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A Note on Some Wishart Expectations 

By R. J. Muirhead 2 

Summary:  In a recent paper Sharma and Krishnamoorthy (1984) used a complicated decision- 
theoretic argument to derive an identity involving expectations taken with respect to the Wishart 
distribution Wm(n, I). A more general result, proved using an elementary moment generating func- 
tion argument, and some applications, are given in this paper. 

1 An E x p e c t a t i o n  Iden t i ty  

Let the random m x m matrix S have the Wishart distribution Win(n, ~), with proba- 
bility density function 

Cm,n(det E)-n/2 exp (-1/2 tr 2;-1S)(det S) 1~2(n-m-I), S > 0 ,  ~ > 0 ,  

0, n > m - 1  

where 

C - 1  = 2 m n / 2 F m ( 1 / 2  n), m,n 

with 

Fn 

Fm((l  ) = lr 1 ]4m(m-1)  I I  F(a - 1 / 2 ( i -  1)). 
i=1 

Using an innovative, but rather complicated and involved decision-theoretic argument, 
Sharma and Krishnamoorthy (1984) proved that when E = I m , 

E[(tr S) 2 tr (S~)] = (ran + 2 + 2a)E[tr S tr (Sa)], (1) 

an identity which holds for all a for which the expectations exist. Here we give an 
elementary proof of a more general result which yields (1) as a special case. The gener- 
al result is given in the following theorem. 

l This work was supported by the National Science Foundation. 
2 Prof. Robb J. Muirhead, Department of Statistics, University of Michigan, 419 South State 
Street, Ann Arbor, Michigan 48109-1027, USA. 

0026-1335/86/03040247- 251 $2.50 �9 1986 Physica-Verlag, Vienna 



248 R . J .  Muirhead 

Theorem: Suppose that S ~ Win(n, ~,). Let h(S) be a real-valued measurable function 
of S such that the function f ( t ;S)=h( t - l s ) ,  t > 0 ,  is differentiable at t = 1. Let 

f'(t; S) = ~ f(t; S). Then 

E[tr  (E-1S)h(S)] = mnE[h(S)] - 2E[f'(1; S)] (2) 

provided the expectations involved exist. 

Proof." For t > 0 define the functiong(t) as 

g(t)  = Cm, n(det ~)-n/2tmn/2 f 
S > O  

exp ( - 2  tr ~- l  S) (det S)l/2(n-m-x)h(S)dS , 

(3) 

and note that g(1) = E [h(S)]. 
Differentiating (3) with respect to t (justified by dominated convergence provided 

E[tr (Z-1S)h(S)] exists) and putting t = 1 gives 

g'(1) = 1/2 mnE[h(S)] - 1/2 E[tr (~,-IS)h(S)]. (4) 

Now put X = tS in (3); then g(t) can be written alternatively as 

g(t) = Cm,n(det y.)-nl2 f exp (-1/2 tr ~-lX)(detX)ll2(n-m-x)f(t;X)dX, 
X > 0  

from which it follows that 

g'(1) =E[f'(1;S)]. (5) 

Equating (4) and (5) gives the desired result (2) and completes the proof. 
In many interesting applications the function h(.) has the property that, for 

x > O, h(xS) = xlh(S) for some real I. Then f(t;S) = h(t-lS) = t-lh(S), so that 

f ' (1;  S) = -lh(S). 

This yields the following result. 

Corollary: If h(xS) = xth(S) for some I then 

E[tr  (~-I  S)h(S)] = (ran + 2I)E[h(S)]. (6) 

The identity (1) of Sharma and Krishnamoorthy (1984) follows immediately from (6) 
by taking Y. = I and h(S) = tr S tr (Sa), so that l = a + 1. Another identity, used by 
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Efron and Morris (1976) in the context of decision-theoretic estimation of y - l ,  is 

[tr Y~-Is] [ 1  ] 
E [ ~ ]  = ( m n - 2 ) E  t -~  ; 

this is a special case of(6)  with h(S) --- (tr S) -1, so that l -- -1 .  

2 Appl icat ions  

Many interesting expectations can be evaluated using (6). Some of these, in which k 
and r are nonnegative integers and 

(a)k = a(a + 1)...  (a + k - 1), 

are: 

E[(tr 

E[(tr 

E[(tr 

E[(tr 

E[(tr 

E[(tr 

] ~ - l s ) k ]  = 2k(112 mn)k, (7) 

~ - l s ) - k ]  = (-l /2)k/(-I/2mn + 1)k, (2k < ran) (8) 

Z-1S)  k tr S] = 2k(1/2 mn + 1)kn tr E, (9) 

Z-1S) k t rS -1] = 2k(1/2mn - 1)k tr Y~-l / (n-m - 1), (n > m  + 1) (10) 

E-1S) k tr ES -1] = 2k(1/2mn- 1 ) k m / ( n - m -  1), (n > m  + 1) (11) 

Fro(l/2 n + r) 
Z-1S)k(det S) r] = 2 mr +k(i/2 mn + rm) k "(det Z) r. (12) 

F m (1/2 n) 

These may all be derived using essentially similar arguments and known elementary 
properties of Wishart matrices. For example, (7) is proved in the following way. Put 
h(S) = tr (Z-1/2SZ -1/2) = tr (Z-1S)  in (6), so that l = 1. This gives 

E[(tr Z-1S)  2 ] = (ran + 2)E[tr (E-1S)] = (ran + 2)ran 

where we have used the fact that E(S) = nZ. Next, taking h(S) = (tr Z-1S)  2, with 
l = 2, gives 

E[(tr Z-XS)3] = (ran + 4)E[(tr Z-1S) 2 ] = (ran + 4)(ran + 2)ran. 

The result (7) for arbitrary k follows trivially by induction. To prove (8) note that 

t ak ingh (S )= l / t rZ - IS in (a )g i ve s (mn-2 )E[  Z - I S  ] = 1 .  
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Next, taking h(S) -- (tr Y~-Is)-2 in (6) gives 

(mn - 4)E[(tr 2 - 1 S )  -2 ] = E[(tr ~ - I s ) - I ]  = 1/(mn - 2), 

and the rest of the argument is obvious. The proofs of the other identities are similar. 
Note that to derive (10), (11), and (12) we need the known results 

1 
E(S-1) = ~-1,  

n - m - 1  

E [ ( d e t S )  r] = 2 mr pm(1/2 n + r) 
I' m (1/2 F/) 

(det Z)r. 

We conclude by giving two expectations involving zonal polynomials. Let CK(S) de- 
note the zonal polynomial of S corresponding to the partition • = (kl, k2 . . . . .  kin) of 
the integer k (kl >~ k2 >t ... >~ km/> 0) (see e.g. James 1964 or Muirhead 1982, Chap- 
ter 7), and let 

m 
(a)~ = rI ( a -  1/2(i-  1))ki. 

i=1  

The following expectations, in which B is a non-random mxm symmetric matrix, hold : 

E[(tr  Y~-1S)rCK(SB)] = (1/2 mn + k)r21C +r(I /2 n)~ CK(BZ), (13) 

E[(tr Z -  I S)-rC~ (SB)] = 
( -  1)r 2k-r 

(-1/2 mn - k + 1)r 
(1/2n)KC~(BY) ( r <  1/2mn +k). 

(14) 

These may be derived from (6) in a similar way to (7)-(12) using the known result 
that 

E[C~(SB)] = 2k(1/2 n)KCK(BZ). 

(see e.g. Muirhead 1982, p. 251). 
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