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Abstract. We consider the problem of efficient integration of an n-variate polyno-
mial with respect to the Gaussian measure in Rn and related problems of complex
integration and optimization of a polynomial on the unit sphere. We identify a class
of n-variate polynomials f for which the integral of any positive integer power f p

over the whole space is well approximated by a properly scaled integral over a ran-
dom subspace of dimension O(log n). Consequently, the maximum of f on the unit
sphere is well approximated by a properly scaled maximum on the unit sphere in a
random subspace of dimension O(log n). We discuss connections with problems of
combinatorial counting and applications to efficient approximation of a hafnian of a
positive matrix.

1. Introduction

We consider the problem of efficient integration of multivariate polynomials with
respect to the Gaussian measure in Rn .

Let us assume that a real n-variate homogeneous polynomial f of degree m is
given to us by some “black box,” which inputs an n-vector x and outputs the value
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of f (x). We want to compute or estimate the integral∫
Rn

f dµn,

where µn is the standard Gaussian measure with the density

(2π)−n/2e−‖x‖
2/2, where ‖x‖ = (ξ 2

1 +· · ·+ξ 2
n )

1/2 for x = (ξ1, . . . , ξn).

If m is odd, then the integral is 0, so the interesting case is that of an even
degree m.

An equivalent problem is to integrate f over the unit sphere Sn−1 ⊂ Rn . Since
f is homogeneous of degree m, passing to the polar coordinates we obtain∫

Rn

f dµn = (2π)−n/2

(∫ +∞
0

rn−1+me−r2/2 dr

)(∫
Sn−1

f (x) dx

)
,

from which for m = 2k we get∫
Sn−1

f dωn = 
(n/2)

2k
(n/2+ k)

∫
Rn

f dµn,

where ωn is the rotation invariant Haar probability measure on Sn−1. This and
related formulas for integrals of polynomials over the unit sphere and over the
Gaussian measure on Rn can be found, for example, in [2].

The most straightforward approach to integration is to employ the Monte Carlo
method, that is, to sample N random points xi ∈ Sn−1 and approximate the integral
by the sample mean: ∫

Sn−1
f dωn ≈ 1

N

N∑
i=1

f (xi ).

Although one can show that for a “typical” polynomial the Monte Carlo method
works reasonably well, there are simple examples of polynomials f where one
would require to sample exponentially many points to approximate the integral
within a reasonable relative error.

(1.1) Example. Suppose that f (x) = ξ 2k
1 for x = (ξ1, . . . , ξn). Then∫

Sn−1
f dωn = 
(n/2)
(1/2+ k)√

π
(n/2+ k)
.

Let k = �n/2�. A straightforward consequence of Stirling’s formula is that the
integral is of the order of 2−n for large n.

On the other hand, if we sample N random points xi on the unit sphereSn−1, then
with high probability we will have |ξ1| = O((ln N )1/2n−1/2) for the first coordinate
ξ1 of every sampled point. Indeed, for a random point x ∈ Sn−1 we have |ξ1| > ε
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with probability at most
√
π/2e−ε

2(n−2), see, for example, Section 2 of [11], so a
randomly sampled point x ∈ Sn−1 hits the region |ξ1| > (ln N )1/2(n− 2)−1/2 with
probability O(N−1). Thus to approximate the integral within a factor of 10n , the
number N of samples should be exponentially large in n.

The reason why the Monte Carlo method doesn’t work well on the above
example is clear: the polynomial f (x) = ξ 2k

1 acquires some large values for an
exponentially small fraction of x ∈ Sn−1 but those values significantly contribute
to the integral. See also [3] for a discussion of the relevant “measure concentration
phenomenon” within the general context of numerical analysis.

Thus the Monte Carlo method wouldn’t work well if the graph of the polynomial
looks “needle-like.” In this paper, we suggest a method tailored specifically for
such needle-like polynomials. The following defines the class of “needle-like” or
“focused” polynomials we deal with.

(1.2) Definitions. Let

〈x, y〉 = ξ1η1 + · · · + ξnηn for x = (ξ1, . . . , ξn) and y = (η1, . . . , ηn)

be the standard scalar product in Rn .
Let us fix a number 0 < δ ≤ 1 and a positive integer N . We say that a

homogeneous polynomial f : Rn → R of degree m is (δ, N )-focused if there exist
N nonzero vectors c1, . . . , cN ∈ Rn such that:

• for every pair (i, j) the cosine of the angle between ci and cj is at least δ;
• the polynomial f can be written as a nonnegative linear combination

f (x) =
∑

I

αI

∏
i∈I

〈ci , x〉, 1.2.1

where the sum is taken over subsets I ⊂ {1, . . . , N } of cardinality |I | = m
and αI ≥ 0.

Here are some examples of (δ, N )-focused polynomials.

(1.3) Examples.
(1.3.1) Let c1, . . . , cN ∈ Rn be vectors with positive coordinates such that the

ratio of the smallest/largest coordinate for each vector ci is at least
√
δ. Then the

cosine of the angle between ci and cj is at least δ for each pair (i, j). Indeed, scaling
c1, . . . , cN , if necessary, we may assume that the largest coordinate of every ci is
1. Then 〈ci , cj 〉 ≥ nδ while ‖ci‖, ‖cj‖ ≤

√
n. Thus the polynomial f defined by

(1.2.1) will be (δ, N )-focused. Bounding the ratio of the smallest/largest coordinate
of ci can be considered as a strengthening of the condition that f has nonnegative
coefficients: if we allow ci in (1.2.1) to be arbitrary nonnegative vectors, we obtain
the class of all polynomials f with nonnegative coefficients.
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(1.3.2) Suppose that n = k(k+1)/2 and let us identifyRn with the space of k×k
symmetric matrices with the scalar product 〈a, b〉 = trace(ab). Let c1, . . . , cN be
positive definite matrices such that the ratio of the smallest/largest eigenvalue for
each matrix ci is at least

√
δ. As above, one can show that the cosine of the angle

between ci and cj is at least δ for each pair (i, j). Indeed, without loss of generality,
we may assume that ci is diagonal and reduce the case to (1.3.1).

Other instances can be obtained by sampling c1, . . . , cN in (1.2.1) at random
from some biased distribution in Rn (a distribution with a nonzero expectation).
Further instances of (δ, N )-focused polynomials can be obtained by taking expec-
tations of such random polynomials and approximating them by sample averages.
For example, the complete symmetric polynomial hm(x) of degree m can be ob-
tained as the expectation of (m!)−1〈c, x〉m , where the coefficients of c are sampled
from the standard exponential distribution.

Our first result is that the value of the integral of a focused polynomial over a
random lower-dimensional subspace allows one to predict the value of the integral
over the whole space.

For a k-dimensional subspace L ⊂ Rn , let µk be the Gaussian measure con-
centrated on L with the density (2π)−k/2 exp{−‖x‖2/2} for x ∈ L . We pick a
k-dimensional subspace at random with respect to the Haar probability measure
on the Grassmannian Gk(R

n) and consider the integral∫
L

f dµk

(see Section 1 of [11] for a succinct introduction to the Haar measure, including
that on the Grassmannian).

We claim that as long as k ∼ log N , the properly scaled integral over L approx-
imates the integral over Rn within a factor of (1− ε)m/2.

(1.4) Theorem. There exists an absolute constant γ > 0 with the following
property.

For any δ > 0, for any positive integer N , for any (δ, N )-focused polynomial
f : Rn → R of degree m, for any ε > 0, and any positive integer
k ≥ γ ε−2δ−2 ln(N + 2), the inequality

(1− ε)m/2
∫

L
f dµk ≤

(
k

n

)m/2 ∫
Rn

f dµn ≤ (1− ε)−m/2
∫

L
f dµk

holds with probability at least 2/3 for a random k-dimensional subspace L ⊂ Rn .

Assuming that we can integrate efficiently over lower-dimensional subspaces
(see Section 1.6 below), we get a randomized approximation algorithm for com-
puting the integral of f over Rn . Namely, we sample a random k-dimensional
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subspace L , compute the integral over L , and output the value of that integral
multiplied by (n/k)m/2. To sample L from the uniform distribution on the Grass-
mannian Gk(R

n), one can sample k vectors x1, . . . , xk independently from the
Gaussian distribution in Rn and let L = span{x1, . . . , xk}.

One “anti-Monte Carlo” feature of the algorithm is that the estimator is de-
cidedly biased: the expected value of the output is essentially greater (by a factor
of (n/k)m/2) than the value we are trying to approximate. This is so because the
distribution of the integral over a random subspace has a “thick tail”: there are sub-
spaces which result in large integrals that significantly contribute to the integral
over the whole space but such subspaces are very rare.

To increase the probability of obtaining the right approximation, one can use the
standard approach of sampling several random subspaces and finding the median
value of the outputs.

One can observe that if f is (δ, N )-focused, then f p is also (δ, N )-focused for
any positive integer p. This allows us to deduce that the maximum of f over the
unit sphere is well approximated by the scaled maximum of the restriction of f
onto the sphere in a lower-dimensional subspace.

(1.5) Corollary. There exists an absolute constant γ > 0 with the following
property.

For any δ > 0, for any positive integer N , for any (δ, N )-focused polynomial
f : Rn → R of degree m, for any ε > 0, and any positive integer k ≥
γ ε−2δ−2 ln(N + 2), the inequality

(1− ε)m/2 max
x∈Sn−1∩L

f (x) ≤
(

k

n

)m/2

max
x∈Sn−1

f (x) ≤ (1− ε)−m/2 max
x∈Sn−1∩L

f (x)

holds with probability at least 2/3 for a random k-dimensional subspace L ⊂ Rn .

The problem of optimization of a polynomial on the unit sphere has attracted some
attention recently, see [5] and [9]. Note that by restricting the polynomial onto a
k-dimensional subspace we effectively reduce the number of variables to k in the
optimization problem. Using methods of computational algebraic geometry allows
one to optimize a polynomial over the sphere in time exponential in the number of
variables [12]. Hence with k = O(log N ), we obtain a quasi-polynomial algorithm
of mO(log N ) complexity which approximates the maximum value of the polynomial
on the sphere within a (1− ε)m/2 factor. If the degree m of the polynomial is fixed
and N is bounded by a polynomial in the number n of variables, we get a polynomial
time approximation algorithm.

In particular, whenever we have a polynomial f as in (1.2.1) and vectors ci

as in (1.3.1)–(1.3.2), integration (optimization) of f over the unit sphere Sn−1 re-
duces to integration (optimization) of f over a random lower-dimensional
subspace L .
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(1.6) On the Computational Complexity. Let f : Rn → R be a homogeneous
polynomial of degree m given by its “black box” which outputs the value of f (x)
for an input x ∈ Rn . Then one can compute the monomial expansion

f (x) =
∑
α

cαxα where xα = xα1
1 . . . xαn

n for α = (α1, . . . , αn)

in O

((
n + m − 1

m

)3)
time through the standard procedure of interpolation, see

also [8] for the sparse version. If L ⊂ Rn is a k-dimensional subspace, by choos-
ing an orthonormal basis in L , we can identify L with Rk . Then the monomial

expansion of the restriction fL can be computed in O

((
k + m − 1

m

)3)
time. If

k is fixed, we get a polynomial time algorithm. In we choose k = O(log N ), the
algorithms we obtain will be “quasi-polynomial,” with the complexity of mO(log N ).

Once a monomial expansion is obtained, it is easy to integrate polynomials
since there are explicit formulas to integrate monomials. Given a monomial xα =
xα1

1 · · · xαn
n , the formula is

∫
Rn

xα dµn =

π
−n/2∏n

i=1 2αi/2


(
αi + 1

2

)
if all αi are even,

0 otherwise.

The paper is structured as follows. In Section 2 we introduce one of the key
ingredients, the Wick formula. As an application of Theorem 1.4, we describe
an algorithm for approximating the hafnian of a positive matrix. In Section 3 we
prove Theorem 1.4 and Corollary 1.5. In Section 4 we consider the problem of
integrating polynomials with respect to the complex Gaussian measure in Cn . We
prove a version of Theorem 1.4 in this case and show connections between efficient
complex integration and certain hard problems of combinatorial enumeration.

2. Hafnians and the Wick Formula

One major ingredient of the proof of Theorem 1.4 is the formula for the integral
of a product of linear forms.

(2.1) Definitions. Let m = 2k be an even positive integer. A perfect matching
I of the set {1, . . . ,m} is an unordered partition of {1, . . . ,m} into a union of k
unordered pairwise disjoint pairs

I = {{i1, j1}, {i2, j2}, . . . , {ik, jk}}.
Let C = (ci j ) be an m × m matrix, where m = 2k is an even integer. The

hafnian haf A of A is defined by the formula

haf C =
∑

I

cI ,
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where the sum is taken over all perfect matchings I of the set {1, . . . ,m} and cI is
the product of all ci j for all pairs {i, j} ∈ I .

The following result is known as the (real) Wick formula, see, for example, [14].
Also, our proof of the complex Wick formula in Section 4 is readily modified for
the real case, and, in fact, was modeled after the real case.

(2.2) Lemma. Let m be a positive even integer and let �i : Rn → R, i =
1, . . . ,m, be linear functions. Let C = (ci j ) be an m × m matrix defined by

ci j =
∫
Rn

�i (x)�j (x) dµn.

Then ∫
Rn

m∏
i=1

�i (x) dµn = haf C.

If �i is defined by �i (x) = 〈ai , x〉 for some ai ∈ Rn , then ci j = 〈ai , aj 〉.

The problem of computing (approximating) the hafnian of a given positive
matrix is of interest in combinatorics and statistical physics and generalizes the
problem of computing the permanent, see Section 8.2 of [10]. Unlike in the case
of the permanent, where a polynomial time approximation algorithm has recently
been obtained [7], much less is known about computing hafnians.

(2.3) Computing the Hafnian of a Positive Matrix. Let C = (ci j ) be an m×m
positive symmetric matrix, where m = 2k is even.

Suppose that C is positive semidefinite. Then C is the Gram matrix of a set of
vectors, so ci j = 〈ci , cj 〉 for some vectors c1, . . . , cm ∈ Rm and such a represen-
tation can be computed efficiently (in polynomial time). Using the Wick formula
(Lemma 2.2), we can write

haf C =
∫
Rm

m∏
i=1

〈ci , x〉 dµm .

Suppose that for each pair ci , cj of vectors the cosine of the angle between ci

and cj is at least δ, which means that ci j ≥ δ√cii cj j for every pair i, j . Then, by
Theorem 1.4, to approximate haf C within a factor of (1 − ε)m/2, we can replace
the integral by the integral over a random k-dimensional subspace L ⊂ Rm with
k = O(ε−2δ−2 ln(m+2)). If ε and δ are fixed in advance, we get a quasi-polynomial
algorithm of mO(ln m) complexity.

One can extend the above argument as follows. We observe that haf C does not
depend at all on the diagonal entries of C , so we are free to change the diagonal
entries of C to ensure that the above conditions are satisfied. If we put sufficiently
large numbers on the diagonal of C , we can make sure that C is positive definite,
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so ci j = 〈ci , cj 〉 for some vectors c1, . . . , cm ∈ Rm . The goal is to make the cosine
of the angle between every pair ci , cj of vectors as large as possible. Suppose that
cii = 0 for all i and let −λ be the minimum eigenvalue of C . Then C + λI is a
positive semidefinite matrix and the cosine of the angle between ci and cj is ci j/λ.
Thus as long as the absolute value λ of negative eigenvalues of C is sufficiently
small, we get an efficient algorithm to approximate haf C .

3. Proofs

Apart from the Wick formula, we need a version of the Johnson–Lindenstrauss
“flattening” lemma, see, for example, [13]. We present such a version below (with
nonoptimal constants), taken from Section V.7 of [1].

(3.1) Lemma. Let x ∈ Rn be a vector and let L ⊂ R
n be a k-dimensional

subspace chosen at random with respect to the Haar probability measure on the
Grassmannian Gk(R

n). Let x ′ be the orthogonal projection of x onto L . Then, for
any 0 < ε < 1, the probability that

(1− ε)‖x‖ ≤
√

n

k
‖x ′‖ ≤ (1− ε)−1‖x‖

is at least 1− 4 exp{−ε2k/4}.

Note that the expected value of ‖x ′‖2/‖x‖2 is k/n, so Lemma 3.1 asserts that
the ratio ‖x ′‖2/‖x‖2 sharply concentrates around its expectation as k grows. One
way to see that E(‖x ′‖2/‖x‖2) = k/n is to notice that we don’t change the
expected value if, instead of fixing x and choosing a random L , we fix L (e.g.,
to the coordinate subspace of the first k coordinates) and choose a random x ∈
S

n−1, x = (ξ1, . . . , ξn). In this case E(‖x ′‖2/‖x‖2) = E‖x ′‖2 = E(ξ 2
1 +· · ·+ξ 2

k ).
By symmetry, Eξ 2

1 = · · · = Eξ 2
n and since ξ 2

1 +· · ·+ξ 2
n = 1, we have Eξ 2

i = 1/n.
The following is a straightforward corollary of Lemma 3.1. We establish it in

a slightly larger generality than immediately needed, having in mind applications
to complex integration in Section 4.

(3.2) Lemma. Let us choose δ > 0 and ε > 0. Suppose that a1, . . . , aN and
b1, . . . , bN are vectors from Rn such that the cosine of the angle between every
pair ai and bj of vectors is at least δ > 0.

Let us choose a ρ > 0 such that

(1− ρ)−2 ≤ 1+ δε
3

and an integer

k ≥ min{n, 4ρ−2 ln(12N 2 + 24N )}.
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Let L ⊂ R
n be a k-dimensional subspace chosen at random with respect to

the Haar probability measure on the Grassmannian Gk(R
n). Let a′i , b′j be the

orthogonal projection of ai , bj onto L . Then, with probability at least 2/3,

(1− ε)〈ai , bj 〉 ≤ n

k
〈a′i , b′j 〉 ≤ (1− ε)−1〈ai , bj 〉

for all pairs (i, j).

Proof. Scaling, if necessary, we may assume that ‖ai‖ = ‖bj‖ = 1 for all i and
j , so 〈ai , bj 〉 ≥ δ for all i, j . We have

〈ai , bj 〉 = ‖ai + bj‖2 − ‖ai‖2 − ‖bj‖2

2
and

〈a′i , b′j 〉 =
‖a′i + b′j‖2 − ‖a′i‖2 − ‖b′j‖2

2
.

We note that

(1− ρ)−2 ≤ 1+ δε
3

and (1− ρ)2 ≥ 1− δε
3
.

Since there are altogether N 2+ 2N vectors ai , bj , and ai + bj , by Lemma 3.1, for
a random k-dimensional subspace L , with probability at least 2/3, we get

‖ai + bj‖2(1− ρ)2 ≤ n

k
‖a′i + b′j‖2 ≤ (1− ρ)−2‖ai + bj‖2

and, similarly,

‖ai‖2(1− ρ)2 ≤ n

k
‖a′i‖2 ≤ (1− ρ)−2‖ai‖2

and

|bi‖2(1− ρ)2 ≤ n

k
‖b′i‖2 ≤ (1− ρ)−2‖bi‖2

for all pairs i, j . Since ‖ai‖ = ‖bj‖ = 1 and ‖ai + bj‖ ≤ 2, we get

‖ai + bj‖2 − 4δε

3
≤ n

k
‖a′i + b′j‖2 ≤ ‖ai + bj‖2 + 4δε

3

and, similarly,

‖ai‖2 − δε
3
≤ n

k
‖a′i‖2 ≤ ‖ai‖2 + δε

3
and

|bi‖2 − δε
3
≤ n

k
‖b′i‖2 ≤ ‖bi‖2 + δε

3
.

Therefore,

〈ai , bj 〉 − δε ≤ n

k
〈a′i , b′j 〉 ≤ 〈ai , bj 〉 + δε.

Since 〈ai , bj 〉 ≥ δ, the proof follows.



OF10 A. Barvinok

(3.3) Corollary. There exists an absolute constant γ > 0 with the following
property.

Let δ > 0 and ε > 0 be numbers, let N be a positive integer, and let a1, . . . , aN

and b1, . . . , bN be vectors fromRn such that the cosine of the angle between every
pair ai , bj of vectors is at least δ. Let k be a positive integer such that

k ≥ γ δ−2ε−2 ln(N + 2)

and let L ⊂ R
n be a k-dimensional subspace chosen at random with respect

to the Haar probability measure in the Grassmannian Gk(R
n). Let a′i , b′j be the

orthogonal projections of ai , bj onto L . Then, with probability at least 2/3, we
have

(1− ε)〈a′i , b′j 〉 ≤
k

n
〈ai , bj 〉 ≤ (1− ε)−1〈a′i , b′j 〉

for all pairs ai , bj .

The proof follows by Lemma 3.2.

Now we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. We can write

f (x) =
∑

I

αI

∏
i∈I

〈ci , x〉,

where the cosine of the angle between every pair of vectors ci and cj is at least δ,
I ranges over subsets I ⊂ {1, . . . , N } of cardinality m, and αI ≥ 0. For every I ,
let us consider the m×m matrix CI whose entries ci j are defined by ci j = 〈ci , cj 〉.
Then, by Lemma 2.2, ∫

Rn

f dµn =
∑

I

αI haf CI .

Let L ⊂ Rn be a k-dimensional subspace. Then the restriction fL of f onto L can
be written as

fL(x) =
∑

I

αI

∏
i∈I

〈c′i , x〉,

where c′i are the orthogonal projections of ci onto L . Therefore,∫
L

f dµk =
∑

I

αI haf C ′I ,

where the entries c′i j of C ′I are defined by c′i j = 〈c′i , c′j 〉. Since the hafnian of
an m × m matrix is a nonnegative homogeneous polynomial of degree m/2
in the entries of the matrix, the proof follows by Corollary 3.3 where we take
ai = bi = ci .
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Proof of Corollary 1.5. First, we claim that

max
x∈Sn−1

f (x) = max
x∈Sn−1

| f (x)|.

If the degree m of f is odd, this is immediate. If m is even, let us consider the
polynomial f p for some odd p. Since

f (x) =
∑

I

αI

∏
i∈I

〈ci , x〉 where αI ≥ 0,

the polynomial f p is also represented as a nonnegative linear combination of
products of 〈ci , x〉, where the cosine of the angle between every pair ci , cj of
vectors is at least δ. It follows from the proof of Theorem 1.4 above that∫

Sn−1
f p dωn > 0 for any p.

from which we conclude that the maximum value of f and the maximum absolute
value of f on the sphere Sn−1 must coincide.

Next, as in the proof of Theorem 1.4, we observe that if L ⊂ R
n is a k-

dimensional subspace, such that for the orthogonal projections c′1, . . . , c′N of
c1, . . . , cN onto L , we have

(1− ε)〈c′i , c′j 〉 ≤
k

n
〈ci , cj 〉 ≤ (1− ε)−1〈c′i , c′j 〉 for all pairs i, j.

Then

(1− ε)mp/2
∫

L
f p dµk ≤

(
k

n

)mp/2 ∫
Rn

f p dµn ≤ (1− ε)−mp/2
∫

L
f p dµk

for all p. In particular, if the degree m of f is even,∫
Sn−1∩L

f p dωk > 0 for all p.

Therefore,

max
x∈Sn−1∩L

f (x) = max
x∈Sn−1∩L

| f (x)|.
The proof now follows from the identities

lim
p→+∞

(∫
Sn−1

f 2p dωn

)1/2p

= max
x∈Sn−1

| f (x)| = max
x∈Sn−1

f (x),

lim
p→+∞

(∫
Sn−1∩L

f 2p dωk

)1/2p

= max
x∈Sn−1∩L

| f (x)| = max
x∈Sn−1∩L

f (x),

∫
Sn−1

f 2p dωn = 
(n/2)

2mp
(n/2+ mp)

∫
Rn

f 2p dµn,

and ∫
Sn−1∩L

f 2p dωk = 
(k/2)

2mp
(k/2+ mp)

∫
L

f 2p dµk .
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4. Complex Integration

Let f, g: Rn → R be real n-variate homogeneous polynomials. Let us identify
R

n ⊕Rn = Cn via x + iy = z and let νn be the Gaussian measure on Cn with the
density

π−ne−‖z‖
2

where ‖z‖2 = ‖x‖2 + ‖y‖2 for z = x + iy.

We recall that z = x − iy is the complex conjugate of z = x + iy.
Let us define the scalar product on the space of polynomials

〈 f, g〉 =
∫
Cn

f (z)g(z) dνn

(although we use the same notation for the standard scalar product onRn , we hope
no confusion will result since the domains are drastically different). One can easily
check that the monomials

xα = xα1
1 . . . xαn

n for α = (α1, . . . , αn), where αi ≥ 0 for i = 1, . . . , n,

are orthogonal under the scalar product, though not orthonormal,

〈xα, xβ〉 =
{
α1! . . . αn! if α = β = (α1, . . . , αn),

0 if α �= β.

Therefore, if

f =
∑
α∈F

aαxα and g =
∑
α∈G

bαxα

are the monomial expansions of f and g, we have

〈 f, g〉 =
∑

α∈F∩G

aαbαα1! · · ·αn!.

It follows from the integral representation that the scalar product is invariant under
the action of the orthogonal group: If U is an orthogonal transformation of Rn

and polynomials f1, g1 are defined by f1(x) = f (U x) and g1(x) = g(U x), then
〈 f1, g1〉 = 〈 f, g〉.

Various problems of combinatorial counting reduce to computing the scalar
products of two polynomials.

(4.1) Example. Let a1, . . . , aN and b be some nonnegative integer n-vectors.
Let M be a positive integer. We define

f (x) =
N∏

i=1

(
M∑

k=0

xkai

)
and g(x) = xb.
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Then the monomial expansion of f contains all monomials xa , where a is a linear
combination of a1, . . . , aN with positive integer coefficients not exceeding M .
Furthermore, if b = (β1, . . . , βn), then 〈 f, g〉 is the number of nonnegative integer
solutions (k1, . . . , kN ), 0 ≤ ki ≤ M , to the equation

k1a1 + · · · + kN aN = b

times β1! . . . βn!. The number of such solutions (k1, . . . , kN ) as a function of b is
often called the vector partition function, see [4]. Computing the vector partition
function is generally as hard as counting integer points in a polytope.

(4.2) Definition. Let us fix a number 0 < δ ≤ 1 and a positive integer N . We
say that a pair of homogeneous polynomials f, g: Rn → R of degree m is (δ, N )-
focused if there exist N nonzero vectors a1, . . . , aN ∈ Rn and N nonzero vectors
b1, . . . , bN ∈ Rn such that:

• for every pair (i, j) the cosine of the angle between ai and bj is at least δ;
• the polynomial f can be written as a nonnegative linear combination

f (x) =
∑

I

αI

∏
i∈I

〈ai , x〉,

while the polynomial g can be written as a nonnegative linear combination

g(x) =
∑

I

βI

∏
j∈J

〈bj , x〉,

where the sum is taken over subsets I, J ⊂ {1, . . . ,m} of cardinality |I | =
|J | = m and αI , βJ ≥ 0.

We prove that the value of the scalar product of a well-focused pair of polyno-
mials can be well approximated from the scalar product of the restriction of the
polynomials onto a random lower-dimensional subspace.

For a k-dimensional subspace L ⊂ R
n , let us consider its complexification

LC = L ⊕ i L ⊂ Cn . Let νk be the Gaussian measure in LC with the density
π−k exp{−‖z‖2} for z ∈ LC. We pick a k-dimensional subspace L ⊂ Rn at random
with respect to the Haar probability measure on the Grassmannian Gk(R

n) and
consider the restrictions fL and gL onto L and the integral

〈 fL , gL〉 =
∫

LC

f (z)g(z) dνk .

We claim that as long as k ∼ log N , the properly scaled integral over LC approxi-
mates the integral over Cn within a factor of (1− ε)m .

(4.3) Theorem. There exists an absolute constant γ > 0 with the following
property.
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For every δ > 0, for any positive integer N , for any (δ, N )-focused pair of
polynomials f, g: Rn → R of degree m, for any ε > 0, and any positive integer
k ≥ γ ε−2δ−2 ln(N + 2), the inequality

(1− ε)m〈 fL , gL〉 ≤
(

k

n

)m

〈 f, g〉 ≤ (1− ε)−m〈 fL , gL〉

holds with probability at least 2/3 for a random k-dimensional subspace L ⊂ Rn .

The proof is very similar to that of Theorem 1.4. The only difference is that we
need the complex version of the Wick formula.

(4.4) Definitions. Let m be a positive integer. A permutation of the set
{1, . . . ,m} is a bijection σ : {1, . . . ,m} → {1, . . . ,m}.

Let C = (ci j ) be an m×m matrix. The permanent per C of C is defined by the
formula

per C =
∑
σ

m∏
i=1

ciσ(i),

where the sum is taken over all permutations of the set {1, . . . ,m}.

A complex version of the Wick formula is known, see, for example, [6]. We state
it below in the form we need and also provide a proof, which is a modification of
the proof of the real Wick formula from [14].

(4.5) Lemma. Let m be a positive integer and let fi , gi : Rn → R be linear
functions. Let C = (ci j ) be an m × m matrix defined by

ci j =
∫
Cn

fi (z)gj (z) dνn.

Then ∫
Cn

n∏
i=1

fi (z)gi (z) dνn = per C.

If fi is defined by fi (x) = 〈ai , x〉 and gj is defined by gi (x) = 〈bj , x〉 for some
ai , bj ∈ Rn , then ci j = 〈ai , bj 〉.

Proof. Given vectors a1, . . . , am and b1, . . . , bm , let

p(x) =
m∏

i=1

〈ai , x〉 and q(x) =
m∏

j=1

〈bj , x〉.

Our goal is to prove that

〈p, q〉 = per C where ci j = 〈ai , bj 〉.
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First, we check the identity in the special case when a1 = · · · = am = e1,
the first basis vector, and b1 = · · · = bm = b = (β1, . . . , βn) is an arbitrary
vector. In this case, p(x) = xm

1 and q(x) = (β1x1 + · · · + βn xn)
m , so we have

〈p, q〉 = βm
1 m!. On the other hand, ci j = β1 for all i and j , so per C = m!βm

1 as
well.

Next, we check the identity when a1, . . . , am = a and b1, . . . , bm = b, where
a and b are arbitrary vectors. Applying scaling, if necessary, we can assume that
‖a‖ = 1. Since an orthogonal transformation of Rn does not change either 〈p, q〉
or C , this case reduces to the previous one.

Now we consider the general case. We observe that both quantities 〈p, q〉 and
per C are multilinear and symmetric in a1, . . . , am and multilinear and symmetric
in b1, . . . , bm , so we obtain the general case by polarization. For variables λ =
(λ1, . . . , λm) andµ = (µ1, . . . , µm)we introduce vectors aλ = λ1a1+· · ·+λmam

and bµ = µ1b1+· · ·+µmbm . If F(a1, . . . , am; b1, . . . , bm) is any polynomial mul-
tilinear and symmetric in a1, . . . , am and multilinear and symmetric in b1, . . . , bm ,
then (m!)2 F(a1, . . . , am; b1, . . . , bm) is equal to the coefficient of the product
λ1 · · · λmµ1 · · ·µm in the expansion of F(aλ, . . . , aλ; bµ, . . . , bµ) as a polynomial
in λ1, . . . , λm, µ1, . . . , µm . Since if two such polynomials F and G agree on all
(2m)-tuples (a, . . . , a; b, . . . , b), they agree everywhere. Letting F = 〈p, q〉 and
G = per C , we complete the proof.

Now the proof of Theorem 4.5 follows the proof of Theorem 1.4.
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