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Expediting is defined as using overtime or subcontracting to supplement regular production. This is usually done when the number
of backorders has grown to be unacceptably large. In this paper, we consider analytic models for deciding when and how to
expedite in a single-product make-to-order environment. We derive the structure of the optimal expediting policy in both con-
tinuous- and discrete-time cases. The continuous-time model corresponds best to subcontracting and the discrete-time model
corresponds to either overtime or subcontracting. Models for performance analysis of the continuous-time case are also given.

1. Introduction

In a firm where product variety is part of its competitive
advantage, make-to-order production may be preferable to
keeping inventory as is discussed, for example, by Arreola-
Risa and DeCroix, (1998). However, today’s competitive
marketplace demands short lead times. Unless a firm has a
lot of extra capacity lead times will tend to be variable and
may be quite long. Therefore, firms often need to use ex-
pediting techniques such as subcontracting or overtime to
reduce lead times. Expediting will have a cost associated
with it but may be worthwhile to prevent excessive delays.
This paper provides analytic models for deciding how and
when to expedite in make-to-order systems.

We use the term overtime to refer to production that
takes place outside of regular time. It can be scheduled at
discrete intervals only (e.g., at the end of the day or at the
end of the week) and no new work arrives during this off-
period. In many companies e.g., General Motors stamping
facilities, (Jordan, 1997), overtime can be scheduled with
very little advance notice. The manager looks at the current
workload near the end of the week and decides whether or
not to schedule overtime. As overtime can be very lucrative
for employees there is usually sufficient workforce willing
to cover overtime production even at short notice.
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We use the definition of subcontracting given in
Bradley (1997), namely: “The procurement from another
firm of a product that the OEM simultaneously produces.”
Therefore the only practical difference between overtime
and subcontracting is that subcontracting can occur at
any time and overtime is only possible at discrete inter-
vals. Bradley (1997) provides motivation from the elec-
tronics industry for why companies use subcontracting.
The specific motivation for subcontracting considered in
this paper is that the manager is willing to pay the extra
associated costs to get the system back into control.

We look at analytic models of expediting both in the
continuous- and discrete-time contexts. The continuous-
time context is reserved for subcontracting while the dis-
crete-time context covers both subcontracting and over-
time. We assume that production is make-to-order and no
inventory is kept. We provide structural results for how to
manage expediting. In the continuous-time context we
provide performance analysis of systems with expediting.

A number of authors have provided models for over-
time production. Overtime production in queueing net-
works has been considered by Karmarkar ez al. (1987)
and Bitran and Tirupati (1991). Both papers approximate
overtime production by appropriately scaling processing
time. Rubin and Robson (1990) consider overtime at the
end of a period that can only be used to finish the service
that is currently in progress. Dellaert and Melo (1998)
consider lot sizing in make-to-order production systems
with overtime and due dates. Overtime has also been
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looked at from the deterministic scheduling perspective
(see, for example, Akkan (1996) and the references therein).

Duenyas et al. (1993), Duenyas et al. (1997) and Hopp
et al. (1993) consider overtime in the context of inventory
systems with production quotas. Each paper provides
structural results for a number of different models. Hopp
et al. (1993) assume that the company can sell everything
that it can make and therefore the goal is to always
produce a fixed production quota. Duenyas et al. (1993)
apply this work to CONWIP systems with a fixed cost of
overtime. Duenyas et al. (1997) investigate the decision of
setting the production quota for discrete-time models
with and without backlogging. Once the quota has been
set, the plant will try to meet this in each period. They
also show that if the inventory level is less than s, the
plant needs to use the safety capacity to raise the net
inventory to S units. Otherwise the plant should not use
the safety capacity at all.

There has been some related work on systems where
delivery lead times can be changed. One of the earliest
papers is by Fukuda (1964); in this paper he considers
product delivery with negotiable lead times, where later
deliveries are at a discounted cost. In the paper the author
derives optimal policies under the condition that products
can be delivered with a normal lead time, or with a one
period delay. Daniel (1963) derives structural results for
an n period inventory model where emergency orders
arrive immediately but regular orders are delayed one
period. Moinzadeh and Schmidt (1991) consider a system
where inventory can be replenished through either a
normal or a more expensive emergency resupply channel.
They use PDEs to derive steady-state distributions under
a reasonable heuristic policy.

Less work appears to have been done in the subcon-
tracting arena. Van Mieghem (1999) looks at the inter-
action between capacity investment and subcontracting.
He considers different contracts for subcontracting and
examines whether such contracts co-ordinate the supply
chain. Bradley (1998a) has considered subcontracting in a
make-to-stock model with backorders in discrete-time. In
each period, the following sequence is repeated: (a) de-
mand is realized; (b) in-house and subcontracting
amounts are determined and received; (c) demand is ful-
filled; and (d) inventory and back-ordering costs are in-
curred. A stationary two-parameter base-stock policy is
shown to be optimal for the infinite horizon discounted
case and for the infinite horizon average-cost case where
shortfall is bounded. This work is extended by Brad-
ley (1997) and Bradley and Glynn (1999) where the rela-
tionship between capacity and subcontracting is explicitly
considered. In addition these works contain an analysis
of a Brownian model operating under the two-para-
meter base-stock policy. In parallel work to ours,
Bradley (1998b) develops an M /M /1 model of subcon-
tracting where make-to-stock production is allowed. One
key difference from our model (other than the fact that his
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model is make-to-stock) is that the subcontracting facility
is a parallel facility so that production occurs at rate § + y
when subcontracting used and at rate § when it is not.

This paper is organized as follows. Section 2 outlines
the model used. Section 3 finds the structure of the op-
timal policies for continuous-time models. Steady-state
performance analysis under the optimal policy is also
provided. Section 4 finds the structure of the optimal
policies for discrete-time models. Finally, Section 5 con-
cludes the paper.

2. Model description

We consider a single production system producing a
single type of product. Production times are assumed to
be independent and identically distributed with mean
1/u. Interarrival times for orders are independent and
identically distributed, are independent of the processing
times, and have mean 1//. Following standard queueing
notation, a G/M/1 system refers to a system with expo-
nential processing times, an M/G/1 system has expo-
nential interarrival times, and an M /M /1 system has both
exponential processing times and exponential interarrival
times. Let p = A/u. We assume that the management does
not accept any more orders if the number of orders
backlogged reaches a predetermined value N (a large in-
teger). We use the word “backlogged” or ““backordered”
to refer to the number of orders on hand that have not
been expedited. We do this to avoid double-counting
because backlogging cost will be explicitly considered in
the expediting cost for expedited orders.

Production is make-to-order and no inventory is kept
in advance. Notice that this model incorporates systems
where orders may be specialized and therefore the general
service time may reflect the fact that different orders have
different requirements. Expediting may occur in two
modes. The first is continuous where expediting may oc-
cur at any time. The second is discrete where expediting
can only occur at discrete-time periods. The former cor-
responds best to subcontracting while the later covers
both subcontracting and overtime. We assume that any
number of orders may be expedited and we receive what
we have ordered after a (possibly zero) lead time L that is
independent of the system state. Note that the lead time
model does not contain any notion of congestion.

The cost of expediting is made up of a fixed cost K and
a per unit cost p. There is a backorder penalty cost of b
per unit per unit time. Models are considered both with
respect to a discounted-cost criteria, where we use o for
the discount rate in continuous-time models and f for the
discount factor in discrete-time models, and with respect
to a long-run average cost criteria. In the long-run aver-
age cost criteria, if 7 units are expedited then the expected
cost is K +i(p + bE[L]). We let ¢ = p + bE|[L] be the total
per unit cost associated with expediting in the average
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cost criteria model. Similarly, we have c¢,=p+
bE[e~*L1(L > 0)] as the total per unit cost associated with
expediting in continuous-time models with discounted-
cost criteria where, throughout the paper,

1 if the event 4 occurs
1(4) = { ! ;
“) 0 otherwise.

Also

1-p
=
is the total per unit cost associated with expediting in
discrete-time models with discounted-cost criteria.

The optimal policy will be shown to be a threshold-type
policy where expediting occurs once the number of orders
reaches S. However, expediting should only be used to
bring the number of orders down to some fixed level s
which may be greater than zero if the per unit charge for
expediting is significant. If ¢ = 0 then s must be equal to
zero in all of the models because expediting one extra unit
adds no extra cost but will decrease backlogging costs.

c/;:p—l-bE[

3. Continuous-time models

In this section, we focus on continuous-time models
where expediting may take place at any time. We show
that for both the G/M/1 and the M/G/1 models, under
both an infinite horizon discounted-cost criteria and a
long-run average cost criteria, the optimal policy is an
(s,S) threshold-type policy (i.e., if the number of orders
waiting to be processed is greater than or equal to S then
management should expedite enough to reduce the
number of orders backordered to s). We also consider the
M /M /1 system separately. Clearly, the M /M /1 model is a
special case of the M/G/1 and the G/M/1 models.
However the analysis is much simpler for the M/M/1
system because uniformization can be used to convert the
continuous-time problem to an equivalent discrete-time
problem. We provide this alternative discrete-time for-
mulation for the M /M /1 system.

We model the problem of finding the optimal expe-
diting policy as a semi-Markov decision process. In
the G/M/1 system, we assume that the decision maker
observes the system at the time of new order arrivals.
Depending on the number of units backordered, he/she
decides whether or not to use expediting. If expediting is
used, he/she also determines how much to order. On the
other hand, in the M/G/1 system, the decision maker
observes the system at the time of service completions.
He/she again decides whether or not to use expediting
and, if expediting is used, the amount to order. In the
M/M/1 system, both order arrival times and service
completion times are decision epochs.

This section is organized as follows. Sections 3.1 and
3.2 provide structural results with respect to a discounted-
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cost criteria and a long-run average cost criteria, respec-
tively. Section 3.3 provides steady-state performance
analysis for both the G/M/1 and the M/G/1 models, as
well as the special case of a M/M/1 system, operating
under the optimal policy.

3.1. Infinite horizon discounted-cost criteria

This section considers the minimization of the infinite
horizon discounted-cost for G/M /1, M/G/1 and M /M /1
systems.

3.1.1. The G/M /1 system

Suppose that the processing times of orders are inde-
pendent exponential random variables with rate u and the
times between order arrivals are independent identically
distributed continuous random variables with common
cumulative distribution function F(-) and mean 1/4. It is
assumed that F(0) < 1. Since the expediting decision is
based on the number of units backordered, we will cap-
ture the state of the system by the number of orders
waiting (including the one which has just arrived) at the
time of a new arrival. We will use the negative integers to
denote our state space E. Thus, £ ={-1,-2,...,—N}
and at the time of an observation if the system state is i,
this implies that —i orders are backordered. The reason
behind using the negative integers to denote the state
space is simply to facilitate the characterization of the
optimal policy. As is shown below, with this definition of
the state space the equations that yield the optimal poli-
cies look very similar to those that appear in well-studied
inventory models. Let v(i) be the optimal value function
of the infinite horizon discounted-cost problem given that
the initial state is i. It is well-known that equations of the
following form (optimality equations) characterize values
and optimal policies in infinite horizon models (see, for
example, Puterman, 1994)

o(i) = min {K(a — i > 0) + ea(a — 1) + g(a)+

0
> pyv(max{j—1,-N})} VieE, (1)

Jj=—0

where a is the action taken in state i representing
—1 x (number of orders backordered after expediting),
i.e., —a is the number of orders left after expediting has
occurred,

g(a) =E [b /0 " e max{—a — M(1), 0}dr

©  px » —a e Ht ,utk
—/0 /Oe sz;b(—a—k)%dtdf*(x),

where 7; is an interarrival time and M (¢) is the number of
service completions in ¢ time units and
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0 if j<a,
Daj = Ooce_m dF() ifa<j<O,
_ijapaj lfJIO

e dF (1 ( )
Thus, p,; is the probability of processing j — a orders in
between two consecutive order arrivals. It follows from
Theorem 11.3.2 of Puterman (1994) that there exists a
unique solution v* € R* to the optimality equations in
(1) and there exists a stationary deterministic optimal
policy that yields this v*. We will use a*(i) to denote the
action that attains the minimum in (1) for state i.
The structural form of the optimal policy is described
by the following theorem.

Theorem 1. There exist non-negative integers s and S
(s < 8) such that if at the time of a new order arrival the
number of orders backordered (including the one that has
Jjust arrived) is equal to S, then the decision maker should
expedite enough to reduce the number of orders backor-
dered to s. If the number of orders backordered is less than
S, then the decision maker should not expedite.

Proof. We can use a value iteration algorithm (see,
for example, Puterman (1994)) to find the unique solution
of the optimality equations (1). Starting with vy(i) =
0 Vi € E, we have the following recursive equations for
the value iteration

v,(i) = min {K1(a, —i > 0) + ¢,(a,

i<a,<0

— i) +9g(ay)

0
+ " patacr(max{j—1,-N})} Vi€E,

j==o0

where a, is the action taken at the nth decision epoch
in state i. Since g(a,) is convex, it is straightforward to
show inductively that v, (i) is K-convex. The proof of K-
convexity by induction is analogous to Zabel’s (1962)
and therefore it is omitted. We also know that
lim, . v,(7) = v*(i), for all i € E. Then it follows from
Theorem 3 of Iglehart (1963) that v*(i) is also K-convex.
Thus there exist integers —s and —S such that
a*(i):{—s leS—S,
i otherwise.
However, since the decisions are made at the time of new
order arrivals, i can never be less than —S under this
policy which completes the proof. |

3.1.2. The M/G/1 system

We now assume that the processing times of orders are
independent identically distributed random variables with
common cumulative distribution function G(-) with
G(0) < 1 and mean 1/u. The times between order arrivals
are independent identically distributed exponential ran-
dom variables with rate A. As mentioned above, in the

Arslan et al.

M/G/1 system the decision maker observes the state of
the system at the time of service completions. We will
again capture the state of the system by the number of
orders waiting at the time of the decision epochs and use
the non-positive integers to denote the state space &.
Thus, & ={0,—1,---,—N}. Then the optimality equa-
tions can be written as

(i) :fgrii?o {Kﬂ (a—i>0)+cy(a—1i)+g(a)
0
+ Z Pajv(max{J, —N})} Vieé, (2)
where

g(0) = E[e_”‘ /051 e “b(min{1 +R(t),N})dt]

_ —0oT] OO * —ot = L(/lt)k
= Ele ]/0 /Oe b(kz;(lJrk) .
+ZNW A1) )dth(x),

and fora < 0

g(a) =E [/Sl e "b(min{—a +R(t),N})dt]

N-+a e k
/ / -%(Z( a+k) (’1)
+k:N§+:+1N _tk(') 1) )dsz(x),

where 7| is an interarrival time as before, S; is a service
time, and R(z) is the number of arrivals in ¢ time units.
Note that g(-) is quasi-convex. Furthermore

fo e ”*’ dG( ) if j<0,
otherwise,
and fora <0
{f e 4G i j<a+ 1,
otherwise.

Thus, p,; is the probability of having a — j new order
arrivals in an order processing time. Note that when
a = 0, one has to wait until the next order arrival to start
the process. Since (2) is similar to (1), the following result
which says that the structure of the optimal expediting
policy for the M/G/1 system is similar to that of the
G/M/1 system is not surprising.

Theorem 2. There exist non-negative integers s and S
(s < 8) such that if at the time of a service completion the
number of units backordered is greater than or equal to S,
then the decision maker should expedite enough to reduce
the number of units backordered to s. If the number of units
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backordered is less than S, then the decision maker should
not expedite.

Proof. Rewriting the optimality equations in (2) we have
v(i) = gligo{Kﬂ (@a—i>0)+cua+g(a)

0
+ > pyv(max{j,—N})} —c,i Vi€ s (3)
J=—0C

Since ¢,i does not affect the solution of the optimality
equations, Equation (3) has the same structure as Equa-
tion (12) in Zheng (1991). Note that we can choose
cyan + g(a,) as the G, of Zheng (1991) and the summa-
tion Y %) pifa(j — [) of Zheng (1991) can be rewritten as
Zlfofo pj-if.(I) (i.e., dependence of the transition proba-
bilities on the action is implicit in his expression). It then
follows from Theorem 1 of Zheng (1991) that there exist

integers —s and —S such that
s —s ifi <=5,
a'(i) = {i otherwise. -

3.1.3. The M/M/1 system

For this special case, we assume that the times between
order arrivals and service times are exponential random
variables with means 1/4 and 1/u, respectively. Hence,
we can apply uniformization techniques originally de-
veloped by Lippman (1975) and use discrete-time meth-
ods to characterize the structure of the optimal expediting
policy. To this end, let A = 1+ u be the uniformization
constant. The state of the system is again captured by the
number of orders backlogged and non-positive integers
are used to denote the state space & = {0,—1,...,—N}.
The optimality equations for the uniformized model can
be written as

i<a<0

v(i) = min {Kﬂ (a—i>0)+cy(a—i)+gla)

R . .
+A——|—OCZ pajv(/)} Vie (g),

j=—N
where
—ba
Ifa=0
Loif j=—1,
=934 ifj=0,
0 otherwise.
If-N+1<a<0
% ifj=a—1,
Pij=\% ifj=a+1l,
0 otherwise.

Ifa=-N
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4 if j=—N,
Paj =44 ifj=-N+1,
0 otherwise.

Then it again follows from Theorem 1 of Zheng (1991)
(or from an argument similar to the proof of Theorem 1
above) that the optimal expediting policy for the M /M /1
system is the same as that of the G/M /1 model.

Theorem 3. There exist non-negative integers s and S
(s < 8) such that if (at the time of a new order arrival or at
the time of a service completion) the number of orders
backordered is equal to S, then the decision maker should
expedite enough to reduce the number of orders backor-
dered to s. If the number of orders backordered is less than
S, then the decision maker should not expedite.

Remark 1. Note that Theorem 1 can also be proven using
Theorem 1 of Zheng (1991). However, we leave the proof
as it is in order to expose the reader to a different meth-
odology in the special case that ¢(-) is convex.

3.2. The long-run average cost criteria

We now consider minimizing the long-run average cost for
G/M/1,M/G/1, and M /M1 systems. For the threshold
policy (s, S) let vgf’s) (i) be its expected infinite horizon total
discounted-cost, g% (i) be its long-run average cost and
U(TS’S) (i) be its expected cost up to time T starting in state i.
Since the Markov chain is a unichain (i.e., the Markov
chain corresponding to every stationary policy has a single
recurrent class and possibly empty set of transient states)
.1
Jim — oy (i),

exists for all i € E as an immediate consequence of Prop-
osition 11.4.1 and Proposition 11.4.7 of Puterman
(1994). By a standard Abelian result (Property A-8 of
Heyman and Sobel (1984)) it follows that lim,o av™ (i)
exists and

, oL ,
lim o) (1) = Jim 07" (0) = g (3).

From this discussion we can immediately conclude that
the structures of the optimal policies that minimize the
long average cost for the G/M /1, M/G/1, and M/M/1
systems are the same as those given in Theorem 1, The-
orem 2, and Theorem 3 respectively.

3.3. Queueing models

This section gives steady-state performance analysis for
queueing systems operating under the optimal policies
from the previous sections. In particular, for given values
of s and S, Sections 3.3.1, 3.3.2, and 3.3.3 give long-run
average performance analysis for M/M /1, G/M/1, and
M/G/1 systems, respectively.
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3.3.1. Analyzing the system in the M/M /1 case
In this system, expediting occurs as soon as the number of
orders backlogged hits S at which time the system state is
immediately brought down to s. Thus the possible state
space is {0,1,...,8 —1}. Let mw; be the steady-state
probability that the system is in state i, i = 0,1,...,5 — 1.
The steady-state balance equations for s > 0 are:

T4 = ML,

Ts—id + Ts_ift = Tg_(ip1)A + Ts— (-1 K

forl<i<sors<i<y_,

T + Tl = T 1A+ Tt + g1 4,

Ts_1A+ Ts_ 1[0 = TTs_2A.
If s = 0 then the balance equations are as follows:

oA = Ts_1 A + T I,

Ts_il+ Ts_ift = Tg_(ipn) A+ wg__nu  for 1 <i <SS,
Ts_14 + Ts_ 1[0 = Ts_2 /.
Rewriting the balance equations yields
s =>4 P *ms_1 = %ﬂsq for p # 1,
1<i SS -,
Ts =Y op *ns =ingy forp=1,
1<i<S—s,
el —i(1_ (55
Ty—i = i:;+ 1P anfl = %75571 for P 7é 17
1 <i<s, ‘
Mo =Y pRns = (S —s)ms_y for p=1,
1 <i<s.
Solving for ©g_;, we have
P51 (1=p)
Ms_1 = { ey orp# L
- 2 _
m for p = 1.

Defining X as the steady-state number of customers
backlogged

5—1
EX] = Znnn,
n=0

and hence for p #£ 1
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E[X] =
plsts =) =S(S=1))  pls=S) P27 =p™)\ |
2(1_:0) (1—p)2 (l_p)3 S—1>

and for p =1

ElX] = %((53 —8) — (5° — 5))7s_1.

Therefore, for any given pair (s,S), the long-run average
cost per unit time can be explicitly computed as
bE[X] + (K + ¢(S — 5))Ans_1, where the formulae for E[X]
and 7wg_; are given above. Unfortunately, this function is
not generally convex in s or S and therefore the minimum
cost pair would need to be searched for by enumeration.
However, as the function is explicit, this is not compu-
tationally difficult and for all cases we tested took less
than a second. Figures 1-3 show the sensitivity of the
parameters (s, S) to the various system parameters.

Figure 4 examines the sensitivity of S to backorder
cost. The total per unit expediting cost ¢ is set to zero so
that s =0 is optimal. We have chosen p =0.75 and
K =10, 30, and 50, as shown. As could be expected, the
expediting level is seen to be decreasing in backorder cost.

Figure 5 examines the sensitivity of s and S to expe-
diting cost. We have chosen p = 0.75, K = 30, and b = 1.
As could be expected, the expediting level is seen to be
increasing in expediting cost.

Figure 6 examines the sensitivity of s and S to p. We
have chosen K = 30, ¢ = 5, and b = 1. It can be seen that
s decreases as p increases but S first decreases and then
increases. Note that as p increases so does the rate of
increase of the queue length; therefore, in two systems
with identical (s, S), the expediting rate will be greater in
the system with the higher value of p.

3.3.2. Analyzing the system in the G/M /1 case

In this section, service times are assumed to be distributed
exponentially with mean 1/x and interarrival times are

o]

010 =
SO O

...............

Backorder Cost

Fig. 1. Sensitivity of S to b when ¢ = 0.
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Fig. 2. Sensitivity of s and S to c.
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Fig. 3. Sensitivity of s and S to p.

assumed to have a general distribution F. For m=0-p)m+(1—py—p1)m+...
n=1,23,..., let X, be the number of orders backlogged 5.2 s—1
(including the one which has just arrived) at the time + (1 _ Z pi> Ts_1 + (1 — Z pi> Ts,
of the nth order arrival. Then {X,} is a discrete-time Py =0
Markov chain on state space 1,...,S with transition

i = poTi—1 + P17 + PaTip + -+
+ ps—its—1 + ps_ip1ms, 2 < i <s+1,

probability matrix P as follows:

1 —po Po 0 0 0 0 0
1 —po—p1 P Do 0 0 0 . 0
l—po—p1—p )23 I Po 0 0 0
l—po—pr—p2—p3s pP» DP2 DI Do 0 0|
1 - 2;1—02 Di DS—2 DS-3 DS—4 DPS-5 - .o- DS—s1 DPS—s2 --- DO
1 - 21:(; Di DPs—1 Ps—2 Ps—3 Ps—4 .. ... Po 0 A 0
where p, is the probability of having »n departure events T = poTti—1 + P17t + pamivy + -+ -

during an interarrival time, so that Tpsms, sH1<i<S—1,

0

which may be solved explicitly by writing 7y in terms of
Rewriting ®# = nP in component notation we have Ts_1, Ts_1 in terms of mg_» (and lower order terms), and
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Fig. 4. Sensitivity of S to b when ¢ = 0.
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Fig. 5. Sensitivity of s and S to c.
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Fig. 6. Sensitivity of s and S to p.
so on. In practice however, as this is so notationally If X is the steady-state number of customers back-

cumbersome, it is easier to solve these equations using a logged then, using the fact that the expected time between
mathematical package such as Mathematica™. transitions is 1/, we have
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where

B oo px 1 ) e—ut(/lt)k
ml)_/o /Okz:;(z—k)TdtdF(x). (4)

is the expected number of customers in the system be-
tween transitions if the initial state is i. Therefore, for any
given pair (s,S), the long-run average cost per unit time
can be computed as bE[X] + (K + ¢(S — 5))Ans.

3.3.3. Analyzing the system in the M/G/1 case

In this section, interarrival times are assumed to be ex-
ponentially distributed and service times are assumed to
have a general distribution G. Forn =1,2,3,..., let X,, be
the number of customers left in the system following the
nth service completion and possible expediting. We as-
sume S > 1 so that expediting never occurs upon an ar-
rival to an empty system. In the case S = 1, expediting
occurs upon every arrival to the system, and therefore the
long-run average cost per unit time can be computed as
A(K +¢). With § > 1, expediting occurs if there are S or
more customers in the system upon a service completion
therefore {X,} is a discrete-time Markov chain on state
space 0,1,...,8 — 1. It has transition probability matrix
P as follows:
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S—1 S—j
+ Z <1 —Zq,> TEj,
i=0

Jj=s+2

5—1
g—1 = qs—1To + Z q;Ts—;.
=1
The above equations must be solved implicitly.

If X is the steady-state number of customers back-
logged then

ElX] =

S—1
Do + Y un(i)m;,
i=1

where

/ / S Gi+k) e_M(”) ¢ 4dG). (5)
0 %=0

Note that the time between the n and (n + 1)th departure
from the system is distributed with mean 1/u unless
X, =0, in which case it has mean 1/1+ 1/u. We were
able to use 1/u as the expected time between transitions in
the above because the time the system is empty contrib-
utes zero to E[X]. The proportion of time spent in state
S—1is (ns—1/u)/(1/p+ m/A). Therefore, for any given
pair (s,S), S > 1, the long-run average cost per unit time

q90 41 492 43 44
g0 91 492 43 44

can be computed as bE[X]+ (K + ¢(S —s))i ns_y/
(A + pump).
1 - Z}S;ol qi +qs qs—1
1= 300 ai + s gs-1
1= 3200 qi + go gs—
1 =350 g+ g5 gs—3 |,
l—q0—q 0 9 ¢

where g, is the probability of having n arrivals during a
service time, so that

w=[" (#)dc;m

Solving © = =P for the stationary probability vector &
yields:

i
T = ¢iTy + ZC]]'TCF_H»Ia 0<i<S§S-2
=0

s+1 S—j
<I—Z%+%>ﬂo+z< ZQi+qS—j+1>7Tj

i=0

i #s,

4. Discrete-time models

In this section, we consider the discrete-time analog of the
models considered in Section 3. We assume that the de-
cision maker observes the system periodically at prede-
termined time epochs. Depending on the number of units
backordered, he again determines whether or not to use
expediting. Let D, be the number of units demanded
between the nth and the (n+ 1)th observation time.
Similarly, let ¥, be the number of units produced between
the nth and the (n + 1)th observation time. Suppose

P{D, =k} =q(k) k=0,1,..¥n>1,
P{Y,=k}=f(k) k=0,1,..Yn>1.
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We will again consider both the infinite horizon dis-
counted-cost model and the long-run average cost model.
The structure of the optimal policies is the same as the
ones that appeared in Section 3.

4.1. Infinite horizon discounted-cost criteria

Since the expediting decision is based on the number of
units backordered, we will again capture the state of the
system by the number of orders waiting at the time of the
observations. Thus, the state space 1is again
& ={0,—1,...,—N}. A value iteration can again be used
to find the structure of the optimal policy. With vy(i) = 0
for all i € &, the recursive equations for the value itera-
tion is given as

vy(i) = min {K1(a —i > 0) + cp(a — i) — ba

i<a<0

oo 0

+BY > fa()en1(0)+

oo]al

B3N F(Rali)vn1(max{a — j+ & —N})}

=0 k=0
Vieé, (6)

where 0 < f# < 1 is the discount factor.

Theorem 4. There exist non-negative integers r and R
(r < R) such that if at the time of an observation the number
of units backordered is greater than or equal to R, then the
decision maker should expedite enough to reduce the number
of units backordered to r. If the number of units backordered
is less than R, then the decision maker should not expedite.

Proof. Since the existence of a stationary optimal policy
is guaranteed by Theorem 6.2.7 of Puterman (1994), the
proof is analogous to the proof of Theorem 1 and it is
omitted. |

4.2. Long-run average cost criteria

We again assume that the state of the system is observed
periodically and the state space is again &. For the
threshold policy (r,R) let v;;’ )(i) be its expected infinite
horizon total discounted-cost, ¢g"® (i) be its expected
long-run average cost and v*®) (i) be its expected cost up
to time n starting in state i. Since the Markov chain has a
finite state space it immediately follows from Proposition
8.1.1 of Puterman (1994) that

1
1' _ (F,R) 7
Jim — 0,7 (@),

exists for all i € & Then from Corollary 8.2.5 of Pu-
terman (1994)

. 1
tim(1 = B)uf™ (1) = lim o) = ")

Arslan et al.

The following result is a direct consequence of the above
discussion.

Theorem 5. There exist non-negative integers r and R
(r <R) such that if at the time of an observation the
number of units backordered is greater than or equal to R,
then the decision maker should expedite enough to reduce
the number of units backordered to r. If the number of units
backordered is less than R, then the decision maker should
not expedite.

5. Conclusion

In this paper, we considered analytic models of expediting
for single-server make-to-order production systems in
both the continuous-time and discrete-time case. The
optimal policy in all cases was shown to be a simple (s, .S)
type policy where expediting should occur once the
number of units backlogged reaches (or exceeds) S. When
expediting occurs it should bring the backlog down to s
which may be non-zero if there is a per unit cost associ-
ated with expediting. Queueing models for evaluating
specific pairs (s,S) were given for the continuous-time
case under the long-run average cost criteria. Future
work should look at modeling more complex queueing
systems with expediting.
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