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Abstract We axiomatize a subjective version of the recursive expected utility
model. This development extends the seminal results of Kreps and Porteus (Eco-
nometrica 46:185–200 (1978)) to a subjective framework and provides foundations
that are easy to relate to axioms familiar from timeless models of decision making
under uncertainty. Our analysis also clarifies what is needed in going from a repre-
sention that applies within a single filtration to an across filtration representation.
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1 Introduction

We describe and provide axiomatic foundations for a subjective version of the recur-
sive expected utility model. In a seminal paper, Kreps and Porteus (1978) provide
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an axiomatic analysis of preferences in a dynamic framework that delivers recur-
sive expected utility with exogenously specified probabilities. The Kreps–Porteus
framework has been tremendously influential in the exploration of recursive prefer-
ence models and it or its extensions have been successfully applied to finance, mac-
roeconomics, game theory and behavioral economics.1 Recursive expected utility
allows for a number of features not present in the standard discounted expected util-
ity model including discount factors that may vary with payoffs, the separation of
intertemporal substitution from intratemporal risk aversion, and preferences for the
timing of the resolution of uncertainty. It does all this while retaining tractability,
especially the ability to use dynamic programming and optimization.

Extending recursive expected utility to subjective domains is important for
a number of reasons. First, issues of learning, updating beliefs and information
acquisition cannot be effectively addressed in a solely objective framework. Sec-
ond, many applications and real-world problems do not come with probabilities
pre-specified. Moreover, in atemporal models of decision-making under risk, the
importance of providing foundations for models with subjective beliefs has been
well-recognized. For example, subjective analogues to the objective probability
expected utility foundations of von Neumann and Morgenstern were provided by
(among others) Savage (1954) and Anscombe and Aumann (1963).

The main body of the paper is organized as follows. In Section 2.1 we develop
an appropriate space of objects of choice: the space of temporal acts. In the Kreps–
Porteus framework, preferences are defined over objects called temporal lotteries
that are essentially probability trees. Risk is modeled through exogenously spec-
ified objective probabilities. Our temporal acts generalize temporal lotteries by
introducing a state space and temporal resolution of uncertainty about the state
in addition to the temporal risk structure of Kreps–Porteus. In Section 2.2, we
formally define a subjective recursive expected utility (SREU) representation of
preferences over temporal acts. In Section 3, we lay out the set of preference axi-
oms that, in Section 4.1, we show characterizes SREU for subsets of temporal acts
restricted to a given filtration specifying how information is revealed over time. In
addition to standard weak order and continuity axioms, we introduce four axioms:
a temporal sure-thing principle, a temporal substitution axiom, and two axioms
which together yield state independence of preferences at each time. In Section
4.2, we give examples in which there is more than one filtration, and show that
without further assumptions, direct information effects may interact with prefer-
ence for the timing of the resolution of uncertainty. Such interaction is not allowed
by overall (i.e., cross-filtration) SREU preferences. This motivates two additional
axioms that, in Section 4.3, we show are necessary and sufficient to extend these
within filtration representations to a single SREU representation across filtrations
(and thus covering the whole domain of temporal acts). The first of these axioms
says that how information is revealed does not matter if the prize received does
not depend on the state of the world. This axiom added to the earlier ones charac-
terizes an SREU representation across filtrations where only the prior distribution
on the state space may vary with the filtration. The second axiom requires consis-
tency across filtrations in the way that bets on one event conditional on another
are evaluated relative to lotteries. With this final axiom added to the others, full

1 To name just a few see Dumas et al. (2000), Duffie et al. (1997), Epstein and Zin (1989,
1991), Chew and Epstein (1990), Caplin and Leahy (2001), and Grant et al. (2001)
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SREU obtains. The prior distribution no longer may vary with the filtration. Sec-
tion 5 discusses related literature, including previous foundations for subjective
recursive representations developed by Skiadas (1998), Wang (2003), and Hayashi
(2005). Proofs and some mathematical descriptions are contained in an Appendix.

2 The model

2.1 The objects of choice

In this section we present a model where the objects of choice are temporal acts
– acts that encode an explicit timing structure for the resolution of uncertainty.
We do this in an Anscombe–Aumann (lottery acts) framework, thus acts pay off
in terms of lotteries. Specifically, our temporal acts are a generalization of Ans-
combe–Aumann style acts in the same sense that Kreps–Porteus temporal lotteries
are a generalization of standard lotteries. In the following, for an arbitrary set X
we denote the set of all lotteries with finite support on X by � (X) . For a lottery
l ∈ � (X) , we denote the probability that l assigns to outcome x ∈ X by l (x) .
A lottery that assigns probability pi to outcome xi ∈ X with

∑n
i=1 pi = 1 may be

written (x1, p1; ...; xn, pn) .
The state space that represents all subjective uncertainty is denoted by a finite

set �. Let F be an algebra on �. Events in this formulation are elements of F .
Suppose time is indexed by t ∈ {0, . . . , T } . Let Zt be the set of possible time t
prizes. We assume that each Zt is a compact Polish (i.e., complete separable metric)
space.

Let I = {FI,0, FI,1, . . . FI,T

}
be a filtration, i.e., each FI,t is an algebra on �

and FI,t ⊆ FI,t+1 ⊆ · · · ⊆ FI,T = F . Denote the set of all filtrations by I. Note
that there is a unique partition that generates the algebra FI,t . Denote this partition
by PI,t and let PI,t (ω) denote the element of this partition that contains ω ∈ �.
The interpretation is that, just after time t (i.e., after any time t uncertainty/risk is
resolved), the decision maker will know that the state lies in PI,t (ω).

Let F−1 be the trivial algebra, that is F−1 = {∅, �}, and let FI,−1 = F−1 for
all I ∈ I. Therefore PI,−1 = {�} and PI,−1 (ω) = � for all ω and all I.

Fixing I ∈ I, we define the set of all temporal acts with respect to the filtration
I recursively:

The set of time T -temporal acts, where the information thus far revealed is
given by A ∈ PI,T −1, is denoted by FI,T ,A. An element, f , of the set FI,T ,A is a
function f : A → � (ZT ) measurable with respect to FI,T . Thus the set of all time
T -temporal acts given filtration I is simply FI,T ≡ ∪A∈PI,T −1FI,T ,A. For f ∈ FI,T ,
we write f (ω, z) to denote the probability of receiving the prize z in state ω.

The set of time t-temporal acts, where the information thus far revealed is given
by A ∈ PI,t−1, is denoted by FI,t,A. An element, f , of the set FI,t,A is a function
f : A → �

(
Zt, FI,t+1

)
, measurable with respect to FI,t , with the property that

if for any ω ∈ A, (z, g) ∈ suppf (ω) then g ∈ FI,t+1,PI,t (ω). We write f (ω, z, g)
to denote the probability of receiving the prize/t + 1 -temporal act pair, (z, g) ,
at state ω. We write f (ω, z) to denote the marginal probability of receiving the
prize z at state ω. The set of all time t-temporal acts with respect to filtration I is
FI,t ≡ ∪A∈PI,t−1FI,t,A.
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Fig. 1 A temporal act in a two period world with some time 1 continuations indicated

Since PI,−1 = {�} notice that the set of all time 0-temporal acts with respect
to filtration I , FI,0 = FI,0,�. We sometimes denote this set by simply FI . 2

Definition 1 (Temporal Acts) The set of all temporal acts is ∪I∈IFI,0 and is
denoted F.

Figure 1 illustrates a temporal act where there are three states, two time peri-
ods 0 and 1, and the partitions that generate the filtration are given by PI,0 =
{{ω1, ω2} , {ω3}} and PI,1 = {{ω1} , {ω2} , {ω3}} . The oval nodes are “uncertainty”
nodes, depicting the evolution of information about the state. The triangular nodes
are “risk” nodes, depicting lotteries. The figure also illustrates time 1-temporal
acts.

2.2 Subjective recursive expected utility

We now write down formally what is meant by a SREU representation of prefer-
ences over temporal acts:

Notation 1 Em denotes the expectation operator with respect to the measure m.
(Similarly, Em|A denotes the expectation with respect to the measure m conditional
on the event A.)

2 In general, FI,T ,A ∩ FI ′,T ,A 	= ∅, so the same function may be a time T -temporal act with
respect to several filtrations. The same will be true for times t > 0, but at time 0, we have
FI,0 ∩ FI ′,0 = ∅ for all I ′ 	= I . This last fact is true because since the filtrations differ, there
must exist a time t∗ < T and a state ω∗ such that PI,t∗ (ω∗) 	= PI ′,t∗ (ω∗). So, at time t∗ + 1, the
continuation acts at state ω∗ will be different because under filtration I they will have domain
PI,t∗ (ω∗) while under filtration I ′ they will have domain PI ′,t∗ (ω∗).
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Definition 2 (SREU Representation) A preference relation, �, over temporal
acts has a subjective recursive expected utility (SREU) representation if there exists
a probability measure µ on the state space, a continuous utility function U : ZT →
R and continuous aggregator functions ut : Zt × R → R for t = 0, ..., T − 1
that combine current outcomes with continuation values such that (a) each ut is
strictly increasing in the continuation value, (b) if we define UT : ZT → R by
UT (zT ) = U (zT ) and recursively Ut : Zt × ∪I∈IFI,t+1 → R by,

Ut (zt , f ) = ut

(
zt , Eµ|A

[
Ef (ω)Ut+1 (zt+1, h)

])
(1)

where A is the domain of f , then the following holds:
For any temporal acts f, g ∈ F,

f � g ⇐⇒ Eµ

[
Ef (ω)U0 (z0, h)

] ≥ Eµ

[
Eg(ω)U0 (z0, k)

]
. (2)

Observe that equation 1 is what makes the representation recursive, while equa-
tion 2 makes it recursive expected utility. It is subjective because the probability
measure µ is subjective. Thus the name subjective recursive expected utility. This
representation is related to a number of historically prominent recursive utility
representations. Koopmans (1960) is the first, to our knowledge, to provide foun-
dations for a recursive utility representation. His objects of choice are infinite-
horizon consumption streams and his model does not consider risk or uncertainty.
Epstein (1983) generalizes Koopmans’approach in order to incorporate (objective)
risk and considers choice among lotteries over consumption streams. He provides
foundations for expected utility representations over such lotteries where the utility
function is recursive with aggregators of particular forms. Most directly related to
the representation above, Kreps and Porteus (1978) model choice among temporal
lotteries and provide foundations for the special case of SREU in which it is as
if there is only a single state of the world, and so µ plays no role.3 In Kreps and
Porteus, as here, the timing of the resolution of lotteries (i.e., objective risk) may
matter. SREU brings subjective uncertainty into the model and similarly allows the
timing of the resolution of such uncertainty to matter.

2.3 Further notation and definitions

This subsection collects some definitions and notation used in the axiomatization
and analysis that follows.

We define mixtures over elements of FI,t,A (t-temporal acts with common
domain A and common filtration I ).

Definition 3 (α-Mixture) Let f, g ∈ FI,t,A where A ∈ PI,t−1. We denote the α-
mixture of f and g by αf + (1 − α) g ∈ FI,t,A where α ∈ [0, 1] and the mixture
is taken statewise, over probability distributions (as in Anscombe and Aumann
(1963)).

3 In its most general form, the Kreps and Porteus (1978) representation also allows utilities
and aggregators to depend on the history of realized outcomes. We do not consider such history
dependence here mainly because it simply adds to already heavy notation without adding much
conceptual insight. If one wished (so as to capture habit formation for example), history depen-
dence could be easily incorporated by adding the realized history as an additional argument of
the functions above. Furthermore, the axiomatic foundations that we provide later in the paper
could be similarly modified.
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To conserve on notation and so as to treat time T together with times t < T ,
we will sometimes write as if an element of FI,T has range in �

(
ZT × FI,T +1

)
.

Since FI,T +1 is formally undefined, read ZT × FI,T +1 as ZT .
It will often be useful to be able to refer to time s-temporal acts that are, in a

natural sense, continuations of time t-temporal acts where s ≥ t . Loosely, a time
s continuation should tell everything that may happen from time s onward. Since
what may happen may depend on the state, we will want to talk about continuations
at a given state. Furthermore, since even given the state, past randomizations may
affect what may happen from s onward, it is important to note that there may be
many such continuations. Formally:

Definition 4 (1-Step continuation) For f ∈ FI,t , say that g is a 1-step continua-
tion of f in state ω if there exists a prize zt such that (zt , g) ∈ suppf (ω).

Definition 5 (Continuation) For f ∈ FI,t , say that g is a continuation of f at
time s in state ω if either (a) s = t and g = f or (b) s = t + 1 and g is a 1-step
continuation of f in state ω or (c) s ≥ t + 2 and there exist ht+1, . . . , hs−1 such
that ht+1 is a 1-step continuation of f in state ω, ht+i is a 1-step continuation of
ht+i−1 in state ω for i = 2, . . . , s − t − 1, and g is a 1-step continuation of hs−1
in state ω.

We also refer to any continuation of f at time s as a time s continuation of f .
Of special interest will be continuations that are “ constant” in the sense that they
do not depend on the state.

Definition 6 (Constant continuation) For f ∈ FI,t,A, say that f is constant if
there exists l = (lt , lt+1, . . . , lT ) ∈ �Zt × �Zt+1 × · · · × �ZT such that, for all
times s ≥ t and for all states ω ∈ A, for any g that is a continuation of f at time
s in state ω, g (ω, ·) = ls (·). We say that f is associated with l.

Denote the set of all constant elements of FI,t,A by F ∗
I,t,A and the set of all con-

stant elements of FI,t by F ∗
I,t . Notationally, we write l ∈ �Zt ×�Zt+1×· · ·×�ZT

to stand for a constant t-temporal act associated with l where the domain A will
be clear from the context. For example, if f ∈ F ∗

I,t,PI,t−1(ω) is associated with m ∈
�Zt ×�Zt+1 ×· · ·×�ZT , and g ∈ FI,t−1,PI,t−2(ω), when we write g (ω, zt−1, m)
we mean g (ω, zt−1, f ). Note that this association makes sense because there is a
bijection between F ∗

I,t,PI,t−1(ω) and elements of �Zt × �Zt+1 × · · · × �ZT . Sim-

ilarly, if all elements in the support of g (ω) are in �
(
Zt−1 × F ∗

I,t,PI,t−1(ω)

)
we

may refer to g (ω) as an element of � (Zt−1 × �Zt × · · · × �ZT ) without any
confusion resulting. Thus g (ω, zt−1, l) is the probability of receiving (zt−1, l) ∈
Zt−1×�Zt ×· · ·×�ZT in state ω. Similarly, if g (ω) yields (zi, li) with probability
pi for i = 1, ..., n, then we may write g (ω) = ((z1, l1) , p1; ...; (zn, ln) , pn) .

Definition 7 (Constant act) A temporal act f is a constant act if f is constant.
We use lf to denote the associated vector of lotteries.

Denote the set of all constant acts by F ∗.
Next we define some additional subsets of temporal acts, specifically those

where all lotteries are degenerate up to (but not including) time t . For a fixed fil-
tration I we denote the set of such temporal acts by F t

I . We call this set F t
I the
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Fig. 2 f ∈ F 2
I

temporal acts degenerate up to time t (with respect to filtration I ).4 Any element of
this set, given a time s ≤ t and a state ω, has a unique continuation at time s in state
ω denoted by f s

ω. To lighten the notation, whenever it is clear from the context, we
refer to the time t continuation of an act f ∈ F t

I in state ω by fω. When two acts
in F t

I agree on the immediate prizes that they give at all states and times up to (but
not including) time t, we say that they share the same prize history. Clearly, two
acts that share the same prize history may have different continuations at time t.
Also note that F 0

I = FI,0, i.e., the set of all temporal acts degenerate up to time 0
is nothing but the set of all temporal acts.

Figure 2 illustrates, f ∈ F 2
I , a temporal act degenerate up to time 2. There are

four states, three time periods 0, 1 and 2, and the partitions that generate the fil-
tration I are given by PI,0 = {{ω1, ω2, ω3} , {ω4}} , PI,1 = {{ω1, ω2} , {ω3} , {ω4}}
and PI,2 = {{ω1} , {ω2} , {ω3} , {ω4}} . At times 0 and 1, the act gives prizes 5
and 7 respectively at all states. The figure also illustrates, f 1

ω1
, the unique time 1

continuation in state ω1, and, fω4 = f 2
ω4

, the unique time 2 continuation in state ω4.

3 Preference axioms

Our primitive is �, a binary relation over the temporal acts, F. The following
axioms will be imposed on �:

Axiom 1 [Weak Order] � is complete and transitive.

4 Formally, f ∈ F t
I if, for all ω and s < t , each time s continuation of f in state ω assigns

probability 1 to some element of its range, Zs × FI,s+1,PI,s (ω).
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Fig. 3 f̂ � ĝ

Axiom 2 [Continuity] � is continuous. That is, for any f ∈ F, the sets,

M (f ) = {g ∈ F |g � f }
and

W (f ) = {g ∈ F |f � g }
are closed.5

The weak order and continuity axioms are standard axioms in the literature and
ensure the existence of a continuous real-valued representation of preferences. To
understand our next axiom, consider two acts that are identical except on event
A ∈ PI,t−1 and contain only degenerate lotteries before time t. The Temporal
Sure-Thing Principle says that preference between such acts is preserved under
any common change occurring in any part of the tree other than the continuation
following event A. This axiom implies (a) separability from past prizes, and (b)
separability from unrealized events. Figures 3 and 4 provide an illustration of the
axiom.

Axiom 3 [Temporal sure-thing principle] Fix a filtration I and time t. Let A ∈
PI,t−1. Suppose f̂ , ĝ, f̃ , g̃ ∈ F t

I are such that, f̂ and ĝ share the same prize
history, f̃ and g̃ share the same prize history, and

f̂ω = f̃ω, ĝω = g̃ω for all ω ∈ A,

f̂ω = ĝω, f̃ω = g̃ω otherwise,

then f̂ � ĝ if and only if f̃ � g̃.

Using the temporal sure-thing principle, we may extend � from temporal acts
to “ continuation acts” (i.e., t-temporal acts) by filling in the rest of the tree in a
common way as long as no risk resolves (i.e., only degenerate triangular nodes in
the figures) before time t .

5 The metric on F is defined in the appendix.
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Fig. 4 f̃ � g̃

Definition 8 [Conditional preference] For any f, g ∈ FI,t,A where A ∈ PI,t−1

we say that f � g if there exist temporal acts, f̂ , ĝ ∈ F t
I , degenerate up to t and

sharing the same prize history, such that f̂ � ĝ, f̂ω = f , ĝω = g for all ω ∈ A,and
f̂ω = ĝω otherwise.

Note that we use � to indicate both the overall preference relation on FI and
the induced preference relation on continuation acts in FI,t,A. This should create
no confusion. The next lemma proves that the preference relation induced on con-
ditional acts by the definition of conditional preferences (Definition 8) is indeed a
continuous weak order.

Lemma 1 For any time t, filtration I and event A ∈ PI,t−1, � on FI,t,A is a
continuous weak order.

In what follows, we sometimes refer to the preference relation on FI,t,A, rather
than the overall preference relation on FI . This is done just for notational conve-
nience. Any statement involving the preference relation on FI,t,A may easily be
restated in terms of the overall preference relation on FI , by plugging the contin-
uation acts into an overall reference act in F t

I . The temporal sure-thing principle
would then make sure that it does not matter which reference act is used in these
comparisons.

Next we formulate a temporal substitution axiom for � on continuation acts.
This axiom generalizes the temporal substitution axiom of Kreps and Porteus to
our framework with subjective uncertainty. When there is only one state of the
world, our axiom reduces to theirs. Just as in a static framework, substitution is
crucial in characterizing an expected utility treatment of risk. The temporal aspect
of the axiom is that the risk in question is limited to that occurring at a given time
and event. This temporal aspect makes the axiom weaker than the well-known
atemporal substitution/independence axiom to the extent that the decision maker
is not indifferent to the timing of the resolution of uncertainty and risk (see e.g.,
the discussion on this point in Kreps and Porteus 1978).
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Fig. 5 f , g and h

Fig. 6 f � g

Axiom 4 [Temporal substitution] Fix any filtration I and time t. Suppose α ∈
[0, 1] and A ∈ PI,t−1. For any f, g, h ∈ FI,t,A.

f � g if and only if αf + (1 − α) h � αg + (1 − α) h.

Figures 5-7 illustrate axiom 4.
In an atemporal Anscombe–Aumann style model, in addition to the basic weak

order, continuity and substitution axioms, one needs an axiom implying state inde-
pendence of preference over lotteries to deliver expected utility. The following
monotonicity axiom is a temporal version of such state independence. Like tem-
poral substitution, it is weaker than its atemporal counterpart. Specifically it re-
quires state independence only within a given time, event and filtration. It does this
by imposing monotonicity of preference with respect to dominance in constant
continuations at a given time, event and filtration.
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Fig. 7 αf + (1 − α) h � αg + (1 − α) h

Axiom 5 [Monotonicity] Fix any filtration I and time t. Given A ∈ PI,t−1, sup-
pose that f, g ∈ FI,t,A and that all time t + 1 continuations of f and of g are
constant.6 Define, for each ω ∈ A, f ω, gω ∈ FI,t,A as follows: For all ω′ ∈ A,

f ω
(
ω′) = f (ω) ,

and,

gω
(
ω′) = g (ω) .

If f ω � gω for all ω ∈ A then f � g. Moreover if f ω � gω for some ω ∈ A then
f � g.

Our next axiom, event independence, is also a form of state independence. It
works across events, while still requiring a common time and filtration. One reason
why we write monotonicity and event independence as separate axioms is that they
play distinct roles in proving the main representation theorem. The first interme-
diate result in the proof is to show that the axioms up to monotonicity deliver a set
of expected utility representations, one for each time, event and filtration. When
event independence is additionally imposed, we show that the utilities in such rep-
resentations may be taken to be event independent in the sense that they assign the
same value to any given (prize, constant continuation) pair irrespective of the event
on which it is realized.

Axiom 6 [Event independence] Fix any filtration I and time t. Given A, A′ ∈
PI,t−1, suppose that f, g ∈ FI,t,A and f ′, g′ ∈ FI,t,A′ have all time t + 1 continu-
ations constant. Further suppose that for all ω ∈ A, ω′ ∈ A′,

f (ω) = f ′ (ω′)

6 Recall that this implies f (ω) , g (ω) ∈ � (Zt × �Zt+1 × · · · × �ZT ) for each ω ∈ A.
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and,

g (ω) = g′ (ω′) .

Then f � g if and only if f ′ � g′.

Finally, as is standard, to rule out the case where all acts are indifferent and
deliver appropriate uniqueness of the representation a non-degeneracy axiom is
needed. The version below is stronger than usual as it requires some strict pref-
erence at each event, time and filtration, thus implicitly ruling out events that are
assigned zero weight by the preferences. This is done primarily for convenience,
as dealing with null-events can be involved and is not the focus of our analysis.

Axiom 7 [Non-degeneracy] For every filtration I , time t , and event A ∈ PI,t−1
there exist f, g ∈ FI,t,A for which all time t + 1 continuations are constant and
such that f � g.

4 Representation results

4.1 Representation for a fixed filtration

Observe that except for continuity and weak order, all axioms so far concern only
comparisons of temporal acts within the same filtration. We prove that the first
six axioms yield a SREU representation within each filtration. Below we state the
result and give a brief sketch of the main steps in the argument. The proof itself is
contained in the Appendix.

Definition 9 (Within-filtration SREU representation) A SREU representation
within a filtration I is a SREU representation where the domain of the represen-
tation is restricted to temporal acts in FI , the functions µ, U , and ut in the repre-
sentation are subscripted by I , and the domain of the derived UI,t is Zt × FI,t+1
rather than Zt × ∪I∈IFI,t+1.

Proposition 1 [Characterization of within-filtration SREU] Suppose preference
� satisfies axioms weak order and continuity. Then � satisfies axioms temporal
sure-thing principle, temporal substitution, monotonicity and event independence
if and only if, for each filtration I , the restriction of � to FI has a SREU represen-
tation within I .
Furthermore, the following uniqueness properties hold. If

(
µI , UI ,

{
uI,t

}T −1
t=0

)
and

(
µ′

I , U
′
I ,
{
u′

I,t

}T −1

t=0

)
both yield SREU representations of � restricted to FI , then,

for each t , the derived U ′
I,t must be a positive affine transformation of the derived

UI,t . If non-degeneracy holds, µI is strictly positive on its domain and µ′
I must

equal µI .

Remark 1 The weak order and continuity axioms are stronger than necessary for
the proposition above because the conclusion does not refer to any cross-filtration
comparisons. If we had used versions of weak order and continuity that apply only
within each FI , the six axioms would together be necessary and sufficient for SREU
within each I . We do not do so here because the stronger versions are needed for
the overall SREU representation.
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The proof works by first showing the SREU representation restricted to t -tem-
poral acts for which all t + 1 continuations are constant. Then this is extended
to cover all temporal acts. To begin, we apply mixture space techniques (as in
Anscombe–Aumann style theories) to show that, together with weak order and
continuity, the next three axioms characterize continuous expected utility on the
subset of FI,t,A having all t+1 continuations constant. This gives a set of subjective
expected utility representations with the utilities and beliefs indexed by I, t, A.

Next, fixing I , we construct a measure µI over the whole state space such that
for any event A known coming in to time t (i.e., A ∈ PI,t−1), the measure µI,t,A is
the conditional µI |A .

Then, we show that adding the axiom event independence is equivalent to being
able to replace all the UI,t,A with a common UI,t that assigns the same value to any
given pair of immediate prize and continuation stream of lotteries irrespective of
the event on which the continuation is realized.

Next we show that there is a recursive relationship between UI,t and UI,t+1 that
holds when evaluating constant continuations. The proof works by exploiting the
nested structure of temporal acts degenerate up to t + 1 with constant time t + 1
continuations (nested since they are also temporal acts degenerate up to t with
constant time t + 1 continuations). Consider two such temporal acts differing only
in their time t + 1 continuation on some event B ∈ PI,t and let A be the event in
PI,t−1 containing B. By the temporal sure-thing principle these may be compared
either by comparing their time t +1 continuations on B or by comparing their time
t continuations on A and, furthermore, these comparisons must come out the same.
Applying the subjective expected utility representations derived above to these two
pairs of continuations then yields the relation between the time t and t + 1 utilities
on event B. As described in the preceding step, event independence ensures that
this holds across events as well. This relation across time is what determines the
aggregator functions uI,t .

Finally, we show that the representations that apply in the constant contin-
uation case may be extended to cover all temporal acts for a fixed filtration. In
broad strokes, the argument uses continuity together with temporal substitution to
show that “constant act equivalents” exist and that replacing continuations by their
constant equivalents preserves the representations derived in the earlier steps.

4.2 Filtration-dependence and timing attitudes

Kreps and Porteus (1978) show that the curvature of an aggregator like uI,t char-
acterizes attitude towards timing of the resolution of risk. Specifically, if the ag-
gregator is convex (resp. concave) in its second argument then the decision maker
prefers early (resp. late) resolution of risk. In their model, risk (through lotteries)
is the only source of uncertainty, whereas our model contains states of the world
in addition to lotteries. This leads to at least two differences regarding attitude
towards timing.

First, attitude towards timing of the resolution of (lottery) risk may vary with
the timing of the resolution of uncertainty about the state of the world (i.e., with
the filtration). In our model, this will occur when the aggregators depend on the
filtration.



P. Klibanoff and E. Ozdenoren

Second, even when the aggregators do not depend on the filtration, attitude
towards timing of the resolution of (lottery) risk may be distinct from attitude
towards the timing of the resolution of uncertainty about the state of the world.
The latter is influenced not only by the aggregators, but also by the way beliefs,
µI , may vary with the filtration.

The next example illustrates the first difference mentioned above. In it, the
aggregator is convex for one filtration and concave for the other filtration. Using
temporal acts for each filtration that do not depend on the state (analogues in our
setting of Kreps–Porteus temporal lotteries) the example shows that the decision
maker prefers early resolution of risk in the first filtration, but late resolution of
risk in the other filtration.

Example 1 Suppose there are two states of the world, i.e., � = {ω1, ω2} and two
time periods, i.e., T = 1. Let filtration I describe a situation where the deci-
sion maker learns the true state of the world coming out of time 0. Thus, I can
be generated by the partitions PI,0 = PI,1 = {{ω1} , {ω2}} . In contrast, let fil-
tration I ′ describe a situation where the decision maker does not learn the true
state until the end. Thus, I ′ is generated by the partitions PI ′,0 = {{ω1, ω2}} and
PI ′,1 = {{ω1} , {ω2}} .

We define two pairs of temporal acts, one pair on filtration I and the other on I ′.
All four temporal acts ultimately result in the payoff stream (0, 0) with probability
1
2 and (0, 9) with probability 1

2 . Within each pair, the first temporal act resolves
this risk only at time 1 while the second resolves it at time 0. For all four acts, the
resolution and timing of this risk does not depend on the state of the world. Yet,
we will see that the timing of the resolution of information about the state of the
world will affect preference.

Recall that (z1, p1; . . . ; zn, pn) denotes a lottery and f (ω, z, (z1, p1; . . . ; zn,
pn)) denotes the probability that, in state ω, temporal act f yields time 0 prize z
followed by the constant continuation that yields the lottery (z1, p1; . . . ; zn, pn)
at time 1. In reading the following definitions it may be helpful to look at Figures 8
and 9.
Let h ∈ FI be defined by

h

(

ω1, 0,

(

0,
1

2
; 9,

1

2

))

= 1 = h

(

ω2, 0,

(

0,
1

2
; 9,

1

2

))

,

and h′ ∈ FI be defined by

h′ (ω1, 0, (0, 1)) = h′ (ω1, 0, (9, 1)) = 1

2
= h′ (ω2, 0, (0, 1)) = h′ (ω2, 0, (9, 1)) .

Similarly, let k ∈ FI ′ be defined by

k

(

ω1, 0,

(

0,
1

2
; 9,

1

2

))

= 1 = k

(

ω2, 0,

(

0,
1

2
; 9,

1

2

))

,

and k′ ∈ FI ′ be defined by

k′ (ω1, 0, (0, 1)) = k′ (ω1, 0, (9, 1)) = 1

2
= k′ (ω2, 0, (0, 1)) = k′ (ω2, 0, (9, 1)) .
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Fig. 8 h ≺ h′

Fig. 9 k � k′

Suppose that UI (z) = UI ′ (z) = z, uI,0 (z, γ ) = z+γ 2 and uI ′,0 (z, γ ) = z+√
γ .

Applying Proposition 1, we see that h′ � h but k � k′since

40.5 = 1

2
(0 + 92) + 1

2
(0 + 02) >

[

0 +
(

1

2
9 + 1

2
0

)2
]

= 20.25

and

1.5 = 1

2
(0 +

√
9) + 1

2
(0 +

√
0) <

[

0 +
√(

1

2
9 + 1

2
0

)]

≈ 2.121.

So, with filtration I the decision maker prefers early resolution of risk, while with
filtration I ′ late resolution of risk is preferred.

One of the things we do in the next section is provide an additional axiom that
rules out dependence of attitude toward the timing of the resolution of (lottery) risk
on the filtration. This is an important step in characterizing an SREU representation
that applies across filtrations.
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4.3 Representations across filtrations

Having obtained a representation for preference over temporal acts that share the
same filtration, we now turn to comparisons of temporal acts across different fil-
trations. Such comparisons are crucial in many economically relevant choices. For
example, any problems involving costly information acquisition – where an impor-
tant decision is whether to bear a cost to learn information about the state of the
world versus having the information revealed only later – are inherently compari-
sons between temporal acts defined on different filtrations. So far, the only axioms
restricting cross-filtration preferences are weak order and continuity. They alone
only guarantee an ordinal representation. To allow the recursive forms derived
above to apply across filtrations as well, two invariance properties are required.

The first concerns acts that give a deterministic sequence of prizes up to time
t and then give a lottery over time t prize/constant continuation pairs. For such
acts, even though some information about the state of the world may be learned
over time, this information has no consequences for the lotteries over prizes that
the decision maker will receive. In theory, one could imagine that a decision maker
might have some preference over the way information about the true state ω ∈ �
unfolds even when the state is utterly payoff irrelevant in this way. Or one might
imagine that the way that information unfolds might somehow interact with the
tastes (e.g., attitude toward timing of the resolution of risk (as in Example 1) or atti-
tude toward risk) of the decision maker causing them to change with the filtration
– a kind of dynamic state dependence. We wish to rule out such “ pure information
effect” behaviors, so that we may focus on the treatment of information in terms
of what it conveys about outcomes and when it conveys it. This is done through
the following axiom.

Axiom 8 (Invariance to irrelevant information) For any I, I ′,t and � ∈ � (Zt×
�Zt+1 × · · · × �ZT ) , if f ∈ F t

I and g ∈ F t
I ′ give the same deterministic stream

of prizes up to time t and fω (ω) = gω (ω) = � for all ω then f ∼ g.

This axiom says that preference over acts giving a fixed stream of prizes fol-
lowed by a lottery over prize/constant continuation pairs depends only on the
identity of the stream of prizes and lottery, and in particular is independent of the
filtration on which the acts are defined.

The next proposition shows that adding this axiom to the others is equivalent
to SREU over all temporal acts with the modification that the beliefs may depend
on the filtration.

Proposition 2 (Characterization of SREU with filtration-dependent beliefs) Pref-
erences � satisfy axioms weak order, continuity, temporal sure-thing principle,
temporal substitution, monotonicity, event independence, and invariance to irrele-
vant information if and only if � has an SREU representation with the modification
that instead of a single probability measure µ there is a collection of probability
measures {µI }I∈I such that measure µI is used in evaluating temporal acts in FI .

Furthermore, the following uniqueness properties hold. If
({µI }I∈I , U, {ut }T −1

t=0

)

and
({

µ′
I

}
I∈I , U ′,

{
u′

t

}T −1
t=0

)
both yield such an SREU representation of � then,

for each t , the derived U ′
t must be a positive affine transformation of the derived
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Ut . If non-degeneracy holds, each µI is strictly positive and each µ′
I must equal

the corresponding µI .

Consider the state space and filtrations in Example 1. We define two tem-
poral acts, one on filtration I and the other on I ′. Let f ∈ FI be defined by
f (ω1, 0, (9, 1)) = 1 and f (ω2, 0, (0, 1)) = 1. Let g ∈ FI ′ be defined by
g (ω1, 0, g1) = g (ω2, 0, g1) = 1 where g1 (ω1, 9) = g1 (ω2, 0) = 1.

Note that f and g both give a payoff of 0 at time 0 regardless of the state of the
world, and at time 1 they both give 9 if the state is ω1 and 0 if the state is ω2. Yet,
they differ in terms of when the payoff uncertainty is resolved. For f the resolution
is immediate, whereas for g it is delayed.

Example 2 Suppose that U (z) = z1/2, u0 (z, γ ) = z+γ 2, and µI (ω1) = 0.5 and
µI ′ (ω1) = 0.8. Applying Proposition 2, we see that f ≺ g, since

0.5
(

0 + (
91/2

)2
)

+ 0.5
(

0 + (
01/2

)2
)

< 0 + (
0.8

(
91/2

) + 0.2
(
01/2

))2
.

In example 2, the decision maker’s beliefs are filtration dependent, and in par-
ticular, he assigns higher probability to ω1 when the information is revealed later.
Since these acts give a much better payoff in state ω1, the decision maker prefers
later resolution of uncertainty when comparing these two acts. This occurs even
though these preferences reflect a preference for early resolution of (lottery) risk
(since the aggregator, u0, is convex in the continuation value).

We now turn to a second invariance property. This requires that uncertainty
generated through the state space is calibrated with uncertainty generated through
lotteries in the same way across filtrations.

Notation 2 Let I e ∈ I be the filtration where all information is learned at the
earliest possible time, i.e., coming out of time 0. Formally, FI e,0 = F .

Axiom 9 [Consistent beliefs] Fix any time t,filtration I ,α ∈ [0, 1], eventA ∈ PI,t ,
prizes w, x ∈ Z0 and y, z ∈ Zt and streams of lotteries l, m ∈ �Z1 × · · · × �ZT

and l′, m′ ∈ �Zt+1×· · ·×�ZT . Denote by B the unique event such that B ∈ PI,t−1
and B ⊇ A. Consider temporal acts f, g, h, k ∈ FIe and f ′, g′, h′, k′ ∈ F t

I

where the latter share the same deterministic stream of prizes up to time t . Further
suppose:7

h (ω) = ((w, l) , 1) and k (ω) = ((x, m) , 1) for all ω,

h′
ω (ω) = ((

y, l′
)
, 1

)
and k′

ω (ω) = ((
z, m′) , 1

)
for all ω,

f (ω) =
{

((w, l) , 1) if ω ∈ A

((x, m) , 1) if ω /∈ A
,

g (ω) =
{

((w, l) , α; (x, m), (1 − α)) if ω ∈ B
f (ω) if ω /∈ B

7 Recall that ((w, l) , 1) is a lottery yielding (w, l) with probability 1. Similarly, ((w, l) , α;
(1 − α)) is a lottery yielding (w, l) with probability α and (x, m) with probability (1 − α).
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f ′
ω (ω) =

{ ((
y, l′

)
, 1

)
if ω ∈ A((

z, m′) , 1
)

if ω /∈ A
, and

g′
ω (ω) =

{((
y, l′

)
, α; (z, m′), (1 − α)

)
if ω ∈ B

f ′
ω (ω) if ω /∈ B

.

Then

h � k and h′
� k′

�⇒

f ∼ g ⇐⇒ f ′ ∼ g′.

As long as the decision maker cares which prize/continuation pair she gets
(so as to rule out the trivial cases where, for example, f ∼ g no matter what
α is), the axiom says that the lottery odds judged equivalent to betting on event
A conditional on B are the same under any filtration. 8 To see this, note that
given the representation from Proposition 2, f ∼ g ⇐⇒ µIe (A |B ) = α and
f ′ ∼ g′ ⇐⇒ µI (A |B ) = α. Therefore this axiom allows us to show that beliefs
over the state space do not depend on the filtration, ruling out examples such as
example 2.

With the addition of this axiom we can now state our main result, the SREU
representation theorem:

Theorem 1 [Characterization of SREU] Preferences � satisfy axioms weak or-
der, continuity, temporal sure-thing principle, temporal substitution, monotonicity,
event independence, invariance to irrelevant information and consistent beliefs if
and only if � has an SREU representation.
Furthermore, the following uniqueness properties hold. If

(
µ, U, {ut }T −1

t=0

)
and(

µ′, U ′,
{
u′

t

}T −1
t=0

)
both yield SREU representations of � then, for each t , the de-

rived U ′
t must be a positive affine transformation of the derived Ut . If non-degen-

eracy holds, µ is strictly positive and µ′ must equal µ.

5 Discussion of related literature

To our knowledge, there are three previous papers that have provided foundations
for subjective recursive classes of preferences that include recursive expected util-
ity. These papers are Skiadas (1998) (see also the related Skiadas 1997; Wang 2003;
Hayashi 2005).

We first discuss the Skiadas (1998) paper that, in a highly innovative framework,
develops axioms describing a very general recursive form. Theorem 3 of Skiadas
(1998) derives an SREU representation as a special case and, to our knowledge,

8 This axiom is related to the “Horse/Roulette Replacement Axiom” of Machina and Schmei-
dler (1995) that they use as the main driver in characterizing probabilistically sophisticated beliefs
in an Anscombe-Aumann setting and shares the same flavor of calibrating beliefs using lotteries
to impose consistency. In their case consistency is across outcomes while in our case it is across
filtrations.



Subjective recursive expected utility

is the first SREU result in the literature. There are substantial differences from
our development in both the nature of the framework and the axioms. The whole
flavor of the approach is quite different. For example, a crucial axiom for Skiadas’s
approach is Event Coherence. To state it, a little notation is required. In his frame-
work, an act is a mapping from states and times into consumption together with
a filtration that it is adapted to. Skiadas takes as primitive conditional preference
relations over acts at any given time t and event E and denotes such preference by
�E

t . Event Coherence says that for any disjoint events F and G and acts f and g
where the associated filtrations have F and G as events in their respective time t
algebras, if f �F

t g and f �G
t g then f �F∪G

t g (and a similar version with all
preferences strict). In our framework, we do not refer to objects like �F∪G

t as we
condition only on elements of partitions rather than general events in the algebras
generated by the partitions (in terms of our trees, we condition only on oval nodes,
not sets of oval nodes at a given time). Thus, the parts of the preferences considered
in the axioms are quite distinct in the two theories. One consequence is that the two
approaches make connections with other theories more or less apparent. One thing
that we feel is attractive about our approach is (as elaborated below) that it becomes
quite easy to compare with the objective formulation of Kreps and Porteus (1978)
and with standard timeless Anscombe-Aumann style models.

We next discuss the Wang and Hayashi papers. Each successfully integrates the
treatment of ambiguity with that of timing of the resolution of uncertainty. To do
so they axiomatize recursive forms including representations involving multiple
priors. The relevant points of comparison with our work are those aspects of their
results that do not involve ambiguity.

Both Wang and Hayashi work in infinite horizon environments and impose
stationarity on preferences, while we work in a finite horizon setting. A key axiom
for both Wang and Hayashi is a version of dynamic consistency. The essence of
dynamic consistency is that if one continuation is preferred to another by tomor-
row’s preference no matter what is learned between today and tomorrow then a cur-
rent outcome followed by the preferred continuation should be preferred according
to today’s preference to the same current outcome followed by the other continu-
ation. Thus, dynamic consistency ties together conditional preference at different
times. We don’t assume dynamic consistency in our approach (though it is clearly
satisfied by SREU). In fact, none of our axioms make explicit comparisons of
conditional preferences (as derived in our Definition 8) across time. In contrast,
the key axiom of our approach is temporal substitution at each time and event.
Additionally, as we describe below, neither Wang nor Hayashi characterizes a full
SREU representation.

The representation in Wang’s Theorem 4.1 can be specialized to a represen-
tation like SREU by taking his “state-aggregator” µ to be conditional subjective
expected utility. However, the conditions under which µ takes this form are not
fully investigated by Wang. The most closely related result in his paper (Theorem
5.2) yields an expected utility form for µ with a conditional measure that varies with
the filtration, but this is obtained through two assumptions – timing indifference
and future independence – that are not generally satisfied by SREU. Conditions
connecting beliefs across filtrations are also not investigated.

Hayashi’s paper works with a fixed filtration. He describes how to specialize his
main representation theorem to a SREU representation theorem within that fixed
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filtration. There are no developments comparable to the representations across fil-
trations described in our Section 4.3.

Compared to all of the above papers, the foundations we provide are more
directly related to axioms familiar from timeless models of decision making under
uncertainty. In particular, our approach emphasizes a temporal version of the usual
substitution/independence axiom. We hope that this connection with timeless mod-
els allows more of the intuition and understanding built up there to be profitably
exploited in the dynamic setting.

We think that the perspective offered by our development is especially useful
in clarifying the distinction between an objective recursive expected utility model
as in Kreps and Porteus (1978) and SREU. In particular, Theorem 2 in Kreps
and Porteus (1978) shows that (with the addition of history independence) weak
order, continuity and temporal substitution defined over their temporal lotteries are
equivalent to (objective) recursive expected utility. Our framework and axioms are
constructed in such a way that it is easy to see exactly how temporal substitution
should be generalized and what other requirements are needed to obtain a version
including subjective probabilities. Of special note is that our analysis makes clear
what is needed in going from a representation that applies within a single filtration
to an across filtration representation.

6 Appendix

6.1 Topology on the space of temporal acts

Let (S, d) be a metric space. For ε > 0 let

Aε = {y ∈ S |d (x, y) < ε, for some x ∈ A } .

The Prohorov metric ρ on the set of Borel probability measures is defined as
follows. For any two Borel probability measures µ1 and µ2 on S let

ρ (µ1, µ2) = inf {ε > 0 |µ1 (A) ≤ µ2 (Aε) + ε for all Borel sets A } .

Suppose (Zt , dt ) is a metric space for each t ∈ {0, . . . , T }. As in Kreps and
Porteus (1978), let � (ZT ) be endowed with the Prohorov metric. For any I and
any A ∈ PI,T −1, let δI,T ,A be a metric on FI,T ,A, defined by,

δI,T ,A (f, g) = sup
ω∈A

ρ (f (ω) , g (ω)) .

Iteratively, for any A ∈ PI,t , define the metric on Zt ×FI,t+1,A to be the product
metric pI,t,A, specifically,

pI,t,A

(
(zt , f ), (z′

t , f
′)) = 1

2

dt (zt , z
′
t )

1 + dt (zt , z
′
t )

+ 1

4

δI,t+1,A

(
f, f ′)

1 + δI,t+1,A (f, f ′)
.

and take the metric on �
(
Zt × FI,t+1,A

)
to be, ρI,t,A the Prohorov metric with

respect to pI,t,A. Then, for any I and any A ∈ PI,t−1, let δI,t,A be a metric on
FI,t,A, defined by,

δI,t,A (f, g) = sup
ω∈A

ρI,t,PI,t (ω) (f (ω) , g (ω)) .
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Iterating, we now have a metric on FI,0,� for any given I . Finally, define a metric
on F , by

δ (f, g) =
{

δI,0,� (f, g) if ∃I ∈ I such that f, g ∈ FI ,
1 otherwise.

Observe that this is indeed a metric since the fact that δI,0,� is bounded above by
1 for any I (because any Prohorov metric is) ensures that δ satisfies the triangle
inequality.

6.2 Proof of Lemma 1

Weak order follows immediately from the weak order and temporal sure-thing
principle axioms. To show that � on FI,t,A is continuous we need to prove that for
any f ∈ FI,t,A the sets

{
g ∈ FI,t,A |g � f

}
and

{
g ∈ FI,t,A |f � g

}
are closed.

To show that the former set is closed, fix an f ∈ FI,t,A and a sequence gn ∈
FI,t,A such that gn � f for each n. Suppose gn → g (i.e., δI,t,A (g, gn) → 0). We
now show g � f . Construct f̂ ∈ F t

I and ĝn ∈ F t
I for each n sharing the same prize

history (z0, . . . zt−1) as follows. Let f̂ω = f , ĝn
ω = gn for all ω ∈ A and for all n.

For each n, let ĝn
ω = f̂ω for all ω /∈ A. Also construct ĝ ∈ F t

I having prize history
(z0, . . . zt−1) so that ĝω = g for all ω ∈ A,and ĝω = f̂ω otherwise.

Next, let A ⊆ At−2 ⊆ At−3 ⊆ · · · ⊆ A0 ⊆ � with As ∈ PI,s denote the
unique path to the event A in filtration I. Let ω̄ ∈ A and observe that9

δ
(
ĝ, ĝn

) = δI,0,�

(
ĝ, ĝn

)

= sup
ω∈�

ρI,0,PI,0(ω)

(
ĝ (ω) , ĝn (ω)

)

= ρI,0,A0

(
ĝ (ω̄) , ĝn (ω̄)

)

= pI,0,A0

(
(z0, ĝ

1
ω̄), (z0, ĝ

n,1
ω̄

)
)

= 1

4

δI,1,A0

(
ĝ1

ω̄, ĝ
n,1
ω̄

)

1 + δI,1,A0

(
ĝ1

ω̄, ĝ
n,1
ω̄

)

≤ δI,1,A0

(
ĝ1

ω̄, ĝ
n,1
ω̄

)

· · ·
≤ δI,t,A

(
ĝt

ω̄, ĝ
n,t
ω̄

)

= δI,t,A

(
g, gn

)
.

Since δI,t,A (g, gn) → 0 by assumption, the above shows that δ
(
ĝ, ĝn

) → 0 as
well.

9 Recall that, for g ∈ F t
I , gs

ω denotes the unique continuation of g in state ω at time s < t. So,
ĝ

n,s
ω̄ is the unique time s continuation of ĝn in state ω̄.
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By the temporal sure thing principle axiom, ĝn � f̂ for each n. Since ĝn → ĝ,

the continuity axiom implies ĝ � f̂ . By the construction of ĝ and f̂ and the defi-
nition of � on FI,t,A, g � f. This proves that

{
g ∈ FI,t,A |g � f

}
is closed. The

analogous arguments may be used to show closure for
{
g ∈ FI,t,A |f � g

}
.

6.3 Proof of Proposition 1

The proof works by first showing the SREU representation restricted to t -temporal
acts for which all t +1 continuations are constant. Then this is extended to cover all
temporal acts. To begin, we apply mixture space techniques (as in Anscombe–Au-
mann style theories) to show that, together with weak order and continuity, the next
three axioms are sufficient for continuous expected utility on the subset of FI,t,A

having all t + 1 continuations constant. This gives a set of subjective expected
utility representations with the utilities and beliefs indexed by I, t, A.

Proposition 3 Suppose preference � satisfies axioms weak order, continuity, tem-
poral sure-thing principle, temporal substitution, and monotonicity. Then there
exists, for each t ∈ {0, ..., T } and for each A ∈ PI,t−1 a function UI,t,A : Zt ×
∪ω∈AF ∗

I,t+1,PI,t (ω) → R, continuous in both arguments, and a probability measure
µI,t,A on the restriction of FI,t to A such that if all time t + 1 continuations of
f, g ∈ FI,t,A are constant then,

f � g ⇔
∫

A

∑

(zt ,h)∈suppf (ω)

f (ω, zt , h) UI,t,A (zt , h) dµI,t,A

≥
∫

A

∑

(zt ,k)∈suppg(ω)

g (ω, zt , k) UI,t,A (zt , k) dµI,t,A

with UI,t,A (zt , h) = UI,t,A (zt , k) if h and k are constant and associated with the
same vector of lotteries. Moreover, each UI,t,A is unique up to positive affine trans-
formations and if non-degeneracy holds each µI,t,A is unique and strictly positive
on its domain.

Proof Fix I ∈ I. Fix an event A ∈ PI,T −1. Elements of FI,T ,A are functions from
A to �ZT . Observe that these are “Anscombe-Aumann”-style acts. By Lemma 1
� on FI,T ,A induced from � on temporal acts via the temporal sure-thing principle
satisfy weak order and continuity on that domain. Together with axioms Temporal
Substitution and Monotonicity this allows us to apply a known Anscombe–Au-
mann-style expected utility representation theorem (see e.g., Schmeidler 1989) to
deliver UI,T ,A and µI,T ,A satisfying the Proposition. Continuity ensures that UI,T ,A

is continuous. Given non-degeneracy, UI,T ,A is unique up to positive affine trans-
formations. The uniqueness of µI,T ,A follows from nondegeneracy in the usual
way. The strict positivity of µI,T ,A follows from the strict part of monotonicity.

Next, fix a time t = 0, ..., T − 1 and an event A ∈ PI,t−1. Elements of
FI,t,A where all time t + 1 continuations are constant are functions from A to
�(Zt × ∪ω∈AF ∗

I,t+1,PI,t (ω)). Since each element of ∪ω∈AF ∗
I,t+1,PI,t (ω) has an asso-

ciated element of �Zt+1 × · · · × �ZT , these functions may be taken to be maps
from A to �(Zt ×�Zt+1×· · ·×�ZT ).As above, taking the state space to be A and
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the outcome set to be Zt × �Zt+1 × · · · × �ZT we are in an Anscombe–Aumann
setting. As there is a bijection relating F ∗

I,t+1,PI,t (ω) and �Zt+1 × · · · × �ZT for
each ω ∈ A, the Monotonicity axiom applied to the functions from A to �(Zt ×
∪ω∈AF ∗

I,t+1,PI,t (ω)) yields the monotonicity in e.g., Schmeidler (1989) applied to
the functions from A to �(Zt × �Zt+1 × · · · × �ZT ). Noting that the subset of
FI,t,A where all time t + 1 continuations are constant is closed under the mixture
operations in the temporal substitution axiom, the other Anscombe–Aumann prop-
erties follow just as for the T case yielding an expected utility representation where
the outcomes are elements of Zt × �Zt+1 × · · · × �ZT . Denoting by VI,t,A (zt , l)
the utility function in this representation and setting UI,t,A (zt , h) = VI,t,A (zt , l) if
h is constant and associated with the the vector of lotteries l then the representation
holds. Uniqueness follows as usual. ��

Remark 2 Since the above Proposition shows that UI,t,A (zt , h) = UI,t,A (zt , k)
if h and k are constant and associated with the same vector of lotteries, we may
write UI,t,A (zt , l), for l ∈ �Zt+1 × · · · × �ZT , to mean UI,t,A (zt , h) for any h
associated with l.

Next we show that, fixing I , the µI,t,A are the conditionals of a single µI defined
over the whole state space.

Proposition 4 There exists a probability measure µI (unique given µI,t,A’s) on F
such that, for all t ∈ {0, . . . , T } and A ∈ PI,t−1,

µI |A ≡ µI

µI (A)
= µI,t,A, (3)

on the domain of µI,t,A.

Proof For C ∈ F , set

µI (C)

=
∫

�

∫

PI,0(ω)

. . .

∫

PI,T −2(ω)

[
µI,T ,PI,T −1(ω)

(
C ∩ PI,T −1 (ω)

)]

dµI,T −1,PI,T −2(ω) · · · dµI,1,PI,0(ω)dµI,0,�.

It is straightforward to check that this is a probability measure and that µI |A =
µI,t,A (on the domain of µI,t,A) for any A ∈ PI,t−1. To show uniqueness given the
µI,t,A’s, suppose that νI is another such measure satisfying (3). Applying equation
3 to νI and plugging into the definition of µI (C) gives
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µI (C)

=
∫

�

∫

PI,0(ω)

. . .

∫

PI,T −2(ω)

[
νI

(
C ∩ PI,T −1 (ω)

)

νI

(PI,T −1 (ω)
)

]

d

(
νI

νI

(PI,T −2 (ω)
)

)

· · · d
(

νI

νI

(PI,0 (ω)
)

)

dνI

=
∫

�

∫

PI,0(ω)

. . .

∫

PI,T −2(ω)

[
νI

(
C
∣
∣PI,T −1 (ω)

)]
dνI

∣
∣PI,T −2 (ω) . . . dνI

∣
∣PI,0 (ω) dνI

= νI (C)

for any C ∈ F . ��

The next result shows that adding the axiom event independence is equivalent
to being able to replace all the UI,t,A with a common UI,t that assigns the same
value to any given pair of immediate prize and continuation stream of lotteries
irrespective of the event on which the continuation is realized.

Proposition 5 Given the representation in Proposition 3, event independence holds
if and only if, for t ∈ {0, ..., T } , there exist UI,t : Zt ×F ∗

I,t+1 → R such that, for all
A ∈ PI,t−1, B ∈ PI,t , and B ⊆ A if f ∈ F ∗

I,t+1,B then UI,t (zt , f ) = UI,t,A (zt , f )
and UI,t (zt , f ) = UI,t (zt , g) whenever f and g are associated with the same
vector of lotteries. Such UI,t ’s are unique up to positive affine transformations.

Proof ( �⇒ ) Fix I , t and �1, �2 ∈ � (Zt × �Zt+1 × · · · × �ZT ) . Given A, A′ ∈
PI,t−1, suppose that f, g ∈ FI,t,A and f ′, g′ ∈ FI,t,A′ have all time t + 1 continu-
ations constant and that, for all ω ∈ A, ω′ ∈ A′,

f (ω) = f ′ (ω′) = �1

and,

g (ω) = g′ (ω′) = �2.

By event independence, f � g if and only if f ′ � g′. By the representation in
Proposition 3,

f � g

⇐⇒
∫

A

∑

(zt ,h)∈suppf (ω)

f (ω, zt , h) UI,t,A (zt , h) dµI,t,A

≥
∫

A

∑

(zt ,h)∈suppg(ω)

g (ω, zt , h) UI,t,A (zt , h) dµI,t,A

⇐⇒
∑

(zt ,l)∈supp�1

�1 (zt , l) UI,t,A (zt , l) ≥
∑

(zt ,l)∈supp�2

�2 (zt , l) UI,t,A (zt , l) .
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Similarly,

f ′ � g′

⇐⇒
∫

A′

∑

(zt ,h)∈suppf ′(ω)

f ′ (ω, zt , h) UI,t,A′ (zt , h) dµI,t,A′

≥
∫

A′

∑

(zt ,h)∈suppg′(ω)

g′ (ω, zt , k) UI,t,A′ (zt , k) dµI,t,A′

⇐⇒
∑

(zt ,l)∈supp�1

�1 (zt , l) UI,t,A′ (zt , l) ≥
∑

(zt ,l)∈supp�2

�2 (zt , l) UI,t,A′ (zt , l) .

Since the above holds for any �1 and �2, UI,t,A and UI,t,A′ order
� (Zt × �Zt+1 × · · · × �ZT ) identically. Therefore, any UI,t,A must be a pos-
itive affine transformation of any UI,t,A′ . Normalize all the UI,t,A’s so that they are
equal on � (Zt × �Zt+1 × · · · × �ZT ) and call this common normalization UI,t .
By Remark 2, specifying UI,t,A on � (Zt × �Zt+1 × · · · × �ZT ) determines it
everywhere, and thus we have determined a common UI,t with the property that
UI,t (zt , f ) = UI,t (zt , g) whenever f and g are associated with the same vector
of lotteries. Since any choice of normalization works, the UI,t are unique only up
to positive affine transformations.

(⇐�) Follows immediately from substituting the UI,t in the representation of
Proposition 3. ��

Next we show that there is a recursive relationship between UI,t and UI,t+1
that holds when evaluating constant continuations. The proof works by exploiting
the nested structure of temporal acts degenerate up to t + 1 with constant time
t + 1 continuations (nested since they are also temporal acts degenerate up to t
with constant time t + 1 continuations).

Proposition 6 Suppose preference � satisfies axioms weak order, continuity, tem-
poral sure-thing principle, temporal substitution, monotonicity and event indepen-
dence. Then for each I ∈ I, there exist continuous functions UI : ZT → R,
and for t = 0, ..., T − 1 functions uI,t : Zt × R → R continuous in both argu-
ments and a measure µI on F such that (a) each uI,t is strictly increasing in its
second argument, (b) if we define UI,T : ZT → R by UI,T (zT ) = UI (zT ), and
UI,t : Zt × F ∗

I,t+1 → R for t = 0, ..., T − 1 recursively by

UI,t (zt , f ) = uI,t

⎛

⎝zt ,
∑

(zt+1,h)∈suppf (ω)

f (ω, zt+1, h) UI,t+1 (zt+1, h)

⎞

⎠ , (4)

where f ∈ F ∗
I,t+1,B , B ∈ PI,t and ω ∈ B then the representations in Proposi-

tion 3 hold using these UI,t . Moreover, if another collection
(
U ′

I , u
′
I,t , µ

′
I

)
satisfies

the above, then the derived U ′
I,t must be positive affine transformations of the

corresponding UI,t . If non-degeneracy holds, µI is unique. 10,11

10 For the case t = T − 1 the h arguments in equation 4 are superfluous and should be ignored.
11 Since f is constant, by Propositions 3 and 5 the value of the second argument of uI,t is the

same no matter which ω ∈ B is considered.
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Proof From Propositions 3, 4, and 5, obtain UI,T : ZT → R, and for t =
0, . . . , T −1, UI,t : Zt ×F ∗

I,t+1 → R, and a measure µI on F . Fix these UI,t ’s and
µI and use them to define the uI,t through equation 4. Observe that this will define
the uI,t only for values of its second argument that correspond to continuation util-
ities that may be attained using constant acts. Denote the set of such continuation
values by R∗

t , i.e.,

R∗
t =

⎧
⎨

⎩
x ∈ R

∣
∣
∣
∣
∣
∣

∑

(zt+1,h)∈suppf (ω)

f (ω, zt+1, h) UI,t+1 (zt+1, h) = x for some f ∈ F ∗
I,t+1

⎫
⎬

⎭
.

We now show that such uI,t ’s are indeed functions on Zt × R∗
t and, given the

UI,t ’s and µI , are unique. Specifically, we show that the value of uI,t is completely
determined by its two arguments. We then show the continuity of uI,t in its first
argument. The proof that uI,t is continuous in its second argument will be delayed
until the proof of Proposition 1. Given that continuity, uI,t may be continuously
extended to Zt × R yielding the functions in the statement of the proposition.

Fix t = 0, . . . , T − 1 and B ∈ PI,t . Let f, g ∈ F ∗
I,t+1,B . Suppose f̂ , ĝ ∈ F t+1

I

are two temporal acts degenerate up to t + 1 with the same prize history up to time
t + 1. Note that both f̂ and ĝ are also therefore temporal acts degenerate up to
t with the same prize history up to time t . Suppose that for each ω /∈ B, f̂ω and
ĝω are constant and f̂ω = ĝω. Further suppose that f̂ω = f and ĝω = g for each
ω ∈ B. That is, f̂ and ĝ have constant time t + 1 continuations that are identical
on Bc and equal to f and g, respectively on B. By Propositions 3, 4, and 5, the
temporal sure-thing principle and the definition of � applied to F ∗

I,t+1,B,

f̂ � ĝ ⇐⇒ f � g

⇐⇒
∫

B

⎛

⎝
∑

(zt+1,h)∈suppf (ω)

f (ω, zt+1, h) UI,t+1 (zt+1, h)

⎞

⎠ dµI |B

≥
∫

B

⎛

⎝
∑

(zt+1,h)∈suppg(ω)

g (ω, zt+1, h) UI,t+1 (zt+1, h)

⎞

⎠ dµI |B

⇐⇒
∑

(zt+1,h)∈suppf (ω)

f (ω, zt+1, h) UI,t+1 (zt+1, h)

≥
∑

(zt+1,h)∈suppg(ω)

g (ω, zt+1, h) UI,t+1 (zt+1, h) , (5)

where the last equivalence follows from the constancy of f and g.
Let A be the unique element in PI,t−1 such that A ⊇ B. Observe that f̂ and

ĝ have unique time t continuations on the event A. Denote these by h, j ∈ FI,t,A

respectively and note that all time t + 1 continuations of h and j are constant and
the lotteries given at time t by h and j are degenerate. Also recall that f̂ and ĝ agree
outside of A by construction. Applying the definition of conditional preferences
(Definition 8) and the temporal sure thing principle yields,

f̂ � ĝ ⇐⇒ h � j .
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Applying Propositions 3, 4, and 5,

f̂ � ĝ ⇐⇒ h � j

⇐⇒
∫

A

UI,t

(
zt , f̂ω

)
dµI |A ≥

∫

A

UI,t

(
zt , ĝω

)
dµI |A

⇐⇒
∫

B

UI,t

(
zt , f̂ω

)
dµI |A ≥

∫

B

UI,t

(
zt , ĝω

)
dµI |A

⇐⇒ UI,t (zt , f ) ≥ UI,t (zt , g) (6)

where the third equivalence follows because f̂ and ĝ agree on Bc, and the fourth
because f̂ω = f and ĝω = g when ω ∈ B ∈ PI,t . Equations 5, 6 together imply
that,

UI,t (zt , f ) ≥ UI,t (zt , g) ⇐⇒
∑

(zt+1,h)∈suppf (ω)

f (ω, zt+1, h) UI,t+1 (zt+1, h)

≥
∑

(zt+1,h)∈suppg(ω)

g (ω, zt+1, h) UI,t+1 (zt+1, h) . (7)

The above shows equation 7 holds when both f and g are in F ∗
I,t+1,B . Next,

we show this continues to hold when f ∈ F ∗
I,t+1,B and g′ ∈ F ∗

I,t+1,B ′ for any
B, B ′ ∈ PI,t . Fix such f and g′and let � ≡ g′ (ω′). Define g ∈ F ∗

I,t+1,B by
g (ω) = �. Since g and g′ are associated with the same vector of lotteries it follows
(by Proposition 5) that UI,t (zt , g) = UI,t

(
zt , g

′). For the same reason,

∑

(zt+1,h)∈suppg(ω)

g (ω, zt+1, h) UI,t+1 (zt+1, h)

=
∑

(zt+1,l)∈supp�

� (zt+1, l) UI,t+1 (zt+1, l)

=
∑

(zt+1,h)∈suppg′(ω′)

g′ (ω′, zt+1, h
)
UI,t+1 (zt+1, h) .

Therefore equation 7 continues to hold when f ∈ F ∗
I,t+1,B and g′ ∈ F ∗

I,t+1,B ′ for
any B, B ′ ∈ PI,t .

This shows that the uI,t ’s are uniquely defined on Zt × R∗
t (given the UI,t ’s)

through equation 4 and are strictly increasing in the second argument. Continuity
of uI,t in its first argument follows directly from the continuity of UI,t in its first
argument. The proof that uI,t is continuous in its second argument will be delayed
until the proof of Proposition 1. Given that continuity, uI,t may be continuously
extended to Zt × R yielding the functions in the statement of the proposition. The
uniqueness result in the Proposition follows from uniqueness of the UI,t and µI

shown in Propositions 3, 4, and 5. ��
Finally, we show that the representations that apply in the constant continuation

case may be extended to cover all temporal acts for a fixed filtration. In broad
strokes, the argument uses continuity together with temporal substitution to show
that “ constant act equivalents” exist and that replacing continuations by their
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constant equivalents preserves the representations derived in the earlier steps. We
make use of four intermediate lemmas, stated and proved below, before proving
the main result of this section, Proposition 1.

Lemma 2 Under the assumptions of Proposition 6, for any I ∈ I, there exists
ẑt , žt ∈ Zt for t ∈ {0, ..., T } such that UI,t

(
ẑt , ẑt+1, . . . , ẑT

) ≥ UI,t (zt , f ) ≥
UI,t

(
žt , žt+1, . . . , žT

)
for any t , zt ∈ Zt and f ∈ F ∗

I,t+1.

Proof We will prove the existence of the ẑt ’s. Existence of the žt ’s follows from
similar arguments. Fix I and UI,t ’s from Proposition 5 and define the corresponding
uI,t ’s using equation 4. Since UI,T is continuous and ZT is compact we can find
ẑT ∈ ZT such that UI,T

(
ẑT

) ≥ UI,T (zT ) for all zT ∈ ZT .

Now, suppose that for some t ≤ T we have ẑs for s ≥ t such that UI,t

(
ẑt , ẑt+1,

. . . , ẑT

) ≥ UI,t (zt , f ) for any zt ∈ Zt and f ∈ F ∗
I,t+1. We will show that there

exists ẑt−1 such that UI,t−1
(
ẑt−1,, ẑt , ẑt+1, . . . , ẑT

) ≥ UI,t−1 (zt−1, f ) for any
zt−1 ∈ Zt−1 and f ∈ F ∗

I,t .To this end, let ût ≡ UI,t

(
ẑt , ẑt+1, . . . , ẑT

)
. Since uI,t−1

is continuous in its first argument and Zt−1 is compact there exists ẑt−1 ∈ Zt−1
such that

uI,t−1
(
ẑt−1, ût

) ≥ uI,t−1
(
zt−1, ût

)
.

By Proposition 6,

UI,t−1
(
zt−1, ẑt , ẑt+1, . . . , ẑT

) = uI,t−1
(
zt−1, ût

)

for all zt−1 ∈ Zt−1. For f ∈ F ∗
I,t (with associated with vector of lotteries l = (lt , m)

where m ∈ �Zt+1 × · · · × �ZT ),

UI,t−1
(
ẑt−1, ẑt , ẑt+1, . . . , ẑT

) = uI,t−1
(
ẑt−1, ût

)

≥ uI,t−1
(
zt−1, ût

)

≥ uI,t−1

⎛

⎝zt−1,
∑

zt∈supplt

lt (zt ) UI,t (zt , m)

⎞

⎠

= UI,t−1 (zt−1, f ) .

The first equality is direct from the recursive representation, the first inequality fol-
lows from the definition of ẑt−1, the second inequality follows from the definition
of ût and the fact that uI,t−1 is strictly increasing in its second argument and the
final equality from the recursive representation and the definition of f . ��
Lemma 3 Fix I, t. Let A ∈ PI,t−1 and A = ∪K

j=1Bj where Bj ∈ PI,t . Let f i
j , gi

j ∈
FI,t+1,Bj

for i ∈ {
1, ..., Nj

}
, j ∈ {1, ..., K} satisfy f i

j � gi
j . If f, g ∈ FI,t,A are

such that for ω ∈ Bj ,

f (ω) =
((

z1
j , f

1
j

)
, α1

j ; ...;
(
z
Nj

j , f
Nj

j

)
, α

Nj

j

)

g (ω) =
((

z1
j , g

1
j

)
, α1

j ; ...;
(
z
Nj

j , g
Nj

j

)
, α

Nj

j

)

then f � g.
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Proof First we prove the result when Nj = 1 for j ∈ {1, ..., K} . Fix f 1
j , g1

j ∈
FI,t+1,Bj

for j ∈ {1, ..., K} satisfying f 1
j � g1

j . Define f, g ∈ FI,t,A as in the

lemma. Let g̃ ∈ F t+1
I be such that g̃t

ω = g for ω ∈ A. Since f 1
1 � g1

1, by the
definition of � on FI,t+1,B1, g̃1 � g̃ where g̃1 ∈ F t+1

I shares the same prize history
with g̃ and is equal to f 1

1 on B1 and to g̃ on Bc
1 . This argument may be continued

using g̃1 in place of g̃ and creating g̃2 by substituting f 1
2 on B2. Since f 1

2 � g1
2,

by the definition of � on FI,t+1,B2 , g̃2 � g̃1. Continuing in this way until all of A
is covered, we find that g̃K � g̃K−1 � · · · � g̃1 � g̃. Since g̃K is equal to f on A,
g̃ is equal to g on A, and both are equal on Ac, by the definition of � on FI,t,A,
f � g.

Next, we prove the result for the case where N1 ≥ 1 and Nj = 1 for j ∈
{2, ..., K} . Fix f i

j , gi
j ∈ FI,t+1,Bj

for i ∈ {
1, ..., Nj

}
, j ∈ {1, ..., K} with Nj = 1

for j ∈ {2, ..., K} satisfying f i
j � gi

j . Define f, g ∈ FI,t,A as in the lemma. Let
hi ∈ FI,t,A, i ∈ {1, ..., N1} , be such that for ω ∈ B1,

hi (ω) = ((
zi

1, f
i
1

)
, 1

)

and hi (ω) = f (ω) otherwise. Similarly, Let ki ∈ FI,t,A, i ∈ {1, ..., N1} , be such
that for ω ∈ B1,

ki (ω) = ((
zi

1, g
i
1

)
, 1

)

and ki (ω) = g (ω) otherwise. Note that f = α1
1h1 + · · · + α

N1
1 hN1 and g =

α1
1k1 + · · · + α

N1
1 kN1 . Moreover, since f i

1 � gi
1 and f 1

j � g1
j for j ∈ {2, ..., K} ,

by the earlier case, hi � ki. This holds for all i ∈ {1, ..., N1} . Applying temporal
independence then implies that f � g.

The rest of the proof will be by induction. Fix r ≥ 2. Suppose the lemma holds
for the case where Nj ≥ 1 for j ∈ {1, ..., r − 1} and Nj = 1 for j ∈ {r, ..., K}. We
will show that then the lemma must hold for the case where Nj ≥ 1 for j ∈ {1, ..., r}
and Nj = 1 for j ∈ {r + 1, ..., K} . (Note that r = K corresponds to the statement
in the lemma.) Fix f i

j , gi
j ∈ FI,t+1,Bj

for i ∈ {
1, ..., Nj

}
, j ∈ {1, ..., K} with

Nj = 1 for j ∈ {r + 1, ..., K} satisfying f i
j � gi

j . Define f, g ∈ FI,t,A as in the
lemma. Let hi ∈ FI,t,A, i ∈ {1, ..., Nr} , be such that for ω ∈ Br,

hi (ω) = ((
zi
r , f

i
r

)
, 1

)

and hi (ω) = f (ω) otherwise. Similarly, Let ki ∈ FI,t,A, i ∈ {1, ..., Nr} , be such
that for ω ∈ Br,

ki (ω) = ((
zi
r , g

i
r

)
, 1

)

and ki (ω) = g (ω) otherwise. Note that f = α1
r h1 +· · ·+αNr

r hNr
and g = α1

r k1 +
· · · + αNr

r kNr
. Moreover, since f i ′

j � gi ′
j for i ′ ∈ {

1, ..., Nj

}
, j ∈ {1, ..., r − 1},

f i
r � gi

r and f 1
j � g1

j for j ∈ {r + 1, ..., K} , by the induction hypothesis, hi � ki.
This holds for all i ∈ {1, ..., Nr} . Applying temporal independence then implies
that f � g. This completes the proof of the lemma. ��
Lemma 4 For any I, t, A ∈ PI,t−1, F ∗

I,t,A is connected.
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Proof Fix f, g ∈ F ∗
I,t,A. Define r (α) = αf + (1 − α) g, α ∈ [0, 1]. Note that r

is continuous in the topology generated by the metric δI,t,A and connects f and g
within F ∗

I,t,A. Thus F ∗
I,t,A is path-connected. Any path connected set is connected

(e.g., Munkres 1975, p. 155). ��
Lemma 5 For any I, t and f ∈ FI,t,A, where A ∈ PI,t−1 there exists an f ∗ ∈
F ∗

I,t,A such that f ∗ ∼ f.

Proof Let M̃ (f ) be the set of all g∗ ∈ F ∗
I,t,A such that g∗ � f. Similarly let

W̃ (f ) be the set of all g∗ ∈ F ∗
I,t,A such that f � g∗. We first show that M̃ (f ) is

non-empty.
Fix f ∈ FI,T ,A, where A ∈ PI,T −1. Note that by Lemma 2,

UI,T

(
ẑT

) ≥
∫

A

∑

zT ∈suppf (ω)

f (ω, zT ) UI,T (zT ) dµI |A ,

which in turn implies by Proposition 3 that ẑT � f.
Inductively, assume that

(
ẑt , ẑt+1, . . . , ẑT

) � f for all f ∈ FI,t,B where
B ∈ PI,t−1. We now show that

(
ẑt−1, ẑt , ẑt+1, . . . , ẑT

) � f for all f ∈ FI,t−1,A

where A ∈ PI,t−2. Fix some f ∈ FI,t−1,A. Let f̃ ∈ FI,t−1,A be such that

f̃
(
ω, ·, ẑt , ẑt+1, . . . , ẑT

) = f (ω, ·) , for all ω ∈ A.

By the induction hypothesis, g ∈ FI,t,B,
(
ẑt , ẑt+1, . . . , ẑT

) � g. Therefore any
time t continuation of f̃ is better than any time t continuation of f, and so, by
Lemma 3, f̃ � f. By Lemma 2,

UI,t−1
(
ẑt−1, ẑt , ẑt+1, . . . , ẑT

) ≥
∫

A

UI,t−1(zt−1, ẑt , ẑt+1, . . . , ẑT )dµI |A ,

which in turn implies by Proposition 3 that
(
ẑt−1, ẑt , ẑt+1, . . . , ẑT

) � f̃ and thus,
by the previous sentence,

(
ẑt−1, ẑt , ẑt+1, . . . , ẑT

) � f. This proves the induction
argument and shows that M̃ (f ) is non-empty.

A similar argument using
(
žt−1, žt , žt+1, . . . , žT

)
shows that W̃ (f ) is non-

empty. Axiom 2 (Continuity) and Lemma 1 imply that these sets are closed. F ∗
I,t,A

is connected by Lemma 4. Since, by Lemma 1, M̃ (f ) ∪ W̃ (f ) = F ∗
I,t,A, there

must exist f ∗ ∈ M̃ (f ) ∩ W̃ (f ) ,which completes the proof. ��
Proposition 1 (Characterization of within-filtration SREU) Suppose prefer-
ence � satisfies axioms weak order and continuity. Then � satisfies axioms tem-
poral sure-thing principle, temporal substitution, monotonicity and event indepen-
dence if and only if, for each filtration I , the restriction of � to FI has an SREU
representation within I .

Furthermore, the following uniqueness properties hold. If
(
µI , UI ,

{
uI,t

}T −1
t=0

)

and
(
µ′

I , U
′
I ,
{
u′

I,t

}T −1

t=0

)
both yield SREU representations of � restricted to FI ,

then, for each t , the derived U ′
I,t must be a positive affine transformation of the

derived UI,t . If non-degeneracy holds, µI is strictly positive on its domain and µ′
I

must equal µI .
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Proof of Proposition 1 We need to prove that, for each filtration I , there exists a
probability measure µI on the state space, a continuous utility function UI : ZT →
R and continuous aggregator functions uI,t : Zt × R → R for t = 0, ..., T − 1
that combine current outcomes with continuation values such that (a) each uI,t is
strictly increasing in the continuation value, (b) if we define UI,T : ZT → R by
UI,T (zT ) = UI (zT ) and recursively UI,t : Zt × FI,t+1 → R by,

UI,t (zt , f ) = uI,t

(
zt , EµI |A

[
Ef (ω)UI,t+1 (zt+1, h)

])
(8)

where A is the domain of f , then the following holds:
For any temporal acts f, g ∈ FI ,

f � g ⇐⇒

EµI

[
Ef (ω)UI,0 (z0, h)

] ≥ EµI

[
Eg(ω)UI,0 (z0, k)

]
. (9)

To begin, for any t ∈ {0, ..., T } and I obtain UI,t ’s and µI from Proposition 6.
For any zt ∈ Zt , A ∈ PI,t and h ∈ FI,t+1,A let,

UI,t (zt , h) = UI,t

(
zt , h

∗)

where h ∼ h∗ and h∗ ∈ F ∗
I,t+1,A. We know that such an h∗ exists by Lemma 5.

From Lemma 3 and Proposition 6, if k∗ ∈ F ∗
I,t+1,A and k∗ ∼ h∗, then UI,t (zt , k

∗) =
UI,t (zt , h

∗) so UI,t (zt , h) is well-defined.
For any f, g ∈ FI,t,A, define f̂ , ĝ ∈ FI,t,A as follows. For each (zt , h) ∈

suppf (ω) , choose some h∗ ∼ h, h∗ ∈ F ∗
I,t+1,PI,t (ω) and let,

f̂
(
ω, zt , h

∗) = f (ω, zt , h) .

Similarly, for all (zt , k) ∈ suppg (ω) , choose some k∗ ∼ k, k∗ ∈ F ∗
I,t+1,PI,t (ω) and

let,

ĝ
(
ω, zt , k

∗) = g (ω, zt , k) .

Now note that,

f � g ⇔ f̂ � ĝ

⇔
∫

A

∑

(zt ,h∗)∈suppf̂ (ω)

f̂
(
ω, zt , h

∗)UI,t

(
zt , h

∗) dµI |A

≥
∫

A

∑

(zt ,k∗)∈suppĝ(ω)

ĝ
(
ω, zt , k

∗)UI,t

(
zt , k

∗) dµI |A

⇔
∫

A

∑

(zt ,h)∈suppf (ω)

f (ω, zt , h) UI,t (zt , h) dµI |A

≥
∫

A

∑

(zt ,k)∈suppg(ω)

g (ω, zt , k) UI,t (zt , k) dµI |A ,
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where the first equivalence follows from Lemma 3, the second equivalence follows
from the representation in Proposition 6, and the third equivalence follows from
the construction of f̂ , ĝ and UI,t as above.

Using these UI,t ’s and µI , define the uI,t through equation 8. We now show
that such uI,t ’s are indeed functions and, given the UI,t ’s and µI , are unique. We
need to show that for any f ∈ FI,t+1,B and g ∈ FI,t+1,B ′ where B, B ′ ∈ PI,t ,
UI,t (zt , f ) ≥ UI,t (zt , g) if and only if

∫

B

∑

(zt+1,h)∈suppf (ω)

f (ω, zt+1, h) UI,t+1 (zt+1, h) dµI |B

≥
∫

B ′

∑

(zt+1,h)∈suppg(ω)

g (ω, zt+1, h) UI,t+1 (zt+1, h) dµI

∣
∣B ′ . (11)

Find g∗ ∈ F ∗
I,t+1,B ′ such that g∗ ∼ g . Define � ≡ g∗ (ω) . By (10),

∫

B ′

∑

(zt+1,h)∈suppg(ω)

g (ω, zt+1, h) UI,t+1 (zt+1, h) dµI

∣
∣B ′

=
∑

(zt+1,l)∈supp�

� (zt+1, l) UI,t+1 (zt+1, l) . (12)

For A′ ⊇ B ′, A′ ∈ PI,t−1, let ĝ, g̃ ∈ FI,t,A′ be identical outside of B ′ and
on B ′, ĝ gives (zt , g) and g̃ gives (zt , g

∗). Since g∗ ∼ g, by Lemma 3, ĝ ∼ g̃.
From (10), ĝ ∼ g̃ if and only if UI,t (zt , g) = UI,t (zt , g

∗). Let g∗∗ ∈ F ∗
I,t+1,B be

associated with the same vector of lotteries as g∗. By Proposition 5, UI,t (zt , g
∗∗) =

UI,t (zt , g
∗). So, UI,t (zt , g) = UI,t (zt , g

∗∗) .

For A ⊇ B, A ∈ PI,t−1, let f̂ , ǧ ∈ FI,t,A be identical outside of B and on B,

f̂ gives (zt , f ) and ǧ gives (zt , g
∗∗) . By (10), f̂ � ǧ if and only if UI,t (zt , f ) ≥

UI,t (zt , g
∗∗) . By Lemma 3, f̂ � ǧ if and only if f � g∗∗.

So, UI,t (zt , f ) ≥ UI,t (zt , g
∗∗) = UI,t (zt , g) if and only if f � g∗∗ if and

only if
∫

B

∑

(zt+1,h)∈suppf (ω)

f (ω, zt+1, h) UI,t+1 (zt+1, h) dµI |B

≥
∑

(zt+1,l)∈supp�

� (zt+1, l) UI,t+1 (zt+1, l)

=
∫

B ′

∑

(zt+1,h)∈suppg(ω)

g (ω, zt+1, h) UI,t+1 (zt+1, h) dµI

∣
∣B ′ .

This shows that the uI,t ’s are uniquely defined (given the UI,t ’s) through equa-
tion 8 and are strictly increasing in the second argument. Continuity of uI,t in its
first argument follows directly from the continuity of UI,t in its first argument. By
Lemma 5 , the set of attainable continuation utilities is exactly R∗

t (defined in the
proof of Proposition 6). To show continuity in the second argument, fix x ∈ R∗

t .
By definition there exists f ∗ ∈ F ∗

I,t+1 such that
∑

(zt+1,h)∈suppf ∗(ω)

f ∗ (ω, zt+1, h) UI,t+1 (zt+1, h) = x.
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From our earlier arguments, there exist B ∈ PI,t and f̄ , f ∈ FI,t+1,B such that
f̄ � f ∗ � f (with at least one preference strict).

Suppose that we can find f̄ and f with f̄ � f ∗ � f . Then we can find
αx ∈ (0, 1) such that

x = αx

∫

B

∑

(zt+1,h)∈suppf̄ (ω)

f̄ (ω, zt+1, h) UI,t+1 (zt+1, h) dµI |B

+ (1 − αx)

∫

B

∑

(zt+1,h)∈suppf (ω)

f (ω, zt+1, h) UI,t+1 (zt+1, h) dµI |B .

Now, consider a sequence xn ∈ R∗
t , such that xn → x. For each n large enough,

there exists a corresponding αxn ∈ (0, 1) such that

xn = αxn

∫

B

∑

(zt+1,h)∈suppf̄ (ω)

f̄ (ω, zt+1, h) UI,t+1 (zt+1, h) dµI |B

+ (1 − αxn)

∫

B

∑

(zt+1,h)∈suppf (ω)

f (ω, zt+1, h) UI,t+1 (zt+1, h) dµI |B .

By equation 8 and the above,

UI,t

(
zt , αxn f̄ + (1 − αxn) f

)
= uI,t

(
zt , x

n
)
,

and similarly,

UI,t

(
zt , αxf̄ + (1 − αx) f

)
= uI,t (zt , x) .

Since αxn f̄ + (1 − αxn) f converges to αxf̄ + (1 − αx) f (in the Prohorov
metric),

uI,t

(
zt , x

n
) → uI,t (zt , x) .

Now suppose that there do not exist f̄ and f such that f̄ � f ∗ � f . The
remaining two cases (i.e., either f̄ ∼ f ∗ � f or f̄ � f ∗ ∼ f ) can be proved
analogously, taking into account that in these cases x can be approached only
from one direction. This completes the argument for continuity of the uI,t in their
second arguments on R∗

t . Finally, continuously extend the uI,t to Zt × R preserv-
ing monotonicity in the second argument. Uniqueness follows from uniqueness in
Proposition 6.

Necessity is all that remains to be shown.
Necessity of temporal sure-thing principle: Fix a filtration I and time t. Let

A ∈ PI,t−1. Suppose f̂ , ĝ, f̃ , g̃ ∈ F t
I are such that, f̂ and ĝ share the same prize

history (z0, z1, ..., zt−1), and f̃ and g̃ share the same prize history
(
z′

0, z
′
1, ..., z

′
t−1

)
.

Moreover suppose that,

f̂ω = f̃ω, ĝω = g̃ω for all ω ∈ A,

f̂ω = ĝω, f̃ω = g̃ω otherwise.
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Using the representation,

f̂ � ĝ

⇔
∑

ω∈�

UI,0

(
z0, f̂

0
ω

)
µI (ω) ≥

∑

ω∈�

UI,0
(
z0, ĝ

0
ω

)
µI (ω) .

By construction f̂ 0
ω = ĝ0

ω for all ω ∈ Ac, so

f̂ � ĝ

⇔
UI,0

(
z0, f̂

1
ω′

)
≥ UI,0

(
z0, ĝ

1
ω′
)

for some ω′ ∈ A. Iterating this argument we find that,

f̂ � ĝ

⇔
UI,t−1

(
zt−1, f̂ω′

)
≥ UI,t−1

(
zt−1, ĝω′

)

for some ω′ ∈ A. By the representation,

UI,t−1

(
zt−1, f̂ω′

)
= uI,t−1

(
zt−1, EµI |A

[
Ef̂ω′ (ω)UI,t (zt , h)

])

and

UI,t−1
(
zt−1, ĝω′

) = uI,t−1
(
zt−1, EµI |A

[
Eĝω′ (ω)UI,t (zt , h)

])
.

Thus,

f̂ � ĝ

⇔
uI,t−1

(
zt−1, EµI |A

[
Ef̂ω′ (ω)UI,t (zt , h)

])
≥ uI,t−1

(
zt−1, EµI |A

[
Eĝω′ (ω)UI,t (zt , h)

])

⇔
EµI |A

[
Ef̂ω′ (ω)UI,t (zt , h)

]
≥ EµI |A

[
Eĝω′ (ω)UI,t (zt , h)

]

where the second equivalence follows since uI,t−1 is increasing in its second argu-
ment. By the same argument we can show that,

f̃ � g̃

⇔
EµI |A

[
Ef̃ω′ (ω)UI,t (zt , h)

]
≥ EµI |A

[
Eg̃ω′ (ω)UI,t (zt , h)

]

But note that f̂ω′ = f̃ω′ and ĝω′ = g̃ω′ since ω′ ∈ A. Thus,

f̂ � ĝ ⇔ f̃ � g̃.

This proves that the representation implies the temporal sure thing principle.
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Necessity of temporal substitution Fix any filtration I and time t. Suppose α ∈
[0, 1] and A ∈ PI,t−1. For any f, g, h ∈ FI,t,A,

f � g

⇔ EµI |A
[
Ef (ω)UI,t (zt , k)

] ≥ EµI |A
[
Eg(ω)UI,t (zt , k)

]

⇔ αEµI |A
[
Ef (ω)UI,t (zt , k)

] + (1 − α) EµI |A
[
Eh(ω)UI,t (zt , k)

]

≥ αEµI |A
[
Eg(ω)UI,t (zt , k)

] + (1 − α) EµI |A
[
Eh(ω)UI,t (zt , k)

]

⇔ EµI |A
[
αEf (ω)UI,t (zt , k) + (1 − α) Eh(ω)UI,t (zt , k)

]

≥ EµI |A
[
αEg(ω)UI,t (zt , k) + (1 − α) Eh(ω)UI,t (zt , k)

]

⇔ EµI |A
[
Eαf (ω)+(1−α)h(ω)UI,t (zt , k)

] ≥ EµI |A
[
Eαg(ω)+(1−α)h(ω)UI,t (zt , k)

]

⇔ αf + (1 − α) h � αg + (1 − α) h.

Necessity of monotonicity Fix any filtration I and time t. Given A ∈ PI,t−1, sup-
pose that f, g ∈ FI,t,A and f ω, gω ∈ FI,t,A for each ω ∈ A. Further suppose that
all time t + 1 continuations of f and of g are constant. Define f ω, gω as follows:
For all ω′ ∈ A,

f ω
(
ω′) = f (ω) ,

and,

gω
(
ω′) = g (ω) .

Suppose f ω � gω for all ω ∈ A. This implies that,
∫

A

∑

(zt ,l)∈suppf ω(ω′)

UI,t (zt , l) dµI |A (
ω′) ≥

∫

A

∑

(zt ,l)∈suppgω(ω′)

UI,t (zt , l) dµI |A (
ω′)

where (zt , l) denotes an immediate consumption/constant continuation pair. (Note
that the representation implies that evaluation of the pair (zt , l) does not depend
on the state that it occurs, and it is for this reason that UI,t (zt , l) is well-defined.)
The previous inequality implies by the construction of f ω and gω that

∑

(zt ,l)∈suppf (ω)

UI,t (zt , l) ≥
∑

(zt ,l)∈suppg(ω)

UI,t (zt , l) .

Finally the previous inequality holds for all ω ∈ A so,
∫

A

∑

(zt ,l)∈suppf (ω)

UI,t (zt , l) dµI |A (ω) ≥
∫

A

∑

(zt ,l)∈suppg(ω)

UI,t (zt , l) dµI |A (ω)

⇔ f � g.

The strict part of monotonicity follows from similar arguments and by noticing
that µI |A is strictly positive for all ω ∈ A.

Necessity of event independence: Shown in Proposition 5. This completes the
proof. ��
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6.4 Proof of Proposition 2
(Characterization of SREU with filtration-dependent beliefs)

We need to prove that there exists a probability measure µI on the state space
for each filtration I , a continuous utility function U : ZT → R and continuous
aggregator functions ut : Zt × R → R for t = 0, ..., T − 1 that combine current
outcomes with continuation values such that (a) each ut is strictly increasing in
the continuation value, (b) if we define UT : ZT → R by UT (zT ) = U (zT ) and
recursively Ut : Zt × ∪I∈IFI,t+1 → R by,

Ut (zt , f ) = ut

(
zt , EµI |A

[
Ef (ω)Ut+1 (zt+1, h)

])
(13)

where A is the domain of f , then the following holds:
For any temporal acts f ∈ FI and g ∈ FI ′,

f � g ⇐⇒

EµI

[
Ef (ω)U0 (z0, h)

] ≥ EµI ′
[
Eg(ω)U0 (z0, k)

]
. (14)

To begin, from the characterization of within-filtration SREU (Proposition 1)
for each I ∈ I obtain UI and for t = 0, ..., T − 1 functions uI,t and a probability
measure µI on F .

Next fix some I, I ′,t and �, �′ ∈ � (Zt × �Zt+1 × · · · × �ZT ) . Suppose
f, g ∈ F t

I and f ′, g′ ∈ F t
I ′ give the same deterministic stream of prizes, z0, z1, . . . ,

zt−1, up to time t and fω (ω) = f ′
ω (ω) = � and gω (ω) = g′

ω (ω) = �′ for all ω. By
the Invariance to Irrelevant Information axiom f ∼ f ′ and g ∼ g′. Thus f � g
if and only if f ′ � g′. Applying Proposition 1 and recalling that the uI,t ’s are
increasing in their second arguments,

f � g

⇔

uI,0

⎛

⎝z0, uI,1

⎛

⎝z1 · · · uI,t−1

⎛

⎝zt−1,
∑

(zt ,l)∈supp�

UI,t (zt , l)

⎞

⎠ · · ·
⎞

⎠

⎞

⎠

≥ uI,0

⎛

⎝z0, uI,1

⎛

⎝z1 · · · uI,t−1

⎛

⎝zt−1,
∑

(zt ,l)∈supp�′
UI,t (zt , l)

⎞

⎠ · · ·
⎞

⎠

⎞

⎠

⇔∑

(zt ,l)∈supp�

UI,t (zt , l) ≥
∑

(zt ,l)∈supp�′
UI,t (zt , l) .

Similarly,

f ′ � g′

⇔
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uI ′,0

⎛

⎝z0, uI ′,1

⎛

⎝z1 · · · uI ′,t−1

⎛

⎝zt−1,
∑

(zt ,l)∈supp�

UI ′,t (zt , l)

⎞

⎠ · · ·
⎞

⎠

⎞

⎠

≥ uI ′,0

⎛

⎝z0, uI ′,1

⎛

⎝z1 · · · uI ′,t−1

⎛

⎝zt−1,
∑

(zt ,l)∈supp�′
UI ′,t (zt , l)

⎞

⎠ · · ·
⎞

⎠

⎞

⎠

⇔∑

(zt ,l)∈supp�

UI ′,t (zt , l) ≥
∑

(zt ,l)∈supp�′
UI ′,t (zt , l) .

Thus, elements of � (Zt × �Zt+1 × · · · × �ZT ) are ranked identically by tak-
ing expectations over UI,t and UI ′,t . By the standard uniqueness properties for
expected utility, UI,t and UI ′,t must be related by a positive affine transformation.
The above reasoning holds for any I ′ so without loss of generality we may normal-
ize all the UI ′,t ’s to a common Ut . This may be done for each t ∈ {0, . . . , T }.12

Given these Ut ’s, the ut ’s are uniquely defined through equation 13 as before. Prop-
osition 1 and the fact that the Ut ’s are simply renormalizations guarantee that (14)
holds whenever f and g share the same filtration. Next, we show that the same is
true when f and g are temporal acts with different filtrations.

Fix f ∈ FI and g ∈ FI ′ . Let f ∗ ∈ F ∗
I and g∗ ∈ F ∗

I ′ be such that f ∗ ∼ f
and g∗ ∼ g (these exist by Lemma 5). Let ĝ∗ ∈ F ∗

I be such that lĝ∗ = lg∗ .
By Invariance to Irrelevant Information, ĝ∗ ∼ g∗. Denoting lf ∗ by (l0, m) where

l0 ∈ �Z0 and m ∈ �Z1 × · · · × �ZT and lĝ∗ by
(
l̂0, m̂

)
where l̂0 ∈ �Z0 and

m̂ ∈ �Z1 × · · · × �ZT ,

f � g ⇔
f ∗ � ĝ∗ ⇔

∑

z0∈suppl0

l0 (z0) U0 (z0, m) dµI ≥
∑

z0∈suppl̂0

l̂0 (z0) U0
(
z0, m̂

)
dµI

⇔∫

�

∑

(z0,h)∈suppf (ω)

f (ω, z0, h) U0 (z0, h) dµI ≥
∫

�

∑

(z0,k)∈suppg(ω)

g (ω, z0, k)

U0 (z0, k) dµI ′ .

where the second equivalence follows from the representation applied within fil-
tration I and the third equivalence follows from the construction of f ∗, g∗ and ĝ∗
and the within filtration representations. This proves that (14) holds.

The uniqueness and strict positivity and continuity statements follow directly
from the corresponding results in our earlier representations. Necessity follows
from the characterization of within-filtration SREU (Proposition 1) and the obvi-
ous necessity of invariance to irrelevant information, weak order and continuity.

12 For t = 0, the middle step in the above displayed inequalities is not necessary, as no uI,t ’s
are involved.
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6.5 Proof of Theorem 1
(Characterization of SREU)

We begin with a trivial case. Suppose that for all h and k as constructed in the
consistent beliefs axiom, h ∼ k. By (14), this implies U0 is constant on Z0 ×
�Z1 × · · · × �ZT , and, since any continuation is indifferent to some constant
continuation, is thus constant overall. By (13), this implies all the Ut ’s are constant
as well. In this case beliefs are irrelevant and the theorem follows straight from the
characterization of SREU with filtration-dependent beliefs (Proposition 2). From
here on we assume there does exist some h � k. Define µ ≡ µIe from Proposition
2. The strict part of the Monotonicity axiom together with h � k imply that µ is
everywhere strictly positive.

Fix some such h � k. We will show that for any filtration I , µI may be set
equal to µ. Fix any I and time t . If h′ ∼ k′ for all h′ and k′ as constructed in the
consistent beliefs axiom then, by similar reasoning as in the previous paragraph,
the only beliefs that may matter for filtration I are those over events in FI,t−1 and
conditional probabilities over finer events in F may be freely set to those in µ.
Otherwise fix an h′

� k′. Take any A ∈ PI,t and B ∈ PI,t−1 with B ⊇ A and
construct temporal acts f, g, f ′ and g′ as in axiom consistent beliefs. By (14) and
some manipulation,

f ∼ g

⇐⇒ µ(A)U0 (w, l) + (1 − µ(A)) U0 (x, m)

= µ(B) (αU0 (w, l) + (1 − α)U0 (x, m)) + (1 − µ(B)) U0 (x, m)

⇐⇒ µ(A |B )U0 (w, l) + (1 − µ(A |B )) U0 (x, m)

= αU0 (w, l) + (1 − α)U0 (x, m)

⇐⇒ µ(A |B ) = α.

Next, let B ⊆ Bt−2 ⊆ Bt−3 ⊆ · · · ⊆ B0 ⊆ � with Bs ∈ PI,s denote the unique
path to the event B in filtration I. By (13) and (14),

f ′ ∼ g′

⇐⇒ u0(z0, µI (B0 |�)u1(z1, · · · µI (B |Bt−2 )ut−1(zt−1, µI (A |B )Ut

(
y, l′

)

+ (1 − µI (A |B )) Ut

(
z, m′))

+(1 − µI (B |Bt−2 ))ut−1
(
zt−1, Ut

(
z, m′)) · · · )

+(1 − µI (B0 |�))u1
(
z1, · · · ut−1

(
zt−1, Ut

(
z, m′)) · · · ))

= u0(z0, µI (B0 |�)u1(z1, · · · µI (B |Bt−2 )ut−1(zt−1, αUt

(
y, l′

)

+ (1 − α) Ut

(
z, m′)) + (1 − µI (B |Bt−2 ))ut−1

(
zt−1, Ut

(
z, m′)) · · · )

+(1 − µI (B0 |�))u1
(
z1, · · · ut−1

(
zt−1, Ut

(
z, m′)) · · · ))

⇐⇒ µI (A |B )Ut

(
y, l′

) + (1 − µI (A |B )) Ut

(
z, m′)

= αUt

(
y, l′

) + (1 − α) Ut

(
z, m′)

⇐⇒ µI (A |B ) = α.
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As the above argument may be made for any α, f ∼ g ⇐⇒ f ′ ∼ g′ from Axiom
Consistent Beliefs delivers

µI (A |B ) = µ(A |B )

for all A ∈ PI,t and B ∈ PI,t−1 with B ⊇ A. The argument may be repeated to
show this equality for any t , and so µI may be replaced with µ in Proposition
2. The same holds for all I , and so the theorem is proved. Necessity follows as
in the characterization of SREU with filtration-dependent beliefs (Proposition 2)
with the equality of conditional beliefs implying the consistent beliefs axiom.
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