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Abstract A volumetric error compensation method for a ma-
chining center that has multiple cutting tools operating simul-
taneously has been developed. Due to axis sharing, the geo-
metric errors of multi-spindle, concurrent cutting processes are
characterized by a significant coupling of error components in
each cutting tool. As a result, it is not possible to achieve ex-
act volumetric error compensation for all axes. To minimize the
overall volumetric error in simultaneous cutting, a method to
determine compensation amount using weighted least squares
has been proposed. This method also allows tolerance distribu-
tion of machining accuracy for different surfaces of a workpiece.
A geometric error model has been developed using an arch-type,
multi-spindle machine tool, and the error compensation simula-
tion results based on this model are presented. The simulation
results demonstrated effectiveness of the proposed error compen-
sation algorithm for use with multi-spindle simultaneous cutting
applications.

Keywords Compensation · Geometric error · Machine tool ·
Multi spindle · Simultaneous cutting

1 Introduction

In the industry quest for faster production speeds, execution
of more than a single cutting operation in an individual ma-
chine tool (referred to as simultaneous machining) has become
a promising alternative to increase machine tool throughput. The
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idea of simultaneous machining has been explored for long time.
For example, automotive industry has used simultaneous drilling
process since the early 1910s. [1]

The simultaneous machining can be implemented in several
ways, for example, by means of multi-spindle drilling heads [2],
simultaneous cutting with multiple tools in a single spindle
lathe [3], and machining multiple features simultaneously with
a multi-spindle machining center (mill-turn machines). The use
of a multi-spindle drilling head is the most frequently deployed
simultaneous cutting process in automotive industry today. Al-
though the multi-spindle milling processes have not been fre-
quently used due to difficulties in their setup and control, during
the last few years the simultaneous machining gained more atten-
tion from manufacturing industry because of its economic ben-
efits. As a result, a number of new designs of multi-spindle ma-
chining centers have been introduced by machine tool companies
and universities such as reconfigurable multi-spindle machine
tools proposed by Koren and his colleagues (see Fig. 1) [4–6].
This paper focuses on a special case of simultaneous milling pro-
cess using more than one milling spindle, which is categorized as
multi-spindle simultaneous cutting (MSSC) in this research.

Fig. 1. Concept of reconfigurable multi-spindle machine tools [4]



Besides its increased overall material removal ratio (MRR)
due to the simultaneous use of multiple tools, the multi-spindle
design in a single machine tool provides a range of benefits
in productivity and machine tool cost. Obviously, addition of
a spindle (and one or two additional axes if required) to the exist-
ing machine tool costs less than the addition of another machine
tool to the production line to increase capacity. Tool change time
and workpiece loading/unloading time can be kept at a minimum
since the process requiring multiple cutting operations can be
performed on a single machine tool without tool change and/or
workpiece setup.

Multi-spindle machining centers currently available on the
market are supposedly capable of the simultaneous machining
of multiple features on a single workpiece. In practice however,
multi-spindle characteristic are either utilized to process two to
four identical workpieces in parallel or utilized to reduce the tool
change time (e.g., tool change performed on one spindle, while
the other one is machining).

For implementation of the MSSC on a single workpiece in
actual production several issues must be considered. Analysis
of dynamic characteristics, such as stability of the simultaneous
machining process and impact of multiple cutting processes on
the machining accuracy, is more difficult compared to that of
single tool, single-spindle machining. Control, coordination, and
error compensation of multiple spindle motion, especially when
the motion of multiple spindles is coupled, also differ from those
developed for conventional machine tools.

With increasing use of the multi-spindle machining centers in
production [7, 8], some of these issues have been under investiga-
tion. Vibration problems of simultaneous cutting in turning were
reported by Vorob’eva [9]. Stability of simultaneous machining
using a single workpiece and multiple cutting tools in turning
has been studied by Lazoglu et al. [10]. Ozdoganlar and Endres
extended the mathematical stability analysis of simultaneous ma-
chining to twin turret turning machines and twin spindle turning
machines [3].

Although more research results can be found in the topics
such as, for example, process planning for multi-spindle ma-
chine tool [11] and reliability of multi-spindle machines [12], no
substantial research has been conducted to investigate, model,
and improve geometric accuracy and to implement it on the ex-
isting machine tool controllers. Because of varying degree of
geometric coupling between error components in multiple cut-
ting locations, it is impossible to achieve perfect compensation of
all volumetric errors in MSSC.

This paper is focused on the modeling of geometric errors
and the compensation of the errors for MSSC machining. The
paper extends the machine tool geometric error modeling and
error compensation theory developed for single spindle machine
tools [13–18] to the MSSC case. A number of potential imple-
mentations of MSSC in milling processes are reviewed, followed
by the error model synthesis for the MSSC. Furthermore, an
error model for a recently-developed machine tool with arch-
type axis (aimed at automotive engine manufacturing to maxi-
mize the utilization of MSSC) is also introduced [5]. Because
of the geometric coupling of axes in MSSC the error compensa-

tion requires a new approach. This paper explains the limitations
of error compensation for MSSC and proposes an approach to
minimize geometric errors in MSSC.

Geometric problems of MSSC in various machine tool con-
figurations are discussed in Sect. 2. Sect. 3 introduces the error
model of a machine tool with an arch-type axis and a compensa-
tion method for MSSC. In Sect. 4 simulation results of geometric
error compensation in MSSC are presented.

2 Geometric problems in multi-spindle
simultaneous cutting

The merits of MSSC have been discussed in the previous section.
The MSSC can be implemented in a number of different machine
tool configurations. Each configuration for MSSC has its own,
unique characteristics with regard to machining cost and geomet-
ric accuracy. In this section, a few examples of MSSC processes
are presented and their aspects are reviewed to compare their
characteristics.

The first MSSC example, where two identical products are
made by dual-spindle MSSC is shown in Fig. 2a. The processes
for two workpieces are identical and the two spindles are con-
trolled by the same part program. Therefore, no special part
program is required to control these two spindles simultaneously.
This configuration can be used to reduce the manufacturing
equipment cost when expanding its capacity – addition of an
extra spindle into the existing machining center design is more
economical than addition of a whole machine. Such a concept is
often used in the recent designs of agile manufacturing lines. Be-
cause of relatively less acute dynamic problems appearing during
the cutting process, this setup may be the most popular MSSC
case that is currently used in production systems. However, the
position of the multiple workpieces are determined by common
axes, thus if there is a geometric error compensation required,
this compensatory action for one workpiece may affect the pos-
ition control of another workpiece. As a result, a problem of
optimal geometric compensation may arise, an issue which will
be discussed later in this paper.

Figure 2b shows another example that the MSSC is used to
process a single workpiece by using dual spindles on a common
surface (used, for example, in aerospace industry for machining
of large airframes on gantry machine tools). By introducing this

Fig. 2a,b. Geometry of multi-spindle simultaneous cutting a multiple work-
piece with coupled table motion; b single workpiece with coupled spindle
motion



cutting scheme, the cycle time to produce a workpiece can be re-
duced by half when compared to a single-spindle machine tool.
An additional benefit of this solution is that this machine is more
failure tolerant in that if one spindle fails, the other spindle can
still complete machining of the entire surface. Although it is not
frequently used due to the aforementioned problems of simul-
taneous cutting, and this type of cutting process will be more
popular in the near future as the dynamic problem is being al-
leviated and reconfigurable machining is being accepted in the
industry. The geometric problem of this case is the same as that
of Fig. 2a.

The design of MSSC introduced in Fig. 2b can be generalized
to maximize the benefits of MSSC. Figure 3 shows a multi-
spindle RMT which is a good example of the cutting process
in which motions are kinematically coupled by at least one axis
motion. Geometric compensation problem from the axes shared
by the spindles discussed above becomes more complicated in
this configuration. While there may be a variety of designs and
consequently a variety of resultant geometric couplings of the
spindle motions, a typical case is shown in Fig. 3.

Sharing of the motion axes results in additional constraints
in geometric error compensation problem. Consequently, the ge-
ometric error compensation prepared for one cutting tool error
affects and may deteriorate the geometric accuracy of the pro-
cess carried out by another cutting tool. If there is no sharing
of motion axis between multiple spindles, such compound geo-
metric problem does not exist. However, it is assumed that most

Fig. 3. The mechanical structure and the assigned coordinate systems of the
multi-spindle RMT

of MSSC belongs to either case in Figs. 2 or 3 because only
when sharing of motion axis takes place, economic benefits of
the MSSC can be claimed.

Many aspects of the proposed MSSC have been discussed in
this and previous section. The new challenges identified, when
compared to conventional machining, include, for example:

• Coupled geometric error in multiple spindles,
• Dynamic problems, and
• Selection of multiple cutting conditions for each of the mul-

tiple cutting tools.

From these issues, geometric error compensation for multiple
spindles will be elaborated in detail in the remainder of this pa-
per. A recently introduced reconfigurable machine tool (RMT)
mentioned in Sect. 1 is considered as a possible application ex-
ample of the geometric error compensation algorithm for MSSC,
and is the focus of the next section.

3 Volumetric error modeling and compensation
for a multi-spindle machine tool

As can be seen in Fig. 3, the two spindle axes are not parallel
because the RMT was developed to process angled workpiece
surfaces such as cylinder heads of V-type automotive engines.
By enabling use of the cutting tools from different directions,
by adjusting angular spindle location within a predefined range,
the machine does not require the tilt axis, and the time required
to reposition the tools or workpieces is greatly reduced. How-
ever, such configuration results in more complex motion plan-
ning to compensate the geometric errors, and the complexity of
the coupled geometric errors increases with existence of multiple
non-parallel spindles.

In this section, a model of the geometric errors in MSSC and
a methodology to calculate the required compensation amount
based on the kinematic solutions are developed. The conflicts
of the compensation requirements between the coupled axes are
demonstrated and an approach using accuracy weight factors for
each machining feature is proposed. This scheme defines priority
by which cutting accuracy using of each spindle can be man-
aged within prescribed specifications. The results are presented
in Sect. 4.

A three-dimensional error observed in a machine workspace
as a function of the errors of machine members is derived.
Rigid body kinematics and small angle approximations are em-
ployed to develop homogeneous transformations for inaccurate
links and joints in the machine’s kinematic chain as in the case
for most machine tools. 21 geometric error components are
used [19].

When a machine element is moving along a guideway of
each axis, the errors in the axis scale result in the positional error.
Generally, the positional error is the scale error plus the Abbe
errors that arise from the Abbe offset and associated angular er-
rors [19]. Hence the magnitude and direction of the positional
error varies, depending on the location of each measurement
point within the measurement volume (workspace).



Three positional errors are considered in 3-axis machine
tools. The out of straightness of the guideway gives the straight-
ness error in the movement of the machine element that is mov-
ing on the guideway. The straightness errors are influenced by the
associated rotational errors on the machine tools. There are two
cases: the horizontal straightness error and the vertical straight-
ness error, respectively, along each axis, and the six straightness
errors are thus considered in a 3-axis machine tool. There are
three rotational errors along a guideway. If the right-hand screw
rule is adopted to describe the rotational movements, the feed
direction determines the rotation axis. The roll error is asso-
ciated with the rotation about the guideway, the pitch error is
associated with the rotation about the horizontal transverse direc-
tion, and the yaw error is associated with the rotation about the
vertical axis. It should be noted that these rotational errors con-
tribute to the total volumetric error with the Abbe offset. Thus
nine rotational errors are considered in a 3-axis machine tool.
When the multi axis movement is introduced, the misalignment
of each axis produces squareness errors (or orthogonality errors).
In a 3-axis machine tool, three squareness errors are defined
for the X-Y , X-Z , and Y -Z planes. All the squareness errors
are considered positive when they are outward from the right
angle (90◦). Therefore 18 error components plus three square-
ness errors fully describe error behavior of a 3-axis machine
tool.

Multi-axis machines typically consist of one or more open
kinematic chains composed of a sequence of elements or links
connected by joints providing either a rotational or translational
degree of freedom of motion. By successive application of the
homogeneous transformation matrices of neighboring links in
the kinematic chain of a machine tool, the position of a point in
the last (tool) frame with respect to the first (reference) frame
can be expressed. When errors exist, the actual coordinates are
expressed as the variations of m−1Tm :

m−1T a
m = m−1Tm · Em (1)

where the superscript a refers to actual. The error of a kinematic
joint from one coordinate to another can be expressed as:

Em =

⎡
⎢⎢⎣

1 −εz εy δx

εz 1 −εx δy

−εy εx 1 δz

0 0 0 1

⎤
⎥⎥⎦ (2)

where εx , εy, and εz are the angular errors associated with x, y,
and z axes, respectively, and δx , δy, and δz are the displacement
errors due to imperfect geometry of machine tool axes.

The mechanical structure and the assigned coordinate sys-
tems of the multi-spindle machine tool in consideration are
shown in Fig. 3. Spindle 1 mounted on the arc is movable along
the z1-axis slanted against the z-axis with θx1 degree, which is
set at 0 degrees to make the model easy to understand. Spin-
dle 2 mounted on the arc is movable along the z2-axis slanted
against the z-axis with θx2 degree. The movement of the work-
piece along the x-axis is achieved by the movable slide mounted
on the machine bed, and the movement of the tools along the

y-axis (this motion involves the arch plate and both spindles)
is achieved by the movable slide mounted on the machine col-
umn. There are nine coordinate frames in all, the reference,
four movable slides, two tool tips, and two additional column
coordinates expressing the locations of spindle 1 and spindle
2. Thus we have the origins of reference (O0), x-table slide
(O1), column (O2), spindle 1 (O3), tool tip of spindle 1 (O4),
spindle 2 (O5), tool tip of spindle 2 (O6), and two column co-
ordinates (O2−1, O2−2). O2, O2−1, and O2−2 hold one origin
in common. O2−1 expresses the relation between O2 and O3,
and O2−2 expresses the relation between O2 and O5. The x-
axis serves as the reference for the x-y and the x-z squareness
errors, and the y-axis is the reference for the y-z squareness
error.

The corresponding actual transformation matrices are listed
below:

0Ta
1 =

⎡
⎢⎢⎣

1 −εzx εyx x + δxx

εzx 1 −εxx δyx

−εyx εxx 1 δzx

0 0 0 1

⎤
⎥⎥⎦ (3)

0Ta
2 =

⎡
⎢⎢⎣

1 −εzy εyy δxy − Sxy y
εzy 1 −εxy y + δyy

−εyy εxy 1 δzy

0 0 0 1

⎤
⎥⎥⎦ (4)

2−1Ta
3 =

⎡
⎢⎢⎣

1 −εz1z1 εy1z1 δxz1 − Sxz1 z1
εz1z1 1 −εxz1 δy1z1 − Sy1z1 z1

−εy1z1 εxz1 1 z1 + δz1z1

0 0 0 1

⎤
⎥⎥⎦ (5)

3T4 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 Z4

0 0 0 1

⎤
⎥⎥⎦ (6)

Tw−1 =

⎡
⎢⎢⎣

1 0 0 −x
0 1 0 y − (z1 + Z4) sin θx1

0 0 1 (z1 + Z4) cos θx1
0 0 0 1

⎤
⎥⎥⎦ (7)

TRX1 =

⎡
⎢⎢⎣

1 0 0 0
0 cos θx1 − sin θx1 0
0 sin θx1 cos θx1 0
0 0 0 1

⎤
⎥⎥⎦ (8)

2−2Ta
5 =

⎡
⎢⎢⎣

1 −εz2z2 εy2z2 δxz2 − Sxz2 z2
εz2z2 1 −εxz2 δy2z2 − Sy2z2 z2

−εy2z2 εxz2 1 z2 + δz2z2

0 0 0 1

⎤
⎥⎥⎦ (9)

5T6 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 Z6
0 0 0 1

⎤
⎥⎥⎦ (10)

Tw−2 =

⎡
⎢⎢⎣

1 0 0 −x
0 1 0 y − (z2 + Z6) sin θx

0 0 1 (z2 + Z6) cos θx

0 0 0 1

⎤
⎥⎥⎦ (11)



TRX2 =

⎡
⎢⎢⎣

1 0 0 0
0 cos θx2 − sin θx2 0
0 sin θx2 cos θx2 0
0 0 0 1

⎤
⎥⎥⎦ (12)

where 0Ta
1: the actual homogeneous transformation matrix

(HTM) of the table slide in the reference frame. 0Ta
2 : the ac-

tual HTM of the column in the reference frame. 2−1Ta
3 : the

actual HTM of spindle 1 in the O2−1 frame. 3T4 : the HTM of
the cutting tool in the spindle 1 frame. 2−2Ta

5 : the actual HTM
of spindle 2 in the O2−2 frame. 5T6 : the HTM of the cutting
tool in the spindle 2 frame. Tw−1 : the HTM of the workpiece
in the reference frame for spindle 1. Tw−2 : the HTM of the
workpiece in the reference frame for spindle 2. Z4: the ideal
tool dimension in the z1 direction. Z6: the ideal tool dimension
in the z2 direction. TRX1 : the HTM that transforms the coor-
dinates of a point in the O2−1 frame into the O2frame. TRX2 :
the HTM that transforms the coordinates of a point in the O2−2
frame into the O2 frame. x, y, z, z1, z2 : the joint displacements
along the axes x, y, z, z1, and z2 respectively . y1, y2 : the axes
obtained by having the y-axis rotate on the x-axis in θx1 and
θx2 respectively. δij : the positional error in the ith axis direc-
tion along jth axis (i, j = x, y, z, y1, z1, y2, z2). εij : the angular
errors, where the first subscript represents which axis the ro-
tation error is around, and the second subscript represents the
direction of movement of the slide (i, j = x, y, z, y1, z1, y2, z2).
Sxy1, Sxz1 , Sy1z1, Sxz2 , Sy2z2 : squareness errors between the axis
pairs.

Using these transformation matrices, the relative position and
orientation errors between each tool and workpiece is repre-
sented by the following matrix multiplication:

Etotal_1 =
[

0Ta
1Tw_1

]−1 [
0Ta

2

] [
TRX1

] [[
2−1Ta

3

] [
3T4

]]
(13)

Etotal_2 =
[

0Ta
1Tw_2

]−1 [
0Ta

2

] [
TRX2

] [[
2−2Ta

5

] [
5T6

]]
. (14)

After expanding the terms in Eqs. 13 and 14, the tool tip er-
rors, Etotal_1 and Etotal_2 can be rewritten as Eqs. 15 and 16.

Etotal_1 =

⎡
⎢⎢⎣

e11 e12 e13 Px1

e21 e22 e23 Py1

e31 e32 e33 Pz1

0 0 0 1

⎤
⎥⎥⎦ (15)

Etotal_2 =

⎡
⎢⎢⎣

e11 e12 e13 Px2

e21 e22 e23 Py2

e31 e32 e33 Pz2

0 0 0 1

⎤
⎥⎥⎦ (16)

In general, if the amounts of errors are small, then only the
first or the second order terms of approximation expansion can
be used to model machine tool errors. Thus, in the derivation
presented here, only the error terms up to the second order
are considered. Using small angle assumption the positional
error vectors of the two tool tips in the x-direction (Px1 and
Px2 in Eqs. 15 and 16, respectively) can be written as Eqs. 17

and 18.

Px1 = (
δxx − yεzx − δxy − δxz1 − Z4εy1z1 + ySxy + z1Sxz1

+ z1εyx cos θx1 + Z4εyx cos θx1 + z1εzx sin θx1 + Z4εzx sin θx1

− z1εyy cos θx1 − Z4εyy cos θx1 − z1εzy sin θx1 − Z4εzy sin θx1

+ εzxδyx − εyxδzx − εzxδyy + εyxδzy + εyxδy1z1 sin θx1

− εyyδy1z1 sin θx1 − εzxδy1z1 cos θx1 + εzyδy1z1 cos θx1

+ εyxδz1z1 cos θx1 + εzxδz1z1 sin θx1 − εyyδz1z1 cos θx1

− εzyδz1z1 sin θx1 − yεyxεxx − z1εzxεxx cos θx1

− Z4εzxεxx cos θ − x1 + z1εxxεyx sin θx1 + Z4εxxεyx sin θx1

− xε2
yx − xε2

zx − z1εyxεxy sin θx1

− Z4εyxεxy sin θx1 + z1εzxεxy cos θx1 + Z4εzxεxy cos θx1

− Z4εyxεxz1 sin θx1 + Z4εyyεxz1 sin θx1 − Z4εzyεxz1 cos θx1

+ Z4εzx Sxz1 cos θx1 − z1εyx Sy1z1 sin θx1 + z1εzx Sy1z1 cos θx1

+z1εyySy1z1 sin θx! − z1εzy Sy1z1 cos θx1

)
/(

1+ ε2
xx + ε2

yx + ε2
zx

)
(17)

Px2 = (
δxx − yεzx − δxy − δxz2 − Z6εy2z2 + ySxy + z2Sxz2

+ z2εyx cos θx2 + Z6εyx cos θx2 + z2εzx sin θx2

+ Z6εzx sin θx2 − z2εyy cos θx2 − Z6εyy cos θx2

− z2εzy sin θx2 − Z6εzy sin θx2 + εzxδyx − εyxδzx

− εzxδyy + εyxδzy + εyxδy2z2 sin θx2 − εyyδy2z2 sin θx2

− εzxδy2z2 cos θx2 + εzyδy2z2 cos θx2 + εyxδz2z2 cos θx2

+ εzxδz2z2 sin θx2 − εyyδz2z2 cos θx2 − εzyδz2z2 sin θx2

− yεyxεxx − z2εzxεxx cos θx2 − Z6εzxεxx cos θx2

+ z2εxxεyx sin θx2 + Z6εxxεyx sin θx2 − xε2
yx − xε2

zx

− z2εyxεxy sin θx2 − Z6εyxεxy sin θx2 + z2εzxεxy cos θx2

+ Z6εzxεxy cos θx2 − Z6εyxεxz2 sin θx2 + Z6εyyεxz2 sin θx2

− Z6εzyεxz2 cos θx2 + Z6εzx Sxz2 cos θx2 − z2εyx Sy2z2 sin θx2

+z2εzx Sy2z2 cos θx2 + z2εyySy2z2 sin θx2 − z2εzySy2z2 cos θx2

)
/(

1+ ε2
xx + ε2

yx + ε2
zx

)
(18)

Similarly, the positional error vectors in y- and z-directions (Py1 ,
Pz1 , Py2 , Pz2) can be obtained and are given in Appendix A.

The positional error vectors in Eqs. 15 and 16 can be com-
bined into a composite positional error vector as Eq. 19. The
positional error compensation vector in the reference coordinate
frame (CT

ref) is obtained in Eq. 20.

PT = [
Px1 Py1 Pz1 Px2 Py2 Pz2

]
(19)

CT
ref = −PT = [

Crx1 Cry1 Crz1 Crx2 Cry2 Crz2

]
(20)

To enable implementation of the compensation method in the
actual machine control, the compensation vector has to be con-
verted from the reference frame to the frames describing the
motion of the actuators. The number of components in the posi-
tional error compensation vector is reduced from six to four due
to the geometric coupling as shown in Eq. 21.

CT
act = [

Cax Cay Caz1 Caz2

]
(21)



Equation 21 is the positional error compensation vector in the ac-
tuator frames (Cact). Eqs. 22 and 23 show the relation between
Cref and Cact as well as the corresponding transformation matrix.

Cref =
[

Cref TCact

]
[Cact] (22)

Cref TCact =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 − sin θx1 0
0 0 cos θx1 0
1 0 0 0
0 1 0 − sin θx2

0 0 0 cos θx2

⎤
⎥⎥⎥⎥⎥⎥⎦

(23)

Cref TCact is non-symmetric because of the coupling of the axes.
To obtain Cact the weighted least squares method is applied.
Each element of Cact is written as Eqs. 24a to 28a.

Cact =
[[

Cref TCact

]T
W

[
Cref TCact

]]−1 [[
Cref TCact

]T
WCref

]

(24a)

W =

⎡
⎢⎢⎢⎢⎢⎢⎣

w1 0 0 0 0 0
0 w2 0 0 0 0
0 0 w3 0 0 0
0 0 0 w4 0 0
0 0 0 0 w5 0
0 0 0 0 0 w6

⎤
⎥⎥⎥⎥⎥⎥⎦

(24b)

Cax = w1Crx1 +w4Crx2

w1 +w4
(25)

Cay = NCay

DCay
(26a)

NCay = w2w3 sin2 θx1 cos2 θx1

(
w5 sin2 θx2 +w6 cos2 θx2

)
× (

w2Cry1 +w5Cry2

)+w2 sin θx1

(
w5 sin2 θx2 +w6 cos2 θx2

)
× (−w2Cry1 sin θx1 +w3Crz1 cos2 θx1

)+w5 sin θx2

× (
w2 sin2 θx1 +w3 cos2 θx1

) (−w5Cry2 sin θx2 +w6Crz2 cos θx2

)
(26b)

DCay = w2w3w5 cos2 θx1 sin2 θx2 +w2w3w6 cos2 θx1 cos2 θx2

+w2w5w6 sin2 θx1 cos2 θx2 +w3w5w6 cos2 θx1 cos2 θx2

(26c)

Caz1 = NCaz1

DCaz1

(27a)

NCaz1 = w2 sin θx1

(
w5 sin2 θx2 +w6 cos2 θx2

)
× (

w2Cry1 +w5Cry2

)
+ (

w2w5 sin2 θx2 +w2w6 cos2 θx2 +w5w6 cos2 θx2

)
× (−w2Cry1 sin θx1 +w3Crz1 cos θx1

)+w2w5 sin θx1 sin θx2× (−w5Cry2 sin θx2 +w6Crz2 cos θx2

)
(27b)

DCaz1 = w2w3w5 cos2 θx1 sin2 θx2 +w2w3w6 cos2 θx1 cos2 θx2

+w2w5w6 sin2 θx1 cos2 θx2 +w3w5w6 cos2 θx1 cos2 θx2

(27c)

Caz2 = NCaz2

DCaz2

(28a)

NCaz2 = w5 sin θx2

(
w2 sin2 θx1 +w3 cos2 θx1

)
× (

w2Cry1 +w5Cry2

)
+w2w5 sin θx1 sin θx2

(−w2Cry1 sin θx1 +w3Crz1 cos θx1

)
+ (

w2w3 cos2 θx1 +w2w5 sin2 θx1 +w3w5 cos2 θx1

)
× (−w5Cry2 sin θx2 +w6Crz2 cos θx2

)
(28b)

DCaz2 = w2w3w5 cos2 θx1 sin2 θx2 +w2w3w6 cos2 θx1 cos2 θx2

+w2w5w6 sin2 θx1 cos2 θx2 +w3w5w6 cos2 θx1 cos2 θx2

(28c)

where P: the positional error vector in the reference frame.
Cref: the positional error compensation vector in the reference
frame. Crx1 , Cry1 , Crz1 : the elements of the positional error com-
pensation vector for spindle 1 in the reference frame in the
x, y, and z directions, respectively. Crx2 , Cry2 , Crz2 : the elem-
ents of the positional error compensation vector for spindle 2
in the reference frame in the x, y, and z directions, respec-
tively. Cact: the positional error compensation vector in the actua-
tors’ frames. Cax , Cay, Caz1 , Caz2 : the elements of the positional
error compensation vector in the actuators’ frames in the x, y,
z1, and z2 directions, respectively. Cref TCact : the transformation
matrix that transforms the coordinates of a point in the actu-
ators’ frames into the reference frame. W: the weight matrix.
w1, w2, w3, w4, w5, w6: the diagonal elements of the weight
matrix.

The weighted least square method incorporates nonnegative
weights into the fitting criterion. The value of the weight indicates
the precision of the information contained in the associated data.
In the proposed method this feature is utilized to minimize the
overall volumetric error or to determine the compensation amount
for each spindle axis in simultaneous cutting, which allows tol-
erance distribution of machining accuracy for different surfaces
of a workpiece. By adjusting the weight factors in Eq. 24b the
relative tolerance among machining directions of both spindles
can be determined. The proposed scheme utilizing weighted least
square can be generally applied to various configurations of multi-
spindle tools, such as Figs. 2a and b, to obtain the compensation
vector as well as tolerance distribution. The simulation results of
the multi-spindle machine tool volumetric error compensation are
presented and discussed in the next section.

4 Simulation results

Because the multi-spindle RMT is in a conceptual design stage,
the results presented in this section were obtained by simulation.
To enhance the reality of the simulation, the machine tool error
models were obtained by experiment using a real vertical-type
three-axis machine tool with 510, 300, and 310 mm feed strokes
in the x-, y-, and z-axis directions, respectively. The z-axis data
set was used twice to model the two spindles of the multi-spindle
RMT. The measured workspace range of the machine tool is as
follows: x-axis: 10 to 500 mm; y-axis: 10 to 290 mm; z1- and z2-
axis: −300 to −10 mm. The volumetric error in any location in
the workspace can be derived using the proposed model.



The simulation results are summarized in Tables 1 and 2.
Table 1 presents the effect of geometric coupling and the Table 2
demonstrates the performance of the proposed compensation
method.

Table 1 shows the maximum residual volumetric errors of
each spindle before the compensation was made, and compares
the volumetric errors of spindle 1 and 2 when the conventional
compensations were made only for a single axis. As can be
seen in the table, when the compensation was applied to only
spindle 1 although the residual volumetric error of spindle 1
was reduced below 1 µm, the volumetric error of spindle 2 re-

Table 1. Maximum residual errors in the workspace (unit: µm)

Direction Max. residual Max. residual error
error before after Compensation
compensation Spindle 1 Spindle 2

Spindle 1 x 193.55 0.99 32.82
y 161.09 0.99 82.48
z 116.28 0.99 42.91

Spindle 2 x 186.89 −32.76 0.99
y 160.35 −82.48 0.99
z 84.26 −42.90 0.99

Weighting parameters Max. residual Max. residual Max. residual
error in x-direction error in y-direction error in z-direction

w1, w2, w3 w4, w5, w6 Spindle1 Spindle2 Spindle 1 Spindle 2 Spindle 1 Spindle 2

Case 1 1 1 16.43 −16.37 7.37 −7.35 0.99 −7.36
Case 2 10 1 3.23 −29.79 1.81 −10.50 0.99 −10.51
Case 3 1 10 29.85 −3.34 18.41 −2.30 0.99 −2.38

Table 2. Maximum residual errors
according to the weighting parame-
ters (unit: µm)

Fig. 4a–c. Residual volumetric error maps for spin-
dle 1 after compensation (in case 1) a on y-z plane
(x = 250 mm); b on x-z plane (y = 150 mm); c on x-y
plane (z = −150 mm)

mained above 30 µm in all directions. When the compensation
was made for spindle 2 only, the machine tool error exhibited
a similar trend. The result demonstrates how the geometric coup-
ling between axes influences the accuracy of the geometric error
compensation of MSSC machining. As can be readily noticed,
for MSSC machining the volumetric errors of all tool tip pos-
itions cannot be simultaneously reduced to near zero. Therefore,
a new compensation strategy is required to determine compen-
sation amount for each spindle axis properly in the simultaneous
cutting.

Table 2 shows the maximum residual volumetric errors of
each spindle with respect to the variation of the weighting pa-
rameters when the proposed compensation method was applied.
Three different combinations of the weights were applied to the
compensation algorithm. Case 1 used equal weighting factors for
all directions of both spindles (i.e., w1 = w2 = . . . = w6 = 1),
case 2 used ten times bigger weighting factors for spindle 1
(i.e., w1 = w2 = w3 = 10 and w4 = w5 = w6 = 1), and case
3 used ten times bigger weighting factors for spindle 2 (i.e.,
w1 = w2 = w3 = 1 and w4 = w5 = w6 = 10).

To better evaluate the simulation results using the pro-
posed method part of the results are also graphically presented
in Figs. 4 to 9. The graphs show the volumetric errors after
compensation in the three directions (x-, y-, and z-directions)



Fig. 5a–c. Residual volumetric error maps for spin-
dle 2 after compensation (in case 1) a on y-z plane
(x = 250 mm); b on x-z plane (y = 150 mm); c on x-y
plane (z = −150 mm)

Fig. 6a–c. Residual volumetric error maps for spin-
dle 1 after compensation (in case 2) a on y-z plane
(x = 250 mm); b on x-z plane (y = 150 mm); c on x-y
plane (z = −150 mm)

in the machine tool workspaces. Figures 4 and 5 show the
residual errors after compensation of case 1 of Table 2. Fig-
ure 4a shows the residual error of spindle 1 in the x-direction
along the y- and z-axes when the nominal position of the x-
axis is 250 mm and Fig. 4b and c in the x- and z-directions.
In the same way, Fig. 5 shows the residual error of spin-
dle 2. Figures 6 and 7 show the residual errors in case 2,
and Figs. 8 and 9 show the residual errors in case 3 in the
same way.

As can be seen in the table and graphs, the proposed method
reduced the position error of the both spindles to less than 17 µm
during the simultaneous cutting when the equal weighting factors
were used. Furthermore, it was possible to manage the toler-
ance distribution of machining accuracy for different surfaces of
a workpiece. For example, in case 2, the position error of spin-
dle 1 could be reduced within 4 µm while the error of the other
spindle was maintained less than 30 µm, which was a significant
improvement compared to the result displayed in Table 1.



Fig. 7a–c. Residual volumetric error maps for spin-
dle 2 after compensation (in case 2) a on y-z plane
(x = 250 mm); b on x-z plane (y = 150 mm); c on x-y
plane (z = −150 mm)

Fig. 8a–c. Residual volumetric error maps for spin-
dle 1 after compensation (in case 3) a on y-z plane
(x = 250 mm); b on x-z plane (y = 150 mm); c on x-y
plane (z = −150 mm)

5 Conclusions

In this paper the volumetric errors of multi-spindle machine
tools were introduced, discussed and the corresponding error
model has been presented. Based on the developed model, a new
error compensation scheme for the geometrically-coupled multi-
ple spindles has been developed. The proposed volumetric error
compensation method in MSSC has been assessed by simulation

study of an arch type multi-spindle machine tool. As demon-
strated in Figs. 4 through 9 the simulation results confirm that the
proposed methodology to compensate geometric errors in MSSC
based on the weighted least squares method worked effectively
in terms of error compensation as well as compensation conflict
management. The maximum error of 194 µm before compen-
sation was reduced to maximum 17 µm for all directions. By
adjusting the weight factor introduced in the proposed method,
the volumetric error of the target cutting feature could be reduced



Fig. 9a–c. Residual volumetric error maps for spin-
dle 2 after compensation (in case 3) a on y-z plane
(x = 250 mm); b on x-z plane (y = 150 mm); c on x-y
plane (z = −150 mm)

to 4 µm and the ratio between the errors of two spindles could be
adjusted while the accuracy of the other axis can be maintained
within the desired value.

Appendix A

The positional error vectors of the multi spindles in y- and z-
directions (Py1 , Pz1 , Py2 , Pz2 ) are as follows.

Py1 = (
δyx + z1 yεxx cos θx1 + Z4εxx cos θx1 + xεzx − z1εxy cos θx1

− Z4εxy cos θx1 + δyy − Z4εxz1 cos θx1 + δy1z1 cos θx1

− δz1z1 sin θx1 − z1Sy1z1 cos θx1 + εzxδxx + εxxδzy

− εzxδzy − εzxδzx1 + εzyδxz1 + εxxδzx sin θx1

− εxyδy1z1 sin θx1 + εxxδz1z1 cos θx1 − εxyδz1z1 cos θx1

− yε2
xx + z1ε

2
xx sin θx1 + Z4ε

2
xx sin θx1 − xεxxεyx

+ z1εyxεzx cos θx1 + Z4εyxεzx cos θx1 + z1ε
2
zx sin θx1

+ Z4ε
2
zx sin θx1 − z1εxxεxy sin θx1 − Z4εxxεxy sin θx1

− yε2
zx − z1εzxεyy cos θx1 − Z4εzxεyy cos θx1

− z1εzxεzy sin θx1 − Z4εzxεzy sin θx1 − Z4εxxεxz1 sin θx1

+ Z4εxyεxz1 sin θx1 − Z4εxzεy1z1 − Z4εzyεy1z1 + yεzx Sxy

+ z1εzx Sxz1 − z1εzySxz1 − z1εxx Sy1z1 sin θx1

+z1εxy Sy1z1 sin θx1

)/(
1+ ε2

xx + ε2
yx + ε2

zx

)
(29)

Pz1 = (
yεxx − xεyx − δzx + z1εxx sin θx1

− z1εxy sin θx1 − Z4εxy sin θx1 + δzy − Z4εxz1 sin θx1

+ δy1z1 sin θx1 + δz1z1 cos θx1 − z1Sy1z1 sin θx1 − εyxδxx

+ εxxδxy − εxxδyy + εyxδxz1 − εyyδy1z1 cos θx1

+ εxyδy1z1 cos θx1 + εxxδz1z1 sin θx1 − εxyδz1z1 sin θx1

− z1ε
2
xx cos θx1 − Z4ε

2
xx cos θx1

− z1ε
2
yx cos θx1 − Z4ε

2
yx cos θx1 − xεxxεzx + yεzx

− Z4εyxεzx sin θx1 + z1εxxεxy cos θx1 + Z4εxxεxy cos θx1

+ z1εyxεyy cos θx1 + Z4εyxεyy cos θx1 + z1εyxεzy sin θx1

+ Z4εyxεzy sin θx1 + Z4εxxεxz1 cos θx1 − z1εyxεzx sin θx−1

− Z4εxyεxz1 cos θx1 + Z4εyxεy1z1 − Z4εyyεy1z1 − yεyx Sxy

− z1εyx Sxz1 + z1εyySxz1 + z1εxx Sy1z1 cos θx1

−z1εxy Sy1z1 cos θx1

)/(
1+ ε2

xx + ε2
yx + ε2

zx

)
(30)

Py2 = (
δyx + z2 yεxx cos θx2 + Z6εxx cos θx2 + xεzx − z2εxy cos θx2

− Z6εxy cos θx2 + δyy − Z6εxz2 cos θx2 + δy2z2 cos θx2

− δz2z2 sin θx2 − z2Sy2z2 cos θx2 + εzxδxx + εxxδzy

− εzxδzy − εzxδzx1 + εzyδxz2 + εxxδzx sin θx2

− εxyδy2z2 sin θx2 + εxxδz2z2 cos θx2 − εxyδz2z2 cos θx2

− yε2
xx + z2ε

2
xx sin θx1 + Z6ε

2
xx sin θx1 − xεxxεyx

+ z2εyxεzx cos θx2 + Z6εyxεzx cos θx2 + z2ε
2
zx sin θx2

+ Z6ε
2
zx sin θx2 − z2εxxεxy sin θx2 − Z6εxxεxy sin θx2

− yε2
zx − z2εzxεyy cos θx2 − Z6εzxεyy cos θx2

− z2εzxεzy sin θx2 − Z6εzxεzy sin θx2 − Z6εxxεxz2 sin θx2

+ Z6εxyεxz2 sin θx2 − Z6εxzεy2z2 − Z6εzyεy2z2 + yεzx Sxy

+ z2εzx Sxz2 − z2εzySxz2 − z2εxx Sy2z2 sin θx2

+z2εxy Sy2z2 sin θx2

)/(
1+ ε2

xx + ε2
yx + ε2

zx

)
(31)

Pz2 = (
yεxx − xεyx − δzx + z2εxx sin θx2

− z2εxy sin θx2 − Z6εxy sin θx2 + δzy − Z6εxz2 sin θx2

+ δy1z2 sin θx2 + δz2z2 cos θx2 − z2Sy1z2 sin θx2 − εyxδxx

+ εxxδxy − εxxδyy + εyxδxz2 − εyyδy1z2 cos θx2



+ εxyδy1z2 cos θx2 + εxxδz2z2 sin θx2 − εxyδz2z2 sin θx2

− z2ε
2
xx cos θx2 − Z6ε

2
xx cos θx2

− z2ε
2
yx cos θx2 − Z6ε

2
yx cos θx2 − xεxxεzx + yεzx

− Z6εyxεzx sin θx2 + z2εxxεxy cos θx2 + Z6εxxεxy cos θx2

+ z2εyxεyy cos θx2 + Z6εyxεyy cos θx2 + z2εyxεzy sin θx2

+ Z6εyxεzy sin θx2 + Z6εxxεxz2 cos θx2 − z2εyxεzx sin θx−1

− Z6εxyεxz2 cos θx2 + Z6εyxεy1z2 − Z6εyyεy1z2 − yεyxSxy

− z2εyx Sxz2 + z2εyySxz2 + z2εxx Sy1z2 cos θx2

−z2εxy Sy1z2 cos θx2

)/(
1+ ε2

xx + ε2
yx + ε2

zx

)
(32)
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