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Abstract This paper outlines an algorithm for the
continuous non-linear approximation of procedurally
defined curves. Unlike conventional approximation
methods using the discrete L_2 form metric with sam-
pling points, this algorithm uses the continuous L_2
form metric based on minimizing the integral of the
least square error metric between the original and
approximate curves. Expressions for the optimality
criteria are derived based on exact B-spline integration.
Although numerical integration may be necessary for
some complicated curves, the use of numerical inte-
gration is minimized by a priori explicit evaluations.
Plane or space curves with high curvatures and/or
discontinuities can also be handled by means of an
adaptive knot placement strategy. It has been found
that the proposed scheme is more efficient and accurate
compared to currently existing interpolation and
approximation methods.

Keywords Approximation Æ B-spline Æ CAD Æ
Continuous Æ Interpolation Æ Reparametrization

Introduction

The equivalence of two parametric curves is an issue in
many practical computer-aided design and manufac-
turing applications, e.g., surface-surface intersection,
NC tool path generation, parametric surface trimming

and robotic trajectory planning. Curves may be termed
as parametrically equivalent or geometrically equivalent
[1]. For example, curves u(t) and v(s) are parametrically
equivalent if s = t implies that u(t)=v(s) in the common
domain of s and t. On the other hand u(t) and v(s) are
geometrically equivalent if they occupy the same locus of
points but may be parameterised differently. In many
applications, it is important that the parametric equiv-
alence of curves is maintained after various conversions
e.g., knot removal, degree elevation, degree reduction, or
reparametrization.

Reparametrization is the process of altering the
parametric speed along a curve or surface by the speci-
fication of a linear or non-linear function. In concept, an
exact reparametrization is desired. A solution to the
problem of exact non-linear reparametrization is out-
lined in The NURBS Book [2]. It involves a repeated
application of the chain rule of differentiation to exactly
compute the control points of the resulting curve.
However, exact reparameterized functions may be very
hard to obtain or too complex for practical use. An
example will demonstrate the need for approximate
algorithms such as those described in this paper. Con-
sider a parametric surface S(u,v) in R3 of degree n0·m0.
Also consider a curve that is represented in the para-
metric domain of the surface by parametric functions
u(t) and v(t), each of degree n1 and m1 respectively. In
many applications the representation of the curve C(t) in
R3 (which lies on the surface S(u,v)) is needed for further
processing. The equation of C(t) is shown in Eq. 1,
where: Bn

i are the B-spline basis functions of degree n
and the Qi,j are the control points of the surface (a
similar notation is adopted for curves). The degree of
C(t) is n0Æn1+m0Æm1, which can turn out to be a large
number. For example, if n0=n1=m0=m1=3 (a rea-
sonable assumption), the resulting degree of C(t) will be
18 (too large for practical purposes). Thus, there exists
the need for an algorithm for approximate reparamet-
rization that closely maintains parametric equivalence,
while ensuring that the degree of the resulting curve is
within practical limits.
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Interpolation and approximation methods have been
used to approximate various types of procedurally de-
fined curves based on sampled points. Piecewise cubic
curves are quite commonly used to solve the Hermite
interpolation problem of passing a curve through a set
of points with specified end derivatives [3, 4, 5, 6].
Integral B-spline curve interpolation has also been used
[7, 8]. In approximating curves, the discrete L_2 form
metric, i.e., the sum of squared deviations between the
sampled points and the approximated curve, are mini-
mized to estimate the unknowns of the approximated
curve [9, 10, 11 ,12, 13]. Usually, the unknowns are the
control points of the approximated curve. Most often,
this results in linear equations [9, 10, 11]. However,
depending on how the problem is posed, non-linear
systems could also result [12, 13].

This paper presents an alternate algorithm, with
continuous approximation, using the continuous L_2
form metric by minimizing the integral of the least
square error metrics between the original and approx-
imate curves. This proposed scheme may be used to
approximate any curves whose positions and deriva-
tives can be found procedurally. The next two sections
outline the core and high-level procedures of this non-
linear approximation algorithm. Remarks and results
are presented and followed by conclusions. In the
context of expressions, bold faced letters are used to
indicate vectors/matrices and ordinary letters to repre-
sent scalars.

The core procedure

Consider an ideal curve C(t) whose positions and
derivatives may be obtained procedurally, i.e., the final
B-spline representation of C(t) is not necessary to be
available (or may be difficult to obtain). The goal of this
section is to develop the core procedure for finding a
B-spline curve ~CðtÞ that approximates the ideal curve
C(t). A typical expression of ~CðtÞ is shown in Eq. 2:

~CðtÞ ¼
XN

k¼0
Bn

kðtÞPk ð2Þ

T ¼ ½t0; t1; :::; tNþnþ1�; t 2 ½a; b� ¼ ½tn; tNþ1�

The assumptions made in developing the core pro-
cedure outlined in this section, are listed below.

– The curve ~CðtÞ is an integral B-spline curve.
– The degree (n) and the number of control points

(N+1) of ~CðtÞ are known.

– Parametric correspondence exists between the curves
C(t) and ~CðtÞ.

– T is a pre-determined knot sequence.
– The control points Pk are unknown and need to be

determined such that a given metric is minimized.

Let the lth derivative of ~CðtÞ be represented as ~C
ðlÞðtÞ,

as shown in Eq. 3, where ~C
ð0ÞðtÞ ¼ CðtÞ: Note that the

resulting control points Pk
(l) can be determined by the

original control points Pk [2].

~C
ðlÞðtÞ ¼

XN�l

k¼0
Bn�l

k ðtÞP
ðlÞ
k ð3Þ

T ðlÞ ¼ ½tl; tlþ1; :::; tNþnþ1�l�; t 2 ½a; b� ¼ ½tn; tNþ1�

The metric that determines the closeness of the ideal
curve from the approximated curve is chosen such that
the deviations in positions as well as derivatives are
represented. The metric, shown in Eq. 4, represents the
sum of square deviations of positions and derivatives
between the ideal and approximated curves. A similar
metric was used in curve fitting by Fang and Gossard
[14]. The number of derivatives d (0 £ d £ n) may be
chosen depending on the desired closeness, in a least
square sense, of positions and derivatives along the
curve. The al is an arbitrary constant that scales various
components of the metric.

E ¼
Xd

l¼0
al

Z b

a

~C
ðlÞðtÞ � CðlÞðtÞ

���
���
2

dt ð4Þ

The curve (in this case, its control points) can be
determined by minimizing the metric in Eq. 4:

@E
@Pk
¼ 0 ¼

Xd

l¼0
al

Z b

a
½ ~CðlÞðtÞ � CðlÞðtÞ� � rðlÞk;nðtÞdt ð5Þ

where:

rðlÞk;nðtÞ ¼
@ ~C
ðlÞðtÞ
@Pk

¼
XN�l
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i ðtÞQ
ðlÞ
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1; i ¼ k
0; i 6¼ k

�
ð5bÞ

QðlÞi;k;n ¼ ðn� lþ 1Þ � Qðl�1Þiþ1;k;n�Qðl�1Þi;k;n

tiþnþ1�tiþl
; k � l6i6k

0; otherwise

(
ð5cÞ

By taking all the terms containing the unknowns
(control points) to the left hand side, Eq. 5 can be ex-
pressed as:

Xd

l¼0
al

Z b

a

~C
ðlÞðtÞrðlÞk;nðtÞdt ¼

Xd

l¼0
al

Z b

a
CðlÞðtÞrðlÞk;nðtÞdt ð6Þ

Equation 6 yields N+1 equations in N+1 (vector)
unknowns, Pk, as represented by:
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ak � �P ¼ bk

06k6N
ð7Þ

where ak are 1·(N+1) row vectors, bk are 1·1 vectors,
and P— are the composite vector of control points that
results from assembling Pk.

For the left hand side of Eq. 6, the summation will be
temporarily ignored and only one term will be consid-
ered. The main idea is to express the term shown in
Eq. 8 as a product of matrices and the vector of un-
knowns P—. Thus Hl

k are row vectors of size 1·(N-l+1)
and Gq are matrices of size (N-m)·(N-m+1). They are
defined in Eqs. 9 and 10, respectively.

Z b

a

~C
ðlÞðtÞrðlÞk;nðtÞdt ¼

XN�1

i¼0

Z b
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Bn�l

i ðtÞ � r
ðlÞ
k;nðtÞdt

� �
P ðlÞi

¼ H
ðlÞ
k �

Y0

m¼l�1
Gm

 !
� �P ¼ a
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where:

Gm ¼ gm;i;j
� �

ðN�mÞ�ðN�mþ1Þ
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tiþnþ1�tiþmþ1
; i ¼ j

n�m
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; i ¼ j� 1
0; otherwise

8
<

:
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H ðlÞk ¼ hðlÞi;k

h i

1xðN�lþ1Þ

hðlÞi;k ¼
R b

a rð0Þi;n�lðtÞ � r
ðlÞ
k;nðtÞdt; k � l� n6i6k þ n

0; otherwise

�

ð8bÞ
The calculation of hðlÞi;k is involved in the integrals of

products of B-spline functions, whose derivations are
shown in the Appendix. Finally, ak can be obtained as
follows:

ak ¼
Xd

l¼0
ala
ðlÞ
k ¼

Xd

l¼0
al �HðlÞk �

Y0

m¼l�1
Gm

 !
ð9Þ

The bk can be evaluated in two cases as shown in
Eqs. 10 and 11 when: n

2\l6nbðlÞk can be calculated ex-
actly by Eq. 10b (see the Appendix for integrals of
products of B-spline functions); and when 0 < l6 n

2,
numerical integration may be necessary.

b
ðlÞ
k ¼
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a
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lR b
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(
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where:

I
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Thus:
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alJ
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alI
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where:

fkðtÞ ¼
Xminðd;n2Þ

l¼0
ð�1Þlal � rð2lÞ

k;n ðtÞ ¼
6¼ 0; tk6t6tkþnþ1
¼ 0; otherwise

�

ð11aÞ

Note that if C(t) could be represented directly as a
B-spline function, the bk would be evaluated exactly
without numerical integration involved. However, when
C(t) is a procedurally defined function or difficult to
represent in a final B-spline form, numerical integration
has to be applied.

Once ak and bk are evaluated, a linear system of
equations obtained as shown in Eq. 12, which can be
solved to obtain the control points P— of ~CðtÞ: Each ak
is a 1·(N+1) row vector, and A turn out to be a
(N+1)·(N+1) matrix.

A � P ¼ B
a0½ �1xðNþ1Þ
a1½ �1xðNþ1Þ

..

.

aN½ �1xðNþ1Þ

2
66664

3
77775

ðNþ1Þ�ðNþ1Þ

�

P0

P1

..

.

PN

2
6664

3
7775

ðNþ1Þ�1

¼

b0
b1
..
.

bN

2
6664

3
7775

ðNþ1Þ�1

ð12Þ

A high-level procedure

The core procedure described in Sec. 2 assumes that the
degree (n), the number of control points (N+1), and the
knot vector are known a priori. While it is realistic to
assume a certain degree for the resulting curve, the
number of control points and the knot vector need to be
determined based on user-specified error bounds on the
positions and derivatives. This error specified is gener-
ally different from the least square error E(l), since most
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users are more interested in an estimate of the set the-
oretic distance measure: the Hausdorff distance e(l) be-
tween the ideal and approximated curves [15]. Thus, a
high-level iterative procedure for finding the number of
control points and the knot vector based on repeatedly
using the core procedure is outlined.

1. The degree n of the approximated curve is fixed
(usually degree 3 or 4 curves are preferred). Initially,
the number of control points is set to the smallest
possible number, i.e., n+1 for a B-spline curve. The
knot vector is initialised to a uniform sequence in the
parametric domain of interest as T=[t0,t1,...t2n+1].

2. The core procedure is used to find the optimal control
points of the approximated curve.

3. The errors between the ideal and approximate
curves are evaluated numerically based on Eq. 13.
The discussion of the error evaluation can be found
in [16].

eðlÞ ¼ sup CðlÞðtÞ � ~C
ðlÞðtÞ

���
���6eðlÞSpecified ð13Þ

4. If all the errors calculated in Eq. 12 are less than the
values of the user specified errors, the iteration stops.
Otherwise, an adaptive knot spacing strategy is used
to enhance the knot vector (see the section The knot
insertion strategy) and steps 2–4 are repeated.

Remarks

The knot insertion strategy

The algorithm for continuous non-linear approxima-
tion, while avoiding point sampling, does not get rid of
the problem of determining an appropriate knot place-
ment strategy. The knot vector needs to be enhanced for
each high-level iteration undertaken. In general, placing
additional knots in regions of high curvature (or regions
where higher derivatives have large magnitudes) is
known to improve the quality of the approximation [8,
17]. In this algorithm, a similar strategy is adapted that
additional knots are inserted at selected parameters,
where high local maximum errors occur. If r knots are
inserted, the number of control points increases from
N+1 to N+r+1. Thus, the knot insertion strategy
automatically determines the unknown number of con-
trol points for the next iteration. Internal multiple knots
are restricted to a multiplicity of £ n and end knots (if
dealing with end-point interpolating curves) to a multi-
plicity of £ n+1. More details of the adaptive knot
insertion strategy can be found in [16].

Non-singularity

In order to make certain that Eq. 12 can be uniquely
solved every single time, we must guarantee the

coefficient matrix A is not singular or invertible. In the
context of interpolation and approximation, rules of
thumb ensure that the resulting linear system of
equations can be solved [18]. For this continuous
approximation method, it can be proved that the
coefficient matrix A is always non-singular, as discussed
below.

In the context of interpolation, let the ti represent
knots in the knot vector and si represent parameters
corresponding to the sampled points. DeBoor states
that a non-singular system of linear equations
will result if and only if Bn

i ðsÞ 6¼ 0, i.e., if and only
if ti<si<ti+n+1 (see [18]). For conventional
approximation, S+1 (S>N) discrete points must be
sampled, and the resulting linear system of equations
will be non-singular if and only if for some
0 £ j0 £ ... £ jN £ S the condition ti<sj<ti+n+1 is
satisfied (see [18]). In other words, at least N+1 of the
parameter values sji

� �
corresponding to the sampled

points must lie in the corresponding knot intervals
[ti,ti+n+1], in order to guarantee a non-singular sys-
tem of linear equations.

For the proposed continuous approximation in this
paper, since integration is used instead of summation, all
points on the ideal curve are ‘‘sampled’’. Obviously,
there must exist a set of points sji that satisfy the con-
dition ti\sji\tiþnþ1. Thus by [18], matrix A will never be
singular.

Special points and discontinuities

This continuous non-linear approximation can handle
special points (e.g., cusps) or discontinuities of the ideal
curve or the reparametrizing function without any sep-
arate efforts or increases in computational complexity.
Assuming that there is a special point or discontinuity at
the parameter ~t, the knot insertion strategy exploits the
fact that the error eðlÞð~tÞ > eðlÞSpecified allowing the place-

ment of multiple knots at ~t. Through numerical experi-
ments it was found that the resulting multiplicity of
knots reasonably agrees with the degree of discontinuity
in the curve. For example, for a C0 discontinuous point,
the corresponding knot will be of multiplicity n, and for
a C1 discontinuous point the multiplicity of the knot will
be n-1, etc.

To accommodate multiple knots, the algorithm for
integrating products of B-spline functions was modified
in the following manner. Wherever there is a repeated
knot, a knot refinement is performed to increase the
multiplicity to n+1. In other words, the curve is divided
into several individual B-spline curves, each having no
multiple interior knots (this is done only for the purpose
of integration; the curve itself is not modified). The
integration is then performed using equations in the
Appendix.

This approximation method can also be applied to
curves with parametric discontinuities or piecewise
curves, as discussed in [16].
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Examples and discussions

Three examples are presented and results are com-
pared between the proposed continuous approximation
and conventional interpolation and discrete approxi-
mation in this section. Details of the control points
and knot vectors are omitted for brevity. All the
examples used d=0, i.e. only positional errors (e(0))
have been specified by the user (see the section
The selection of weights in the error metric for a
discussion when d is non-zero). The metrics for com-
paring the three different approximation methods are:
the number of control points, the number of high-level
iterations, and the average curvature deviation. The
average curvature deviation can be calculated by
Eq. 14, where the curvatures on the original curve
and the approximated curve were sampled at S+1
parameter values.

jdev ¼

PS

i¼0
jorigðtiÞ � japproxðtiÞ
�� ��

S þ 1
ð14Þ

Examples and results

Example 1: the plane curve

A two-dimensional curve C(t) is defined in Table 1 and
shown in Fig. 1. The desired degree n of ~CðtÞ was set to 3
and the specified error limit was:

eð0ÞSpecified ¼ 0:005

Table 2 presents the curves generated by the pro-
posed continuous approximation, interpolation and
discrete approximation methods, respectively. The con-
tinuous approximate curves at different iterations in
Fig. 1 clearly show the approximation approach.

Example 2: The space curve

The original curve C(t) was a three-dimensional curve,
as shown in Fig. 2. Table 3 gives the expression with the
information of degree and number of control points.
The desired curve ~CðtÞ has degree n = 3 and the speci-
fied error limit was:

Fig. 1 The original curve and
continuous approximate curves
at different iterations in
example 1

Table 2 Approximate plane
curves generated by different
methods in example 1

Method Degree No. of control
points

No. of
iterations

No. of sampled
points

Ave. curvature
deviation jdev

Continuous approximation 3 22 5 N/A 0.633
Discrete approximation 3 23 5 71 0.972
Interpolation 3 32 6 32 0.867

Table 1 The original plane
curve in example 1 Curve expression Degree No. of control

points

CðtÞ ¼ SxyðuðtÞ; vðtÞÞ ¼
PN0

i¼0

PM0

j¼0
Bn0

i ðuðtÞÞB
m0

j ðvðtÞÞQi;j
n0=3 N0=6
m0=3 M0=6

uðtÞ ¼
PN1

k¼0
Bn1

k ðtÞUk vðtÞ ¼
PM1

k¼0
Bm1

k ðtÞVk
n1=3 N1=6
m1=3 M1=6
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eð0ÞSpecified ¼ 0:001

Table 4 lists the curves generated by the three
approximation methods. The continuous approximate
curves at different iterations are shown in Fig. 2.

Example 3: The piecewise curve with multiple
tangent discontinuities

The original curve C(t) is a piecewise curve with mul-
tiple tangent discontinuities, as defined in Table 5 and
shown in Fig. 3. The desired degree n of ~CðtÞ was set to 3
and the specified error limit was:

eð0ÞSpecified ¼ 0:005

The approximate curves generated by the proposed
and conventional methods are presented in Table 6.

The curves produced by the continuous approxima-
tion algorithm at different iterations are shown in
Fig. 3.

Continuous approximation versus interpolation
and discrete approximation

The interpolation and discrete approximation used in
the abovementioned examples are also comprised of a
core procedure and high-level iterative procedure. The
implementation of the interpolation basically followed
the algorithm described in [8], except for an improve-
ment on the sampling strategy. Points were added at the
locations of local maximum errors (adaptive point
sampling strategy) instead of at mid-spans. This en-
hanced the interpolation algorithm with a faster con-
vergence of the high-level iteration procedure. The

Fig. 2 The original curve and
continuous approximate curves
at different iterations in
example 2

Table 3 The original space
curve in example II Curve expression Degree No. of control

points

CðtÞ ¼ SxyzðuðtÞ; vðtÞÞ ¼
PN0

i¼0

PM0

j¼0
Bn0

i ðuðtÞÞB
m0

j ðvðtÞÞQi;j
n0=3 N0=6
m0=3 M0=6

uðtÞ ¼
PN1

k¼0
Bn1

k ðtÞUk vðtÞ ¼
PM1

k¼0
Bm1

k ðtÞVk
n1=3 N1=6
m1=3 M1=6

Table 4 Approximate space
curves generated by different
methods in example 2

Method Degree No. of control
points

No. of
iterations

No. of sampled
points

Ave. curvature
deviation jdev

Continuous approximation 3 20 5 N/A 0.089
Discrete approximation 3 26 5 73 0.134
Interpolation 3 30 6 30 0.296

Table 5 Original piecewise curve in example 3

Curve expression Degree No. of control points No. of discontinuities

CðtÞ ¼ CðuðtÞÞ ¼

PN0

i¼0
Bn0

i ðuÞPi; 06u60:7

PM0

i¼0
Bm0

i ðuÞQi; 0:7\u61

8
>>><

>>>:

n0=1 N0=5 6
m0=4 M0=12

uðtÞ ¼
PN1

k¼0
Bn1

k ðtÞUk n1=3 N1=6 N/A
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discrete approximation used in this study was based on
the algorithm presented in [17]. Again, the adaptive
point sampling strategy was introduced to improve the
performance.

Based on the results presented in Tables 2, 4 and 6, the
proposed continuous approximation has shown several
advantages over the other two conventional methods:

1. more concise expression (less control points),
2. faster convergence of high-level procedure (less iter-

ations),
3. better capability of detecting and accommodating

special points and discontinuities,
4. lower average curvature deviation.

These make the continuous approximation a very
competitive alternative to previously existing discrete
approximation methods. While numerical integration
may be involved, this new method has minimized the
opportunities of performing numerical integration by
giving most evaluations explicitly.

The selection of weights in the error metric

The parameter a1 in the error metric (Eq. 4) acts as
weights for balancing the errors of the function and its
derivatives. When the error bounds of the function and
its derivatives are independently specified, the weights
can be adjusted to ensure that the error bounds are being
satisfied without an excessive increase in the number of
control points. That is another advantage over the
interpolation method, which can only control the error
of the function.

The heuristics for specifying a1 depend on the range
of magnitudes of positions and derivatives and on the

desired accuracy of positions and derivatives. The range
of magnitude of the position or derivatives is defined in
Eq. 15, where ti and tj are distinct parameter values.
Then the recommended values of al are shown in Eq. 16.

rangeðCðlÞðtÞÞ ¼ sup CðlÞðtiÞ � CðlÞðtjÞ
���

��� ð15Þ

al ¼
~al

rangeðCðlÞðtÞÞ
h i2 ð16Þ

Without weight control, the errors on the derivatives
of the function are usually orders of magnitude higher
[19], e.g., for a given error of the function / N�4

� �
, the

errors of the first, second and third derivatives could be:
/ N�3; / N�2; and / N�1, respectively. Here N+1 is
the number of control points. Thus, it is reasonable to
set ~al ¼ 10l to give heavier weights to the derivatives,
and eventually reduce the error magnitudes of the
derivatives.

Example 1 was used to demonstrate the effect of
weights on the approximate curve as shown in Table 7.
Apparently, the weights adjustment reduced the errors
of derivatives effectively.

Conclusions

A non-linear approximation algorithm, using the con-
tinuous L_2 norm metric, has been developed. It is a
tractable alternative to the currently available interpo-
lation and approximation algorithms using the discrete
L_2 norm metric. Based on several numerical examples,
this method can be described as being robust and able to
approximate complex curves. The curves generated by

Table 6 Approximate curves generated by different methods in example 3

Method Degree No. of control
points

No. of discontinuities
detected

No. of
iterations

No. of
sampled points

Ave. curvature
deviation jdev

Continuous approximation 3 50 5 7 N/A 0.472
Discrete approximation 3 61 4 9 108 0.634
Interpolation 3 71 0 10 71 0.752

Fig. 3 The original curve and
continuous approximate curves
at different iterations in
example 3
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the proposed method have shown higher efficiency and
precision, with less control points, better discontinuity
handling and lower curvature deviation, than those of
the conventional interpolation and approximation. Al-
though the numerical integration cannot be avoided for
some procedurally defined curves, the possibility of
performing numerical integration has been minimized by
explicitly expressing most evaluations in this continuous
approximation algorithm.

Appendix: Integrals of products of B-spline functions

The derivatives and integrals of B-spline functions can
be found in [2, 20], and are shown in this appendix for
completeness. Consider a B-spline function defined
over a non-decreasing knot sequence as shown in
Eq. 17:

uðtÞ ¼
PN

k¼0
Bn

kðtÞUk

T ¼ ½t0; t1; :::; tNþnþ1�
ð17Þ

The general recursive scheme for evaluating the lth
derivative (l >0) or integral (l <0) for a B-spline func-
tion is as follows:

uðlÞðtÞ ¼
XN�l

k¼0
Bn�l

k ðtÞU
ðlÞ
k ð18Þ

U ðlÞk ¼
n�lþ1

tkþnþ1�tkþi
U ðl�1Þkþ1 � U l�1ð Þ

k

	 

; l > 0

Pk�1

j¼0

tjþnþ1�tjþlþ1
n�l � U ðlþ1Þj ; l\0

8
><

>:
ð18aÞ

T ðlÞ ¼ ½tl; tlþ1; . . . ; tNþn�lþ1�; l > 0
½tl; tlþ1; . . . ; t0; . . . ; tNþnþ1; . . . ; tNþn�lþ1�; l \ 0

�

ð18bÞ

Note that when l <0, the new knots tl, tl+1,...,t-1 and
tN+n+2,...,tN+n-l+1 can be chosen arbitrarily outside of
the original knot vector T, as long as it ensures that the
new knot vector T(l) has a non-decreasing sequence.

The integrals of products of B-spline functions may
be derived by repeated applications of the chain rule of
integration [20]. Consider evaluating the following
integral:
Z b

a
vðtÞuðtÞdt ¼ vðtÞ

Z
uðtÞdt

����
b

a
�
Z b

a

d
dt

vðtÞ �
Z

uðtÞdt
� �

dt

ð19Þ

where v(t) and u(t) are B-spline functions as shown
below:

uðtÞ ¼
PN

k¼0
Bn

kðtÞUk vðtÞ ¼
PM

k¼0
Bm

k ðtÞVk

Tu ¼ ½tu;0; tu;1; :::; tu;Nþnþ1� Tv ¼ ½tv;0; tv;1; :::; tv;Mþmþ1�
ð20Þ

The two B-spline functions v(t)and u(t) need not
have same knot vectors, while the range of the definite
integral satisfies ½a; b� � ½tv;m; tv;Mþ1� \ ½tu;n; tu;Nþ1�. Using
Eq. 18 and the notations for derivatives and integrals
introduced above, Eq. 19 becomes:

Z b

a
vðtÞuðtÞdt ¼

Xm�1

i¼0
ð�1Þi

h
vðiÞðbÞ � uð�i�1ÞðbÞ

� vðiÞðaÞ � uð�i�1ÞðaÞ
i

þ ð�1Þm
Z b

a
vðmÞðtÞ � uð�mÞðtÞdt ð21Þ

Note that v(m)(t) is a constant because its degree is
zero. Thus Eq. 21 can be simplified to:

Z b

a
vðtÞuðtÞdt

¼
Xm

i¼0
ð�1Þi

h
vðiÞðbÞ � uð�i�1ÞðbÞ � vðiÞðaÞ � uð�i�1ÞðaÞ

i

ð22Þ
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Table 7 Effect of weights on the
approximate curve No. of

derivatives
Specified error bounds ~al No. of control

points
Errors

d = 0 eð0ÞSpecified ¼ 0:01 ~a0 ¼ 1 14 e0 = 0.008
e1 = 0.090
e2 = 0.585

d = 1 eð0ÞSpecified ¼ 0:05 ~a0 ¼ 1 13 e0 = 0.026

eð1ÞSpecified ¼ 0:05 ~a1 ¼ 10 e1 = 0.044

e2 = 0.449

d = 2 eð0ÞSpecified ¼ 0:1 ~a0 ¼ 1 10 e0 = 0.026

eð1ÞSpecified ¼ 0:1 ~a1 ¼ 10 e1 = 0.020

eð2ÞSpecified ¼ 0:1 ~a2 ¼ 100 e2 = 0.076
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