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Finite Approximations to a Zero-Sum Game With 
Incomplete Information 

By J. W. Mamer  1 and K. E. Schilling 2 

Abstract: In this paper, we investigate a scheme for approximating a two-person zero-sum game 
G of incomplete information by means of a natural system Gmn of its finite subgames. The main 
question is: For large m and n, is an optimal strategy for Gmn necessarily an e-optimal strategy 
for G? 

Introduction 

To formalize our  idea o f  approximat ing a two-person zero-sum game o f  incomplete 
in format ion  by its subgames,  we introduce what  we shall call a game structure. A 
game structure is a system of  the fo rm (fl,U, Fm,Gn)m,n= 1. Here fl = ( f l , ~ , P )  is 

a probabil i ty space, U = (U(/ :  i = 1 ..... M; j = 1 ..... N )  is a matrix o f  r andom 
variables on fl (the payof f  matrix), and Fm and Gn are sub-a-fields o f  the a-field 
such that  F m + l  -~ Fm and Gn+l  --- Gn" We put P = ffoo = the a-field generated 

by U tim, ~ = G~o = the a-field generated by U G n "  
m n 

For m,n -- 1,2 ..... 0% let Gmn be the two-person,  zero-sum game in which a 
strategy for player I is an/~m-measurable or: l) - - >  S M, and a strategy for player 
II  is a (Tn-measurable/3: fl - - >  S N. (Here SMis the simplex { xERM:  E. x i = 1, 

l 

x i >_ 0 }.) I f  player I plays ~ and player II  plays B, then the payoff  to I is P(ct,B) = 
E(~ Uij ~iBj ). Thus in the game Gmn, Fm and Gn embody  the informat ion  available 

to I and II,  respectively. I f f f  m and Gn are finite, then Gmn is a finite approximat ion  
to the game G = G ~  ao. 

By s tandard minimax theorems, each game Gmn has saddle point.  Let Fmn 

denote the value o f  the game Gmn to player I, and let V = F~ ~ .  
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If  ffrn and Gn are finite, then the game Gmn is, at least in principle, solvable by 
finite methods. The question we shall study is: To what extent is an optimal strategy 
for Gmn a useful substitute for an optimal strategy for G? An ideal result along 
these lines would be 

(1) Fix e > 0. Suppose that, for m,n = 1,2 ..... o~ mn is an optimal strategy for 
I in Gmn. Then, for all sufficiently large m and n, a mn is an e-optimal strategy for 
I i n G .  

As we shall see, (1) is, alas, in general false. The best we can do is a weaker version 
of (1) (Theorem 1), and a special case of (1) (Theorem 2). We shall state these 
theorems presently. For a strategy a for player I in the game G, let Vain(a) = inf 

F3 
P(ot,/3), where ~ ranges over Gn-measurable strategies for II. (Thus if a is 
/~m-measurable, then Valn(a ) is the value to I of the strategy a in the game Gmn.) 
We shall write ValG(o 0 for Val~o(a). 

Theorem k For m,n = 1,2 ..... suppose that a mn is an optimal strategy for player 
I in Gmn, and that/~m and Gn are finite a-fields. Then lim lira Val G(o~ mn) 

m-->oo n- ->  co 
= V. Moreover, this convergence is uniform in the choices a mn of optimal 
strategies, i.e., lim lim inf ValG(O 0 = V, where A(m,n)  is the set of 

m-->co n-->,o aE A(m,n) 
strategies optimal for player I in Gmn. 

Theorem 2 says that, under an additional hypothesis, (1) does hold. This 
hypothesis, which we shall call (M), is a version of the "continuity of information" 
assumption first used in [Milgrom-Weber]. (m) says roughly that the joint probabili- 
ty on/~ and 0 is absolutely continuous with respect to the product probability on 
ff x G. A precise statement of (M) will be found in Sec. 2. 

Theorem 2: Assume (M) holds. If, for m,n = 1,2 ..... ot mn is an optimal strategy for 
I in Gmn, then lim ValG(o~mn ) = V, uniformly in the choices o~ rnn of optimal 

/7/---">o0 

n---->oo 
strategies. 

Results 

We first present an example which shows that assertion (1) of the introduction does 
not hold in general. 

Example." A game structure in which (1) fails. 
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Let fl be the interval [0,1] with Lebesgue measure, M = N = 2 ,  and the payoff 

I ! if i = j for i,j = 1,2 (indepenent of  60). For m = 1,2 .... let Fm = Gm U( /=  l i f i  : g j  
= the a-field on [0,1) generated by the partition {[(k-I)~2 m, k /2  m) : k = 1,2,..,2m}. 
Thus P = O = the Borel a-field on ft. It is easy to see that, for all m and n, Vmn 

= 0, and in Gmn the players have the optimal strategies ct 1 = at 2 =/31 =/32 = 1/2, 
for all ~0 E ft. 

For finite m > 1, consider the game Gm,m_ 1. The strategy at re,m-1 given by 

c~m,n_l = I1  if~0 E [(k-l)~2 m, k/2 m) 
0 otherwise , k odd 

ct• 'm-I = 1 -o t~  'm-1 

is easily seen to be optimal for player I in the game Gm,m_l, i.e., Valm.l(~_ re,m-1 ) = O. 
On the other hand, ValG(_~_m,m-1 ) = -1; at m,m-1 is a very poor strategy for player I 
in G. Thus in any system (at mn : m , n =  1,2 ..... ) of  optimal strategies for player I in 
which at m,m-1 = at m,m-1 for all m > 1, lim ValG(c~mn ) < V. 

m - - > ~  

We shall next prove Theorems 1 and 2. We first require a series of  lemmas. Our 
first lemma is a special case of Theorem 2 of  [Blackwell-Dubins]. 

Lemma 2.1: Let (X  k) be a uniformly bounded sequence of  random variables, and 
suppose that X k - - > X o o  a.s. as k - - > o o .  Then E(X  k ] Ok) - - >  E(Xoo ] G) a.s. 
as k - - > ~ .  

Our second lemma computes Valn(c~ ). 

Lemma 2.2: Fix a strategy a for I in G, and fix n E {1,2 ..... oo }. Define the random 
variable ~ by : ~ = t h e j  E {1,2 ..... N} which minimizes E(Z. Uij ai [ On)" In case of  

a tie, for definiteness, take the least suchj.  Then, for all strategies/3 for II in Goon, 

(i) E(~. Ui~ oti) < I~(r so 
l 

(ii) Valn(a ) = E(m.in E(~. Uij ~i J On) )" 
J l 

Proof." (i) immediately implies (ii), so we prove (i). Let/3 be a strategy for II in Go~n, 
that is, a Gn-measurable/3 : f i - - >  S N. Then, since ~. 13j = 1, we have 

J 

E(~ Uie~i l On) <-- ~,. /3jE(~ i Uijeti J On) = E(~.. U(i~i/3j l On) a.s. 
t j lj 

since 13 is Gn-measurable. Taking expected values on both sides yields (i). 
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L e m m a  2.3: Let (a k)  be a sequence of  strategies for I in G, and suppose  that  
o ~ k - - >  o~ a.s. as k - - > ~ .  Then  

(i) for  fixed n = 1,2 ..... ~ ,  Valn(o~k) - - >  Valn(o0 as k - - > ~ ,  and 
(ii) Valk(a k) - - >  Valo(o0 as k - - > ~ .  

Proof" First note that  applying (ii) in a system where (Tn = (Tn+l . . . . .  (7~ yields 
(i), so (i) is a special case o f  (ii). To prove (ii), let X k = Z U O. s k  i in l emma  2.1; 

then we have E(~. U 6 o~ k I (Tk) - - - >  E(Z  U• a i I (7) a.s. as k - - > o o ,  so by 
l l 

domina ted  convergence E(m.in E(E. U U o~ k ] (Tk)) - - >  E(m!n  E(Z. U U ai  [ (7)). By 
J l J l 

l e m m a  2.2(ii), we are done. 

L e m m a  2.4: (i) F o r m , n  = 1,2 .... ,0% lim Vmn = V~n and lira Vmn = Vmo o. 
m-->oo  n - - > ~  �9 

(ii) l im Vmn = V. 
m - - - - > ~  

Proof" Fix n, and let o~ be an opt imal  strategy for I in Goon. Now for m = 1,2 ..... 
pu t  ot m = E(ot [/t? m). Thus c~ is a legal, t hough  likely not  opt imal ,  strategy for  I in 

Gmn. We have 

galn(~m ) ~ Vmn -< V~n. 

By l e m m a  2.1, a m - - >  oz a.s. By l e m m a  2.3(i), l im Valn(a m) = Valn(a) = 
m - - >  oo 

V~n. By the inequali ty directly above, we infer lim Vmn -- V~n. By symmetry ,  
m - - - - > ~  

we also have lira Vmn = Vm co. for  all m. This proves (i). Finally, it is easy to see 
r / - - - ->  oo r 

tha t  Vmo o <- Vmn <- Voo n . Claim (ii) now follows by letting m, n - - > o o .  

We are now ready to prove Theorem 1. 

Proo f  o f  Theorem 1: Suppose  that  a mn is an op t imal  strategy for  player I in Gmn, 
for  m,n = 1,2 ..... We claim that ,  for  m = 1,2 ..... l im ValG(c~mn ) = Vm, o. To 

n - - - - > o o  

prove this, fix m. We shall show that  every subsequence o f  the sequence ValG(C~m) 
has in turn  a subsequence which converges to V m ~o. Indeed,  since each e~ mn is 
Fm -measurable,  tim being a finite a-field, by the Bolzano-Weierstrass theorem every 
subsequence o f  a m has a (pointwise) convergent subsequence;  thus we may  assume 
that  a mn - - >  a m as n - - > o o .  By l e m m a  2.3(ii), then, Valn(a mn) - - >  ValG(a m) 
as n ---->~o. By hypothesis,  Valn(ot ran) = Vmn, so in fact Vmn - - >  ValG(a m) as 
n - - > o o .  Thus by l e m m a  2.4(i), ValG(C~m) = Vmoo. On the other  hand,  since a mn 
- - >  a m as n - - > o o ,  by 2.3(i) we also have ValG(c~mn ) - - - >  ValG(Cem) = Vmoo. 
This proves our  claim. 
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Now by another use of  lemma 2.4(i), lim lim ValG(otmn ) = V. To 
m - ->  Qo n-->oo 

prove the "moreover"  clause in Theorem 1, let (emn) be a sequence of numbers 
which converges to 0 as m,n - - > o o .  For all re,n, note that there exists cx mn E 
A(m,n) such that ValG(Od nn) - emn < inf ValG(O 0 _< ValG(o~mn ). The 

c~ E A (m,n) 
"morevoer"  clause follows at once. 

We now consider Theorem 2. We must first discuss hypothesis (M). 
/e x d is the a-field on fl • ~ generated by sets of  the form S x T, where S 

e/~and Te G. Let Q and R be the probability measures on (f~ x ~,/~ x G) defined by 

Q ( A )  = P (  {~o : (~o,o~) e A ]) and 

R(A) = f f  [(w,~) E A} l P(d~ f o r A  e F  x G. 

We now state assumption (M). 

(M) Q is absolutely continuous with respect to R, that is, for all A e/e  x G, if 
R(A)=0,  then Q(A)=0. 

Assumption (M) is a version of  a hypothesis introduced in [Milgrom-Weber]. 
It is easy to see that (M) is satisfied either if P and d are indepedent (in which case 
Q=R), or if either P or d is atomic. 

Lemma 2.5: Suppose (M) is satisfied. Then if (X k) is a uniformly bounded sequence 
of  F-measurable random variables which converges weakly to Xoo, and if Z is any 
bounded random variable, then 

i) E(X k Z ] G) - - >  E(Xo~ Z [ G) a.s. and 

ii) E(X k Z I Gk) -->VE(xoo Z [ G) a.s as k - - > ~ .  

Proof" First note that, since E(E(X k Z [ G) [ d k) = E(X k Z [ Gk), by lemma 2.1,(i) 
implies (ii). Next, note that we may assume without loss of  generality that Z is 
measurable in P v d (the o-field generated by ff U G). This is because E( X k Z ] G) 
= E(X k . E ( Z I F v  G)]  G), so we may replace Z b y E ( Z [ P v  G)if necessary. We 
shall therefore prove (i), assuming that Z is F v G-measurable. 

Since Z is P v G-measurable, there exist a bounded/~-measurable random 
variable X', a bounded G-measurable random variable I 7, and a bounded, Borel 
measurable function f : R x R - - >  R such that Z = f(27, I7). 

By (M) and the Radon-Nikodym theorem, there exists a bounded function 

g: f2 • fl - - >  R such that, for all A e ff x G, P({o~ : (~0,o~)eA}) = / / A  
g(~o,~)P(d~o)P(d~). It follows by standard methods that, for any vector X of/~- 
measurable random variables, any vector Y of  G-measurable random variables, and 
any Borel-measurable h : lip - - >  R, we have 
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(*) E(h(X,u I G) (7) = f ~  h(X(r u g(c0,y) P(dw) a.s. [7]. 

Now by (*) we have 

E(X k Z I (~) 07) = f~  Xk(o~) f(~:(w), Y(n)) g(r P(dw) a.s. [~/]. 

Since, by assumption, X k - - >  Xoo weakly, we have E(X k Z I G) (7) - - >  E(X~Z 
] G) 07) a.s., as desired. 

In exact analogy to lemma 2.3, we have 

Lemma 2.6." Assume that (M) holds. I f  (or k) is a sequence of  strategies for I in G 
which converges weakly to a strategy a, then 

(i) for fixed n = 1,2 ..... oo, Valn(o~k ) - - >  Valn(o0, and 

(ii) Valk(~ k) - - >  ValG(a ) as k - - >  oo. 

Proof of Theorem 2: Suppose that amn is an optimal strategy for player I in Gmn, 
for all finite m and n. We shall prove that every sequence (mk,nk) of  pairs of  integers 
such that m k - - >  oo and n k - - >  oo has a subsequence (m'k,n'k) such that 

ValG(Olm'k,n'k ) ----> V as k - - >  oo. To conserve notation, let us write ~k for 

a m ~c,n~ and V k for V m ~,n~" By weak compactness, we may choose the sequence 

(or k) to converge weakly to a strategy a as k - - >  oo. By lemma 2.6(ii), Vai n ~c(o~k) 

- - >  ValG(ot) as k - - >  oo. By assumption, Valn,k(ak) -- V k, and by lemma 2.4(ii), 
V k - - >  V; thus Valo(a) = V. 

On the other hand, since (ak) converges weakly to or, by lemma 2.6(i), ValG(o~k ) 
- - - >  ValG(O 0 = Vas k - - >  oo. Uniformity follows just as in the proof  of  Theroem 
1. This completes the proof  of  Theorem 2. 
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