics, University of Michigan, 611 Tappan st., Ann Arbor, Michigan 48104, USA

 

2

 

Frumkin Institute of Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow, 119071 Russia

 

Received September 28, 2001

 

Abstract

 

—A general approach to analyzing discrete stochastic processes in the context of spectral analysis in
the Laplace domain is considered. It is shown that a multichannel algorithm, which may be used for determining
a discrete Laplace transform of the correlation function corresponding to a stationary discrete-time stochastic
process, may be designed on the basis of Meixner wavelets.

 

Dedicated to the seventieth anniversary
of R.R. Dogonadze’s birth



 

RUSSIAN JOURNAL OF ELECTROCHEMISTRY

 

      

 

Vol. 39

 

      

 

No. 2

 

      

 

2003

 

MEIXNER WAVELET TRANSFORM 131

 

In the general case,
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A system of Meixner polynomials 
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 is orthogo-
nal, with the weight 

 

µ

 

x

 

. The norm of Meixner polyno-
mials 
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 is independent of their order 

 

n

 

:

 

(2)

 

where 

 

δ

 

nr

 

 

 

is the Kronecker delta. In (2) and further on
we use designations of definite sums [33], which are
very similar to definite integrals in their properties. For
example, by definition, 

 

 = ,

 

where 
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 and 
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 are positive integers. Note that a Meixner
polynomial of order 
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 is orthogonal with the same
weight 
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x

 

 relative to any polynomial 
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 is less than or equal to 
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Let 
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 be a stochastic process with a finite intersec-
tion property, which occurs at fixed time instants 
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 = 
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where 
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0

 

 is the digitization interval. For the correlation
function 

 

k
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 of a stochastic process 
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 we select the
standard relationship

 

(4)

 

where angle brackets correspond to the averaging over
the ensemble of realizations. A discrete Laplace trans-
form K(p) for the correlation function k(t) is

(5)

where p is a Laplace variable (p > 0). The factor t0 (dig-
itization interval) is added into the right-hand side of
(5) to provide for a correct transition to continuous time
at t0  0. It will be recalled that, by definition, the
spectral density of a stochastic process is equal to 4K(p)
in the Laplace domain.

MEIXNER WAVELETS

We define the Meixner wavelets Yn(p) for a stochas-
tic process y(t) by means of the equation

(6)

where µ = exp(–2pt0) and t = xt0. The convergence of infi-
nite sum (6) is ensured by exponential factor exp(–pt). It
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is owing to precisely this exponential factor that we can
view a realization of a finite stochastic process as an
infinite realization, hence the infinite upper integration
bound in (6).The quantity p simultaneously acts as a
scaling variable in the Meixner wavelet transform.

The dispersion of a Meixner wavelet is related to the
operational spectral density 4K(p) through a very sim-
ple relation (see Appendix):

(7)

DISCUSSION

First of all note that the right-hand side of (7) is
independent of the Meixner polynomial order n. Hence,
the dispersion of any Meixner wavelet has the same
value. It follows that a multichannel algorithm may be
constructed, by finding a discrete Laplace transform for
the correlation function of a stationary discrete stochas-
tic process (operational stochastic density) in the form

(8)

An analysis of the derivation of (7) and (8) shows that
these relations remain valid for complex values of the
Laplace variable, provided of course that the real part of
the variable is positive.

CONCLUSIONS

The main result of this work, equation (8), suggests
as follows.

(1) Meixner wavelets allow one to make spectral
analysis of stationary discrete stochastic processes in
the Laplace domain.

(2) A discrete Laplace transform for the correlation
function of a stationary discrete-time stochastic process
may be found by using a Meixner wavelet of any order.

(3) Based on the Meixner wavelet transform one can
perform a multichannel analysis of a stationary discrete
stochastic process when a multichannel analyzer has a
single input, to which the process is supplied, and sev-
eral fundamentally different channels for information
processing. Each information channel is measuring the
same quantity, namely, a discrete Laplace transform for
the correlation function of the input stochastic process
(operational stochastic density).

(4) The algorithm for a multichannel derivation of the
spectral density of a stochastic process with the aid of a
family of Meixner wavelets is unique. Such an algorithm
does not exists within a Fourier analysis and is unknown
in the framework of discrete wavelets [16, 34].

(5) Among the information wavelet technologies
intended for analyzing stationary discrete-time stochas-
tic processes, the Meixner wavelet transform is unique
in that its dispersion has a clear physical meaning—
within an a universal factor it equals the operational
spectral density of the process under analysis.

2 Yn p( )Yn p( )〈 〉 4K p( )t0/ 1 2 pt0–( )exp–{ } .=

K p( ) Yn p( )Yn p( )〈 〉 1 2 pt0–( )exp–{ } / 2t0( ).=
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APPENDIX

According to the definition of a Meixner wavelet
(6), its dispersion is the product of two infinite series

where µ = exp(–2pt0), t1 = x1t0, and t2 = x2t0. This prod-
uct may be transformed into a sum of two infinite
series:

where

Let us first transform the expression for Σ(1). As y(t)
is a stochastic process with a finite intersection prop-
erty, averaging the quantity y(t1)y(t2) in Σ(1) leads to
correlation function k(t2 – t1) for the process under con-
sideration:

〈y(t1)y(t2)〉  = k(t2 – t1).

Substituting x4 = x2 – x1 for interior variable x2, then

(A1)

According to the Newton series formula [33], a dis-
crete Meixner polynomial mn(x1 + x4, µ) may be written as

,
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where ∆ and ∆2 are operators of the first and second dis-
crete derivatives. The polynomial Pn – 1(x1) is a polyno-
mial of order (n – 1) relative to the variable x1. Using
this circumstance and the orthogonality of Meixner
polynomials in the form of (3) and substituting (A2)
into (A1), then

(A3)

Using now (2) and (5), instead of (A3) we obtain

(A4)

Similarly we can do unto the sum Σ(2). Multiplying
the two infinite series that constitute Σ(2) and altering
the summation order, then

Replacing the summation variable x1 by x3 = x1 – x2 and
taking into account that 〈y(t1)y(t2)〉  = k(t3), where t3 =
x3t0, then

or

(A5)

Note that the first term in (A5) coincides with (A1).
The second term in (A5), as follows from (2), is equal

to –k(0) /{1 – exp(–2pt0)}. Therefore, (A5) converts
into

(A6)

Finally, the dispersion of a Meixner transform for a
stationary stochastic process takes the form

(A7)
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which fully corresponds to equation (7).
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