
Machine Vision and Applications (1989) 2:81-102 Machine Vision and 
Applications 
�9 1989 Springer-Verlag New York Inc. 

Range Estimation from Intensity Gradient Analysis 
Kurt Skifstad and Ramesh Jain 
Electrical Engineering and Computer Science Department, The University of Michigan, 
Ann Arbor, Michigan 48t09-2122, USA 

Abstract: Conventional approaches to recovering depth 
from gray-level imagery have involved obtaining two or 
more images, applying an "interest" operator, and solv- 
ing the correspondence problem. Unfortunately, the 
computational complexity involved in feature extraction 
and solving the correspondence problem makes existing 
techniques unattractive for many real-world robotic ap- 
plications. By approaching the problem from more of an 
engineering perspective, we have developed a new depth 
recovery technique that completely avoids the computa- 
tionally intensive steps of feature selection and corre- 
spondence required by conventional approaches. The In- 
tensity Gradient Analysis technique (IGA) is a depth 
recovery algorithm that exploits the properties of the 
MCSO (moving camera, stationary objects) scenario. 
Depth values are obtained by analyzing temporal inten- 
sity gradients arising from the optic flow field induced by 
known camera motion. In doing so, IGA avoids the fea- 
ture extraction and correspondence steps of conventional 
approaches and is therefore very fast. A detailed descrip- 
tion of the algorithm is provided along with experimental 
results from complex laboratory scenes. 

Key Words: depth recovery, intensity gradient, motion 
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1 Introduction 

The problem of depth recovery has received a great 
deal of attention by vision researchers (Nevatia 
1976; Grimson 1981; Nishihara 1984; Prazdny 1985; 
Herman and Kanade 1986; Yachida et al. 1986; 
Bolles et al. 1987; Clement 1987; Jain et al. 1987; 
Tsukiyama and Huang 1987; Xu et al. 1987; Boyer 
and Kak 1988; Griswold and Yeh 1988). Although 
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conceptually appealing and theoretically elegant, 
the existing techniques are, as a whole, usually 
computationally expensive. This computational 
burden makes most of these techniques unaccepta- 
ble for real-world robotic applications. By ap- 
proaching the problem from more of an engineering 
perspective, we have developed a new depth recov- 
ery technique that completely avoids the computa- 
tionally intensive steps of feature selection and cor- 
respondence required by conventional approaches. 

The Intensity Gradient Analysis technique (IGA) 
was born largely out of frustration arising from both 
practical and philosophical considerations. Practi- 
cally, existing techniques are inappropriate for 
many real-world applications due to their computa- 
tionally intensive nature. Philosophically, it seems 
that the depth recovery problem in computer vision 
has been motivated primarily by a desire to emulate 
human (or at least binocular) vision. Too little atten- 
tion has been given to the purely "robotic" per- 
spective; that is, it seems that more people have 
spent their efforts "trying to implement their vision 
algorithms on computers" than trying to "make 
machines see." Certainly, it is easy to formulate the 
depth recovery from a binocular perspective: take 
two images, find matching points, compute depths. 
However, an often ignored fact is that this "extract 
and match" paradigm is required only when the im- 
ages have been acquired from two quite disparate 
points. This is not necessarily bad, but it is also not 
necessarily the best path to take if one is trying to 
achieve the illusive nirvana of practical, efficient 
vision algorithms that actually work. 

By approaching the depth recovery problem 
from the classic "engineering ' 'l perspective, the 
IGA algorithm was developed. Essentially, the IGA 
algorithm arose from one simple observation: 

1 "This is the problem I have to solve, this is environment I 
am to solve the problem in, and these are the tools I have. Now, 
how can I solve the problem?" 
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Figure 1. Range Information can only be recovered for ob- 
jects in the field of view of both sensors (shaded area). 

�9 Camera motion 2 dictates object motion: Because 
of the optical flow field induced by camera mo- 
tion, stationary objects displace (in the image) 
with respect to the observer along vectors passing 
through the focus of expansion (FOE). How these 
objects displace depends on their proximity to the 
camera and the direction of camera motion. 

Given this observation and the proper insight, it 
turns out that the depth recovery problem is quite 
straightforward. 

This article begins with a brief review of existing 
techniques and the general problem of depth recov- 
ery. The theoretical basis for the IGA algorithm is 
discussed. Experimental results on complex labora- 
tory sequences are given and future extensions of 
the IGA algorithm are discussed. 

2 C o m p u t a t i o n a l  S t e r e o  

Fundamentally, the depth recovery problem (as 
perceived by most researchers) is described by the 
five-step process specified by Barnard and Fischler 
(1982): 

1. Image acquisition 
2. Camera modeling 
3. Feature extraction 
4. Image matching 
5. Depth determination 

2 Unless specified otherwise, all references to camera motion 
will refer to translational motion: that is, that in which the cam- 
era displaces along a linear path with fixed orientation_ 

Range Estimation from IGA 

Figure 2. The Binocular Stereo Camera model. 

As image acquisition involves the well-known 
process of receiving information from the sensing 
device, and depth determination is a straightfor- 
ward task once image matching is done, it is not 
surprising that the bulk of the research efforts in 
this area have focused on camera modeling, feature 
extraction, and image matching. 

2.1 Camera Modeling 
The camera model defines the imaging geometry for 
the system. Since depth values can only be recov- 
ered for objects that are contained in both images, 
the imaging geometry defines the region in space 
where information can be extracted (see Figure 1). 
In addition, the way the camera model is set up is 
often used to constrain the search for matching 
points in the images. For example, consider two of 
the more popular imaging geometries: the Binocular 
Stereo model (Figure 2), and the Axial Motion 
Stereo model (Figure 3). 

The binocular stereo model has been the choice 
of most researchers (Grimson 1981; Barnard and 
Fischler 1982; Clement 1987; Boyer and Kak 1988; 
Griswold and Yeh 1988) and certainly is the choice 
for researchers whose purpose is to study human 
vision (Grimson 1981; Mayhew and Frisby 1981). In 
the binocular, or left-right model, the cameras may 
be aligned so that corresponding scanlines in the 
two images lie in the same epipolar plane. This sim- 
plifies the solution of the correspondence problem 
by limiting the search space to a single dimension. 

The axial motion stereo model (O'Brien and Jain 
1984) is often used to exploit known camera mo- 
tion (Itoh et al. 1981; Jain et al. 1987). Animals are 
known to use a similar technique, called looming, to 
locate objects (prey, food, etc.) (Collet and Hark- 
ness 1982). In the axial motion stereo paradigm, the 
disparity between matching points (and therefore 
ambiguity) is potentially greater the farther a point 
is from the focus of expansion (FOE). Alvertos et 
al. (1988) have shown that by first matching points 
close to the FOE, fewer ambiguous and false 
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Figure 3. The Axial Motion Stereo camera model. 

z 

matches occur than in other (conventional) stereo 
paradigms. 

2.2 Image Matching: 
The Correspondence Problem 
In order to recover depth at a given point in the 
image (using the conventional approach), the corre- 
sponding point must be found in the other of the 
image pair. Consider the situation shown in Figure 
4. The first image (left) shows a set of points in the 
field of view. We may then be able to infer, for 
example, that point A in the first image corresponds 
to point Q in image 2, point D to point S, point E to 
point T, and so on. However, a problem arises 
when one tries to find a match for points B and C. 
Does point B correspond to point R? Does point C 
correspond to point R? Do they both perhaps corre- 
spond to point R? Or, neither B nor C corresponds 
to R? 

Not surprisingly, a great deal of effort has been 
focused on simplifying and speeding up the solution 
of the correspondence problem (Nishihara 1984; 
Yachida et al. 1986; Bolles et al. 1987; Xu et al. 
1987; Baker and Bolles 1988). To find the correct 
correspondences in complicated scenarios, some 
assumptions about spatial continuity must be made 
and then some sort of relaxation algorithm can be 
employed to find the correct matches (Barnard and 
Thompson 1980). Often this technique is applied at 
several layers of resolution, with the matches found 
at coarser resolution used to guide the matching 
process at finer resolutions (Grimson 1981). Small 
camera movements can also be used to reduce the 
possible disparities, thus constraining the area 
searched to find correspondences (Bolles et al. 
1987; Xu et al. 1987). 

2.3 Feature Extraction 
Even assuming that the correspondence problem 
can be solved, it would be both impractical and im- 
probable to find a match for each and every point in 
an image. Consider, for example, the complexity of 
finding 65,536 out of 65,536 correct matches in a 256 
x 256 image, or correctly matching points in a re- 
gion of constant intensity. Therefore, before corre- 
spondences can be determined, a subset of the im- 
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Figure 4. The Correspondence Problem: Which point corre- 
sponds to R? 

age must be selected for matching. Certainly, this 
subset should be relatively sparse (to facilitate 
matching), but still capture the "essence" of the 
image. Often, this subset consists of features such 
a s :  

�9 Zero crossings of the Laplacian of the Gaussian 
(Grimson 1981; Nishihara, 1984) 

�9 Corners (Moravec 1981; Jain et al. 1987) 
�9 Edges (Jain 1984; Tsukiyama and Huang 198"7) 

Issues involved in selecting the type of feature to 
look for include operator size, robustness, and lo- 
calization. If speed is a major consideration, the 
size of the operator needs to be kept to a minimum 
because a large operator increases the computa- 
tional burden on the system. Larger operators, 
however, because they have more information 
available, tend to be more robust, giving fewer false 
responses. On the other hand, smaller operators 
provide better localization, making results more ac- 
curate. 

2.4 Computational Complexity 
Combining the problems of feature extraction and 
correspondence, it is not difficult to see that exist- 
ing techniques are quite computationally intensive. 
Consider, for example, Grimson's (1981) implemen- 
tation of the Marr-Poggio algorithm. To determine 
depth values one must: 

�9 Find the zero-crossings of the Laplacian of the 
Gaussian of the two images at four levels of  reso- 
lution. 

�9 For each of the four image pairs, find correspon- 
dence using the information at lower resolutions 
to guide the search. 
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Figure 5. Camera with focal lengthflocated at the origin of 
an arbitrary x - z coordinate system. The camera's optical 
axis makes an angle q5 with respect to the z-axis. 

�9 From the correspondences found at the finest res- 
olution, create a disparity map. 

�9 Using knowledge of the imaging geometry and the 
disparity map, determine depth values. 

Considering the computational effort involved in 
the feature extraction and finding correspondences, 
it certainly would be nice to be able to avoid (or at 
least simplify) these steps. 

3 The  Intens i ty  Grad ient  Ana lys i s  
T e c h n i q u e  ( I G A )  

Researchers have shown that the analysis of tempo- 
ral intensity gradients is a useful tool for recovering 
camera position and orientation (Lucas 1985; Lucas 
and Kanade 1985; Negahdaripour and Horn 1986, 
1987). The Intensity Gradient Analysis technique 
(IGA) also uses temporal intensity gradients, but 
purely on a local level. IGA uses a moving camera 
to induce an optic flow field on the image, causing 
stationary objects in the field of view to displace in 
known directions (Prazdny 1980). This displace- 
ment results in temporal intensity gradients at loca- 
tions in the images through which the objects pass. 
Because these temporal gradients are entirely de- 
pendent on the proximity of the objects in the field 
of view, these gradients turn out to be reliable cues 
for recovering depth. 

This new "IGA paradigm" requires far  less com- 
putational effort than the conventional approach, 
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Figure 6. The camera is displaced a distance dz along the z- 
axis. Depth can be recovered using information recovered 
from the two images, and information regarding camera 
orientation. 

and completely avoids the feature extraction and 
correspondence steps of the conventional ap- 
proach. 

The description of the IGA algorithm is prefaced 
by a short introduction to computing depth using 
motion stereo. This is used to motivate the need to 
compute disparity. It should be noted, however, 
that this does not imply that the IGA technique is 
limited to these two camera models. IGA can be 
applied to image sequences obtained using arbitrary 
translational camera motion, as tong as that motion 
is properly controlled. 

3.1 Computing Depth Using Motion Stereo 
Consider a camera of focal length f placed at the 
origin in an arbitrary x - z  coordinate system so that 
the optical axis of the camera makes an angle 4~ with 
respect to the z axis (Figure 5). The depth of point p 
cannot be recovered because there is not enough 
information present to uniquely specify that value. 
Suppose, then, that the camera is displaced some 
distance dz along the positive z axis (Figure 6). It is 
now possible to express the depth z of point p: 

z = dz tan(q5 - a) 
tan(~b - tO) - tan(6 - c 0  (1) 
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where  

a = arctan (~)  (2) 

and 

where  q and r~. are the distance f rom the center  of  
the image to the project ion of point p in the first and 
second images,  respect ively.  Equat ion (1) then be- 
comes:  

z = dz cos(4~ - O) sin(4~ - a) 
sin(a - 4) (4) 

Since f is a known parameter ,  and rj and r2 are 
measurable  quantities, it is desirable to express this 
equat ion in te rms of tan a and tan O. 

Through tr igonometric  substitution, equation (4) 
expands to: 

dz  ,.i 

f 

= 90  deg.  

r 1 

Figure 7. For lateral motion, one may wish to calculate x, 
the distance from the axis of motion to the object. 

z = d z  

(cos q5 cos 0 + sin 4~ sin 0)(sin 4~ cos a - cos 0 sin a) 
sin a cos qJ - cos a sin 0 

which, in turn, becomes:  

z =  dz 

sin 4~ cos 4) + sin 2 q5 tan ~ - cos 2 4) tan a 
- sin 4) cos 4) tan ~ tan 0 

(5) 

(6) 
t a n o : -  tanO 

substituting in tan a = rJ f ,  tan 0 = rflf, and r2 = rl 
+ ~, where ~ is disparity,  gives us: 

dz • 2 1 5  { 8sin24) 
z -  L~ sin 4~ cos 4 + ~ 

+ .~ sin2 4~ - cos2 4) - (rl - (3) sin 4~ cos 4~ 
f 

(7) 

In some cases (e.g., lateral motion stereo), it may 
be desirable to compute  x, the distance f rom the 
axis of  motion to the object  (Figure 7), where  

x = z x tan(4, - 0) (8) 

Note  that  in the special cases where  4~ = 0 (axial 
motion) and <b = ~r/2 (lateral motion), equations 7 
and 8 reduce to the more  familiar t ime to collision 
ratio (Lee 1976, 1980): 

Z _ r l  
(9) 

and the binocular s tereo equation (Horn 1986): 

dz 
x = y f  (10) 

To determine z (or x), we must  find dz, qS, f ,  8 
(disparity), and r~. Because the camera  motion is 
controlled precisely,  dz and ~ are known. Since it is 
simply a pa ramete r  o f  the lens we are using, f is 
known,  and rl can be found by measuring the dis- 
tance (in pixels) f rom the object  to the center  of  the 
image. Unfortunately,  the final piece of  the puzzle 
is still missing because  it is not, in general, possible 
to determine ~ without explicitly addressing the cor- 
respondence  problem or determining the optical 
flow. 

3.2 Finding Disparity Without 
Solving Correspondence 
While it may not be possible to recover  arbitrary 
disparity without  explicitly addressing the corre- 
spondence problem,  it turns out that  it is possible to 
recover  a specific disparity (namely,  ~ = 1) and, 
thus, recover  depth without solving the correspon- 
dence problem.  This follows directly f rom the prin- 
ciples of  image formation.  

We know the gray-level  I recorded at a given 
pixel is proport ional  to the number  of  light quanta 
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Figure 8. A one-dimensional receptor 
array translating in an arbitrary coor- 
dinate system. 

incident on that region in the image. This can be 
expressed as: 

l = k f f p(x,y) dxdy (11) 

With k being the constant of proportionality and 
p ( x , y )  being the quantum catch at point ( x , y ) .  

Given this information, consider the one-dimen- 
sional example shown in Figure 8A. Assuming that 
all pixels have the same spectral sensitivity, we can 
compute the gray-level recorded at pixel n ( I (n) )  as 
follows: 

I(n) = k f2;1)~ o(x) dx (12) 

Where Xp is the width of one pixel. 
Suppose, then that the camera is moved such 

that the translational component  of the motion in- 

duced 3 on the object is xt and that the axial compo- 
nent z~ is very small compared to the distance of 
any objects in the field of view (z~ ~ z, Vz). This is 
shown in Figure 8B. We can now compute the gray- 
level recorded at pixel n from our new camera loca- 
tion: 

l (n) = k ( ("+mp-~' p(x) dx 
a t~Xp-x t 

(13) 

k ( ( n + l ) x p  = p(x + xt) dx 
,i nxp 

(14) 

Let  us now look at the special case when xt = Xp. 

= p(x  + x;) dx 
~ naCp 

(15) 

3 Remember that a moving camera induces an optical flow 
field on the image, causing stationary objects to displace (in the 
image) along vectors through the FOE. 
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Figure 8. continued 

= k f(n+l)x,-xp p(x)  dx (16) 
nXp-Xp 

= k ~(n)xp p(x)  dx (17) 
3(n-1)xp 

I(n)  = Iprev(n -- 1) (18) 

Where Ipr~(n - 1) is the intensity recorded at 
location (n - 1) before the camera was moved. 

What this tells us, not surprisingly, is that if an 
object displaces one pixel, the intensity perceived 
at the location the object moved in to  must equal the 
intensity perceived before the displacement took 
place at the location the object moved o u t  of.  Of 
course, for this displacement to be detected, it must 
occur at a point in the image where such an event is 
perceivable. That is, it must occur at a point in the 
image where the s p a t i a l  i n t e n s i t y  g r a d i e n t  (along 
the induced displacement vector) is nonzero. Points 
in the interior ,of regions of constant intensity (spa- 

tial gradient equals zero) provide no depth cues 
(Goldstein 1984) as there is no way of uniquely as- 
signing image points objects (consider the phenom- 
enon of snow-blindness). 

So, following the above line of reasoning, if a full 
pixel displacement is to occur, the t e m p o r a l  in ten-  

s i t y  g r a d i e n t  (change in intensity between frames) 
at a location in the images must equal the spa t i a l  

i n t e n s i t y  g r a d i e n t  (change along the displacement 
vector) at that same location in the first image: 

~I(x,fl)  8I(x,O) 
5t ~x 

(19) 

or  

Ii(n) - Io(n) = Io(n) - Io(n - 1) (20) 

So, the problem of recovering disparity (and 
therefore depth) is reduced to monitoring temporal 
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Figure 9. An illustration of the 
subpixel displacement problem. 
Note that in (A), the reference 
frame, the object boundary is n o t  

aligned with the pixel boundary. 

intensity gradients. When the temporal gradient 
equals the spatial gradient, disparity is one, and 
depth can be recovered using the following equa- 
tion: 

z = - d z  • 2 1 5  {sin 4) cosq5 + 
sin 2 ,b 

f 

El [ ( / ' 1 - - 1 )  sin 4, cos 4~]} + ] sin2 4 - cos2 4~ f 

(21) 

which, for axial and lateral motion, reduces to: 

z = dz x rt (22) 

and 

x = d z  x f (23) 

respectively. 

3.3 The Subpixel Displacement Problem 
Unfortunately, the assumption that an object must 
displace a distance of one pixel or more before the 
temporal intensity gradient equals the spatial inten- 
sity gradient does not hold in every case. Consider 
Figure 9. Figure 9A shows an image and the corre- 
sponding intensity plots (continuous and discrete) 
along an arbitrary displacement vector through the 
FOE. Since this scene shows a uniformly shaded 
object against a uniform background, there is only 
one place where we can find depth cues: at the ob- 
ject boundary. Note that, in this case, the object 
boundary constitutes a step edge in the continuous 
space, but, since the object boundary does not lie 
on a pixel boundary, a staircase effect is produced 
in the discrete domain. The magnitude of the dis- 
crete spatial intensity gradient along this vector is 
also given. Figure 9B shows a second image of the 
same scene, with the observer closer to the object. 
In this image, the boundary of the object has dis- 
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placed a small distance toward the periphery, caus- 
ing the intensity discontinuity due to the object 
boundary to align with a pixel boundary. Intensity 
plots are shown as well as a magnitude plot of the 
temporal intensity gradient, as compared to the first 
image (Figure 9A). Since the object was not lined up 
on a pixel boundary in the first frame, a displace- 
ment of a fraction of a pixel was sufficient for the 
temporal gradient (between image 1 and image 2) to 
equal the spatial gradient (in the reference image) at 
the location in the image where the object boundary 
originally was located. 

Figure l0 shows several characteristic intensity 
profiles where an object displacement of a fraction 
of a pixel will induce a temporal intensity gradient 
equal to the spatial intensity gradient. 

3.4 Solving the Subpixel Displacement Problem 
Since camera motion is known, we know the direc- 
tion and path along which an object must displace. 

Furthermore, we know that depth can only be re- 
covered at those locations in the image where the 
spatial intensity gradient is nonzero. Let us call 
those points interesting or /-points. And, for the 
sake of completeness, let us call the remaining 
points, those belonging to regions of constant inten- 
sity, smooth or S-points. 

Consider what happens as an object displaces 
across the image: both the I- and S-points corre- 
sponding to the object will displace (only/-points 
will give us cues for depth). 

What do we know about the behavior of ~Lhese 
points? When an/-point moves into a new position, 
the transition is well-defined. We know that the in- 
tensity profile of the object at the/-point in the ref- 
erence image (used to compute the spatial intensity 
gradient), so we know how the perceived intensity 
should change at the point the/-point  moves into. 
But, what about the location that the/-point moves 
out of? 
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Figure 10. Several examples where an image displacement of a fraction of a pixel will cause the temporal intensity gradient 
to equal the spatial intensity gradient, incorrectly indicating a full pixel displacement: (A) step edge; (B) ramp edge; (C) 
peak; (D) slope. 

When the image location vacated by an/-point is 
filled by another/-point,  we have no problem be- 
cause another /-point is moving into the vacated 
spot (and the transition is, therefore, well-defined). 
But, when an S-point moves into this location, there 
is potential for error. Because we are working in a 

discrete universe, an S-point adjacent to an/-point 
does not imply that the object surface ceases to 
have uniform shading at the pixel boundary (Figure 
10A-D). So, assuming that the actual shading dis- 
continuity lies somewhere inside the region corre- 
sponding to the/-point ,  the object need only dis- 
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place a fraction of a pixel for the temporal intensity 
derivative to equal the spatial intensity derivative at 
this location. This will lead to the incorrect assump- 
tion that the object displaced a distance equal to a 
full pixel, resulting in the calculated depth being 
less than the true value. 

Since there is no way of detecting when the I - S  
boundary corresponds to the actual shading discon- 
tinuity, we must avoid those situations that will po- 
tentially lead to error. Fortunately, not all I - S  
boundary points need be ignored. In fact, only half 
need be rejected from consideration. This follows 
from the fact that half of the I - S  boundary positions 
will have/-points moving into locations vacated by 
S-points, which, as described above, is a well-de- 
fined transition and can be used to accurately com- 
pute depth. 

How do we know which I - S  boundaries are I to 
S transitions and which are S to I transitions? This 
is where our knowledge of camera motion comes 
into play. Since we know the camera motion param- 
eters, we know where the FOE is. Since we know 
where the FOE is, we know what direction objects 
must displace. And, since we know what direction 
objects must displace, we know which I - S  bound- 
aries are potential I to S transitions and which I - S  
boundaries are potential S to I transitions. There- 
fore, we know exactly where the subpixel displace- 
ment problem may occur, and can ignore those 
points. 

3.5 Extending to Two Dimensions 
Since the previous discussion has been in terms of 
one-dimensional images, one might think that the 
technique needs to be extended to deal with con- 
ventional two-dimensional imagery. Such an exten- 
sion is not necessary, however, since, in this sce- 
nario, depth recovery is purely a one-dimensional 
problem. Consider Figure 1 1. Since we know cam- 
era motion, we know the FOE. Therefore, we also 
know the trajectories the objects must follow. To 
determine depth at a particular point, we need only 
know information in the neighborhood of the point 
in question along its (one-dimensional) displace- 
ment vector. 

An analogy can be made between the flow (dis- 
placement) vectors from motion stereo and epipolar 
lines in conventional stereo. In both cases, re- 
searchers have used their properties to reduce 
depth recovery to a one-dimensional problem 
(Bolles et al. 1987; Jain et al. 1987). 

3.6 The IGA Algorithm 
Figure 12 shows the steps for thelGA algorithm. As 
can be seen, this technique is very straightforward, 

Figure 11. Applying IGA to two-dimensional images in- 
volves looking at several one-dimensional problems. 

and requires minimal computational effort. The ini- 
tialization phase requires the acquisition of the ref- 
erence image, and the computation of the spatial 
intensity gradient at each location in the image. 

The Depth Recovery Loop portion of the algo- 
rithm requires the camera to be moved, an image to 
be acquired, and the temporal gradient to be com- 
puted. Since we know (from the reference image) 
where the regions of constant intensity are, we need 
not compute the temporal gradient at all points in 
the new image. Only those points corresponding to 
/-points in the reference image need to be consid- 
ered. 

Once the temporal gradient is computed, it is 
compared to the spatial gradient. If equal (or greater 
than), the point is considered for depth determina- 
tion. However, before we can compute depths, we 
must be sure that this point doesn't correspond to 
Some previously perceived object displacing across 
the image. Since we know the distance to each ob- 
ject and how far the camera has moved, we can use 
equation (7) to determine how far across the image 
an object has displaced since it first was perceived: 

8=&xfx 
r l [  rl ] 

sin 05 cos 05 + 7 sin2 05 - c~ 05 - 7 sin 05 cos 05 

sin 2 05 rl 
f f2 sin 05 cos 05 

(24) 
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Figure 12. The IGA algorithm. 
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where 8 is the distance the object displaced, z is the 
distance to the object, dz is the distance the camera 
has moved, r~ is the distance from the center of the 
image to the location in the image where the object 
was first perceived, and 4~ is the angle between the 
optical axis of the camera and the direction of mo- 
tion. Given 8 for each previously perceived object 
on this particular displacement vector, it is possible 
to isolate those points due to new objects and com- 
pute depths directly using equation (21). (Note that 
qS, f, and dz are known constants, so the values of 
the transcendental functions need not be calculated 
and much of the computation can be replaced by 
table look-up.) 

4 Potential  Sources of  Error 

As with any vision algorithm, certain assumptions 
are made about the nature of the environment and 
equipment used for implementing IGA. In addition 
to the usual assumptions of stationary objects and 
constant illumination (Lucas 1985; Lucas and 

Kanade 1985; Herman and Kanade 1986; Ne- 
gahdaripour and Horn 1986, 1987; Bolles et al. 1987; 
Jain et al. 1987; Tsukiyama and Huang 1987; Xu et 
al. 1987), IGA assumes that the camera's angle of 
orientation (4~) and displacement (dz) can be mea- 
sured precisely (this is not unreasonable given the 
accuracy of optical-quality equipment). 

The most significant potential sources of error in 
the IGA algorithm are artifacts of the geometry of 
the conventional imaging array. Since conventional 
imaging arrays are arranged in a row-column matrix 
format, they do not lend themselves well to the 
analysis of arbitrary displacement vectors (other 
than those with orientations that are multiples of 
rr/2). Therefore, the determination of 8 (disparity) 
may be of fby  as much as ~/2 - 1 (a location exactly 
one pixel away along the displacement vector may 
lie in the receptor field of the current pixel's diago- 
nal neighbor, which is actually 1.414 pixels away). 
A worst-case error potential of over 40% is cer- 
tainly not acceptable in most situations; however, 
this does not at all detract from the potential of this 
algorithm when implemented in VLSI, where the 
imaging array could be mapped in polar form. Also, 
the potential for this large error occurs only at small 
numbers of points in a conventional image. Experi- 
mental results have shown that, when implemented 
using conventional imaging systems, the algorithm 
produces accurate results (see Section 5). 

Since not all receptors have exactly the same 
spectral sensitivity, and random noise is a problem 
with conventional imaging systems, the assumption 
that depth can be recovered at all locations with 
nonzero spatial intensity gradients does not hold. 
For implementation purposes, it must be assumed 
that the gray-levels (0-255) returned by the imaging 
device are only accurate to five or six bits; that is, 
only locations with spatial intensity gradients 
greater than eight or so gray-levels are considered. 

Because it is not practical to acquire images con- 
tinuously, the sequence of images given to the IGA 
algorithm must represent a sparse sampling of the 
images seen by the observer as the camera under- 
goes translation. This introduces another potential 
source of uncertainty in the depth determination 
process. Consider the following situation (see Ma- 
chine 1 in the left-hand side of the scene in Axial 
Sequence 2, Figure 18): an object is located 84 
inches from the camera when the reference image is 
obtained. Suppose that this object appears 50 pixels 
from the center of the image, and that the camera is 
moved in increments of one inch. Obtaining two 
images (dz = 1.0 and dz = 2.0) using motion along 
the optical axis of the camera (q5 = 0), the IGA 
algorithm is used to determine the location of this 
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object. The object will not be perceived in the first 
image because: 

84 < 50 x dz (25) 

The object is perceived in the second image, but the 
depth determined for the object is: 

Table 1. Depth Values Returned for Axial Sequence 1 

Actual vs. Perceived Depths Axial Sequence 1 
Object Actual Depth Perceived Depth 

Desk lamp 30 29 
Block 62 83 
Cables 52 58 
Box 44 57 

z = 50 x 2.0 = 100 (26) 

which is incorrect. This error can be reduced by 
acquiring images at smaller increments (experimen- 
tally, acquiring images every 0.2-0.5 inches, seems 
to work well), but never eliminated because of the 
discrete nature of the problem. The error in the 
depth calculation resulting from an inaccurate esti- 
mate of dz propagates linearly through the computa- 
tion (i.e., an error of 2% in dz will result in an error 
of 2% in z). 

5 Experimental  Results  

IGA has been applied to several image sequences 
(of varying complexity) with a great deal of success. 
Results are presented for five different image se- 
quences, three obtained using camera motion along 
its optical axis and two obtained using camera mo- 
tion perpendicular to the optical axis (lateral mo- 
tion). In presenting these results it is our intention 
to demonstrate the robustness of this technique. 
The execution times for all five sequences are also 
given. 

It should be noted that the output given is, essen- 
tially, raw data. A simple smoothing filter has been 
applied to eliminate spurious errors due to sensor 
noise, however. The next logical step in the pro- 
cessing of this data would be to apply some sort of 
surface interpolation algorithm, or use this data to 
update a three-dimensional world model. 

5.1 Axial Camera Motion 
Figure 13A-E shows a relatively simple laboratory 
scene. In this particular example, 256 x 256 images 
have been acquired with camera displacements of 
0.25, 0.5, 1.0, and 2.0 inches. The camera has been 
moved along its optical axis (Axial Motion Stereo 
Camera model), putting the FOE at image point 
(128,128). Figure 14 shows the map of actual object 
locations. In this and all subsequent examples, 
depth maps will be encoded with the gray-level cor- 
responding to the depth (i.e., intensity 100 indicates 
an object 100 inches from the observer). White (in- 
tensity 255) is used to indicate unknown regions-- 
those regions for which no information is recov- 
ered. 

Figure 15 shows the results of using only the ref- 
erence image and the first images in the sequence 
(dz = 0.25); note that parts of the desk lamp are 
now being perceived (z = 30). This is as expected, 
as the edges of the desk lamp appear 100-140 pixels 
from the FOE in the reference image. Figure 16 
shows the results of using all five images in the se- 
quence; note that information is provided for all the 
objects in the field of view. Figure 17 shows a 
worst-case two-dimensional projection of the depth 
values returned by IGA for this sequence. Table 1 
shows the depth values returned for some objects in 
the field of view. Note how these compare with the 
actual values. 

Figure 18A and B shows the first and last images 
from a sequence taken of a somewhat more compli- 
cated laboratory scene. The orientation and relative 
locations of the objects in the field of view make this 
sequence similar to one that might be obtained by a 
mobile robot. Again, 128 • 128 images have been 
acquired using the axial motion stereo camera 
model. This time camera displacements of 0.5, 1.0, 
2.0, 4.0, and 8.0 inches have been used. Figure 19 
shows the map of actual object locations. The out- 
put of the IGA algorithm (after being applied to all 
six images) is shown in Figure 20. Again, a worst 
case two-dimensional projection of the depth values 
is shown in Figure 21. Table 2 compares the com- 
puted values to the actual object locations. We see 
that, again, the results compare quite favorably. 
Note that the error in depth for Machine 1 is an 
artifact of sampling too sparsely along the axis of 
motion (see previous section). 

Table 2. Depth Values Returned for Axial Sequence 2 

Actual vs. Perceived Depths Axial Sequence 2 
Object Actual Depth Perceived Depth 

Tripod leg 40 47 
Table 180 18 t 
Machine 2 156 168 
Machine 1 84 103 



Figure 13. Axial Motion Sequence: (A) reference image (dz 
= 0); (B) image 1 (dz = 0.25); (C) image 2 (dz = 0.5); (D) 
image 3 (dz = 1.0); (E) image 4 (dz = 2.0). 
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Figure 14. Map of object locations. 

54 in. 

Figure 16. Depth Map obtained using all five images from 
the sequence. 

Figure 2 2 A - F  shows another  complicated labo- 
ratory scene. This time, 240 • 240 images have 
been acquired (again, using the axial motion stereo 
camera  model) with a dense sampling of camera  
displacements  (0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, and 
4.0 inches). Figure 23 shows the map of actual ob- 
ject  locations. The  output  of  the IGA algorithm (af- 

Figure 15. Depth Map obtained using the reference image 
and image 1 (dz = 0.25). 

Figure 17. Worst-case two-dimensional projection of range 
data on the x - z plane. Black indicates void space, white 
indicates object or unknown. The z-axis is oriented verti- 
cally, with up corresponding to increasing z. 



96 Skifstad & Jain: Range Estimation from IGA 

156 in. 

O 

I 
Camera 
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Figure 18. Axial Motion Sequence 2: (A) reference image 
(dz = 0); (B) image 5 (dz = 8.0). 

ter being applied to all nine images) is shown in 
Figure 24. Again, a worst  case two-dimensional 
projection of the depth values is shown in Figure 25. 
Table 3 shows the depth values computed for the 
objects in the field of view. Note  that no values are 
returned for the TV in the background, because it 
was too close to the FOE to be perceived with a d z  
of 4.0 inches. 

5.2 Lateral Camera Motion 
Figure 26A and B shows the first and last images 
taken from a sequence obtained using lateral cam- 

Figure 20. Depth map obtained using all six images from 
the sequence. 
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Table 3. Depth Values Returned for Axial Sequence 3 

Actual vs. Perceived Depths Axial Sequence 3 
Object Actual Depth Perceived Depth 

Cabinet 60 62 
Machine 120 125 
Pallet 100 144 
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era motion. In this example ,  six 240 x 240 images 
were  used, with camera  displacements  of  0.1, 0.2, 
0.3, 0.4, and 0.5 inches. For  these experiments ,  the 
lens paramete rs  were  not known,  so depth values 
obtained are accura te  only to a scale factor. 

Figure 27 shows a map of  object  locations, and 
Figure 28 shows the depth map returned by the IGA 
algorithm. Figure 29 shows a worst -case  two-di- 
mensional  project ion of these depth values. Again, 
note the accuracy  of  this technique (Table 4). 

Figure 30A and B shows the first and last images 
taken f rom a much  more  complicated sequence,  ob- 
tained using lateral camera  motion.  Note  that this is 
the same laboratory scene as was used for the third 
axial motion sequence.  In this example,  six 240 • 
240 images were  used, with camera  displacements  
of  0.1, 0.2, 0.3, 0.4, and 0.5 inches. The actual loca- 
tions of the objects are shown in Figure 23. Figure 
31 shows the depth map  returned by the IGA algo- 
rithm, and Figure 32 shows a two-dimensional  pro- 
jection of  these depth values. Note  that, even in this 

Figure 22. Axial Motion Sequence 3: (A) reference image 
(dz = 0); (B) image 8 (dz = 4.0). 

Figure 21. Worst-case two-dimensional projection of range 
data on the x - z plane. Black indicates void space, white 
indicates object or unknown. The z-axis is oriented verti- 
cally, with up corresponding to increasing z. 

Table 4. Depth Values Returned for Lateral Sequence 1 

Actual vs. Relative Depths Lateral Sequence 1 
Object Actual Depth Relative Depth 

Poster 1 100 44 
Chair 170 120 
Pallet 100 144 
Cabinet 230 200 
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Figure 25. Worst-case two-dimensional projection of range 
data on the x - z plane. Black indicates void space, white 
indicates object or unknown. The z-axis is oriented verti- 
cally, with up corresponding to increasing z. 

complicated scene, qualitatively the results com- 
pare quite favorably with the actual values, al- 
though the quantitative results are not quite as good 
(Table 5). 

5.3 Execution Times 
Probably the most appealing property of the IGA 
algorithm is its speed. In the IGA paradigm, depth 
is recovered by doing a subtraction operation (to 
find the temporal intensity gradient), comparing the 
result to the spatial intensity gradient (which can be 
stored in a look-up table), and then, if indicated, 
performing the depth computation. It is not difficult 
to see that the computational requirements of IGA 
are minimal. Table 6 shows the execution times for 
the IGA algorithm on the five test sequences. Tim- 
ing experiments were performed using code that is 
not optimized running on an Apollo DN4000 work- 
station that is part of a very large computer  net- 
work. The times given are the total execution time 

Figure 24. Depth map using all nine images from the se- 
quence. 

Table 5. Depth Values Returned for Lateral Sequence 2 

Actual vs. Relative Depths Lateral Sequence 2 
Object Actual Depth Relative Depth 

Cabinet 70 50 
Machine 125 100 
Pallet 100 160 
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Figure 26. Lateral Motion Sequence 1: (A) reference image (dz = 0); (B) image 5 (dz = 0.5). 
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Figure 27. Map of object locations. 

for the entire program, including the initialization of 
the look-up tables and all the file I/O, and the time 
spent in the depth recovery loop (including reading 
in the images). Nonetheless, these times are still 
quite impressive. Because of the local nature of all 
the computations, the IGA algorithm lends itself 
well to parallelization, and implications of imple- 
menting this in VLSI are quite promising. 

Figure 28. Depth map obtained using all nine images from 
the sequence. 
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Figure 29. Worst-case two-dimensional projection of range 
data on the x - z plane. Black indicates void space, white 
indicates object or unknown. The z-axis is oriented verti- 
cally, with up corresponding to increasing z. 

6 Conclusions 

Because the IGA technique places little burden on 
computat ional  resources ,  the IGA algorithm seems 
ideally suited for applications such as autonomous  
vehicles (where computat ional  resources are lim- 
ited). This is a significant advantage over  other 

Figure 31. Depth map obtained using all nine images from 
the sequence. 

techniques. It seems that by the time depth values 
are obtained f rom a single viewpoint  using conven- 
tional techniques,  the IGA algorithm may be able to 
give you depth information f rom s e v e r a l  v i ews .  

Even if one trades a little in accuracy,  it seems that 
it would be quite advantageous  to obtain the addi- 
tional information.  This is especially true when one 
considers the recent  advancements  in the integra- 
tion of information f rom various sources (several 

Figure 30. Lateral Motion Sequence 2: (A) reference image (dz = 0); (B) image 5 (dz = 0.5). 
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Table 6. Execution Times 

No. of Image Total Execution Time to Recover 
Sequence Image Size Pairs Processed Time (sec) Depth Values (sec) 

Axial sequence 1 128 x 128 4 5.8 3.7 
Axial sequence 1 256 x 256 4 20.9 14.3 
Axial sequence 2 128 x 128 5 9.4 7.1 
Axial sequence 2 256 • 256 5 25.4 19.2 
Axial sequence 3 120 x 120 8 5.8 4.1 
Axial sequence 3 240 x 240 8 23.4 17.6 
Lateral sequence 1 120 x 120 5 3.5 2.6 
Lateral sequence i 240 x 240 5 13.1 10.6 
Lateral sequence 2 120 x 120 5 3.9 2.9 
Lateral sequence 1 240 x 240 5 13.8 11.3 

different views) using techniques such as the 
Kalman filter (Mattheis et al. 1987). 

We have shown that existing techniques, al- 
though conceptually appealing and mathematically 
elegant, are far too burdensome computationally for 
many applications. This computational burden is 
largely the result of the need to explicitly solve the 
correspondence problem. By approaching the prob- 
lem from more of  an engineering viewpoint, we 
have shown that it is possible to recover depth val- 
ues from gray-level imagery without explicit solu- 
tion of the correspondence problem, using simple 
IGA. 

Figure 32. Worst-case two-dimensional projection of range 
data on the x - z plane. Black indicates void space, white 
indicates object or unknown. The z-axis is oriented verti- 
cally, with up corresponding to increasing z. 
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