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1 Introduction 

Most computer vision research has concentrated on 
using digitized gray-scale intensity images as sensor 
data. It has proven to be extraordinarily difficult to 
program computers to understand and describe 
these images in a general purpose way. One impor- 
tant problem is that digitized intensity images are 
rectangular arrays of numbers which indicate the 
brightness at individual points on a regularly spaced 
rectangular grid and contain no explicit information 
that is directly usable in depth perception. Yet hu- 
man beings are able to correctly infer depth rela- 
tionships quickly and easily among intensity image 
regions whereas automatic inference of such depth 
relationships has proven to be remarkably complex. 
In fact, many famous visual illusions, such as 
Kanizsa's triangle, vividly demonstrate that hu- 
mans impose 3-D surface structure on images to 
interpret them. Computer vision researchers recog- 
nized the importance of surfaces in the understand- 
ing of images. The popularity of shape from . . . 
approaches in the last decade is the result of this 
recognition. 

In recent years digitized range data has become 
available from both active and passive sensors, and 
the quality of this data has been steadily improving. 
Range data is usually produced in the form of a 
rectangular array of numbers, referred to as a depth 
map or range image, where the numbers quantify 
the distances from the sensor plane to the surfaces 
within the field of view along the rays emanating 
from a regularly spaced rectangular grid. Not only 
are depth relationships between depth map regions 
explicit, but the three-dimensional shape of depth 
map regions approximates the three-dimensional 
shape of the corresponding object surfaces in the 
field of view. Therefore, the process of recognizing 
objects by their shape should be less difficult in 
depth maps than in intensity images due to the ex- 
plicitness of the information. For example, since 
correct depth map information depends only on ge- 
ometry and is independent of illumination and re- 
flectivity, intensity image problems with shadows 
and surface markings do not occur. Nonetheless, it 
seems that existing vision techniques have influ- 
enced many investigators and this has led to re- 
stricted approaches to processing range data. The 
range image understanding problem is a well-posed 
problem as contrasted with the ill-posed intensity 
image understanding problem. 

Many tasks for machine vision systems will be 
significantly simplified by range images. The last 
few years have seen growing interest in the appli- 

cation of the range images in industrial applications. 
It is expected that the vision systems based on 
range images will be very useful in autonomous 
navigation systems also. 

Considering the growing interest in range image 
understanding, the NSF funded our proposal to or- 
ganize a workshop on this topic. The aim of the 
workshop was to bring together active researchers 
in a range image understanding to discuss emerging 
themes in this field that may play a key role in au- 
tomation. In addition to the researchers in range 
image understanding, we invited a few researchers 
interested in designing range sensors also. The par- 
ticipants were drawn from academic institutions, 
research centers, and industry. The aim of the 
workshop was to identify major research areas that 
should be addressed by researchers for making 
range image understanding systems useful in indus- 
trial and other applications. 

1.1 Format of the Workshop 
The workshop lasted two and a half days. The em- 
phasis in this workshop was on group discussions. 
The workshop began with seven overview talks, 
one on general range image understanding by 
Ruzena Bajcsy, and one on each of the major areas 
in range image understanding and its applications 
that are active: 

�9 Early processing (Paul Besl) 
�9 Object recognition (Robert Bolles) 
�9 Sensor integration (Jake Aggarwal) 
�9 Navigation (Takeo Kanade) 
�9 Inspection (Joe Mundy) 
�9 Range sensors (Avi Kak) 

These talks were expected to set the tone for the 
discussions at the workshop. 

The second day of the workshop was devoted to 
group meetings. The research issues were divided 
into three classes: 

�9 Short term research and development work that 
may result in applications in the next three to five 
years. 

�9 Long term research issues that may result in ap- 
plications in five to ten years. 

�9 High risk areas. 

The purpose of the group discussions was to make 
recommendations for the research in the specific 
areas. 

The recommendations were presented by group 
leaders on the third day in the general meeting. 
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Consensus recommendations were formed during 
that discussion. These recommendations are pre- 
sented in the following sections. 

The list of participants of the workshops, differ- 
ent groups, overview speakers, and group leaders is 
given in Section 8, the Appendix. 

2 Issues in Sensing and Sensors 

Nelson Corby, GE 
Kevin Harding, ITI 
Avi Kak, Purdue 
Robert Sampson, ERIM 
George Stockman (Chair), MSU 

2.1 General Background 
Sensors connect intelligent processes, whether in 
man or machine, to the external 3-D world. Engi- 
neering approaches have separated sensor design 
from the design of the overall intelligent system. In 
some well-specified applications such design has 
led to successful systems. Techniques are getting 
better and cheaper, and there seems to be good po- 
tential for many future industrial applications. 

For some very difficult problems, such as auton- 
omous navigation or object detection in significant 
clutter, higher level processes have not yet been 
proved successful. Therefore, it is not clear exactly 
what kind of data is necessary and what top-down 
information must be employed. Uncertainty in the 
overall system design is thus problematical for 
specification of the sensing module. A related prob- 
lem is that of multisensorfusion: data from different 
sensors must be integrated in such a way as to main- 
tain a continuous/cohesive representation of the 
real world. Fusion may be done at a low level, for 
instance at the (x,y,z) point level, or at a higher 
structural~symbolic level. A final notion to mention 
is that of active versus passive sensing. A common 
definition of active sensing would apply to any sen- 
sor that provided and controlled its own illumina- 
t ion-such  as triangulating with structured light or 
timing a laser pulse. At a higher level we may define 
active sensing to mean that the sensing is goal- 
directed; that is, the intelligent consumer of the data 
is gathering that data for hypothesis testing. 

Having made the given caveats, the report pro- 
ceeds, concentrating on the sensor as a separate 
system. Top-down control of the sensor via the in- 
terface to higher level modules is sometimes ad- 
dressed, but only to a modest degree. 

2.2 Popular 3-D Range Sensors 
According to Kak, the three most popular 3-D sens- 
ing techniques are: 

1. Stereo. 
2. Structured light. 
3. Time-of-flight (sensors which measure phase 

change, rather than time, as a function of dis- 
tance traveled are lumped into this category). 

The most important characteristics of these tech- 
niques are as follows. 

2.2.1 Stereo. The chief advantage is that it is 
passive. The main disadvantage is that it apparently 
cannot produce dense range measurements over 
uniform regions due to lack of features or presence 
of too many features for correspondence. The cost 
of two intensity sensors (cameras) is low, but hard- 
ware needed to produce the correspondences add 
significantly to the cost of a system. There has been 
a great deal of R&D on stereo sensing, and the tech- 
nique is of common use in making maps from aerial 
imagery. Progress in robotics has been disappoint- 
ingly slow, but researchers seem to agree that there 
is more potential to tap. In certain industrial envi- 
ronments, it is easy to use active illumination to aid 
in solving the correspondence problem. 

2.2.2 Structured light. The main advantages 
are simplicity and the resulting low costs, making 
this the most common technique in industry. Vari- 
ous forms of structured light may be projected onto 
a scene, such as a ray, a sheet, a grid, or even 
cylinders, etc. Measurements may be dense or 
sparse depending upon the light pattern and on 
whether or not it is scanned over the scene. The 
active illumination can be a disadvantage in natural 
or hostile environments and even in industrial en- 
vironments where specular reflections can be a 
problem. There is also the problem of lack of data 
due to one object shadowing another from the pro- 
jected light. 

2.2.3 Time-of-flight. The main advantage is 
that a dense and (almost) complete range image is 
output and that little or no image processing is re- 
quired to get range. There is also the growing capa- 
bility of obtaining several bits of registered reflec- 
tance data, thus allowing simple sensing of most of 
the so-called intrinsic image. The chief disadvan- 
tage is cost. Most sensors developed so far have 
been one of  a kind and have six-figure price tags. 
Lower prices are expected as successful applica- 
tions increase the market, but chances for low 
prices are dim because of the costly optical and 
mechanical parts used in current designs. More de- 
tails are described in the sections below. 
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2.3 Other 3-D Sensing Techniques 
There are other 3-D sensing techniques which are 
likely to find increasing application. These include: 

1. Depth-from-focus. 
2. Moire fringe pattern interpretation. 
3. The use of acoustic or radar signals to measure 

distances via timing of returned signals. 

2.4 Needs of Five Major Application Areas 
Different application problems place different re- 
quirements on the sensor system. Requirements 
can be defined in terms of many parameters such as 
working volume, materials in the scene, object 
placement, precision of measurements, and mea- 
surement rate. A summary of application areas and 
the spatial resolution and data rates required was 
done by Nelson Corby and Joe Mundy of General 
Electric and is given in Table 1. 

2.5 Example: ERIM Range Sensor Specs 
There are several companies that have manufac- 
tured time-of-flight range sensors. Most of these 
have been designed with a specific application in 
mind. However, the technology is likely to be ap- 
plied in other cases which were not considered dur- 
ing design. For the purpose of informing readers of 
current capabilities, the following data are given for 
the most recent sensor designed at ERIM. 

�9 16 in. • 16 in. x 16 in. envelope 
�9 12 bit range values of 0.004 in. (0.1 mm) resolution 
�9 Data rate of 0.25M rangels per second 
�9 Reflectance data as well as range 

2.6 Status of Moire Technology 
Moire technology shows good promise for inspec- 
tion of smooth surfaces. For purposes of informa- 

tion, some of the characteristics of a Moire sensor 
are outlined. 

�9 Advances 
--uses white light image 
--low cost 
--gives snapshot data; that is, no scanning needed 

�9 Resolution 
--12 bits of depth obtainable, for example, 0.0004 

in. steps over 2 in. 
- -x ,y  resolution depends on camera used 

�9 Data rate 
--100K range pts/sec can be obtained 

�9 Limitations 
--maximum surface slope about 30--60 deg 
--surface steps must be below 0.06 in. ambiguity 

interval 
--shadows created due to different projection and 

viewing angles 
pl imited by dynamic range of reflectance 

2.7 Commonly Cited Problems in Range Sensing 
A diversity of problems and limitations can be 
cited. These can be related to the components of the 
equipment, the physical phenomena used, the over- 
all system, or even the environment of the applica- 
tion. A few problems are worthy of special note. 
First is the problem of dynamic range. For solder 
joint inspection the dynamic range in surface reflec- 
tion can approach 100,000 to 1, thus placing severe 
constraints on the detector design. A second impor- 
tant problem is that of resolution and work volume 
requirements--sensors typically can achieve a good 
resolution over a limited work volume. For in- 
stance, if a sensor can deliver only a 12 bit value for 
range, this allows a resolution of 0.004 in. over 16 
in. If a dimension of 32 in. is required, then the 

Table 1. Sensing requirements for various applications 

Application Spatial 
area resolution Data rate 

Integrity and placement Detect missing or misaligned components 0.01 to 0.1 in. 100K to 1M range pts/sec 

Metrology 

Surface inspection 

Modeling 

in product assemblies; emphasis is on 
assembly and configuration control. 

Provides precision measurements of 
machine parts and electronic patterns. 

Exhaustively scan part and assembly 
surfaces to detect surface flaws 
and component defects. 

Extract a 3-D solid model from multiple 
range views; model supports design 
and engineering simulation. 

Provide scene data for mobile robot or 
autonomous vehicle. 

1 to 100 tzin. 

0.1 to 10 mils 

0.1 to 10 mils 

10 to 100K range pts/sec 

100K to 100M range pts/sec 

IOK to 1M range pts/sec 

Navigation Perhaps 1 in. to 1 ft Perhaps 10K to 1M range pts/sec 
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sensor must be moved (or reset in some other way). 
If such scanning must be done to enlarge the work 
envelope, then the sensor design is complicated and 
both data rates and overall system precision may be 
decreased. A related problem is that of providing 
variable work envelopes in order to allow smarter 
sensing of larger scenes without excess data or 
scanning times. 

�9 Component limitations 
--dynamic range of light intensity can be 100,000 

to 1 
----drift due to changes of environment, such as 

temperature 
--s tuck bits or loss of sync often observed 

�9 Design limits 
--multiple reflections 
- -shadows 
--ambiguity interval 
--motion of sensor or objects being sensed 
--resolution versus duration of sensing 
--spatial resolution and mixed pixels 
--mJissing data or artifact 
- -power  consumption 

�9 System limits 
--sensor-to-application match 
- -cos t  of sensor 
--representation gap between sensed data and ap- 

pliLcation process 
--fusion of range data with other sensor data 
- -need for variable sampling in same scan 

2.8 Future Efforts 
Previous sections identified some state-of-the-art 
technology and some of the problems yet existing in 
that technology. This section identifies a few lines 
of attack where new work or continued develop- 
ment effort is needed. 

�9 Breakthroughs needed 
--sensors are needed which give snapshot range 

images, that is, without scanning. These would 
be immune to motion problems and the high 
cost components used in current sensors. 

--sensors should work in a closed loop with the 
h~gher level processes of image and scene un- 
derstanding. 

�9 Engineering for breakthroughs 
--continued progress on the development of sen- 

sors that deliver registered range and reflec- 
tance is needed. 

- - sensors  are needed which directly deliver 
higher level primitives such as edges or surface 
patterns. 

- - sensors  are needed which provide variable 
speed, resolution, and work envelope. 

�9 Miscellaneous 
- -more experience is needed in the use of range 

sensors in applications 
--documentation, in the form of texts or hand- 

books, is needed to educate users in the capa- 
bilities of 3-D range sensors and how to fit them 
to specific application problems. 

3 Early Processing 

The early range image processing (EP) discussion 
group consisted of: 

Gerald Medioni, USC (Chair) 
Paul Besl, General Motors 
Patrick Flynn, MSU 
Richard Hoffman, Northrop 
Gerhard Roth, NRC-Canada and McGill 
Ishwar Sethi, Wayne State 

3.1 Issues in Early Processing of Range Images 
In a general machine perception system structure, a 
range imaging sensor is recognized as a single con- 
tributor of sensory information within a suite of 
other possible sensors. Early processing of range 
image data may take place in isolation from other 
sensor data, but it is also possible and sometimes 
desirable to process imaging sensor data from mul- 
tiple sensors at the pixel level, usually under the 
constraint that all simultaneously processed pixels 
come from registered images. Since processing data 
from multiple sensors falls in the domain of sensor 
integration algorithms and strategies, the EP group 
discussed early range image processing in isolation 
from other types of sensor information. 

One "fact"  that was painfully apparent in many 
of the discussions and presentations is that no single 
range imaging sensor, no single early processing 
strategy, no single object recognition scheme or 
navigation technique or inspection algorithm, and 
no single sensor integration approach will be ade- 
quate in the near term for the wide variety of prac- 
tical applications that would benefit from range 
sensing technology. As a result, range imaging sys- 
tem design tends to be application driven and will 
probably remain so until a significant number of 
successful range imaging systems are being used. In 
other words, the application requirements will gen- 
erally specify the type of range imaging sensor that 
will be used. For example, specifications for range 
accuracy, depth of field, field of view, image acqui- 
sition time, standoff distance, lateral sampling in- 
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tervals, optical properties of scene materials, and 
other application specifications can severely con- 
strain the choice of range sensing technology. The 
range imaging sensor and the image features needed 
by higher level application-specific processes then 
place fundamental constraints on the choice of early 
processing algorithms. The EP group attempted to 
address many of the common issues involved in po- 
tential application. 

3.2 Definition of "Early" Processing 
A definition of early range image processing was 
needed since the interface between early processing 
and sensing can be muddled with emergence of 
smarter sensors. In addition, the distinction be- 
tween early range image processing and later pro- 
cessing can also be difficult to make. An early range 
image processing algorithm is any geometric signal 
processing algorithm that organizes (abstracts) dis- 
crete range sensor data into a more convenient form 
for application-specific (task-oriented) reasoning. 
Early processing algorithms do not directly address 
range estimation nor do they infer the existence of 
objects in the image data. The goal of an early pro- 
cessing algorithm is to accept input from a range 
imaging sensor and to extract geometric primitives 
or features relevant to higher level application- 
dependent processes. Ideally, early processing 
completely partitions, or segments, the range data 
into geometric primitives so that almost all image 
data points are grouped with some geometric rep- 
resentation. 

3.3 Surface Geometry 
It is common in early processing to assume that 
most visible surfaces of interest are piecewise 
smooth and more specifically, C 2 almost every- 
where (first and second derivatives exist except on 
sets of zero area: points or curves). This assump- 
tion arises from the fact that matter is cohesive. 
Although visual texture due to surface reflectance 
variations are common in the everyday world, sig- 
nificant physical surface texture, such as the tex- 
ture present in trees, mountain ranges, and clouds, 
is not as common in many potentiai range imaging 
application environments. When physical surface 
texture is important, fractal or Markov random field 
(MRF) models have been explored and will require 
further investigation with respect to application re- 
quirements. 

Assuming an underlying piecewise smooth sur- 
face geometry exists that approximates the range 
image data well, how is it recovered, estimated, or 
analyzed? Many researchers agree that knowledge 
of the differential properties of a range image is use- 

ful for many purposes. For example, edge detection 
requires estimation of at least the first partial deriv- 
atives, and estimation of second partial derivatives 
and mixed partials is commonly done. The majority 
of early processing algorithms seem to lie some- 
where between (a) first partial derivative estimation 
at the simple end of the EP spectrum (e.g. a Sobel 
operator) and (b) computation of a complete princi- 
pal (Darboux) frame field for the entire range image 
at the complex end of the EP spectrum. Knowledge 
of the principal frame field of a range image implies 
that one knows the surface normal and principal 
directions at each point in the image and possesses 
a line of curvature surface parameterization that ap- 
proximates the data well. If this information is 
known, then any other surface information, such as 
surface curvatures, can be easily computed. The 
goals of many early processing approaches are sum- 
marized as the (a) detection of  C O (jump), C ~ 
(crease), and C 2 (curvature) discontinuities and 
their junctions and (b) the approximation or char- 
acterization of the smooth C 2 surface patches 
whose boundaries are the aforementioned disconti- 
nuities. There are many methods to create approx- 
imate surface patches without using differential 
properties of the pixel data. These methods rely 
mostly on surface fitting. 

Differential properties are most often estimated 
either explicitly or implicitly via local window sur- 
face fits (a.k.a. local facet model). Such methods 
yield adequate results quickly, but the depth, or 
range, direction is a preferred direction in space. 
For isotropic computation, surface normals can 
also be estimated by diagonalizing the covariance 
matrix of points in a neighborhood and selecting the 
eigenvector associated with the minimum eigen- 
value. Curvature can then be computed from sur- 
face normal estimates. The consensus seemed to be 
that surface normals and curvature can be com- 
puted fairly reliably at the majority of points in a 
range image by either method, but that there are no 
existing reliable low level methods that work every- 
where, especially near crease edges or curvature 
edges. 

In order to estimate differential properties of 
range image data, it is common to use nonadaptive 
Gaussian or binomial weighted presmoothing oper- 
ators [low pass (FIR) filters] to filter out unwanted 
noise. Linear filters unavoidably round sharp 
edges, so it is also common to use nonlinear filters 
that tend to (a) preserve edges and (b) smooth 
nonedge image regions. The K-nearest-neighbor 
smoothing approach with K = 5 is a good inexpen- 
sive adaptive alternative to constant coefficient 3 x 
3 smoothing operators. Other methods exist in the 
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literature, but none have proven to be the unique 
best solution for all applications. 

3.4 Early Processing Algorithms 
The goal of any preliminary filtering operator in 
range image processing is to preserve geometry 
while attentuating noise. Whereas no combination 
of smoothing and derivative estimation have proven 
themselves superior to other techniques, there is a 
serious lack of an optimality criterion. It was sug- 
gested in the early processing group discussions 
that surface curvature types from synthetic range 
images might allow a testing criterion. For example, 
if the ideal surface curvature types are known at 
every pixel in a range image, any scheme for esti- 
mating partial derivatives might be evaluated using 
the percentage of misclassified pixels. A "perfect" 
algorithm would have a zero misclassification rate 
for a series of preselected test images with different 
types of surface geometry and different levels of 
noise. In general, standardized segmentation error 
metrics are needed to help advance the state of the 
art. No quantitative metrics are measured on stan- 
dard test images in most of today's research envi- 
ronments. 

The: output from an early processing algorithm 
should be representations of geometric primitives: 
points, curves, surfaces, and/or volumes. If symme- 
try is present in the data, an early processing algo- 
rithm should recognize the symmetry and encode it 
in the extracted geometric primitive. For example, 
lines (dihedral crease edges), circles, planes, 
spheres, cylinders, cones, and undeformed super- 
quadrics can be recognized directly by low level 
processes and used to limit the possible degrees of 
freedom of the objects. Feature points, such as 
polyhedral vertices, cone tips, and isolated umbilic 
points, also provide powerful constraints for higher 
level processes when available. Other types of more 
general shape primitives might also be extracted, 
such as B-spline space curves and tensor-product 
surfaces. Other shape description representations, 
such as extended Gaussian images (EGIs) and 4- 
vector EGIs, are also useful for describing elliptic 
and hyperbolic surfaces. Geometric representations 
are critical concerns for higher level processes and 
the selection of particular representations will dic- 
tate requirements to early processing algorithms. 

Multi-resolution methods were discussed and it 
was decided by the group that a multi-resolution 
paradigm is probably not relevant to early range 
image processing unless it provides computational 
advantages. That is, the best, finest resolution re- 
suits should be returned by early range image pro- 
cessing algorithms. If multi-resolution concepts are 

useful for later matching representations, then later 
processes can coarsen the models for the given al- 
gorithm or application. 

As far as general purpose system integration is- 
sues are concerned, a range imaging sensor should 
return a model of its processes and a model of pos- 
sible noise sources to an early processing algorithm 
when queried. For example, range image noise is 
typically non-normal and is definitely nonstationary 
and might usually consist of random measurement 
noise, quantization noise, and systematic sensor 
noise (e.g., a small amount of ripple) as well as 
"outlier" noise, which causes bad range readings 
due to depth discontinuities and finite laser beam 
width, steep relative surface slopes, specular reflec- 
tion, absorption, multiple reflections, etc. Simi- 
larly, the sensor/noise model and a model of the 
early processing algorithms and their possible er- 
rors should be passed on to higher level processes. 
A general purpose early processing algorithm will 
need to adapt itself to situations that depend on 
which sensor is used and which application is seek- 
ing geometric features from the image data. Al- 
though such issues may not impact today's planned 
practical systems, we must begin thinking along 
these lines to move toward general purpose sys- 
tems. 

Range images can be represented in (raster) r(i,j) 
form (range as a function of two integer indices) or 
in (scattered) 3-D (x,y,z) form. Several comments 
indicated that all early processing should be per- 
formed in the r(i,j) image form since the uncertainty 
in range r is much larger than the uncertainty in the 
actual 3-D ray corresponding to the (i,j) indices. 
There may be a global uncertainty about where the 
range imaging sensor is pointing, but the point- 
to-point uncertainty is minimal. Hence, all probabi- 
listic second moment information can be well ap- 
proximated by a crr(i,J) range variance image and a 2 
x 2 Z 0. covariance matrix for the overall sensor di- 
rection. That is, one number per point plus four 
numbers per image. In contrast, the (x,y,z) form of 
a range image would require a 3 x 3 covariance 
matrix (nine numbers) for each point. As Kalman 
filtering algorithms become more common for inte- 
grating estimates of point positions from multiple 
views acquired at different times, these memory 
and efficiency concerns may be critical. As a gen- 
eral guideline, range image data should be pro- 
cessed in the sensor coordinate frame. Geometric 
primitives extracted from the image will need to be 
transformed to the relevant global coordinates with 
their related uncertainty information. 

Is multiple view integration an early process or a 
later process? It appears to depend on the applica- 
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tion. For instance, in autonomous land vehicle 
(ALV) range images, each scan line (and possibly 
each point) may be coming from a different view- 
point during image acquisition. In such applica- 
tions, image data must be corrected before other 
early processing algorithms can begin. Hence, such 
viewpoint corrections are a key feature of early pro- 
cessing stages of the system. In contrast, an auto- 
mated geometric modeling system may perform in- 
tegration of extracted geometric primitives from 
different views after all the early processing is done. 
in general, if multiple view integration is required 
for geometric primitive extraction, they it is early 
processing; otherwise, it is not. High level multiple 
view integration algorithms should tie into sensor 
integration algorithms in a natural unified manner. 

A never ending source of difficulty (and often 
confusion) is the set of early processing algorithm 
parameters (window sizes, thresholds, tolerances, 
etc.). It is often difficult to verify the results of oth- 
ers without knowing the algorithm parameters they 
used. As a general rule of thumb, the number of 
parameters should be minimized. For each param- 
eter used, the range of values tested and the effects 
should be clearly documented by those describing 
the algorithm for others. Besides edge detection 
thresholds, a classic case is fitting unconstrained 
quadrics to range data from cylinders. Sometimes a 
long, but enclosed, ellipsoid is generated; other 
times, a long nonclosed hyperboloid is generated. A 
threshold is needed to decide when the surface is a 
cylinder and when it is something else. In addition 
to parameter set listings, the EP group agreed that 
all journals in the field should insist on explicit con- 
cise pseudo-code listings or flow charts as algorithm 
documentation in papers describing algorithms or 
the results of algorithms. 

3.5 Summary 
In order to make progress as an engineering and 
scientific discipline, the computer vision commu- 
nity, and the range imaging understanding interest 
group in particular, should begin to share software 
and image data in a more open manner. We need to 
avoid duplication of effort and to enable quantita- 
tive comparisons of different approaches. It was 
suggested that journals require that new algorithms 
be run on at least one standardized image and com- 
pared to at least one other well-accepted algorithm. 
As examples, the Alvey consortium of universities 
and industry in England standardized on C and Sun 
workstations making it possible for a large group to 
share results and source code. In the numerical 
analysis community, people can send CSNet mes- 
sages to netlib at Argonne National Labs and re- 

ceive numerical software back in FORTRAN. The 
workshop group agreed that an image database 
should be set up to allow easy access to range im- 
agery given the scarcity of good sensors. For soft- 
ware, it is suggested that standard algorithm librar- 
ies be begun in (ANSI) C and (Common) LISP 
languages. Candidates for standard software librar- 
ies include the following: adaptive/nonadaptive 
smoothing and derivative estimation functions; 
jump/crease/curvature discontinuity edge detection/ 
tracking/linking; region growing based on various 
uniformity predicates; regression code for curve 
and surface fitting of various types of geometric en- 
tities (e.g., B-splines); standardized rotation matrix 
manipulation codes (e.g., quaternions, etc.); device 
independent 3-D display algorithms for points, 
curves, surfaces, and volumes (silicon graphics in- 
terfaces); device independent range image genera- 
tion algorithms from polyhedra, superquadrics, 
Bezier patches, or non-uniform rational B-splines 
(NURBS) for different types of scanner configura- 
tions; and geometric operations such as free-form 
surface-surface intersections and Boolean opera- 
tions. 

Early processing of time-varying range imagery 
is an area that requires more research. A compli- 
cating feature of most range imaging sensors is long 
image acquisition times (greater than 0.25 sec). This 
is a general feature of most range imaging sensors 
that will not be alleviated in the near term except at 
great expense in sensor technology. Dynamic algo- 
rithms must be able to handle this artifact of range 
imaging sensors. 

4 Object Recognition 

The object recognition discussion group consisted 
of: 

Thomas O. Binford (Chair) 
Robert Bolles 
Francis Quek 
Richard Weiss 

Recognition and interpretation integrate vision sys- 
tem functions. Recognition must account for results 
from preceding analysis, that is, sensing, early anal- 
ysis, and any multisensor integration. Figure 1 
shows a convenient hierarchy in model based vi- 
sion. It shows dimension of representation, not con- 
trol. On the left side is modeling, on the right is 
observation, while matching connects models with 
observations. Application scenarios provide a back- 
ground for requirements which depend on the task: 

1. The ALV scenario involves cross country navi- 
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RECOGNITION LEVELS 

OBJECTS ~ ~ OBJECTS 

t 
PARTS ~ ~ PARTS 

, t 
FEATURES ~ ~ FEATURES 

, t 
DATA ~ ~ DATA 

Figure 1. Model based vision. 

. 

4. 

greatly one from another, and each of whom var- 
ies greatly over time, changing clothes, growing 
old, etc. 
Complexity of background: simple or uniform on 
one hand to "any ."  
Computational complexity: one model per ob- 
ject, that is, order n complexity for n objects, at 
the brute force extreme, to log n complexity with 
indexing. 

Much range image analysis and over vision is 
aimed toward recognition of few, identical objects. 
These application scenarios put value on recogni- 
tion algorithms for many objects, object classes, 
and complex backgrounds, with low complexity. 

gation outdoors. Objects vary greatly within ob- 
ject classes, terrain, vegetation, and structures. 
This is an extreme of the generic object class 
requirement. 

2. Industrial robot vision tasks require handling 
one or a few objects at any time. However, large 
companies have many parts in production, for 
example, as many as 150,000. Programming 
many objects provides some motivation for ge- 
neric object class capabilities. 

3. Industrial inspection requires finding a wide va- 
riety of flaws, some of which occur infrequently, 
in the face of cosmetic marks which do not affect 
function. The number of different inspection 
tasks may be large. Inspection motivates generic 
object class treatment. 

4. Space applications may not require generic mod- 
els. The environment on board will be heavily 
documented. Planetary exploration does en- 
counter terrain which makes generic methods 
valuable. 

5. Home and service robots work in complex envi- 
ronments with complex objects. Generic models 
appear valuable. 

6. The attraction of robots in warehousing is flexi- 
bility of routes and stacks. Automatic retrieval 
of objects from storage may be very complex, 
verifying correct placement in bins. Navigation 
is of intermediate difficulty, that is, there may be 
obstacles which come and go. 

These scenarios motivate criteria for system design. 

1. Number of object models: from one to as many 
as 1,000,000. 

2. Variability of models: from classes of identical 
objects from a "cookie cutter," to object classes 
with variability such as humans, who vary 

4.1 Matching 
We summarize briefly a selected set of issues from 
group discussion. Among three components of rec- 
ognition, modeling, observation, and matching, 
there was consensus that matching is a weak link, 
has highest priority, and is most neglected. Issues 
relate to performance in time and performance in 
quality of recognition or interpretation. 

We discuss recognition within this interpretation 
paradigm: hypothesis generation, hypothesis man- 
agement, hypothesis verification, and refinement. 
Performance in time motivates study of the follow- 
ing issues: 

1. Structural indexing for hypothesis generation is 
a part of efficient recognition. 

2. Control of the recognition process involves a 
group of issues: execution strategy, such as re- 
source allocation; structuring recognition for 
parallel and distributed computation; data struc- 
tures for matching; and algorithm synthesis 
based on detailed model based complexity. 

3. Currently, the key to successful system building 
is using special case simplifications. A step to- 
ward this is study of general methods to use do- 
main-specific information. 

Quality of performance further motivates other 
important issues. One key is refinement of pose and 
parameters. A second is accurate implementation of 
geometric and probabilistic constraints in solution. 

4.2 Modeling 
The power and generality of recognition depends on 
accurate modeling overall. First is the modeling of 
objects and scene. A new issue is generic modeling 
of object class. Another issue is building models 
and knowledge base. Second is modeling of observ- 
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ables, that is, generating models for sensors and 
operators. 

5 Sensor Integration 

Tom Henderson (Chair) 
Ramesh Jain 
Y.T. Chien 
Jake Aggarwal 
Ruzena Bajcsy 

Multisensor integration is the combination of ev- 
idence or sensed data from several sensors. Most 
aspects of the sensor integration problem can be 
characterized in terms of Figure 2, where 

s; is the ith sensor, 
X i is the ith sensor data, 
Ci is a measure of the uncertainty of X,., 
f,. is the ith parameter produced, 
t is the time parameter, 
R is the composite model or representation, 
K is the knowledge used in the problem. 

Sensors deliver: 

1. position and properties, and 
2. absence of objects. 

Integration techniques and the level of integration 
are functions of: 

�9 the physical relation (or coupling) of the sensors, 
and 

�9 the physical properties which characterize the ob- 
ject. 

Levels of integration must be considered: 

�9 signal/point 
�9 neighborhood 
�9 large region or surface level 
�9 object level 
�9 scene level 

(X1,C1)(t) 
sl  " - - - - >  f l  ">1 

Major issues: 

1. The representation of the composite model: This 
representation should be such that information 
acquired from disparate sensors can be inte- 
grated and assimilated. This representat ion 
should capture details and should represent sym- 
bolic information, also. One area of study is the 
use of explicit 3-D connectivity data structures 
as opposed to image data structures and the de- 
termination of appropriate applications for such 
techniques. 

2. The combination of measurements is an estima- 
tion technique and well understood; however, 
inference techniques which operate on derived 
features need study. There are many approaches 
to uncertainty management. It is not clear which 
one performs better under given real world con- 
ditions. We require a good scientific study to 
determine the scope and limitations of uncer- 
tainty management techniques. 

3. It is important to determine how the nature of 
the properties of problems influences the tech- 
niques selected or the parameters. This requires 
the study of requirements models and the related 
physical sensor models. It is essential to get at 
the cost of obtaining information with sensors 
and the development of an information based 
complexity model for sensing systems. This is 
particularly urgent for multisensor systems. 

4. It is necessary to define the time-varying re- 
quirements of multisensor systems. This in- 
cludes defining strategies for the sequence of ap- 
plication of sensors which complement each 
other, as well as the sequence of motions re- 
quired for individual sensors. 

5. In many cases, it is possible to obtain similar 
information using two different types of sensors. 
It is not clear that we understand the scope and 
limitations of sensors well enough to determine 
which sensor should be used in a given situation 
(this includes masking off parts of the sensed 
data). 

6 Range Sensing for Navigation 

(X2,C2)(t) 
s2 . . . . . .  > f2 . . . .  >l  

[ 
I ---->R<---->K 

integration 

(Xn, Cn)(t) I 
Sn - - - )  f n  . . . .  )" l 

Figure 2. Sensor integration. 

C.M. Brown (Chair) 
T. Kanade 
W.E.L. Grimson 
U.K. Sharma 

6.1 System Parameters, Navigational Tasks, 
and Representation 

The concept of navigation is ill-specified and poten- 
tially extremely broad, encompassing tasks like 
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Table 2. 

Aligned and coupled 

Coupled, not aligned 

Not coupled, not aligned 
but known relation 

Unknown transform 

Identity (on 
element placement) 

Fixed rigid motion transform 

Rigid motion transform 

Unknown 

Pointwise integration 

Signal ratio integration 

Feature level integration 

Symbolic level integration 

finding space in a robotic environment, following an 
underwater course while maintaining a known pose 
and accounting for known and unknown currents, 
driving at speed over urban or open terrain with or 
without accurate or inaccurate maps. Thus, the role 
of, the requirements for, and the necessary future 
research and development on range sensors for 
navigation all depend on the navigational task at 
issue. 

In order to keep this truism from being our last 
word on the subject, we decided to try to identify 
important and representative navigational tasks and 
system parameters that could affect choices, and to 
consider two case studies that illustrated various 
issues and answers. We also tried to address the 
topics of other groups and make explicit what ca- 
pabilities in those areas we would like to see. In 
particular, we outlined what we should like to see in 
the areas of sensors, early processing, object rec- 
ognition, and sensor fusion. 

Autonomous navigation is not usually called for 
unless there are considerable practical problems in- 
volve,d, and so often the constraints that make it 
necessary also make it harder. The system or mis- 
sion assumptions that seemed most crucial were the 
following. 

1. Autonomy time--how long the navigator runs 
open loop. We considered times from hours 
(land vehicle reconnaissance mission) to weeks 
(undersea monitoring). 

2. Weight and power restrictions. These can vary 
from loose (for a land vehicle) to stringent (for a 
Mars rover). 

3. Task specifications. 

The navigational tasks we considered in some detail 
were the following. 

1. Finding navigable space. 
2. Recognizing landmarks. 
3. Localizing self in relation to an environment. 
4. Servoing motion and detecting obstacles. 

The sensor technologies we considered were the 
following. 

1. Laser ranging. 
2. Passive stereo or structured light triangulation. 
3. Active camera tracking and focusing, including 

low level reflexes. 
4. Sonar. 

An important question is the representations to 
be used for navigation. Perhaps one of the more 
surprising outcomes of this group's discussions was 
the agreement that a small set of representations 
would probably suffice. There are interesting issues 
involving the algorithms that manipulate them, but 
the basic data structures we thought necessary are 
the following. 

1. Occupancy maps or elevation maps--discrete, 
iconic representations of local topography, pos- 
sibly annotated with symbolic information or la- 
bels. 

2. Planar-faced and planar-polyhedral representa- 
tions of geometry, perhaps labeled. More com- 
plex shapes can be approximated by these rep- 
resentations. 

3. Materials should be represented explicitly when 
known or discovered. This information can be 
represented as labels on geometric elevation rep- 
resentations. 

4. Topological connectivity "(has been navigated" 
or "can be navigated" connectivity) between ar- 
eas represented as occupancy or elevation maps. 

5. Coordinate systems are basic. 

6.2 Case 1: An Underwater Surveyor 
A small underwater robot is to construct an eleva- 
tion map of an area, annotating it with results of 
other sensors (where a chemical level exceeds a 
threshold, where a certain material is found, etc.). 
The robot has a range sensor that returns ranges Rij 
for a local area (perhaps the output is a one- 
dimensional scan line). The robot has an orientation 
and orientation-derivative detector, and a velocity 
detector. This is a minimal scenario in several 
cases. The weight and power restrictions mean that 
"smart"  sensing technology can be traded for pro- 
cessing, which is weight- and space-efficient. There 
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are no real-time constraints, so processing can be 
complex. The sensor technology itself can be rela- 
tively primitive. We noted that the underwater ro- 
bot technology has grown quite sophisticated and 
that more cooperation between land and sea robot- 
ics workers would be a good idea. 

The following paragraphs relate this case to the 
requirements for the subtasks mentioned above and 
for the subjects addressed by other working groups. 

6.3 Case 2: Surveying an Urban Environment 
Here we assumed a large autonomous vehicle car- 
rying several depth and imaging sensors, whose job 
it was to investigate a small deserted area of urban 
terrain and record differences between the current 
situation and the situation expected from an on- 
board map. The task could include checking if 
buildings still existed, if their identifications on the 
map were correct, if roads are still open, etc. 

6.2.1 Sensors. The basic system is a sonar 
ranger. If close-up work, such as oil rig inspection, 
is called for, then there exist underwater laser sys- 
tems that could be used for the requisite high reso- 
lution sensing. This subscenario calls for different 
mobility requirements and generally more sophisti- 
cation. Ambiguity intervals would become an issue, 
for instance. There may be millimeter-wave radar 
for underwater use. Materials analysis from the sen- 
sor is a desideratum. High resolution and speed are 
not issues, since in this case we are not time limited. 

6.2.2 Representation. The desired output is an 
annotated elevation map. 

Spurious output detection is necessary. Registra- 
tion of the results is a primary problem, but this is 
covered under self-localization below. Averaging or 
combining multiple readings from one location may 
be called for. Nothing in the way of segmentation, 
surface fitting, dealing with occlusion, etc. is 
needed. 

6.2.3 Sensor fusion, object (landmark) recogni- 
tion, fmding navigable space. Not needed. 

6.2.4 Self-localization. This issue is quite im- 
portant, since unknown currents may affect the ro- 
bot's location, and the output is a quantitative map 
of the area. There are engineering solutions (a buoy 
with a transponder that uses an outside reference 
source, like a navigation satellite). Failing that, the 
issue would come down to matching currently avail- 
able sensing data against the map derived so far, 
which could be rather difficult. 

6.2.5 Obstacle detection. Not needed in the 
simple scenario, and relatively easy to do using an- 
other echolocation sensor, except insofar as avoid- 
ance maneuvers could make self-localization more 
an issue. 

6.2.6 Map creation. This is not difficult if the 
self-localization issue can be solved and if the sen- 
sors return the requisite data. The basic technique 
is temporal fusion of data, done in software. 

6.3.1 Sensors. The assumptions here invite 
more sophistication to be built into the sensors, in 
order to relieve the higher level processing. The 
following desiderata all raise considerable research 
and technological issues. This case may call for the 
following capabilities. 

1. Stability for the sensor platform is necessary, to 
provide something like a vestibulo-ocular reflex 
(VOR) to keep the sensor fixated on a spot or to 
isolate it from vehicle motions. 

2. A laser ranger should provide five times the 
speed, five times the distance, and five times the 
depth resolution of current sensors. It should 
have a vertical angular extent of 60 deg. 

3. Effective techniques based on traditional image 
sensing might be possible. The technology to 
provide structured (or "unstructured") light for 
triangulation or stereo ranging over a wide area 
does not seem as daunting as laser-ranging tech- 
nology. Multispectral scanners (or "pokers")  for 
material identification are useful but a different 
issue. Recent work in active vision, such as 
"depth from parallax" or kinetic depth determi- 
nation, (related to depth from flow), is aimed at 
duplicating the (very effective) processing per- 
formed by humans. Fixation and object tracking 
reflexes can simplify object recognition and also 
depth and egomotion calculations. Stereo is still 
a hot topic and could yield at any time. Our 
group felt that the potential power of techniques 
based on high-resolution optical images should 
not be overlooked. 

4. Auto-registration of input through time would be 
an interesting option. This capability would com- 
pensate for vehicle motion as it happened. The 
goal would be to have the sensor emit true (x,y,z) 
information (point locations in a global fixed co- 
ordinate system) instead of R(i,j,t) information 
(range from the sensor in direction (i,j) at time t). 
At present, the hardware does not exist to do 
automatic motion compensation. Further, it is 
important not to throw away covariance infor- 
mation (error ellipsoids are oriented toward the 
ranger, wherever it is). However, the hardware 
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situation may be changing, and taking account of 
the effect of errors is not a particularly difficult 
problem). The desired effect is the "s table  
world" we perceive when we move our eyes. 

5. Many times it is desirable to work on R(ij,  t) 
data, rather than on (x,y,z) data, because the lat- 
ter involves more parameters and therefore more 
computational time. Also, most of the time low 
level processing is done in the local coordinate 
system, and only important features are con- 
verted into the global coordinates. Usually, such 
features contain only 5% of the image points. 
Therefore, we save about 95% of the coordinate 
translation time by not converting (or not de- 
manding the sensor to convert) the entire image 
into the global coordinate system. 
If we expect the sensor to give (x,y,z) informa- 
tion in the global coordinate system, the sensor 
can perform "translation" based on inertial nav- 
igation system (INS) data to get the global value 
at each pixel. Therefore, the image acquisition 
time in local (x,y,z) will be more than that in 
global (x,y,z), and much more than R(i,j,t). Most 
of the time, R(i,j,t) suffices (e.g., obstacle detec- 
tion, surface normal computation) but, some- 
times (x,y,z) global or local is needed (e.g. for 
motion analysis, etc.). 
In summary, there are three formats: 

(a) R(i,j,t) data 
(b) (x,y,z) local data 
(c) (x,y,z) global data 

Depending upon the task and the penalty paid in 
time to the sensor for (2) and (3), one can deter- 
mine which format is best. 

6.3.2 Representation. Annotated, planar poly- 
hedral representations for objects and annotated el- 
evation maps for topography, linked topologically 
to indicate navigability (perhaps by simple "stay on 
the road" servoing), seem to be all that is required. 

6.3..3 Early processing. Segmentation into re- 
gions of spatial or material homogeneity is the pri- 
mary desideratum here. Simple planar regions with 
dihedrals labelled as to convex, concave, or obscur- 
ing type would be adequate. Reflexes, such as ob- 
stacle avoidance, can operate before segmentation. 
Multiresolution methods may well be useful. 

6.3.4 Sensor fusion. The usefulness of com- 
bining depth and intensity data for more reliable 
segmentation has been demonstrated in several 
contexts. The primary reason for sensor fusion is to 
do more reliable segmentation. Insufficient infor- 
mation from a single sensor, such as only TV cam- 

era or only range sensor, may lead to incomplete or 
incorrect object recognition. For example, range 
data obtained from a laser scanner, and reflectance 
data obtained from a TV camera provide comple- 
mentary information. Range data provides impor- 
tant clues on the geometry of an observed scene. 
However, it does not provide any information about 
the physical properties of the scene objects such as 
color or reflectance. On the other hand, it is ex- 
tremely difficult to extract geometrical information 
from TV data. Therefore, both types of data need to 
be analyzed. Doing this correctly involves under- 
standing the physics of the problem, and thus how 
one sensor's output is related to another's. How- 
ever, the existence of multiple sensors also raises 
the possibility of switching modes as called for by 
the task, so flexibility in sensor choice is a desider- 
atum. Fusion can be done with help from the struc- 
tural level, not just at the iconic level. That is, se- 
mantic labels or segments can be useful to constrain 
matches between sensor outputs. Last, temporal fu- 
sion is important in this scenario, as in almost all 
navigational tasks. Using a pre-existing map can 
help, but sophisticated techniques like Kalman fil- 
tering can be swamped by the registration problems 
that are inherent in real-world multiframe data. 
Thus, robust temporal combination techniques are 
another important research area. 

6.3.5 Object (landmark) recognition. Land- 
mark recognition (or self localization) is helpful so 
that the vehicle (or robot) can use triangulation to 
one or more landmarks to correct position errors 
caused by drift in the vehicle's inertial navigation 
system. Recognition of specific objects from a small 
catalog is not considered to be a problem these 
days. Much more relevant in any real-world situa- 
tion, including this scenario, is the ability to recog- 
nize a "generic object." That is, to recognize to 
which class (e.g., "gas station," "vehicle") a par- 
ticular instance belongs. Rule-based techniques 
may be applicable here, but construed broadly~ this 
is almost The Vision Problem. 

6.3.6 Self-localization. This is The Matching 
Problem, in a particular context, with particular 
representations. The knowledge or context pro- 
vided by previous movements and known land- 
marks may make this problem slightly easier. 

6.3.7 Servoing, obstacle detection, and naviga- 
ble space. Servoing to guide motion with respect 
to road width constraints and to sense obstacles 
ahead (at slow speeds) can be provided by a skirt 
sonar sensor. Stationary obstacles ahead can show 
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up with minimal processing as " tombstones ,"  
whose material properties may be important to 
know. This problem is currently under study in a 
number of places, and most autonomous robots 
have reasonable obstacle avoidance and servoing 
capabilities today. As motion speeds get faster, 
there are increasing demands on the sensor speeds 
and distances. 

There seems to be no agreement today on how 
best to a t tack the navigable space problem. 
Whether space should be represented explicitly or 
implicitly (absence of known masses) is a basic 
question. Our assumptions here are consistent with 
either representation, but also make our problem 
easier, since the map would presumably yield a po- 
tential navigable space to be verified. 

6.3.8 Map creation. The main goal in this case 
is no more difficult than any other computer vision 
undertaking, given the capabilities outlined above. 
That is, it is a big problem presenting many difficult 
intellectual and technical problems. Depending on 
the semantic content of the desired map, its com- 
ponent of geometric representation, and the dispar- 
ity between the reality and the expectations, the 
task will be more or less reasonable given today's 
knowledge. The contribution of range information 
to the job is to provide information about the three- 
dimensional world, largely in service of navigation 
itself. However, an unannotated, iconic elevation 
map could perhaps be produced by ranging alone. 
Further, the fusion of depth and image data can 
yield more reliable segmentation and thus improve 
navigation, recognition, and mapping. 

technology system life cycle. Uses in industry, 
aerospace/defense and civil government were con- 
sidered, but the intent of the group was to offer an 
integrative or "big picture" assessment of applica- 
tion issues across these communities. 

First, (Table 3) a number of application areas 
were characterized as being "present" or "future" 
with respect to routine production use with many 
image data. Counterexamples were later solicited 
from all workshop attendees, but none were volun- 
teered. 

Next, (Table 4) several broad generalizations 
were offered concerning the application needs and 
benefits of range image data for image understand- 
ing problems. One observation in Table 4 was an 
assessment of the approximate performance level of 
range image sensors, stated in terms of five cost/ 
performance parameters, required in order for a 
significant increase to occur in the industrial/ 
commercial/government use of range image under- 
standing systems. These performance/cost levels 
should again be taken as the rough "knees of the 
curves" of the number of sensors which might be 
sold nationally versus the indicated parameter val- 
ues. No sensor is currently known to be available 
which  is c lose to mee t ing  all of  the cost /  
performance values indicated. 

The value of range image data in achieving inte- 
grated iconic (i.e., pixel-domain) and symbolic pro- 
cessing who also noted in Table 4. It should also be 
noted that active "laser radar" or LIDAR sensor 
designs are currently evolving which offer signifi- 

Table 3. Production applications of range imagery 

7 Applications Group Report 

Anil Jain, Michigan State University 
Martin Levine, McGill University 
C.W. "Ron"  Swonger, ERIM (Chair) 

The Applications Group of the Range Image Un- 
derstanding Workshop focused upon examination 
of issues affecting the current and near-future rou- 
tine "production" use of range image based ma- 
chine vision for substantially unconstrained appli- 
c a t i ons  ( i . e . ,  a p p l i c a t i o n s  w h e r e  " i m a g e  
understanding" is a nontrivial undertaking). This 
focus inherently led to dismissal from serious con- 
sideration of passive stereo techniques and some 
other methods such as shape-from-shading meth- 
ods. The group therefore intentionally considered 
uses beyond the research, development, test, and 
evaluation (RDT&E) phase of the classical high 

Present 
Assembly control and verification 
Weld seam tracking 
Sheet metal part/assembly metrology 
Electronics inspection leads, SMDs, etc. 

Future 
Contoured object inspection/verification-- 

e.g., turbine blades 
Unconstrained material handling 
Wheel alignment 
General geometric flaw inspection 
Automated geometric modeling of prototype parts 
Electronics inspection--solder, wirebonds, etc. 
Food processing---quality control, sorting, grading 
Vehicle guidance 
Automatic target recognition (ATR) 

Note: No attempt was made to characterize or compare these 
sensors other than the indicated categorization. No endorsement 
is implied and no completeness or accuracy is guaranteed for this 
listing. It is quite unclear whether the list provided will grow or 
shrink over the next few years given the technological issues, 
compelling needs, and economic difficulties within the machine 
vision supplier and user communities worldwide. 
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Table 4. Range image understanding 
application observations 

Table 6. Known builders of range image sensors 
(current, industry applicable) 

The density of range data required depends upon: 
The richness and lack of constraint of scenes to be 

observed. 
The required variety and selectivity/accuracy of output 

decisions or actions. 

Improvements most needed for practical application of range 
image sensors are: 
Cost <$25 K 
Frame rate <1 second 
Tolerance of reflectance 

varmtions > 104:1 
Size (scanning head) < � 8 8  f t  3 

Range noise Standard deviation <0.1% 
of work envelope 

Range images offer significantly greater opportunity for 
achieving the long sought and critical integration of 
iconic', and symbolic processing for 3-D 
scene interpretation. 

cant potential for multimodal sensing and associ- 
ated information fusion at the image (pixel) level. 
Specifically, image sensors can be built to provide 
fully registered images of scenes which directly en- 
code range, panchromatic reflectance, multispec- 
tral reflectance (material properties), surface rough- 
ness, radial velocity,  vibration, polarization, 
temperature, and/or other properties for each pixel 
in the scene. 

Thirdly (see Table 5), the group undertook to 
prioritize the few most significant obstacles cur- 
rently limiting the practical "production use" of 
range image understanding systems. Cost, algorith- 
mic concepts, data availability, and processing 
hardware issues each enter into that list. 

Finally, a brief list was compiled (Table 6), from 
the knowledge of the group members and immedi- 
ately available references, of organizations known 
to currently build range image sensors (including 
point, contour or profile, and array or whole image 
sensors). 

Organization Point Prof i le  Array 

Boulder Electro-Optics a �9 
Chesapeake Laser �9 
Cyberoptics �9 �9 
Diffract�9 �9 �9 
Digital Signal �9 
ERIM �9 �9 

G.E. �9 

Hymark (Canada) �9 �9 
Industrial Technology Institute �9 
Keyence (Japan) �9 

NRC �9 

Odetics �9 

Oldelft (Netherlands) �9 
Perceptron �9 �9 �9 

Photonic Automation �9 
RVSI �9 �9 

Servo-Robot (Canada) �9 �9 b 
Selcom �9 

Siemens (W. Germany) �9 

Synthetic Vision Systems �9 
Technical Arts �9 �9 b 

a Acquired by Melles Griot. Machine no longer available. 
b Nodding mirror option. 
Caveats: 

Undoubtedly incomplete. 
Accuracy not guaranteed. 

8 Appendix 

8.1 Overview Speakers 

Avi Kak (Purdue Univ.): Sensing 
Paul Besl (General Motors Research): Early Pro- 

cessing 
Robert  Bolles (Stanford Research Institute): Ob- 

ject  Recognition 
Jake Aggarwal (Univ. Texas): Sensor Integration 
Take �9  Kanade (Carnegie Mellon Univ.): Naviga- 

tion 
Joe Mundy (General Electric): Application 
Ruzena Bajcsy (Univ. Pennsylvania): 3-D Vision 

Table 5. Prioritized obstacles to application of 
range imagery 

1. Sensor cost for required resolutions and data rates. 
2. Difficulty of interpreting substantially unconstrained 

scenes: 
(a) Segmentation. 
(b) Object recognition. 

3. Inadequate availability to researchers of multimodal 
registered image data. 

4. Inadequate availability of special purpose hardware for 
real-time geometric feature computation (e.g. Gaussian 
curvature). 

8.2 List of Participants 
This list of participants gives affiliation of  people 
and groups (identified by letter codes: S I - - sensor  
integration, EP- -ea r ly  procesing, OR--ob jec t  rec- 
ogni t ion ,  R S - - r a n g e  sens ing ,  N - - n a v i g a t i o n ,  
APP--applicat ions)  in which they participated. 

1. Jake Aggarwal (Univ. Texas) (SI) 
2. Ruzena Bajcsy (Univ. Penn) (SI) 
3. Paul Besl (General Motors Research) (EP) 
4. Tom Binford (Stanford Resea rch  Inst i tute)  

(OR) 
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5. Robert Bolles (Stanford Research Institute) 
(OR) 

6. Chris Brown (Rochester) (N) 
7. Y.T. Chien (National Science Foundation) (SI) 
8. Nelson Corby (General Electric) (RS) 
9. Patrick Flynn (Michigan State Univ.) (EP) 

10. Eric Grimson (Massachusetts Inst. Tech.) (N) 
11. Kevin Harding (Industrial Technology Inst.) 

(RS) 
12. Tom Henderson (Utah) (SI) 
13. Richard Hoffman (Northtrop) (EP) 
14. Anil Jain (Michigan State Univ.) (APP) 
15. Ramesh Jain (Univ. Michigan) (SI) 
16. Avi Kak (Purdue) (RS) 
17. Takeo Kanade (Carnegie-Mellon Univ.) (N) 
18. Martin Levine (McGill Univ.) (APP) 
19. Gerardo Medioni (Univ. S. California) (EP) 
20. Joe Mundy (General Electric) (APP) 
21. Francis Quek (Univ. Michigan) (OR) 
22. Gerhard Roth (Nat. Research Council--Can- 

ada) (EP) 
23. Robert Simpson (Env. Research Inst. of Mich- 

igan) (RS) 
24. Iswar Sethi (Wayne State) (EP) 
25. Uma Kant Sharma (FMC Corp.) (N) 
26. George Stockman (Michigan State Univ.) 

(RS) 
27. Ron Swonger (Env. Research Inst. of Michi- 

gan) (APP) 
28. Richard Weiss (Univ. Mass) (OR) 

8.3 Workshop Groups and Group Chairs 

Range Sensing 

Avi Kak, Purdue 
Robert Sampson, ERIM 

Early Processing 

Gerard Medioni, USC (Chair) 
Paul Besl, General Motors (Reporter) 
Patrick Flynn, MSU 
Richard Hoffman, Northrop 
Gerhard Roth, NRC-Canada and McGill 
Ishwar Sethi, Wayne State 

Object Recognition 

Thomas O. Binford (Chair) 
Robert Bolles 
Francis Quek 
Richard Weiss 

Sensor Integration 

Tom Henderson (Chair) 
Ramesh Jain 
Y.T. Chien 
Jake Aggarwal 
Ruzena Bajcsy 

Navigation 

C.M. Brown (Chair) 
T. Kanade 
W.E.L. Grimson 
U.K. Sharma 

Applications 

George Stockman (Chair), MSU 
Nelson Corby, GE 
Kevin Harding, ITI 

C.W. "Ron" Swonger, ERIM (Chair) 
Anil Jain, Michigan State University 
Martin Levine, McGill University 


