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We consider a manufacturing system where the quality of the end product is uncertain and is graded into one of several
quality levels after production. We assume stochastic demand for each quality level, stochastic production times, and
random quality yields. We also assume downward substitutability (i.e., customers who require a given product will be satis®ed by a
higher quality product at the same price). The ®rm produces to stock and has the option to refuse satisfying customers even when it
has items in stock. We formulate this problem as a Markov Decision Process in the context of a simple M/M/1 make-to-stock
queue with multiple customer classes to gain insight into the following questions: (i) how does the ®rm decide when to produce
more units (i.e., what is the optimal production policy?) and (ii) how does the ®rm decide when to accept/reject orders and when to
satisfy customers demanding lower quality products using higher quality products? In the case of two product classes, we
completely characterize the structure of the optimal production and acceptance/substitution policies. However, the structure of the
optimal policy is complicated and we therefore develop a simple heuristic policy for any number of classes which performs very
well. We ®nally extend our heuristic to the system where production occurs in batches of size of larger than one, the system where
there is a setup cost for initiating production, and the case where processing time distribution is Erlang.

1. Introduction

In many manufacturing environments, the quality of the
end product is uncertain. This leads many manufacturers
to sell their di�erent quality products to di�erent cus-
tomers. Examples are in apparel manufacturing where
®rms will sell products with slight defects at large dis-
counts, and electronics manufacturing where the clock
speeds of chips produced by the same process is uncer-
tain. In most of these environments, customers demand-
ing the lower quality product will be satis®ed receiving a
higher quality product so there is downward substitut-
ability. For example, many apparel companies have
outlet stores where they sell slightly lower quality prod-
ucts. Customers of these stores usually travel from major
metropolitan areas for the discounts and will not pay full
price as the stores are known to generally carry products
with slight defects. However, if the manufacturer actually
runs out of clothes with defects, these stores still need to
receive inventory and the manufacturer will sometimes
sell them ®rst quality products at second quality prices.
Several researchers (Bitran and Dasu, 1992; Bitran and
Leong, 1992; Nahmias and Moinzadeh, 1997) describe
the similar problem in electronics manufacturing where
customers demanding slower chips can be satis®ed by
faster chips.

In all the problems described above, the manufacturer
faces the following questions: (i) how does one decide
when to start/stop production (i.e., what inventory levels
are appropriate?) and (ii) when is it optimal to satisfy
customers demanding the lower quality products using
the higher quality ones? In this paper, we address these
problems ®rst in the context of a simple M/M/1 queueing
system with multiple customer classes to gain insight into
the structure of the optimal solutions to these problems.
As the optimal structure can be rather complicated, we
then develop and test a simple and e�ective heuristic. We
then extend our formulations and heuristics to the more
realistic case where processing times are assumed to be
Erlang distributions.
The literature on the optimal control of systems with

random quality yields and substitution is rather limited.
(For a review of the literature on problems where the
quantity yield is uncertain, see Yano and Lee (1995)).
Bitran and Dasu (1992), Bitran and Leong (1992) and
Bitran and Gilbert (1994) are some of the ®rst papers to
address this problem. These papers assume that demand
is deterministic. They formulate the problem as a large
stochastic program. Our paper di�ers from theirs in
several ways: (i) we allow random production times and
demands; and (ii) we focus on characterizing the
structure of the optimal policy. Nahmias and Moin-
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zadeh (1997) focus on a system with products of two
quality classes and constant demands. They build a
continuous review EOQ-type model. Our paper di�ers
in that we have stochastic production times and we also
consider the di�erence in pro®ts generated by di�erent
classes of products. Furthermore, our paper focuses on
characterizing the structure of the optimal policy and
comparing developed heuristics to the optimal policy
whereas Nahmias and Moinzadeh focus on performance
evaluation of a speci®c policy. Gerchak et al. (1996)
and Hsu and Bassok (1999) also analyze a similar
problem in a single period context where an order is
placed once and random quantities of products of each
class are received as a result. In contrast, our formu-
lation is in®nite-horizon and we take into account
queueing e�ects by focusing on a production system
where production of each unit (or batch) takes a ran-
dom amount of time.
In a recent paper, Ha (1997a) addresses the issue of

inventory rationing in a make-to-stock production sys-
tem with several demand classes and lost sales. In his
model, all demands from the di�erent classes are satis®ed
by the same inventory. The optimal policy is character-
ized by a stock rationing level for each class at or below
which it is optimal to start rejecting the demand from
that class. Our analysis and proof approaches follow the
same lines as those in Ha (1997a) and Ha (1997b).
However, our model is di�erent in that we have separate
inventories for each class, we have uncertain yield and
also substitution is allowed in only one direction.
The rest of this paper is organized as follows. In Sec-

tion 2, we formulate the problem with two quality classes
and characterize the structure of the optimal policy. The
structure of the optimal policy is rather complicated for
problems with more than two quality classes and there-
fore in Section 3, we develop a simple heuristic policy. In
Section 4, we extend our formulation to the case where
production occurs in batches and the case with setup cost.
We also develop simple heuristics for these cases. In
Section 5, we explore the system with Erlang processing
times and show how the heuristic we develop in Section 3
can be easily modi®ed to be used in this case. In Section 6,
we test our heuristics on a variety of test problems and
the results show that the heuristics perform very well. The
paper concludes in Section 7.

2. Two quality classes

In this section, we limit ourselves to problems with two
quality classes. We formulate the problem in the context
of a simple make-to-stock M/M/1 queueing system with
two classes of items to gain insight into the nature of the
optimal policy. The system produces items with rate l
and the items are classi®ed either as low quality (class 1)
or high quality (class 2) when they are produced. With

probability p1, the outcome of a production is a class 1
item. With probability p2, (since there are only two
classes, p2 � 1ÿ p1) the result is a class 2 item. The price
for class 1 items is R1 and the price for class 2 items is
R2 > R1. Demand for low-quality item arrives with rate k1
and demand for high-quality item arrives with rate k2.
Class 2 customers will only accept class 2 items, and
therefore if there is no class 2 item in stock, the ®rm loses
the sale. However, when class 1 customers arrive, they
will be satis®ed if they receive a class 2 item at price R1 as
well. Therefore, when a class 1 customer arrives, the ®rm
can decide between selling the customer a class 1 or class
2 item or if the ®rm has no class 1 item, it can also reject
the customer. Let ni denote the number of class i units in
stock; we also assume that holding costs are charged at
the rate of h per unit time (It is reasonable to assume that
the holding costs for the two classes of items are the same
since they are made of the same raw materials, go
through the same processes and thus have the same
production costs).
A control policy speci®es the actions taken by the ®rm

at each decision epoch upon the arrivals of customers or
the completion of production. When class 1 customers
arrive, the ®rm can take the following actions: satisfy the
demands with class 1 items, meet the demands with class
2 items, or when class 1 items are out of stock, reject the
orders. Also, the ®rm can decide whether to start a pro-
duction at any decision epoch when the workstation is
idle. Our goal is to ®nd an optimal policy that maximizes
the long-run average pro®t. The problem can be formu-
lated as a Markov Decision Process. Let v�n1; n2� be the
relative value function of being in state �n1; n2� and g
denote the average pro®t per transition (where transitions
occur with rate K � k1 � k2 � l and therefore the average
pro®t per unit time is gK�. Then, using uniformization as
in Lippman (1975) we can write:

g� v�n1; n2�

� 1

K

�
ÿ h�n1 � n2� � k2��v�n1; n2 ÿ 1� � R2�In2>0

� v�n1; 0�In2�0�

� k1 max
�v�n1 ÿ 1; n2� � R1�In1>0 � v�0; n2�In1�0
�v�n1; n2 ÿ 1� � R1�In2>0 � v�n1; 0�In2�0

� �
� lmax

p1v�n1 � 1; n2� � p2v�n1; n2 � 1�
v�n1; n2�

� ��
;

n1; n2 � 0; 1; 2; . . . ; �1�
where I��� denotes the indicator function.
In (1), the terms multiplied by h represent the holding

costs associated with the units in stock. The terms mul-
tiplied by k2 represent the transitions and revenues
generated by the arrival of a class 2 customer. Unifor-
mization as in Lippman, see also Ha (1997a) and Carr
and Duenyas (1999), allows us to view both customer
arrivals and production ``opportunities'' as events that
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occur. The probability k2=K can be interpreted as the
probability that the next event is a class 2 customer's
arrival. In this case, if we have a class 2 item in stock, we
get revenue R2 and n2 decreases by one, and if not we get
no revenue and the state of the system remains the same.
Similarly, k1=K represents the probability that the next
event is the arrival of a class 1 customer. When a class 1
customer arrives, we can decide between satisfying his
demand with a class 1 or class 2 item. If no class 1 item is
in stock, then our choice is between not satisfying the
customer's demand and satisfying it with a class 2 item.
(Note that it is in fact obvious that when n1 > 0, it can
not be optimal to reject a class 1 customer. Class 1 items
can only be used to satisfy class 1 customers' demands
and therefore there is no point in turning away a class 1
customer when n1 > 0). Finally, with probability l=K, the
next event is a production completion ``opportunity''. In
this case, production will lead to another class 1 or class 2
item and not taking advantage of this opportunity (i.e.,
idling) will result in the same state.
Figure 1 shows an example of the transition rate dia-

gram for this problem assuming that the following ac-
tions are optimal in the displayed states: (i) it is optimal to
produce; (ii) it is optimal to satisfy class 1 customer's
orders using only class 1 items. For example, in state
(0,1), if the next event is the arrival of a class 1 customer,
(with rate k1), the state does not change because there are
no class 1 items in stock. If the next event is a production
completion, that takes the system either to state �1; 1� or
to state �0; 2�. Finally, arrival of a demand from a class 2
customer takes the system to state �0; 0�.
Having formulated the problem, we can next charac-

terize the structure of the optimal policy in the following

Theorem 1. The optimal policy for the system described by
�1� has the following structure.
(i) The optimal production policy is de®ned by a

switching curve d�n1� such that for n2 � d�n1�, the
optimal policy is to idle; for n2 < d�n1�, the optimal
policy is to produce. Furthermore, d�n1� is nonin-
creasing in n1.

(ii) If there are class 1 items on hand �n1 > 0�, we al-
ways sell class 1 items to class 1 customers. If the
inventory level of class 1 items is zero �n1 � 0�, then
there is a threshold for selling class 2 items to class 1
customers which is de®ned by an integer S such that
for n2 � S, the optimal policy is to sell; for n2 < S,
the optimal policy is not to sell.

Proof: See Appendix.

Figure 2 illustrates the production switching curve de-
scribed in (i) of Theorem 1. Increases in the inventory of
either item makes it less desirable to produce. Further-
more, Theorem 1 indicates that we only sell class 2 items
to class 1 customers when n1 � 0 and n2 is su�ciently
high.
Having characterized the structure of the optimal

policy, we note that it is straightforward to show that if
sales for the higher quality item (but not the lower quality
item) can be backordered instead of lost that the structure
of the optimal policy remains exactly the same. The proof
for this result follows the same lines as Theorem 1 and is
therefore omitted.
The structure of the optimal policy gets extremely

complicated for problems with more than two quality
classes. This is because the decision to produce now de-
pends on the number of items of each class on hand and
the resulting policy is in the form of N -dimensional
switching planes which are neither easy to compute nor

Fig. 1. Example transition diagram for two class problem.
Fig. 2. The structure of the optimal production policy for the
two product case.
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easy to describe even if one is able to compute them.
Furthermore, even if we limit ourselves to a maximum of
50 items for each class, for a four-class problem, the
MDP we would have to solve would have over six million
states. Therefore, in the next section, we focus on simple
heuristic policies which are easy to compute and easy to
implement and perform well.

3. A heuristic policy

In this section, we ®rst propose a simple, easily imple-
mentable heuristic for the problem with two classes. We
then generalize the heuristic to any number of classes.
In the problem with two classes, there are two decisions

to be made:

(a) When the workstation is idle, do we start produc-
ing or keep the workstation idle?

(b) When a class 1 item is out of stock, do we sell class
2 items to class 1 customers?

We replace the more complicated optimal policy by a
simpler heuristic policy de®ned by two variables, Q and S,
corresponding to the thresholds for each of these deci-
sions.

Heuristic for the problem with two classes
Step 1. Produce if n1 � n2 < Q and do not produce

otherwise.
Step 2. When a class 1 item is out of stock (i.e., n1 � 0) if

n2 � S, we sell a class 2 item to a class 1 customer
and we reject class 1 customers otherwise.

From the structure of the optimal production policy
described in Theorem 1, we know that Decision (a) has to
be made based on the inventory levels of both class 1 and
class 2 items. We simplify the problem by combining the
two classes of items into a single aggregate class and the
two classes of customers into a single class of customers.
We do this by solving the following MDP:

g� v�n� � 1

k� l

�
ÿ hn� k��v�nÿ 1� � R�In>0 � v�0�In�0�

� lmax
v�n� 1�

v�n�
� ��

; n � 0; 1; 2; . . . ; �2�

where k � k1 �minfk2; p2lg, and

R�minfk2;p2lgR2��minfk1� k2;lgÿminfk2;p2lg�R1

minfk1� k2;lg :

Note that since the average rate of production of class
2 items is p2l, the rate with which we can satisfy class 2
demands is at most the minimum of class 2 demand k2
and class 2 production. In creating an aggregate item, we
therefore replace k2 by minfk2; p2lg. Similarly, we take a

weighted average of the revenue generated by each class.
As a result, the MDP is reduced to a single dimension and
the value of Q can be determined by solving this simple
MDP and choosing the ®rst value of n for which
v�n� > v�n� 1�.
For Decision (b), we simplify (1) by taking out n1 so

that it becomes a system with only class 2 items but still
with two classes of customers. This is because this deci-
sion only comes up when n1 � 0. Then we have:

g� v�n2�

� 1

K

�
ÿ hn2 � k2��v�n2 ÿ 1� � R2�In2>0 � v�0�In2�0�

� k1 max
�v�n2 ÿ 1� � R1�In2>0 � v�0�In2�0

v�n2�
� �

� p2lmax
v�n2 � 1�

v�n2�
�� �

; n2 � 0; 1; 2; . . . ; �3�

where K � k1 � k2 � p2l.
Again, the state space of the MDP is drastically re-

duced and solving it gives us S, the value of the threshold
for selling class 2 items to class 1 customers. The value of
S is obtained by inspecting the solution to the above
MDP and choosing the ®rst value of n2 for which
�v�n2 ÿ 1� � R1�In2>0 � v�0�In2�0 > v�n2�. Solving for Q
and S takes less than a second on a Pentium computer.
We use the same ideas to extend the heuristic to

problems with any number of classes.

Heuristic for the problem with k classes
Step 1. Production policy: produce when n1 � n2 � � � ��

nk < Q and do not produce otherwise.
Step 2. Sales policy: when nj � nj�1 � � � � � niÿ1 � 0,

sell a class i item to a class j customer if ni � Si;j,
otherwise do not sell, i 2 f2; . . . ; kg; j 2
f1; 2; . . . ; iÿ 1g.

We note that in a problem with k classes, our heuristic
policy is de®ned by 1� k�k ÿ 1�=2 thresholds. There is
one threshold for deciding to produce or idle and the
remaining thresholds de®ne when we would use a higher
quality item to satisfy demand from a lower quality class.
To compute Q, the threshold for producing or idling,

we once again aggregate all classes of items to a single
average class by taking the sum of the demand rates and a
weighted average of the revenues and solve the following
MDP:

g� v�n� � 1

k� l

�
ÿ hn� k��v�nÿ 1� � R�In>0

� v�0�In�0� � lmax
v�n� 1�

v�n�
� ��

;

n � 0; 1; 2; . . . ;
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where k � k1 � k02 � � � � � k0k, k0i � minfki; l
Pk

j�i pjg and

R � x1R1 � x2R2 � � � � � �zÿ x1 ÿ x2 ÿ � � � ÿ xkÿ1�Rk

z
;

xi � minfki; pilg and z � minfk;lg:
To compute the values of Si;j (j � 1; . . . ; iÿ 1), we solve

a total of k ÿ 1 single dimensional MDPs.

g� v�ni�

� 1

K

�
ÿ hni � ki��v�ni ÿ 1� � Ri�Ini>0 � v�0�Ini�0�

� kiÿ1 max
�v�ni ÿ 1� � Riÿ1�Ini>0 � v�0�Ini�0

v�ni�
� �

� kiÿ2 max
�v�ni ÿ 1� � Riÿ2�Ini>0 � v�0�Ini�0

v�ni�
� �

..

.

� k1 max
�v�ni ÿ 1� � R1Ini>0 � v�0�Ini�0

v�ni�
� �

� pilmax
v�ni � 1�

v�ni�
�� �

; ni � 0; 1; 2; . . . ;

where K � k1 � k2 � � � � � ki � pil.
Each of the thresholds for Si;j can then be obtained by

inspecting the solutions to the above MDPs. Si;j is the
®rst value of ni for which �v�ni ÿ 1� � Rj�Ini>0 �
v�0�Ini�0 > v�ni�. We would like to emphasize that the
computational load of the heuristic is minimal. For ex-
ample, whereas in a problem with four quality classes
where each class was limited to at most 100 units in in-
ventory, one would have to solve an MDP with 108

states, our heuristic would only require solving four
MDPs each with a state space of 100. Therefore, even for
problems with very large number of classes, our heuristic
is easy to compute and gives results in under a second.
We compare its performance to that of the optimal policy
in Section 6.

4. Extensions of the basic model

In this section, we explore two extensions of the basic
model. The previous model is rather simple as it assumes
that each unit is produced individually and inspected
and that decisions are made after the production of each
unit. On the other hand, in most manufacturing envi-
ronments, production occurs in batches. This may be
due to the fact that producing units individually may not
be feasible or economical. For example, computer chips
are produced in the form of wafers that contain many
chips. For this reason, in this section, we extend our
formulation to take into account these e�ects from batch
production.

First, assume that items are always produced in batches
of a given size (for example, how many chips would be on
a wafer would de®ne the batch size) and then the whole
batch is inspected to ®nd out how many items of each
class were actually produced. The numbers of class 1
items and class 2 items in a batch are random. Let b be
the batch size and Z, a discrete random variable between
zero and b, be the number of class 1 items in a batch.
Then (1) can be modi®ed as:

g� v�n1; n2�

� 1

K

�
ÿ h�n1 � n2� � k2��v�n1; n2 ÿ 1� � R2�In2>0

� v�n1; 0�In2�0�

� k1 max
�v�n1 ÿ 1; n2� � R1�In1>0 � v�0; n2�In1�0
�v�n1; n2 ÿ 1� � R1�In2>0 � v�n1; 0�In2�0

� �
� lmax

E�v�n1 � Z; n2 � bÿ Z��
v�n1; n2�

� ��
;

n1; n2 � 0; 1; 2; . . . ; �4�
where K = k1 � k2 � l and I��� denotes the indicator
function.
The only modi®cation is in the terms multiplied by l

where after the completion of the production of a batch,
the state changes from �n1; n2� to �n1 � Z; n2 � bÿ Z�. We
conjecture that the results of Theorem 1 apply to this case
as well with no changes although we have not been able
to prove this result to date. We have not been able to ®nd
a numerical example where the structural results de-
scribed in Theorem 1 do not hold for the case with batch
production.
Our heuristic policy can easily be adapted to this prob-

lem by changing (2) and (3) such that when the decision to
produce is made, the state changes from �n� to �n� b�, and
adjusting the aggregated demand rate, k, for computing
the value of Q. For example, if we assume that the prob-
ability that each individual item in the batch is of class i is
pi (independent of the class of other items in the batch),
then in the case of two classes, Equation (2) becomes

g� v�n� � 1

k� l

�
ÿ hn� k��v�nÿ 1� � R�In>0

� v�0�In�0� � lmax
v�n� b�

v�n�
� ��

;

n � 0; 1; 2; . . . ;

where k � k1 �minfk2; p2blg. Equation (3) can be ad-
justed in the same manner.
Next, assume that there is a setup cost of K every time

the machine is turned on after a period of time that it
idles. Let V �n1; n2; 0� (V �n1; n2; 1�) denote the pro®t when
the system contains n1 class 1 items and n2 class 2 items,
and the machine is idle (busy). Then we can revise the
original formulation of the problem to:
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g�v�n1;n2;c�

� 1

K

�
ÿh�n1�n2�

�k2��v�n1;n2ÿ1;c��R2�In2>0�v�n1;0;c�In2�0�

�k1max
�v�n1ÿ1;n2;c��R1�In1>0�v�0;n2;c�In1�0
�v�n1;n2ÿ1;c��R1�In2>0�v�n1;0;c�In2�0

� �
�lmax

K�cÿ1��p1v�n1�1;n2;1��p2v�n1;n2�1;1�
v�n1;n2;0�

� ��
;

n1;n2�0;1;2;...; c�0;1; �5�

where I��� denotes the indicator function.
In the state description, the variable c indicates whether

the workstation is idle (c � 0) or busy (c � 1). For the
transitions related to sales (the terms multiplied by k1 and
k2), c does not change after transitions are completed, no
matter which decisions are made. For the transitions re-
lated to production policy (the terms multiplied by l),
c � 0 if the production decision is to idle and c � 1 if the
production decision is to produce. Whether a setup cost,
K, occurs is determined by the term K�cÿ 1� (i.e., a setup
cost is incurred whenever the machine is turned on after
it's o�).
In this case, the optimal production and sales policies

are more complicated. Based on all the numerical exam-
ples we have run, we conjecture that the optimal pro-
duction policy can be characterized by two switching
curves d0�n1� and d1�n1� � d0�n1� such that when the
machine is already on, it is optimal to continue producing
so long as n2 < d1�n1� and to shut the machine o� oth-
erwise. Similarly, when the machine is o�, it is optimal to
start producing when n2 < d0�n1�. Similarly, there exist
two thresholds S0 and S1 that depend on the state of the
machine, for selling class 2 items to class 1 customers.
We can similarly adjust our original heuristic for use in

this case. Our heuristic computes two sets of values
�Q0; S0� and �Q1; S1�. When the machine is on, it keeps
producing as long as the sum of all classes of items in
stock is less than Q1. A class 2 item is sold to a class 1
customer if n1 � 0 and n2 > S1. However, when the ma-
chine is idle, the machine only starts producing again if
total inventory falls below Q0. Finally, when the machine
is idle, a class 2 item is sold to a class 1 customer only if
n1 � 0 and n2 > S0. We can compute the values of Qc by
solving

g� v�n; c�

� 1

k� l

�
ÿ hn� k��v�nÿ 1; c� � R�In>0 � v�0; c�In�0�

� lmax
K�cÿ 1� � v�n� 1; 1�

v�n; 0�
� ��

n � 0; 1; 2; . . . ; c � 0; 1 �6�
where k � k1 �minfk2; p2lg, and

R�minfk2;p2lgR2��minfk1� k2;lgÿminfk2;p2lg�R1

minfk1� k2;lg :

Then, Q1 � minfn : v�n; 0� � v�n1 � 1; 1�g and Q0 �
maxfn : ÿK � v�n1 � 1; 1� � v�n; 0�g. Finally, our heu-
ristic computes the values of Sc by solving

g� v�n2; c�

� 1

K

�
ÿ hn2 � k2��v�n2 ÿ 1; c� � R2�In2>0 � v�0; c�In2�0�:

� k1 max
�v�n2 ÿ 1; c� � R1�In2>0 � v�0; c�In2�0

v�n2; c�
� �

� p2lmax
K�cÿ 1� � v�n2 � 1;1�

v�n2; 0�
�� �

;

n2 � 0; 1; 2; . . . ; c � 0; 1;

where K � k1 � k2 � p2l.
Sc is the ®rst value of n2 for which �v�n2 ÿ 1; c��

R1�In2>0 � v�0; c�In2�0 � v�n2; c�, c � 0; 1.
So far all our formulations have assumed exponential

processing time distributions which is not very practical.
Therefore, we explore the system with Erlang production
in the next section.

5. Systems with Erlang processing distributions

In this section, we explore the case where processing times
are allowed to have an Erlang-z distribution with rate l.
Since an Erlang-z distribution can be regarded as the
convolution of z exponential stages, we can once again
use uniformization to write an MDP for deciding when to
produce and whether to provide class 2 items to class 1
customers. In this case, the state of the system consists of
�n1; n2; k� where k denotes the number of exponential
stages (with rate zl) that have been completed on the item
that is currently being processed. Then the completion
time of each stage is exponentially distributed with rate
zl. The decision whether to produce another unit or not is
made only at production completion times (i.e., k � 0).
However, our formulation assumes that the decision
maker can ``observe'' the number of exponential stages
when making the decision to sell a class 2 item to a class 1
customer. Of course, in practice, this would not be the
case. However, the decision maker can still solve the
formulation we give below and then use only the solu-
tions at k � 0 as an approximation.
Let v�n1; n2; k� be the relative value function of being in

state �n1; n2; k� where k is the current stage of the item
being processed. Then we have:

g� v�n1;n2;k�

� 1

K

�
ÿ h�n1� n2�� k2��v�n1;n2ÿ 1;k��R2�In2>0

� v�n1;0;k�In2�0�
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� k1max
�v�n1ÿ 1;n2;k��R1�In1>0� v�0;n2;k�In1�0
�v�n1;n2ÿ 1;k��R1�In2>0� v�n1;0;k�In2�0

� �
� zlW �n1;n2;k�

�
; �7�

where K = k1 � k2 � zl and

W �n1;n2;k�

�
max�v�n1;n2;1�;v�n1;n2;0�� if k� 0,

v�n1;n2;k�1� if 0< k< zÿ1,

p1v�n1�1;n2;0��p2v�n1;n2�1;0� if k� zÿ1.

8><>:
W �n1; n2; k� represents the transitions generated by a

production stage completion opportunity. When the
workstation is ready for processing (k � 0), the ®rm needs
to decide whether to start production or keep the work-
station idle. After the completion of stage k, where
0 < k < zÿ 1, the production advances to the next stage,
k � 1. At the end of the last stage, zÿ 1, one unit of either
item 1 or item 2 is produced.
We conjecture that the optimal policy for the system

described by (7) has similar properties to those in Theo-
rem 1. However, the policy for selling class 2 items to
class 1 customers when n1 � 0 is now de®ned by, z
thresholds, Sk; k � 0; . . . ; zÿ 1 depending on the stage of
the item in production. Furthermore, the relationship
among these thresholds has the following property:
0 � Sk ÿ Sl � 1, l > k. The interpretation of this property
is that, when n1 � 0, we are more willing to meet demands
of class 1 customers with class 2 items if the item currently
being processed is closer to completion. Similarly, we
conjecture that the optimal production policy has exactly
the same properties as in Theorem 1.
We can easily extend our heuristic for the original

problem to the case where processing times are Erlang. In
particular, the MDP for computing Q can be modi®ed to
the following:

g� v�n; k� � 1

k� zl
ÿhn� k��v�nÿ 1; k� � R�In>0f

� v�0; k�In�0� � zlWQ�n; k�
	
;

n � 0; 1; 2; . . . ; k � 0; . . . ; zÿ 1; �8�
where k � k1 �minfk2; p2lg,

R�minfk2;p2lgR2��minfk1� k2;lgÿminfk2;p2lg�R1

minfk1� k2;lg ;

and

WQ�n; k� �
max�v�n; 1�; v�n; 0�� if k � 0,
v�n; k � 1� if 0 < k < zÿ 1,
v�n� 1; 0� if k � zÿ 1.

8<:
The value of Q is the smallest value of n for which

v�n; 0� > v�n; 1�.
The value of S can be obtained by solving the following

MDP:

v�n2; k�

� 1

K

�
ÿ hn2 � k2��v�n2 ÿ 1; k� � R2�In2>0 � v�0; k�In2�0�

� k1 max
�v�n2 ÿ 1; k� � R1�In2>0 � v�0; k�In2�0

v�n2; k�
� �

� p2zlWS�n2; k�
�
; n2 � 0; 1; 2; . . . ; k � 0; . . . ; zÿ 1;

�9�
where K � k1 � k2 � p2zl and

WS�n2; k� �
max�v�n2; 1�; v�n2; 0�� if k � 0,
v�n2; k � 1� if 0 < k < zÿ 1,
v�n2 � 1; 0� if k � zÿ 1.

8<:
Recall that (9) describes a system which only yields

class 2 items. The terms multiplied by k1 represent the
transitions generated by the arrivals of class 1 customers
who are only willing to pay the lower price, R1, for class 2
items. We have the option to accept or reject the orders
depending on the outcome of the maximal function. By
inspecting the solutions to (9), Sk, the threshold when
production is in stage k, can be obtained such that Sk is
the ®rst value of n2 > 0 for which �v�n2 ÿ 1; k� � R1� >
v�n2; k�. Furthermore, it is easy to show that all Sk values
di�er at most by one.
The value of S to be used by the heuristic can be ob-

tained by taking the average of the Sk values. As we de-
scribed above, in practice, the user will not know the
exponential stage in which the current item being pro-
duced is at. Therefore, it makes more sense to use an S
value that does not depend on k. We therefore set S to be
the average of all the Sk values. Having obtained both Q
and S, the implementation of our heuristic is exactly as in
the exponential processing time distribution case.
Finally, we note that the state spaces for the problems

we have explored are vary large. As a result, it will not be
practical to obtain optimal solutions for realistic sized
problems. However, our heuristics result in fairly small
state spaces, and thus provide results very quickly. In the
next section, we report the results of the experiments we
performed to test our heuristics.

6. Numerical results

We tested our heuristics, which we introduced in the
previous three sections, on a variety of numerical exam-
ples. The results are compared to the performance of the
optimal policies to show how well the heuristics perform.
Table 1 illustrates the results for the 22 examples we

used to test our heuristic in the case of two quality classes.
We use Example 1 as the base case. From Example 2 to
15, exactly one parameter is either increased or decreased
in each example. Examples 16 to 22 cover highly unbal-
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anced cases where the problem parameters for one class
are signi®cantly di�erent than problem parameters for
the other class. In Examples 16 to 19, p is set to either
zero or one so that producing only one of the classes is
possible. When p1 � 0, the workstation only produces
class 2 items. However, the ®rm still has the option of
selling class 2 items to class 1 customers at the lower
price, R1. When p1 � 1, the workstation only produces
class 1 items and the ®rm is not able to satisfy demands
from class 2 items. Notice that our heuristic is optimal
when p1 � 1. In Example 20, the arrival rate of class 1
customers is 10 times larger than that of class 2 custom-
ers, while in Example 21, k2 � 10k1. In the last example,
R2 � 10R1. For each example, we report the value of the
objective function achieved by the optimal policy as well
as that achieved by our heuristic policy. We also report
the �Q; S� values suggested by our heuristic. As it can be
seen in Table 1, our heuristic performed extremely well
and the average percentage di�erence in pro®t between
the heuristic and the optimal policy was 0.23%.
We next tested our heuristic on problems with three

quality classes. (As the size of the MDPs become ex-
tremely large as the number of quality classes are in-
creased, three was the largest number of classes for which
we could test our heuristics against the optimal policy).
Once again, we used Example 1 as the base case and
changed one parameter in each example. The average
di�erence between the cost of the heuristic and the opti-
mal cost was slightly larger in this case but the heuristic

still performed very well with an average di�erence of
1.52%. Compared to the performance of the heuristic for
the system with two quality classes, the average percent-
age di�erence increases. Since the policy for the system
with three quality classes is more complicated, the heu-
ristic policy is de®ned by four thresholds. The increase in
percentage di�erence is understandable.
We next tested our heuristics in systems where pro-

duction occurs in batches, or there is a setup cost or
processing has an Erlang distribution. We used the same
numerical examples as in Table 1, and we report the av-
erage and maximum percentage di�erence for the 22 ex-
amples in each case in Table 2. In the case where
production occurs in batches, we assumed binomial yield
(that is, the probability that each item in the batch is of
class 1 is given by p1). We tested our heuristics in exam-
ples where production occurs in batches of two or three.
(We adjusted l in Table 1 to l=2 in examples with
batches of two and similarly to l=3 in examples with
batches of three to keep the same overall production
rate). The average percentage di�erence between our
heuristics for cases with batch sizes of two or three and
the cost of the optimal policy (which we obtained by
solving the MDP) was less than 0.3%, and the maximum
di�erence was below 2%.
We next tested our heuristic in the case where there is a

setup cost to turn the machine on. We used costs of $500,
$2000, and $6000 for the setup cost, and used all of the
examples in Table 1. Figure 3 displays the numerically

Table 1. Comparison of optimal and heuristic policies for the two class cases

Example k1 k2 l p h R1 R2 Optimal Q S Heuristic Percentage
di�erence (%)

1 0.2 0.2 0.3 0.4 5 500 1000 297.70 16 6 297.56 0.04
2 0.2 0.2 0.3 0.4 1 500 1000 329.75 67 17 329.75 0.00
3 0.2 0.2 0.3 0.4 10 500 1000 268.26 9 4 267.71 0.21
4 0.2 0.2 0.1 0.4 5 500 1000 153.21 26 15 153.21 0.00
5 0.2 0.2 0.5 0.4 5 500 1000 280.20 7 3 275.56 1.66
6 0.1 0.2 0.3 0.4 5 500 1000 256.12 8 6 255.12 0.39
7 0.3 0.2 0.3 0.4 5 500 1000 267.43 30 6 267.43 0.00
8 0.2 0.1 0.3 0.4 5 500 1000 259.61 8 3 257.34 0.88
9 0.2 0.3 0.3 0.4 5 500 1000 281.26 16 13 281.16 0.03
10 0.2 0.2 0.3 0.4 5 200 1000 241.35 14 8 241.31 0.02
11 0.2 0.2 0.3 0.4 5 800 1000 357.55 18 4 357.00 0.15
12 0.2 0.2 0.3 0.4 5 500 500 188.33 11 1 188.14 0.10
13 0.2 0.2 0.3 0.4 5 500 1500 417.73 21 10 417.46 0.06
14 0.2 0.2 0.3 0.2 5 500 1000 310.98 19 4 310.92 0.02
15 0.2 0.2 0.3 0.6 5 500 1000 246.80 9 10 245.06 0.70
16 0.2 0.2 0.3 0 5 500 1000 316.16 19 3 316.07 0.03
17 0.2 0.2 0.3 0.1 5 500 1000 313.91 19 4 313.82 0.03
18 0.2 0.2 0.3 0.9 5 500 1000 137.89 5 18 137.85 0.03
19 0.2 0.2 0.3 1 5 500 1000 112.32 4 21 112.32 0.00
20 1 0.1 0.3 0.4 5 500 1000 131.46 107 3 131.46 0.00
21 0.1 1 0.3 0.4 5 500 1000 117.95 8 83 117.08 0.74
22 0.2 0.2 0.3 0.4 5 500 5000 1300.19 54 26 1300.16 0.00

792 Duenyas and Tsai



obtained optimal policy (by solving the MDP) and our
heuristic for Example 12 from Table 1 with a setup cost
of $500 to turn the machine on after it is turned o�. It is
interesting to note that our heuristic policy is very close to
the optimal policy in most of the policy space. Notice
that, our straight lines de®ned by Q0 and Q1 (which we
compute using (6)) are very close to the optimal switching
curves d0 and d1 except in cases where n1 is very large.
Once again, the average di�erence between the heuristic
policy and the optimal policy in this case was less than
0.3% demonstrating that the performance is not very
sensitive to slight shifts in the switching curves used. In

this case, our heuristic obtained S0 � 1 and S1 � 1 to
decide when to sell class 2 items to class 1 customers
which were also the values used by the optimal policy.
Finally, we tested our heuristic in the case of Erlang

processing distributions. In this case, we are comparing
the optimal value obtained by (7) to the heuristic de®ned
in (8) and (9). Notice however that the optimal MDP
assumes that the stage of the item being processed is
observable whereas the implementation of our heuristic
does not. Despite this, the di�erence between the per-
formance of the heuristic and the values obtained by the
MDP in (7) was very small. The average di�erence was
once again below 0.3%.
All these examples clearly demonstrate that our heu-

ristic is easily usable in a wide variety of practical situa-
tions. Our heuristic can accommodate production in
batches, Erlang distributions as well as setup costs. In
fact, as a ®nal exercise, we tested the case where pro-
cessing time distributions are Erlang-4, production occurs
in batches of three and there is a setup cost of $2000 to
turn the machine on after it has been o�. (We do not
provide the formulations because they can easily be de-
rived in the same manner). We again used the same ex-
amples as in Table 1 (with l reduced by one-third) in
order to keep the same yield rate in terms of the number
of items produced. As reported in Table 2, the average
percentage di�erence between the heuristic policy and the
optimal policy was less than 0.4% and the maximum
di�erence was below 2%.

7. Conclusions

In this paper, we considered a manufacturing system with
uncertain product yields and downward substitutable
demands. We were able to characterize the structure of
the optimal policy for the problem with two quality
classes of items by formulating the problem as a Markov
Decision Process. Since the structure of the optimal pol-
icy is complicated, and computation or implementation
of the optimal policy is not practical for more than three
classes, we developed a simple heuristic policy. We also
explored three extensions: the case where items are pro-
duced in batches, the case where there is a setup cost for
starting production and the case with Erlang processing
time distribution, and showed how the heuristic policy
can be modi®ed for those cases. We ®nally tested our
heuristic against the optimal policy and the results
showed that the heuristic performs very well. The fact
that the heuristic policy can be computed and described
easily makes it a good candidate for practical imple-
mentation.
Many extensions remain to be explored. In particular,

characterizing the structure of optimal policies for the
cases with batch production and setup times remains
open. We have provided a conjecture for the case with

Table 2. Comparison of optimal and heuristic policies for
systems with batch production, setup costs and Erlang
distributions

Average
percentage
di�erence

(%)

Maximum
percentage
di�erence

(%)

Producing in batches with batch
size = 2

0.23 1.33

Producing in batches with batch
size = 3

0.29 1.60

With setup cost K � 500 0.21 1.23
With setup cost K � 2000 0.26 1.90
With setup cost K � 6000 0.30 2.07
With Erlang-2 processing time

distribution
0.29 2.85

With Erlang-4 processing time
distribution

0.28 2.51

With Erlang-4 processing time
distribution, setup cost
K � 2000 and producing in
batches with batch size = 3

0.37 1.83

Fig. 3. The optimal production switching curves and heuristic
Qs for the case with setup cost.
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batch production but the proof of the result remains an
open problem. Also, we assumed that the probability that
a unit is of a given class is independent of the class that
previous units belonged to. It would be interesting to
extend our analysis to cases where yield distributions of
consecutive units are allowed to be dependent.
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Appendix

Proof of Theorem 1

Our proof follows the framework of Ha (1997) in proving
the required submodularity conditions required for the
result. We also use the same notation.
For any real valued function t on the state space S,

de®ne the following:

T1t�n1; n2� � �t�n1; n2 ÿ 1� � R2�In2>0 � t�n1; 0�In2�0;

T2t�n1; n2� � max��t�n1 ÿ 1; n2� � R1�In1>0 � t�0; n2�In1�0;
�t�n1; n2 ÿ 1� � R1�In2>0 � t�n1; 0�In2�0�;

T3t�n1;n2� �max�p1t�n1� 1;n2� � p2t�n1;n2� 1�; t�n1;n2��;
Tt�n1;n2� � 1=K�ÿh�n1� n2� � k2T1t�n1;n2� � k1T2t�n1;n2�

� lT3t�n1;n2��;
D1t�n1; n2� � p1t�n1 � 1; n2� � p2t�n1; n2 � 1� ÿ t�n1; n2�;

D2t�n1; n2� � t�n1 � 1; n2� ÿ t�n1; n2�;
D3t�n1; n2� � t�n1 � 1; n2� ÿ t�n1; n2 � 1�;

D4t�n1; n2� � t�n1; n2 � 1� ÿ t�n1; n2�:
Let V be the set of functions on S such that if t 2 V then
for every R2 � R1 � 0:

(i) D1t�n1; n2� is nonincreasing in n1, n2 and � R2.
(ii) D2t�n1; n2� is nonincreasing in n1 and � R1.
(iii) D3t�n1; n2� is nonincreasing in n1, nondecreasing in

n2, and � 0.
(iv) D4t�n1; n2� is nonincreasing in n2, and � R2.

Lemma 1. If t 2 V then T1t, T2t, T3t, Tt 2 V .

Proof. For brevity, we only provide the proof that D2

applied to the various function in nonincreasing in n1.
Proofs of other conditions are similar, and thus omitted.

1. We ®rst show that D2T1t�n1; n2� is nonincreasing in
n1. For any n1, when n2 � 0, D2T1t�n1; 0� =
D2t�n1; 0�, which is nonincreasing in n1 because
t 2 V . For n2 > 0, D2T1t�n1; n2� � D2t�n1; n2 ÿ 1�
which is also nonincreasing in n1 followed by that
t 2 V .

2. We now show that D2T2t�n1; n2� is nonincreasing in
n1. When n1 � 0, n2 � 0, we need to show that
D2T2t�0; 0� � D2T2t�1; 0�.

D2T2t�0; 0� � T2t�1; 0� ÿ T2t�0; 0�
� t�0; 0� � R1 ÿ t�0; 0� � R1;

D2T2t�1; 0� � T2t�2; 0� ÿ T2t�1; 0� � D2t�1; 0�:
Therefore, D2T2t�0; 0� � D2T2t�1; 0�. When n2 > 0
and n1 � 0, we have,

D2T2t�0; n2� � T2t�1; n2� ÿ T2t�0; n2� � t�0; n2� � R1

ÿmax�t�0; n2 ÿ 1� � R1; t�0; n2��:
There are two possible outcomes, D4t�0; n2 ÿ 1� and
R1. Also, note that

D2T2t�1;n2�� T2t�2;n2�ÿT2t�1;n2�
� t�1;n2��R1ÿ t�0;n2�ÿR1�D2t�0;n2�:

Therefore, we have one of the two following out-
comes:

�i� D2T2t�0; n2� ÿ D2T2t�1; n2�
� D4t�0; n2 ÿ 1� ÿ D2t�0; n2�;
� D4t�0; n2� ÿ D2t�0; n2�;
� t�0; n2 � 1� ÿ t�0; n2� ÿ t�1; n2� � t�0; n2�;
� ÿD3t�0; n2� � 0:

�ii� D2T2t�0; n2� ÿ D2T2t�1; n2� � R1 ÿ D2t�0; n2� � 0:

Therefore, D2T2t�0; n2� � D2T2t�1; n2�.
When n1 > 0,
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D2T2t�n1; n2� � D2t�n1 ÿ 1; n2�;
which is nonincreasing in n1.

3. We now show that D2T3t�n1; n2� is nonincreasing in
n1. Since

D2T3t�n1;n2�
�max�p1t�n1�2;n2��p2t�n1�1;n2�1�; t�n1�1;n2��
ÿmax�p1t�n1�1;n2��p2t�n1;n2�1�; t�n1;n2��:

One of the four possible outcomes, p1t�n1 � 2; n2��
p2t�n1 � 1; n2 � 1� ÿ t�n1; n2�, violates that D1t is
nonincreasing in n1. The other three outcomes are
p1D2t�n1 � 1; n2� � p2D2t�n1; n2 � 1�, p2D3t�n1; n2�,
and D2t�n1; n2�, and they are all nonincreasing in n1.

4. Finally, we show that D2Tt�n1; n2� is nonincreasing
in n1. It can be easily seen that holding costs are
nonincreasing in n1 and Tt is otherwise constructed
by addition and multiplication of positive constants
with constituent functions (D2T1t, D2T2t, and D2T3t)
which are all nonincreasing in n1. j

Now consider a value iteration algorithm to solve for the
optimal policy in (1), in which v0�n1; n2� � 0 for every
state n1 and n2 and vk�1�n1; n2� � Tvk�n1; n2�. Here,
vk�n1; n2� can be viewed as the optimal value function
when the problem is terminated after k transitions. We
can now state the following

Lemma 2. There exists an integer J , a constant g and a
function v such that vkJ�r�n1; n2� ÿ �kJ � r�g! v�n1; n2�
for all r � 0; 1; . . . ; J ÿ 1 as k !1.

Proof. We ®rst note that, without loss of optimality, we
can add the constraint to the original problem that we

will never produce another unit when h�n1 � n2�=K > R2.
This is because when this equation holds true, it implies
that there is already so much stock in inventory that the
cost of holding it until the next event is greater than any
revenue that one could earn by selling the inventory.
Therefore, the original problem can be converted to one
with ®nite state space. The existence of ®nite action
spaces and the fact that the model is unichain is su�cient
for the lemma to hold by Theorem 8.4.5 of Puterman
(1994). j

To complete the proof of Theorem 1, we ®rst note that by
Lemmas 1 and 2, v 2 V . Conditions (i) through (iv) are
su�cient for the structural requirements on the optimal
policy to hold as follows: The fact that D1v�n1; n2� is
nonincreasing in n1 and n2 implies the existence and
monotonicity of the production switching curve described
in Property (i) of Theorem 1. The fact that we will always
sell class 1 items to class 1 customers when n1 > 0 follows
from the fact that D3v�n1; n2� � 0. Finally, the existence
of a threshold for selling class 2 items to class 1 customers
when n1 � 0 follows from the fact that D4v�n1; n2� is
nonincreasing in n2. j
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