Finite Approximations to a Zero-Sum Game With Incomplete Information

By J. W. Mamer ${ }^{1}$ and K. E. Schilling ${ }^{2}$

Abstract

In this paper, we investigate a scheme for approximating a two-person zero-sum game G of incomplete information by means of a natural system $G_{m n}$ of its finite subgames. The main question is: For large m and n, is an optimal strategy for $G_{m n}$ necessarily an ϵ-optimal strategy for G ?

Introduction

To formalize our idea of approximating a two-person zero-sum game of incomplete information by its subgames, we introduce what we shall call a game structure. A game structure is a system of the form $\left(\Omega, U, \tilde{F}_{m}, \tilde{G}_{n}\right)_{m, n=1}^{\infty}$. Here $\Omega=(\Omega, \mathscr{B}, P)$ is a probability space, $U=\left(U_{i j}: i=1, \ldots, M ; j=1, \ldots, N\right)$ is a matrix of random variables on Ω (the payoff matrix), and \tilde{F}_{m} and \tilde{G}_{n} are sub- σ-fields of the σ-field \mathscr{B} such that $\tilde{F}_{m+1} \supseteq \tilde{F}_{m}$ and $\tilde{G}_{n+1} \supseteq \tilde{G}_{n}$. We put $\tilde{F}=\tilde{F}_{\infty}=$ the σ-field generated by $\bigcup_{m} \tilde{F}_{m}, \tilde{G}=\tilde{G}_{\infty}=$ the σ-field generated by $\cup_{n} \tilde{G}_{n}$.

For $m, n=1,2, \ldots, \infty$, let $G_{m n}$ be the two-person, zero-sum game in which a strategy for player I is an \tilde{F}_{m}-measurable $\alpha: \Omega \rightarrow S^{M}$, and a strategy for player II is a \tilde{G}_{n}-measurable $\beta: \Omega \rightarrow S^{N}$. (Here S^{M} is the simplex $\left\{x \in R^{M}: \sum_{i} x_{i}=1\right.$, $\left.x_{i} \geq 0\right\}$.) If player I plays α and player II plays β, then the payoff to I is $\Gamma(\alpha, \beta)=$ $E\left(\sum_{i j} U_{i j} \alpha_{i} \beta_{j}\right)$. Thus in the game $G_{m n}, \tilde{F}_{m}$ and \tilde{G}_{n} embody the information available to I and II, respectively. If \tilde{F}_{m} and \tilde{G}_{n} are finite, then $G_{m n}$ is a finite approximation to the game $G=G_{\infty \infty}$.

By standard minimax theorems, each game $G_{m n}$ has saddle point. Let $V_{m n}$ denote the value of the game $G_{m n}$ to player I, and let $V=V_{\infty \infty}$.

[^0]If \tilde{F}_{m} and \tilde{G}_{n} are finite, then the game $G_{m n}$ is, at least in principle, solvable by finite methods. The question we shall study is: To what extent is an optimal strategy for $G_{m n}$ a useful substitute for an optimal strategy for G ? An ideal result along these lines would be
(1) Fix $\epsilon>0$. Suppose that, for $m, n=1,2, \ldots, \alpha^{m n}$ is an optimal strategy for I in $G_{m n}$. Then, for all sufficiently large m and $n, \alpha^{m n}$ is an ϵ-optimal strategy for I in G.

As we shall see, (1) is, alas, in general false. The best we can do is a weaker version of (1) (Theorem 1), and a special case of (1) (Theorem 2). We shall state these theorems presently. For a strategy α for player I in the game G, let $\operatorname{Val}_{n}(\alpha)=\inf _{\beta}$ $\Gamma(\alpha, \beta)$, where β ranges over \tilde{G}_{n}-measurable strategies for II. (Thus if α is \tilde{F}_{m}-measurable, then $\operatorname{Val}_{n}(\alpha)$ is the value to I of the strategy α in the game $G_{m n}$.) We shall write $\mathrm{Val}_{G}(\alpha)$ for $\mathrm{Val}_{\infty}(\alpha)$.

Theorem l: For $m, n=1,2, \ldots$, suppose that $\alpha^{m n}$ is an optimal strategy for player I in $G_{m n}$, and that \tilde{F}_{m} and \tilde{G}_{n} are finite σ-fields. Then $\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} \operatorname{Val}_{G}\left(\alpha^{m n}\right)$ $=V$. Moreover, this convergence is uniform in the choices $\alpha^{m n}$ of optimal strategies, i.e., $\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} \inf _{\alpha(m, n)} \operatorname{Val}_{G}(\alpha)=V$, where $A(m, n)$ is the set of strategies optimal for player I in $G_{m n}$.

Theorem 2 says that, under an additional hypothesis, (1) does hold. This hypothesis, which we shall call (M), is a version of the "continuity of information" assumption first used in [Milgrom-Weber]. (M) says roughly that the joint probability on \tilde{F} and \tilde{G} is absolutely continuous with respect to the product probability on $\tilde{F} \times \tilde{G}$. A precise statement of (M) will be found in Sec. 2 .

Theorem 2: Assume (M) holds. If, for $m, n=1,2, \ldots, \alpha^{m n}$ is an optimal strategy for I in $G_{m n}$, then $\lim _{\substack{m \rightarrow \rightarrow \infty \\ n \rightarrow \infty}} \operatorname{Val}_{G}\left(\alpha^{m n}\right)=V$, uniformly in the choices $\alpha^{m n}$ of optimal strategies.

Results

We first present an example which shows that assertion (1) of the introduction does not hold in general.

Example: A game structure in which (1) fails.

Let Ω be the interval [0,1] with Lebesgue measure, $M=N=2$, and the payoff $U_{i j}=\left\{\begin{array}{l}1 \text { if } i=j \\ -1 \text { if } i \neq j\end{array}\right.$ for $i, j=1,2$ (indepenent of ω). For $m=1,2, \ldots$, let $\tilde{F}_{m}=\tilde{G}_{m}$ $=$ the σ-field on $[0,1)$ generated by the partition $\left\{\left[(k-1) / 2^{m}, k / 2^{m}\right): k=1,2, . .2^{m}\right\}$. Thus $\tilde{F}=\tilde{G}=$ the Borel σ-field on Ω. It is easy to see that, for all m and $n, V_{m n}$ $=0$, and in $G_{m n}$ the players have the optimal strategies $\alpha_{1}=\alpha_{2}=\beta_{1}=\beta_{2}=1 / 2$, for all $\omega \in \Omega$.

For finite $m>1$, consider the game $G_{m, m-1}$. The strategy $\underline{\alpha}^{m, m-1}$ given by

$$
\begin{aligned}
& \underline{\alpha}_{1}^{m, n-1}=\left\{\begin{array}{l}
1 \text { if } \omega \in\left[(k-1) / 2^{m}, k / 2^{m}\right) \\
0 \text { otherwise }
\end{array}\right), k \text { odd } \\
& \underline{\alpha}_{2}^{m, m-1}=1-\underline{\alpha}_{1}^{m, m-1}
\end{aligned}
$$

is easily seen to be optimal for player I in the game $G_{m, m-1}$, i.e., $\mathrm{Val}_{m-1}\left(\alpha^{m, m-1}\right)=0$. On the other hand, $\mathrm{Val}_{G}\left(\alpha^{m, m-1}\right)=-1 ; \underline{\alpha}^{m, m-1}$ is a very poor strategy for player I in G. Thus in any system ($\alpha^{m n}: m, n=1,2, \ldots$,) of optimal strategies for player I in which $\alpha^{m, m-1}=\underline{\alpha}^{m, m-1}$ for all $m>1, \lim _{\substack{m \rightarrow \infty \\ n \rightarrow \infty}} \operatorname{Val}_{G}\left(\alpha^{m n}\right)<V$.

We shall next prove Theorems 1 and 2. We first require a series of lemmas. Our first lemma is a special case of Theorem 2 of [Blackwell-Dubins].

Lemma 2.1: Let (X_{k}) be a uniformly bounded sequence of random variables, and suppose that $X_{k} \rightarrow X_{\infty}$ a.s. as $k \rightarrow \infty$. Then $E\left(X_{k} \mid \tilde{G}_{k}\right) \rightarrow E\left(X_{\infty} \mid \tilde{G}\right)$ a.s. as $k \rightarrow \infty$.

Our second lemma computes $\operatorname{Val}_{n}(\alpha)$.
Lemma 2.2: Fix a strategy α for I in G, and fix $n \in\{1,2, \ldots, \infty\}$. Define the random variable ξ by : $\xi=$ the $j \in\{1,2, \ldots, N\}$ which minimizes $E\left(\sum_{i} U_{i j} \alpha_{i} \mid \bar{G}_{n}\right)$. In case of a tie, for definiteness, take the least such j. Then, for all strategies β for II in $G_{\infty n}$,
(i) $E\left(\sum_{i} U_{i \xi} \alpha_{i}\right) \leq \Gamma(\alpha, \beta)$, so
(ii) $\operatorname{Val}_{n}(\alpha)=E\left(\min _{j} E\left(\sum_{i} U_{i j} \alpha_{i} \mid \tilde{G}_{n}\right)\right)$.

Proof: (i) immediately implies (ii), so we prove (i). Let β be a strategy for II in $G_{\infty n}$, that is, a \tilde{G}_{n}-measurable $\beta: \Omega \rightarrow S^{N}$. Then, since $\sum_{j} \beta_{j}=1$, we have

$$
E\left(\sum_{i} U_{i \xi} \alpha_{i} \mid \tilde{G}_{n}\right) \leq \sum_{j} \beta_{j} E\left(\sum_{i} U_{i j} \alpha_{i} \mid \tilde{G}_{n}\right)=E\left(\sum_{i j} U_{i j} \alpha_{i} \beta_{j} \mid \tilde{G}_{n}\right) \text { a.s. }
$$

since β is \tilde{G}_{n}-measurable. Taking expected values on both sides yields (i).

Lemma 2.3: Let $\left(\alpha^{k}\right)$ be a sequence of strategies for I in G, and suppose that $\alpha^{k} \rightarrow \alpha$ a.s. as $k \rightarrow \infty$. Then
(i) for fixed $n=1,2, \ldots, \infty, \quad \operatorname{Val}_{n}\left(\alpha^{k}\right) \rightarrow \operatorname{Val}_{n}(\alpha)$ as $k \rightarrow \infty$, and
(ii) $\operatorname{Val}_{k}\left(\alpha^{k}\right) \longrightarrow \operatorname{Val}_{G}(\alpha)$ as $k \rightarrow \infty$.

Proof: First note that applying (ii) in a system where $\tilde{G}_{n}=\tilde{G}_{n+1}=\ldots=\tilde{G}_{\infty}$ yields (i), so (i) is a special case of (ii). To prove (ii), let $X_{k}=\sum_{i}^{\sum} U_{i j} \alpha_{i}^{k}$ in lemma 2.1; then we have $E\left(\sum_{i} U_{i j} \alpha_{i}^{k} \mid \tilde{G}_{k}\right) \rightarrow E\left(\sum_{i} U_{i j} \alpha_{i} \mid \tilde{G}\right)$ a.s. as $k \rightarrow \infty$, so by dominated convergence $E\left(\min _{j} E\left(\sum_{i} U_{i j} \alpha_{i}^{k} \mid \tilde{G_{k}}\right)\right) \rightarrow E\left(\min _{j} E\left(\sum_{i} U_{i j} \alpha_{i} \mid \tilde{G}\right)\right.$). By lemma 2.2(ii), we are done.

Lemma 2.4: (i) For $m, n=1,2, \ldots, \infty, \lim _{m \rightarrow \infty} V_{m n}=V_{\infty n}$ and $\lim _{n \rightarrow \infty} V_{m n}=V_{m \infty}$.
(ii) $\lim _{\substack{m \rightarrow \infty \\ n \rightarrow \infty}} V_{m n}=V$.

Proof: Fix n, and let α be an optimal strategy for I in $G_{\infty n}$. Now for $m=1,2, \ldots$, put $\alpha^{m}=E\left(\alpha \mid \tilde{F}_{m}\right)$. Thus α is a legal, though likely not optimal, strategy for I in $G_{m n}$. We have

$$
\operatorname{Val}_{n}\left(\alpha^{m}\right) \leq V_{m n} \leq V_{\infty n} .
$$

By lemma 2.1, $\alpha^{m} \longrightarrow \alpha$ a.s. By lemma 2.3(i), $\lim _{m \rightarrow \infty} \operatorname{Val}_{n}\left(\alpha^{m}\right)=\operatorname{Val}_{n}(\alpha)=$ $V_{\infty n}$. By the inequality directly above, we infer $\lim _{m \rightarrow \infty} V_{m n}=V_{\infty n}$. By symmetry, we also have $\lim _{n \rightarrow \infty} V_{m n}=V_{m \infty}$. for all m. This proves (i). Finally, it is easy to see that $V_{m \infty} \leq V_{m n} \leq V_{\infty n}$. Claim (ii) now follows by letting $m, n \rightarrow \infty$.

We are now ready to prove Theorem 1.
Proof of Theorem 1: Suppose that $\alpha^{m n}$ is an optimal strategy for player I in $G_{m n}$, for $m, n=1,2, \ldots$. We claim that, for $m=1,2, \ldots, \lim _{n \rightarrow \infty} \operatorname{Val}_{G}\left(\alpha^{m n}\right)=V_{m \infty}$. To prove this, fix m. We shall show that every subsequence of the sequence $\mathrm{Val}_{G}\left(\alpha^{m}\right)$ has in turn a subsequence which converges to $V_{m \infty}$. Indeed, since each $\alpha^{m n}$ is \tilde{F}_{m}-measurable, \tilde{F}_{m} being a finite σ-field, by the Bolzano-Weierstrass theorem every subsequence of α^{m} has a (pointwise) convergent subsequence; thus we may assume that $\alpha^{m n} \rightarrow \alpha^{m}$ as $n \rightarrow \infty$. By lemma 2.3(ii), then, $\operatorname{Val}_{n}\left(\alpha^{m n}\right) \rightarrow \operatorname{Val}_{G}\left(\alpha^{m}\right)$ as $n \rightarrow \infty$. By hypothesis, $\operatorname{Val}_{n}\left(\alpha^{m n}\right)=V_{m n}$, so in fact $V_{m n} \rightarrow \operatorname{Val}_{G}\left(\alpha^{m}\right)$ as $n \rightarrow \infty$. Thus by lemma 2.4(i), $\mathrm{Val}_{G}\left(\alpha^{m}\right)=V_{m \infty}$. On the other hand, since $\alpha^{m n}$ $\rightarrow \alpha^{m}$ as $n \rightarrow \infty$, by 2.3(i) we also have $\operatorname{Val}_{G}\left(\alpha^{m n}\right) \rightarrow \operatorname{Val}_{G}\left(\alpha^{m}\right)=V_{m \infty}$. This proves our claim.

Now by another use of lemma 2.4(i), $\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} \operatorname{Val}_{G}\left(\alpha^{m n}\right)=V$. To prove the "moreover" clause in Theorem 1, let $\left(\epsilon_{m n}\right)$ be a sequence of numbers which converges to 0 as $m, n \rightarrow \infty$. For all m, n, note that there exists $\alpha^{m n} \in$ $A(m, n)$ such that $\operatorname{Val}_{G}\left(\alpha^{m n}\right)-\epsilon_{m n} \leq \inf _{\alpha \in A(m, n)} \operatorname{Val}_{G}(\alpha) \leq \operatorname{Val}_{G}\left(\alpha^{m n}\right)$. The "morevoer" clause follows at once.

We now consider Theorem 2. We must first discuss hypothesis (M).
$\tilde{F} \times \tilde{G}$ is the σ-field on $\Omega \times \Omega$ generated by sets of the form $S \times T$, where S $\epsilon \tilde{F}$ and $T \epsilon \tilde{G}$. Let Q and R be the probability measures on $(\Omega \times \Omega, \tilde{F} \times \tilde{G})$ defined by

$$
\begin{aligned}
& Q(A)=P(\{\omega:(\omega, \omega) \in A\}) \quad \text { and } \\
& R(A)=\iint\{(\omega, \eta) \in A\} 1 P(d \omega) P(d \eta) \quad \text { for } A \in \tilde{F} \times \tilde{G} .
\end{aligned}
$$

We now state assumption (M).
(M) Q is absolutely continuous with respect to R, that is, for all $A \in \tilde{F} \times \tilde{G}$, if $R(A)=0$, then $Q(A)=0$.

Assumption (M) is a version of a hypothesis introduced in [Milgrom-Weber]. It is easy to see that (M) is satisfied either if \tilde{F} and \tilde{G} are indepedent (in which case $Q=R$), or if either \tilde{F} or \tilde{G} is atomic.

Lemma 2.5: Suppose (M) is satisfied. Then if (X_{k}) is a uniformly bounded sequence of \tilde{F}-measurable random variables which converges weakly to X_{∞}, and if Z is any bounded random variable, then
i) $E\left(X_{k} Z \mid \tilde{G}\right) \rightarrow E\left(X_{\infty} Z \mid \tilde{G}\right) \quad$ a.s. and
ii) $E\left(X_{k} Z \mid \tilde{G}_{k}\right) \rightarrow E\left(X_{\infty} Z \mid \tilde{G}\right) \quad$ a.s \quad as $k \rightarrow \infty$.

Proof: First note that, since $E\left(E\left(X_{k} Z \mid \tilde{G}\right) \mid \tilde{G}_{k}\right)=E\left(X_{k} Z \mid \tilde{G}_{k}\right)$, by lemma 2.1,(i) implies (ii). Next, note that we may assume without loss of generality that Z is measurable in $\tilde{F} \vee \tilde{G}$ (the σ-field generated by $\tilde{F} \cup \tilde{G})$. This is because $E\left(X_{k} Z \mid \tilde{G}\right)$ $=E\left(X_{k} \cdot E(Z \mid \tilde{F} \vee \tilde{G}) \mid \tilde{G}\right)$, so we may replace Z by $E(Z \mid \tilde{F} \vee \tilde{G})$ if necessary. We shall therefore prove (i), assuming that Z is $\tilde{F} \vee \tilde{G}$-measurable.

Since Z is $\tilde{F} \vee \tilde{G}$-measurable, there exist a bounded \tilde{F}-measurable random variable \hat{X}, a bounded \hat{G}-measurable random variable \hat{Y}, and a bounded, Borel measurable function $f: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ such that $Z=f(\hat{X}, \hat{Y})$.

By (M) and the Radon-Nikodym theorem, there exists a bounded function $g: \Omega \times \Omega \rightarrow \mathbf{R}$ such that, for all $A \in \tilde{F} \times \tilde{G}, P(\{\omega:(\omega, \omega) \epsilon A\})=\iint_{\tilde{A}}$ $g(\omega, \eta) P(d \omega) P(d \eta)$. It follows by standard methods that, for any vector \mathbf{X} of \tilde{F} measurable random variables, any vector \mathbf{Y} of \tilde{G}-measurable random variables, and any Borel-measurable $h: \mathbf{R}^{p} \rightarrow \mathbf{R}$, we have
(*)

$$
E(h(\mathbf{X}, \mathbf{Y}) \mid \tilde{G})(\eta)=\int_{\Omega} h(\mathbf{X}(\omega), \mathbf{Y}(\eta)) g(\omega, \eta) P(d \omega) \quad \text { a.s. }[\eta]
$$

Now by (*) we have
$E\left(X_{k} Z \mid \tilde{G}\right)(\eta)=\int_{\Omega} X_{k}(\omega) f(\hat{X}(\omega), \hat{Y}(\eta)) g(\psi, \eta) P(d \omega)$ a.s. $[\eta]$.

Since, by assumption, $X_{k} \rightarrow X_{\infty}$ weakly, we have $E\left(X_{k} Z \mid \tilde{G}\right)(\eta) \rightarrow E\left(X_{\infty} Z\right.$ $\tilde{G})(\eta)$ a.s., as desired.

In exact analogy to lemma 2.3, we have
Lemma 2.6: Assume that (M) holds. If (α^{k}) is a sequence of strategies for I in G which converges weakly to a strategy α, then
(i) for fixed $n=1,2, \ldots, \infty, \operatorname{Val}_{n}\left(\alpha^{k}\right) \rightarrow \operatorname{Val}_{n}(\alpha), \quad$ and
(ii) $\operatorname{Val}_{k}\left(\alpha^{k}\right) \rightarrow \operatorname{Val}_{G}(\alpha) \quad$ as $k \rightarrow \infty$.

Proof of Theorem 2: Suppose that $\alpha^{m n}$ is an optimal strategy for player I in $G_{m n}$, for all finite m and n. We shall prove that every sequence (m_{k}, n_{k}) of pairs of integers such that $m_{k} \rightarrow \infty$ and $n_{k} \rightarrow \infty$ has a subsequence ($m_{k}^{\prime}, n_{k}^{\prime}$) such that $\operatorname{Val}_{G}\left(\alpha^{m_{k}^{\prime}}, n_{k}^{\prime}\right) \longrightarrow V$ as $k \rightarrow \infty$. To conserve notation, let us write α^{k} for $\alpha^{m_{k}^{\prime}, n_{k}^{\prime}}$ and V_{k} for $V_{m_{k}^{\prime}}, n_{k}^{\prime}$. By weak compactness, we may choose the sequence $\left(\alpha^{k}\right)$ to converge weakly to a strategy α as $k \longrightarrow \infty$. By lemma 2.6(ii), $\operatorname{Val}_{n_{k}^{\prime}}\left(\alpha^{k}\right)$ $\rightarrow \operatorname{Val}_{G}(\alpha)$ as $k \rightarrow \infty$. By assumption, $\operatorname{Val}_{n_{k}^{\prime}}\left(\alpha^{k}\right)=V_{k}$, and by lemma 2.4(ii), $V_{k} \rightarrow V$; thus $\operatorname{Val}_{G}(\alpha)=V$.

On the other hand, since $\left(\alpha^{k}\right)$ converges weakly to α, by lemma $2.6(\mathrm{i}), \mathrm{Val}_{G}\left(\alpha^{k}\right)$ $\rightarrow \operatorname{Val}_{G}(\alpha)=V$ as $k \rightarrow \infty$. Uniformity follows just as in the proof of Theroem 1. This completes the proof of Theorem 2.

References

Blackwell D, Dubins L (1962) Merging of Opinions with Increasing Information, Annals of Mathematical Statistics 33: 882-886
Milgrom P, Weber R (1985) Distributional Strategies for Games with Incomplete Information, Mathematics of Operations Research 10: 619-632
Sion M (1958) On General Minimax Theorems, Pacific Journal of Mathematics 8: 171-176

[^0]: 1 John W. Mamer, Anderson Graduate School of Management, University of California, Los Angeles.
 2 Kenneth E. Schilling, Department of Mathematics, University of Michigan-Flint.

