Information Systems Frontiers 5:2, 137-147, 2003

© 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

4
W

A Pareto Model for OLAP View Size Estimation

Thomas P. Nadeau™ and Toby J. Teorey

Computer Science and Engineering Division (CSE), Department
of Electrical Engineering and Computer Science (EECS),

The University of Michigan, 1301 Beal Avenue, Ann Arbor,

MI 48109-2122, USA

E-mail: nadeau@engin.umich.edu

E-mail: teorey@eecs.umich.edu

Abstract. On-Line Analytical Processing (OLAP) aims at gaining
useful information quickly from large amounts of data residing
in a data warehouse. To improve the quickness of response to
queries, pre-aggregation is a useful strategy. However, it is usu-
ally impossible to pre-aggregate along all combinations of the
dimensions. The multi-dimensional aspects of the data lead to
combinatorial explosion in the number and potential storage size
of the aggregates. We must selectively pre-aggregate. Cost/benefit
analysis involves estimating the storage requirements of the ag-
gregates in question. We present an original algorithm for esti-
mating the number of rows in an aggregate based on the Pareto
distribution model. We test the Pareto Model Algorithm empiri-
cally against four published algorithms, and conclude the Pareto
Model Algorithm is consistently the best of these algorithms for
estimating view size.

Key Words. Pareto distribution, OLAP, view size estimation,
materialized view selection

1. Motivation

Accumulation of data in industry and organizations has
led to large archives of data in recent years. Quick ac-
cess to the information in these archives has become
critical for decision-making. The need to excel has
given rise to new data models and decision support
systems. Typically the queries posed involve operations
of aggregation such as sum or count. The queries also
typically include “group by’ expressions. For example,
the CEO of a book manufacturing company may want
to examine trends in profitability of different types of
books over time. The answer could be found by doing
a sum of the cost and sell values of jobs, grouped by
bind style and quarter. Data warehouses have been en-
gineered to answer queries of aggregation with “group
by” expressions efficiently.

Data warehouses are commonly organized with one
large central fact table, and many smaller dimension
tables. The fact table is keyed by the attributes to be
used in “group by” expressions. The fact table also
contains measure attributes, the values to be aggre-
gated. Each attribute of the fact table key is typically a
foreign key matching the primary key of a dimension
table. Fig. 1 illustrates an example of a star schema. The
CustID, DatelID and BindID together make up the pri-
mary key of the Fact Table. Thus there are three dimen-
sions. Notice that a dimension can also have a hierarchy.
For example, time can be grouped by DatelD, Month,
Quarter or Year.

A fact table in a data warehouse may contain many
millions of rows, and processing a single aggregate can
require significant resources. To improve the quickness
of response to queries, pre-aggregation is a useful strat-
egy. Pre-aggregation requires the result to be saved to
disk. The number of possible aggregates is exponential
in the number of dimensions. Faced with combinato-
rial explosion and limited disk space, we must decide
which aggregates to calculate in anticipation to queries.
The cost/benefit analysis involves estimating the stor-
age requirements of the aggregates in question.

This paper focuses on estimating the space required
for an aggregate. We present an original algorithm for
estimating the number of rows in an aggregate based on
the Pareto distribution model. We test the Pareto Model
Algorithm (PMA) empirically against four published
algorithms, and conclude the Pareto Model Algorithm
is the best of these algorithms for estimating view
size.

*To whom correspondence should be addressed.

137

138 Nadeau and Teorey

Customer
1] CustID
Name
Fact Table

City
Calendar CustID /N

State
DatelD DatelD

N

Month BindID . Bind Style
Quarter Cost N BindID
Year Sell Desc

Fig. 1. A simple star schema.

The remainder of the paper is organized as fol-
lows. Section 2 gives a brief overview of related work.
Section 3 discusses our preliminary work of testing
four published algorithms. Section 4 covers the pro-
gression of thought and experimentation that led us to
the Pareto Model Algorithm. Test results over the real
world data set are included in Section 4, since these
results were instrumental in the development process.
The Pareto Model Algorithm is presented in Section 5.
Section 6 outlines the synthetic data sets utilized for
testing and presents the experimental results over the
synthetic data sets. Analysis and conclusions are made
in Section 7. Future work is covered in Section 8.

2. Related Work

This section outlines the sources of ideas used in
this paper for estimating the number of rows in an
aggregate.

There is a simple equation for estimating the number
of rows in an aggregate. The approach is known as
Cardenas’ formula (Cardenas, 1975):

Let n be the number of rows.
Let v be the number of possible values.

1 n
Expected distinct values = v — v(l — —> (D)
v

Cardenas’ formula assumes uniform distribution. How-
ever, the data distribution affects the number of rows
in an aggregate. In order to capture the effect of data
distribution, other methods have been developed.

Probabilistic counting was introduced as a new ap-
proach in Flajolet and Martin (1985). A hashing func-
tion is applied to the values, and meta-data is gathered
on the output. Probabilistic analysis is applied to the
meta-data, determining an estimate of the number of
distinct values. The approach uses very little memory,
but requires a full scan of the data.

Distinct sampling (Gibbons, 2001) augments prob-
abilistic counting with sample data, allowing approx-
imate answers to distinct value range queries. Greater
accuracy is reported for distinct sampling when com-
pared to standard sampling techniques, but requires
processing the full dataset for each view of interest.
The assumption is made that the views of interest are
few in number, and are known in advance.

A sampling approach based on the binomial mul-
tifractal distribution model is presented in Faloutsos,
Matias, and Silberschatz (1996). Parameters of the dis-
tribution are estimated from a sample. The number of
rows in the aggregate for the full data set can then be es-
timated using the parameter values determined from the
sample. Further details of this approach can be found
in Section 4.1.

Three approaches are tested and compared in Shukla
et al. (1996). They examine Cardenas’ formula, a sam-
pling approach we call linear projection, and the prob-
abilistic counting method. The probabilistic counting
method is the most accurate of the three algorithms
tested, for the given data sets.

Two algorithms, which are hybrids of Cardenas’
formula and sampling approaches, are presented and
tested in Runapongsa, Nadeau, and Teorey (1999).
The proportional skew effect algorithm, and the sam-
ple frequency algorithm tested favorably compared to
Cardenas’ formula and linear projection.

3. Preliminary Work

Our preliminary work involved testing four published
algorithms over a real world data set. The details of the
real world data set are covered in Section 3.1. The algo-
rithms tested in the early development stage included
Cardenas’ formula (Cardenas, 1975), the Sample Fre-
quency Algorithm (Runapongsa, Nadeau, and Teorey,
1999), and the algorithm developed in Faloutsos,
Matias, and Silberschatz (1996) which we will call
FMS for short. FMS is based on the binomial
multifractal distribution model (discussed in detail in
Section 4.1). We developed another algorithm based

on this distribution model, which we named the
Curve Fitting algorithm (Nadeau, Runapongsa, and
Teorey, 2001). We will not go into the details of these
algorithms in this section. Our purpose in this section
is to demonstrate why we set the goal of bettering the
FMS algorithm. The FMS approach and our recent
work is the focus of Section 4.

We did not implement the probabilistic counting
method (Flajolet and Martin, 1985) because that ap-
proach requires a full scan of the fact table. We are
looking for approaches efficient over huge fact tables.

3.1. The real world data set

The motivations for testing aggregate storage size es-
timation algorithms on real world data are many. The
usefulness of any algorithm ultimately depends on the
effectiveness of its application to real world problems.
Real world data presents a challenge in that the dis-
tribution of the data is usually unknown. Should the
data be modeled using Zipf distributions, normal dis-
tributions, binomial multifractal distributions, or some
other distribution model?

We obtained a real world data set in cooperation
with a book manufacturing company, McNaughton &
Gunn, Inc. McNaughton & Gunn specializes in short to
medium run titles. Their customers include thousands
of publishers across the country. The data set they sup-
plied is a history of job specifications for books they
have produced.

McNaughton & Gunn periodically analyses the job
mix in their plant. Analyzing a fact table containing
job specifications is a realistic application. Specifica-
tions for 14,438 jobs were gathered. A fact table was
built using ten job attributes as the key. An eleventh
field was used for tracking the number of jobs with the
given job specifications. Some jobs have the same key
values. The job count field is not part of the key, rather
it is a measurement field. Job count is the information
to be aggregated. Some jobs have duplicate specifica-
tions, so the resulting fact table has fewer rows than the
original set of jobs. The fact table has 8,238 rows. The
dimensions are shown in Table 1.

A quick calculation shows the total number of pos-
sible tuples in the base data is 143, 315, 827, 200. The
density of the base data is 5.7 x 1078. Even with such
sparsity, 43% of the jobs have the same specifications
as other jobs. This already gives a clue that the data is
very skewed.

There are 10 dimensions, and therefore 210 — 1 dif-
ferent aggregates, not counting the original fact table.

A Pareto Model for OLAP View Size Estimation 139

Table 1. Attributes of the real world database

Attribute Cardinality ~Explanation/examples

Bind style 14 Paper back, hard cover, comb
bound etc.

The width of the book (e.g., 6”)

The length of the book from top to
bottom (e.g., 9”)

The number of pages in the book

The number of books ordered

The color of the paper used in the
book (e.g., white)

An industry standard measurement
of paper weight for a fixed amount
of paper (e.g., 50#, 60# etc.)

The width of the paper run on the
press (e.g., 29”)

The length of the paper run on the
press (e.g., 42")

The press the book was run on
(e.g., Miehle, Planeta etc.)

Trim width 13
Trim length 14

Pages 31
Quantity 28
Stock color 18

Stock weight 5

Stock width 12
Stock length 12

Press 5

The aggregates will dominate the fact table in the num-
ber of rows after cubing.

3.2. Preliminary test results

Table 2 shows the results of our preliminary testing.
Four algorithms estimated the number of rows in each
possible view of the book database. Cardenas’ Formula
utilizes Eq. (1), and is actually not a sampling approach,
hence the measures do not vary with sample size. Sam-
ple Frequency attempts to adjust from Cardenas’ For-
mula based on skew detected in a sample (Runapongsa,
Nadeau, and Teorey, 1999). FMS takes a sample, finds
a good fit to the parameters for a binomial multifractal
model based on the number of distinct values in the
sample, and the frequency of the most common value.
FMS then utilizes Egs. (2) and (3) which are described
in Section 4. The Curve Fitting approach also uses the
binomial multifractal model along with Eqgs. (2) and
(3), but finds a good fit to the parameters based on the
number of distinct values in two samples of differing
sizes (Nadeau, Runapongsa, and Teorey, 2001). Table 2
indicates the larger of the two sample sizes in the case
of Curve Fitting.

We tested at three different sample sizes: 1%, 3%
and 10% of the fact table. This is a small database.
Larger databases would tend to not require as large a
sample percentage. Larger databases are explored in
Section 6 during our scale-up testing. For this round
of testing, we ran three independent runs for each
algorithm at each sample size. Each run estimates

140 Nadeau and Teorey

Table 2. Preliminary test results on real world data

Sample size

Mean of estimate/actual

Standard deviation Coefficient of variation

Algorithm 1% 3% 10% 1% 3% 10% 1% 3% 10%

Cardenas’ formula 5.329 5.329 5.329 5.052 5.052 5.052 0.948 0.948 0.948
Sample frequency 2.892 1.787 0.987 1.826 1.097 0.572 0.631 0.614 0.579
FMS 1.342 1.105 1.012 0.660 0.370 0.200 0.492 0.335 0.198
Curve fitting 0.886 0.921 0.893 0.687 0.427 0.233 0.775 0.463 0.261

the size of 1023 aggregates. Thus each number in
Table 2 represents a statistic of 3069 estimates. The first
measurement is the mean of the estimated rows/actual
rows. Ideally this should be 1. Values above 1 indi-
cate over-estimates. Values below 1 indicate under-
estimates. The next measurement is the standard de-
viation of the estimate/actual. Ideally this should be as
small as possible. The last measurement is the coeffi-
cient of variation. This is the ratio of the standard devia-
tion divided by the mean of estimate/actual. Ideally the
coefficient of variation would be as small as possible.

Cardenas’ formula drastically over-estimates. This
clearly indicates the need to account for skew in the data
distribution. The FMS algorithm is the best estimator
at this point. We investigate several new approaches to
see if we can improve on the FMS algorithm.

4. Improving the Distribution Model

We will now examine in detail the binomial multifrac-
tal distribution model, which is the basis of FMS. We
discover empirically a flaw in the assumptions made
by that model. Through an experiment with a simple
algorithm we gain further insight. Then we develop a
successful approach based on the Pareto distribution
model.

4.1. Binomial multifractal distribution model

Large-scale structure resembles small-scale structure
in multifractal models. Fig. 2 illustrates a binomial mul-
tifractal distribution tree with a small example. The de-
cision tree depth in Fig. 2 is k = 3. The probability of
aright edge is the bias parameter P = 0.9. The proba-
bility of a right branch remains the same regardless of
the depth in the tree. Each bin at the bottom of the tree
represents a distinct value in the data set. The number in
each bin of Fig. 2 is the probability that a random tuple
belongs in that bin. Note the bins group as sets. There

| 0.001|0.009 | 0.009] 0.081]0.009]0.081 | 0.081] 0.729
A ? | A A T

a=3 lefts a=2 lefts a=1left a=0 lefts
P; =0.001 P,=0009 P;=0.081 Py=0.729
C}=1bin Ci=3bins C)=3bins C,=1bin

Fig. 2. Example of a binomial multifractal distribution tree.

is a relationship between the number of bins in each
set, and the elements in Pascal’s triangle. The super-
script of C is the depth into Pascal’s triangle, starting
with row 0 at the top of Pascal’s triangle. The sub-script
of C is the position into the row of Pascal’s triangle,
beginning with the left-most item as element 0.

The theory behind the approach presented in
Faloutsos, Matias, and Silberschatz (1996) is that by
calculating the parameters of a multifractal distribu-
tion based on a small sample, the number of dis-
tinct members can be predicted for a larger set of
data. Equations (2) and (3) are presented in Faloutsos,
Matias, and Silberschatz (1996) for this purpose.

k
Expected distinct values = » ~ CA(1 — (1 — P))").
- @)
3

Fig. 2 illustrates with an example. Order k is the
decision tree depth. C¥ is the number of bins in the set
reachable by taking some combination of a left hand
edges and k — a right hand edges in the decision tree.
P, is the probability of reaching a given bin whose path

P, = P91 — P)“.

contains a left hand edges. N is the number of rows in
the data set. Bias P is the probability of selecting the
right hand edge at a choice point in the tree.

We illustrate the calculations of Eq. (2) with a small
example. An actual database would yield much larger
numbers, but the concepts and the equations are the
same. These calculations can be done with logarithms,
resulting in very good scalability. Based on Fig. 2, given
5 rows calculate the expected distinct values:

Expected distinct values
=1-(1—(1-0.729°)+3-(1— (1 —0.081))
+3-(1—=(1-0.0097)+1-(1—(1—0.001))
~ 1.965 “)

4.2. The discovery of opportunity

Our attempts to develop a better algorithm based on
the binomial multifractal distribution model resulted
in only small improvements. We decided to produce
some scatter plots to better visualize the problem. There
are 1023 aggregates in our test database. Each point in
the scatter plots represents a test result for a single
aggregate. We plotted the estimate/actual ratio versus
the actual number of rows. All algorithms based on the
binomial multifractal distribution produced a common
pattern. The plot for the FMS algorithm is illustrated
in Fig. 3.

The FMS algorithm overestimates for larger aggre-
gates and underestimates the size of smaller aggregates.
The huge underestimates in the left half of Fig. 3 pose
a problem. When estimating required disk space, it is
preferable to overestimate rather than underestimate.
Furthermore, the systematic trends will unduly bias a
view selection algorithm to materialize the very aggre-
gates whose sizes have been underestimated.

2.0 1
1.8 :
1.6 +—— —

Estimate/Actual

0 2000 4000 6000 8000 10000
Actual Rows

Fig. 3. Scatter plot for FMS algorithm, illustrating trends in esti-
mate/actual versus actual rows.

A Pareto Model for OLAP View Size Estimation 141

The underlying assumption in the binomial multi-
fractal distribution model is that large-scale structure
resembles small-scale structure, and that the skew de-
tected in a sample will continue throughout the unseen
items in the domain. Perhaps there is a fundamental
flaw in this assumption. Next, we turn to an original ap-
proach that does not assume skew in the unseen items.

4.3. Estimating with uniform distribution

over unseen items

Our next approach is also based on sampling. However,
in contrast to the binomial multifractal model, we will
not assume the skew in the sample continues through-
out the unseen items in the domain. We will make the
radically different assumption that there is no skew in
the unseen items, and compare the scatter plot with that
of FMS for enlightenment.

4.3.1. The simple algorithm. The approach is very
straightforward. Examine a sample. Count the number
of items in the sample occurring more than once. Call
this set of items the MSet, and the number of distinct
rows in the MSet MRows. Tally the frequencies in the
sample for the items in the MSet. Divide this tally by
the sample size. This will estimate the probability a row
at random from the data will duplicate an MSet item.
Figure out how many rows are expected to be outside
the MSet. Assume they are uniformly distributed over
the items in the domain that lie outside of the MSet. Use
Cardenas’ formula to calculate the expected number of
distinct rows outside of the MSet for the full data set.
Add this to the MRows for the final estimate.

4.3.2. Results of the simple algorithm

28—
2.6 — -
o 24 et S |
& -]
g 2.2 1 “‘&?“ S
3 20- o
5 18 5 o
B 1.6 By ks I
E 14§ X Pt
e
le-'l 12 r.‘- h‘\‘
1.0 ¢ T ol
0.8 , : : .

0 2000 4000 6000 8000 10000
Actual Rows

Fig. 4. Scatter plot of the simple algorithm illustrating trends in
estimate/actual versus actual rows.

142 Nadeau and Teorey

4.3.3. Conclusions on the simple algorithm. Com-
pare Fig. 4 with Fig. 3. Observe the simple algorithm
overestimates the most on those aggregates that the
FMS approach underestimates the most. The FMS ap-
proach assumes the skew observed in the sample will
extend into the unseen items of the domain. The sim-
ple algorithm assumes there is no skew unless it is
observed directly in the sample. These two approaches
are diametrically opposed. The test results suggest the
truth lies somewhere in between.

5. Pareto Model Approach

The last sampling approach we designed, implemented
and tested is the Pareto Model Algorithm. The Pareto
distribution is similar to the Zipf distribution model.
Zipf observed a pattern common in real world dis-
tributions (Zipf, 1949). If the items in a Zipf dis-
tribution are ordered by descending frequency, the
relative frequencies are described by the following
equation:

fX)=1/(X7) ®)

X is the position of the item. The o parameter is a mea-
sure of skew. If oo = 0 the distribution is unform. o can
be any non-negative number. The higher the o value,
the more skewed the distribution. Here is an example
of a Zipf distribution: Let o = 2, then the progression
is: 1, 1/4, 1/9, 1/16...

The equation for a Pareto distribution (DeGroot,
1970, p. 41) is:

FX) =aXg§ /X for X > X
fX)=0

The Pareto distribution is bound on the left by Xj.
Note: If X, = 1, the Pareto distribution becomes the
continuous version of the Zipf distribution. The nu-
merator o X normalizes the curve to give a probabil-
ity density function. Notice the « value in the Pareto
distribution is offset by 1 from the analogous « value
in the Zipf distribution equation. This is for ease of
integration. The domain of X values in the Pareto dis-
tribution as defined above is not bound on the right.
For our purposes we need to set a bound on the right,
since our domains are finite. We will set Xy = 1, and
let X, be the right hand bound of the domain. These
modifications to the Pareto distribution result in the
continuous version of a Zipf distribution, bound over a

(6)

otherwise.

finite domain. Our distribution is as follows:

fX) = [aX?/(X¢—1)]/X*F" forl <X <X,
f(X)=0

otherwise.

(N

[X? /(X — 1)] is a normalization factor. The result-
ing area under the curve is 1, as required for a proba-
bility density function.

The reason we have chosen the Pareto distribution
model for our next algorithm is because the inherent
assumptions lie between those of the binomial multi-
fractal distribution model and the uniform distribution
model. Recall in Section 4.3.3 we observed reality ap-
pears to lay between the assumptions of the binomial
multifractal distribution model and the uniform distri-
bution model. The skew of the Pareto distribution is
most heavily evident at the left end of the curve where
the most frequent items lie. The distribution flattens as
the curve progresses. The distribution of the remaining
items approaches a uniform distribution as we move
along the series. The model thus assumes skew affects
the most common items most heavily and less common
items are more uniformly distributed. These proper-
ties make the Pareto distribution a good candidate for
modelling real world data.

5.1. Pareto model algorithm

The Pareto Model Algorithm is summarized in Fig. 5.
We will describe the details of each step in turn. The first
step is to take a sample of the fact table. This only needs
to be done once. We selected rows at random from the
fact table. An efficient implementation is to generate
a set of random numbers, sort the random numbers,
fetch the rows from the fact table in sort order, and
materialize the sample.

The next step begins a loop, which is processed once
for each aggregate we wish to estimate. The loop begins
by posing an SQL group-by query corresponding to a
given aggregate. The query has this general form:

select group-by-list, count(*)
from sample

group by group-by-list

order by count(*) desc;

®)

If the database is hiererchical, the query must also in-
clude joins between the sample table and the pertinent
dimension tables.

The query is used to identify aggregate rows with
multiple occurrences in the sample. We call this set of

Take Sample

Query Sample

Tally MSet

Calculate Probability
of Landing in MSet

@alculate Alpha Parameter

v

Divide Curve into Regions
by Probability of Hit
Calculate Expected Rows
by Region and Total

[more aggregates] [else]

Fig. 5. Activity diagram of Pareto model algorithm.

distinct aggregate rows the MSet. Let MRows be the
number of rows in the MSet. Let MCount be the number
of rows in the sample table that aggregate into the MSet.

Equation (9) estimates the probability P that a row
at random from the full data set will land in the MSet.

P = MCount/SampleRows)

We treat the result of the SQL query in Eq. (8) as
a histogram, and find a Pareto distribution that ap-
proximates the histogram. We visualize the aggregate
row with the highest count as a column ranging
from X =1 to 2. The aggregate row with the sec-
ond highest count becomes a column ranging from
2 to 3, and so on. Let j be the X value correspond-
ing to where the MSet ends (i.e. j = MRows + 1).
Let X, = |Possible rows in aggregate space + 1|. The
possible rows in the aggregate space can be calculated
as the product of the number of distinct values in the
dimension tables for the attributes of the group-by-
list. Integrating Eq. (7) over the domain of the MSet
(i.e. 1 to j), we arrive at Eq. (10).

P=X:(1—j/j*(1-X;) (10)

A Pareto Model for OLAP View Size Estimation 143

We know the value of P, X, and j. We calculate the
value of o based on Eq. (10). We now have an instance
of a Pareto distribution approximating the histogram
from the sample.

We divide the curve of the Pareto distribution from
J to X, into regions by probability of a hit from the
full data set. The MSet will be treated separately. Our
implementation creates 30 regions, and we find this to
give satisfactory accuracy. The first region contains the
domain of items where the probability of a hit is 0.9 or
higher. The second region contains the domain of items
where the probability ranges from 0.81 to 0.9. In gen-
eral, the divider between region; and region; | is at the
point where the probability of a hit from the remaining
data set is (0.9)'. The divider points can be determined
with Eq. (12). Let T be the target probability for the
divider. Let D = |Rows in full data set|. From Eq. (7),
we derive Eq. (11) for calculating the probability of a
hit at X.

T =1-(1-[axy/(x; - 1)]/x*)" ap
Solving for X we have

X =[ax?/(x* - 1)]/[= (1 = 1T)/P)/e=D]
(12)

For each region, we multiply the width of the do-
main by the probability of a hit for that region, and
then total up the expected rows for all regions. We
add MRows to account for the MSet. The last region
does not have its own divider, and must be handled
differently. We estimate the expected rows for the last
region by integrating Eq. (7) for the region and mul-
tiplying by D. This approach works since there are
very few multiple occurrences of values within the last
region. The resulting total is the expected number of
distinct aggregate rows over the full data set. If there
are more aggregates to process, we continue with the
loop.

5.2. Results of Pareto model algorithm

Table 3 summarizes the statistical results over the real
world data set, comparing our Pareto model algorithm
versus FMS (Fig. 6). The organization of Table 3 is
similar to that of Table 2, described in Section 3.2.

5.3. Conclusions on Pareto model algorithm

The Pareto model algorithm estimates with a smaller
coefficient of variation than the other algorithms. This
leads to better decisions when materialized views are
selected. We have verified this in conjunction with the

144 Nadeau and Teorey

Table 3. Test results on real world data, Pareto model algorithm versus FMS

Sample size

Mean of estimate/actual

Standard deviation Coefficient of variation

Algorithm 1% 3% 10% 3% 10% 1% 3% 10%
Pareto model algorithm 2.051 1.754 1.305 0.776 0.440 0.151 0.379 0.251 0.116
FMS 1.342 1.105 1.012 0.660 0.370 0.200 0.492 0.335 0.198

Estimate/Actual

0.6 T :
0 2000 4000 6000 8000 10000
Actual Rows

Fig. 6. Scatter plot of the Pareto model algorithm illustrating trends
in estimate/actual versus actual rows.

4]

-8
1

Query Cost (millions of rows)

w

T T T T T T T T T

10 20 30 40 50 60 70 80 90 100
Actual Storage Cost (thousands of rows)

o

Fig. 7. Improved view selection. Our PMA view size estimator im-
proves the resulting view selection when compared with the FMS
view size estimator. Query cost is the total number of rows read if
a query is posed against every possible view. This test was imple-
mented with the space limited greedy view selection algorithm from
Harinarayan, Rajaraman, and Ullman (1996).

space limited greedy view selection algorithm from
Harinarayan, Rajaraman, and Ullman (1996). We ran
the view selection algorithm based on the view size
estimates obtained from the FMS algorithm, and our
Pareto model algorithm. The results of a typical run
are shown in Fig. 7.

We verified experimentally that PMA typically re-
sults in a better selection of views than FMS. The im-
provement is most pronounced at small sample sizes,
with a small portion of the possible views being mate-
rialized. This is valuable because view size estimation
runs faster at small sample sizes, and typically OLAP
systems materialize only a small portion of the possible
views.

The Pareto model algorithm is also superior to the
FMS algorithm in another important aspect. The Pareto
model algorithm rarely underestimates the number of
rows in the aggregate for the full dataset. FMS often
underestimates, which is an undesirable quality when
estimating required disk space.

6. The Synthetic Data Sets

Our next group of experiments involved testing
over synthetically generated data. All the synthetic
databases utilize the same schema. There are three di-
mensions, each with its own hierarchy.

The cardinalities in Table 4 represent the number
of possible values along each dimension and hierarchy
level. There are four possible “group by” configurations
for each dimension: Exclusion, base level, level 1 or
level 2. Thus there are 4° — 1 = 63 possible aggregates
in this schema (not counting the fact table itself).

We generated data with three distribution models:
Normal, uniform and Pareto. The uniform and Pareto

Table 4. The schema for the synthetic datasets

Cardinalities of hierarchy levels

Dimension number Base data Level 1 Level 2
1 500 50 5
2 1000 200 50
3 2000 1000 200

Table 5. Accuracy measurements over scale-up testing

A Pareto Model for OLAP View Size Estimation

145

Fact table rows

Sample

size

Mean of estimate/actual

Standard deviation

Coefficient of variation

algorithm 0.03% 0.10% 0.30% 1.00% 0.03% 0.10% 0.30% 1.00% 0.03% 0.10% 0.30% 1.00%
100,000 rows
Pareto model 1.431 1.238 1.186 1.151 0.664 0.312 0.180 0.137 0.464 0.252 0.151 0.119
FMS 0.948 1.035 1.030 0.990 0.432 0.364 0.221 0.151 0.456 0.351 0.214 0.152
500,000 rows
Pareto model 1.331 1.292 1.243 1.184 0.442 0.310 0.255 0.191 0.332 0.240 0.205 0.161
FMS 1.088 1.037 0.933 0.918 0.407 0.299 0.223 0.176 0.374 0.288 0.239 0.192
1,000,000 rows
Pareto model ~ 1.335 1.285 1.255 1.186 0.425 0.333 0.292 0.210 0.319 0.259 0.233 0.177
FMS 1.089 0.991 0.948 0.893 0.396 0.288 0.230 0.195 0.363 0.290 0.242 0.218

distributions were generated with software we wrote.
The normal distribution was generated with software
available from Jim Gray’s web site (http://research.
microsoft.com/~Gray/DBGen/DBGen.Zip).

We generated three databases of varying sizes to
measure scalability. These three databases were gen-
erated with Pareto distributions. The o parameter was
set at 0.000001 while generating these datasets. This
setting generates a close approximation of a Zipf dis-
tribution with &« = 1. We varied the number of rows in
the fact table. The smallest database contained 100,000
rows in the fact table. The second contained 500,000.
The largest database contained 1,000,000 rows in the
fact table.

The databases with the normal distribution and
the uniform distribution contain 1,000,000 rows each.
The normal distribution was generated with the mean
along each dimension at the midpoint of the domain.
The standard deviations were 1/2 the width of the
domains.

We ran five independent runs on each of the five syn-
thetic datasets, at four different sample sizes. Table 5
shows the results of the scale-up testing. At every set-
ting, each of the 5 runs has an estimate/actual ratio for
each of the 63 aggregates. Thus each number in Table 5
is a statistic over 315 estimates at the given settings.

The FMS algorithm appears more accurate if you
only examine the mean of estimate/actual measure-
ment. However, this measurement can be misleading.
The FMS algorithm often underestimates by large
percentages, bringing the mean down. The most mean-
ingful measurement here is the coefficient of variation.
When a view selection algorithm compares the benefits
of materializing different views, the relative benefits are
the driving factor in the decision process. Reducing the

coefficient of variation will lead to better decisions in
the selection of materialized views.

The elapsed times of the scale-up testing are shown
in Table 6. The third and fourth columns show the
elapsed times for each algorithm. These times include
the sampling, and the estimating for 63 aggregates.
The fifth column shows the elapsed time to calculate the
exact number of rows for the aggregates from the fact
table. The last column shows the speedup obtained by
sampling and estimating, versus computing the exact
answer.

Table 7 shows the accuracy performance over nor-
mal and uniform distributions. The organization of
Table 7 is similar to Table 5. Each number in Table 7
is a statistic over 315 estimates at the given settings.
Note: There are conditions where the Pareto model
does under-estimate by small percentages. The reason
for this can best be understood in the case of a uni-
form distribution. Each item in the domain of a uniform

Table 6. Elapsed time measurements over scale-up testing

Pareto
speedup

Elapsed time (seconds)
Fact table Sample

rows size (%) FMS Pareto model Compute exact ratio
100,000 0.03 .1 1.1 275 250
0.10 1.8 22 275 125
0.30 35 35 275 79
1.00 10.1 10.3 275 27
500,000 0.03 27 20 1611 826
0.10 58 6.5 1611 248
0.30 148 153 1611 105
1.00 43.0 452 1611 36
1,000,000 0.03 72 69 3588 523
0.10 144 144 3588 249
0.30 30.5 31.2 3588 115
1.00 87.8 92.8 3588 39

146 Nadeau and Teorey

Table 7. Accuracy measurements over data with normal and uniform distributions

Sample size

Mean of estimate/actual
Data distribution

Standard deviation

Coefficient of variation

algorithm 0.03% 0.10% 0.30% 1.00% 0.03% 0.10% 0.30% 1.00% 0.03% 0.10% 0.30% 1.00%
Normal
Pareto model 0.967 0.941 0.920 0.915 0.056 0.071 0.073 0.066 0.058 0.075 0.079 0.073
FMS 0.869 0.939 0.983 1.019 0.211 0.140 0.110 0.114 0.242 0.149 0.112 0.112
Uniform
Pareto model 0.958 0.929 0.914 0.913 0.054 0.077 0.079 0.073 0.057 0.083 0.086 0.081
FMS 0.862 0.931 0.974 1.014 0.210 0.140 0.102 0.105 0.243 0.151 0.104 0.104

distribution has an equal likelihood of occurring. This
does not mean the number of occurrences will be equal.
If we flip a coin 1000 times, we would be surprised if
it came up heads exactly 500 times. When a database
is sampled, the randomness of the data produces some
item frequencies higher than others. The Pareto algo-
rithm is seeing this as a sign of skew. It should be possi-
ble to improve our algorithm further by compensating
for this distortion.

7. Conclusions

The Pareto model algorithm has the most accurate per-
formance of the five algorithms we tested. The FMS
algorithm was the closest competitor. The coefficient
of variation indicates the Pareto model algorithm is
on average 30% more accurate than FMS when tested
against the real world data, and 38% more accurate
when tested across the five synthetic data sets. This
increased proportional consistency leads to better de-
cisions when selecting views to materialize, as verified
empirically.

The FMS approach frequently underestimates by a
large percentage the disk space requirements of ag-
gregates. Underestimating disk space requirements is
not a desirable quality. Overestimates are preferable,
since they represent a more conservative approach to
disk space management. The FMS algorithm underes-
timated on 37.1% of the aggregates. The average er-
ror of these underestimates was 25.1%, measured as
(actual — estimate)/actual. The Pareto model algorithm
by contrast only underestimated on 19.8% of the ag-
gregates, by an average of 8.5%. Thus the Pareto model
algorithm underestimates about half as often as FMS,
and with about 1/3 the amount of error when it does
underestimate.

The results indicate the Pareto model algorithm is
robust. The coefficient of variation of the Pareto model
algorithm was superior to that of FMS in 22 of the
23 database configurations tested. The algorithm per-
forms well under a variety of different data distribu-
tions, including normal, uniform, Pareto and real world
distributions.

Lastly, the Pareto model scales well with the size of
the fact table. The sampling is done once, and has time
complexity O(nlog(n) + d) where n is the number of
rows in the sample, and d is the number of rows in the
data set. The time complexity of estimating the size
of an aggregate is O(nlog(n)). We have verified the
scalability empirically. Determining the exact number
of rows in an aggregate can be extremely time con-
suming. The approach of sampling the fact table and
estimating the number of rows can speed up the process
by orders of magnitude.

8. Future Work

The results show our Pareto Model Algorithm is robust
over different data distributions, and varying database
sizes. Thus the value of the algorithm should be ap-
plicable in general to other real world data sets. This
should be verified empirically by testing over other real
world data sets.

One problem that arises when implementing a com-
mercial product is determining how much data con-
stitutes a sufficient sample. This problem is examined
in the context of equi-height histograms in Chaudhuri,
Motwani, and Narasayya (1998), and in the context of
estimating the number of distinct values in a single col-
umn in Charikar et al. (2000). One approach examined
in Chaudhuri, Motwani, and Narasayya (1998) is cross-
validation. Basically, they begin with a predetermined

level of desired accuracy. A small sample is taken, and
an initial approximation is made. The process is re-
peated with a second sample of the same size. The re-
sulting approximations are compared. If the results are
within the desired error tolerance, the sampling process
is terminated. Otherwise the two existing samples are
combined, and another sample equal in size to the exist-
ing sample is taken. Thus the sample size is repeatedly
doubled until the desired accuracy is reached. This ap-
proach should also be applicable in the context of view
size estimation for real world data sets, where the distri-
bution is typically unknown. Automatic determination
of sample size sufficient for view size estimation is
another area for future research.

We have examined existing approaches to select-
ing views for materialization. The number of possible
views is exponential in the number of dimensions in
the database. Existing static view selection algorithms
examine every possible view, and are therefore expo-
nential in complexity. We have developed an algorithm
for view selection which is polynomial time relative
to the number of dimensions. This algorithm improves
the scalability of view selection as the number of di-
mensions increases.

We are beginning to examine alternative OLAP data
structures, and their impact on maintaining material-
ized views. Once we have contributed to the literature
on materialized view maintenance, the next problem
we will work on is query optimization with material-
ized views. Our final goal is an integrated approach for
improving OLAP optimization, based on materialized
views.

References

Cardenas A. Analysis and performance of inverted database struc-
tures. Communications of the ACM 1975;18(5):253-263.

Charikar M, Chaudhuri S, Motwani R, Narasayya V. Towards es-
timation error guarantees for distinct values. In: Proceedings of
the Nineteenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS’00), Dallas, 2000;268—
279.

Chaudhuri S, Motwani R, Narasayya V. Random sampling for his-
togram construction: How much is enough? In: Proceedings of the
1998 ACM SIGMOD International Conference on Management of
Data (SIGMOD’98), Seattle, 1998;436-447.

DeGroot M. Optimal Statistical Decisions. McGraw-Hill Book Com-
pany, 1970.

Faloutsos C, Matias Y, Silberschatz A. Modeling skewed distribu-
tions using multifractals and the ‘80-20 law. In: Proceedings
of the 22nd International Conference on Very Large Data Bases
(VLDB’96), Mumbai, 1996;307-317.

A Pareto Model for OLAP View Size Estimation 147

Flajolet P, Martin G. Probabilistic counting algorithms for
database applications. Journal of Computer and System Sciences
1985;31:182-209.

Gibbons P. Distinct sampling for highly-accurate answers to distinct
values queries and event reports. In: Proceedings of the 27th Inter-
national Conference on Very Large Data Bases (VLDB’01),Roma,
2001;541-550.

Harinarayan V, Rajaraman A, Ullman J. Implementing data cubes ef-
ficiently. In: Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data (SIGMOD’96), Montreal,
1996;205-216.

Kimball R. The Data Warehouse Toolkit. John Wiley, 1996.

Nadeau T, Runapongsa K, Teorey T. Binomial multifractal curve
fitting for view size estimationin OLAP. In: SCI2001 Proceedings,
Vol. I, Information Systems, Orlando, 2001;194—199.

Nadeau T, Teorey T. A Pareto Model for OLAP view size estimation.
In: Proceedings of CASCON 2001, Toronto, 2001;1-13.

Runapongsa K, Nadeau T, Teorey T. Storage estimation for multi-
dimensional aggregates in OLAP. In: Proceedings of CASCON
1999, Toronto, 1999;40-54.

Shukla A, Deshpande P, Naughton J, Ramasamy K. Storage esti-
mation for multidimensional aggregates in the presence of hi-
erarchies. In: Proceedings of the 22nd Very Large Data Bases
(VLDB’96), Mumbai, 1996;522-531.

Zipf G. Human Behavior and Principle of Least Effort: An In-
troduction to Human Ecology. Cambridge: Addison Wesley,
1949.

Thomas P. Nadeau is currently a Ph.D. candidate
in the Department of Electrical Engineering and
Computer Science at the University of Michigan,
Ann Arbor. He received his B.S. degree in Com-
puter Science (1981) and his M.S. degree in Electri-
cal Engineering and Computer Science (1999) from
the University of Michigan, Ann Arbor. His in-
terests include data warehousing, OLAP, data min-
ing, and machine learning. His email address is
nadeau@engin.umich.edu, and his home page is http://
www-personal.engin.umich.edu/~nadeau/

Toby J. Teorey is currently a Professor of Electri-
cal Engineering and Computer Science at the Univer-
sity of Michigan at Ann Arbor. He received the B.S.
(1964) and M.S. (1965) degrees in Electrical Engi-
neering from the University of Arizona, Tuscon, and a
Ph.D. in Computer Science (1972) from the University
of Wisconsin, Madison. He is the author of Database
Modeling and Design (3rd edition, Morgan Kauf-
mann, 1999). Professor Teorey’s current research in-
terests include database design, data warehousing, and
OLAP. His email address is teorey @eecs.umich.edu,
and his web home page is http://www.eecs.umich.edu/
~teorey/

