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Abstract. This paper presents the results of a comparative 
study of various Fourier descriptor representations and their 
use in recognition of unconstrained handwritten digits. Cer- 
tain characteristics of five distinct Fourier descriptor repre- 
sentations of handwritten digits are discussed, and illustra- 
tions of ambiguous digit classes introduced by use of these 
Fourier descriptor representations are presented. It is con- 
cluded that Fourier descriptors are practically effective only 
within the framework of an intelligent system, capable of 
reasoning about digit hypotheses. We describe a hypothesis- 
generating algorithm based on Fourier descriptors which al- 
lows a classifier to associate more than one digit class with 
each input. Such hypothesis-generating schemes can be very 
effective in systems employing multiple classifiers. We com- 
pare the performance of the five Fourier descriptor represen- 
tations based on experiment results produced by a particu- 
lar hypothesis-generating classifier for a test set of 14000 
handwritten digits. It is found that some Fourier descriptor 
formulations are more successful than others for handwritten 
digit recognition. 

Key words: Fourier descriptors - Handwritten digit recog- 
nition - Boundary features - Rotational transformation - 
Symmetric transformation - Hypothesis generation 

1 Introduction 

It is well known that a closed curve can be represented by 
a periodic function and, consequently, by a Fourier series. 
The Fourier coefficients of this function contain informa- 
tion about the size, shape and orientation of the curve; they 
are often referred to as Fourier descriptors of the curve. 
The Fourier coefficients and the function representing the 
closed curve uniquely specify each other. Thus, the original 
closed curve can be reconstructed from its Fourier coeffi- 
cients (Ballard and Brown 1982; Crimmins 1982). In many 
applications, a closed curve is represented by a Fourier de- 

scriptor vector whose components are derived as functions of 

* Present address: Department of Electrical and Computer 
Engineering, University of Michigan-Dearborn, Dearborn, MI 
48128-1491, USA 
Correspondence to: S. Schlosser 

a subset of the Fourier coefficients. These frequency-domain 
descriptions provide an increasingly accurate characteriza- 
tion, as more coefficients are included. Fourier descriptors 
have proven effective in many problems of pattern classifi- 
cation and computer vision (Arbter and Snyder 1990; Ballard 
and Brown 1982; Ghorbel et al. 1988; Gonzalez and Wintz 
1987; Granlund 1972; Impedovo et al. 1978; Lai and Suen 
1981; Lin and Chellappa 1987; Persoon and Fu 1977; Shrid- 
har and Badreldin 1984; Zahn and Roskies 1972). This paper 
presents a comparative study on the application of Fourier 
descriptors to the recognition of handwritten digits. 

The recognition of unconstrained handwritten digits has 
received much attention in the last two decades and remains a 
difficult problem. The application of handwritten digit recog- 
nition is broad. Typical'uses include recognizing handwritten 
ZIP codes and reading personal bank checks. The recognition 
of handwritten digits, like other problems in pattern recog- 
nition, consists of two major problems: feature selection and 
representation, and pattern classification. The classification 
approaches can be divided into three categories: statistical, 
syntactic or structural (Fu 1980), and neural network (Le Cun 
et al. 1989; Wassermann 1989). Feature selection is problem- 
dependent and considered most central to the final result of a 
recognition system. Features commonly used in the recogni- 
tion of handwritten digits are boundaries, skeletons, orienta- 
tions, strokes and/or cavity features (Ahmed and Suen 1980; 
Duran and Odell 1974; Fu 1980; Ghorbel et al. 1988; Gonza- 
lez and Wintz 1987; Granlund 1972; Impedovo et al. 1978; 
Mitchell and Gillies 1989; Schlosser et al. 1991). Fourier 
descriptors are often used to represent boundary features of 
digits. Since handwritten digits of the same digit class can 
occur in great variety, it is desirable to generate a representa- 
tion that is invariant or, at least, somewhat insensitive to the 
commonly encountered variations and distortions of digits 
within the same digit class. Considerable effort has been de- 
voted to the design of Fourier descriptor representations that 
are invariant under various geometric transformations such 
as rotation, dilation, and translation. The aim Of this study 
is not to derive a new Fourier descriptor representation, but 
rather to provide some perspective on the characteristics of 
various representations of Fourier descriptors with respect to 
handwritten digits, and to discuss effective digit classifica- 
tion approaches using these perspectives. 
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In this paper we present five formulations of Fourier de- 
scriptors and illustrate ambiguous digit classes associated 
with these representations. A method for reducing the ex- 
tent of the digit class ambiguity associated with well-known 
descriptors is described, and it is concluded that a Fourier de- 
scriptor approach may be practically effective for handwrit- 
ten digit recognition when it is used for focused hypothesis 
generation within the framework of an intelligent system ca- 
pable of reasoning about each hypothesis. Consequently, we 
describe a hypothesis-generating scheme for Fourier descrip- 
tor feature-based classifiers. Under this scheme, a classifier 
generates a hypothesis list for each unknown input. The hy- 
pothesis list is constructed to contain the most probable digit 
classes to which the input belongs, and a numeric value indi- 
cating the reliability of each hypothesized classification. The 
hypothesis list of an unknown input can be passed to other 
digit recognizers, or it can be further processed by a high- 
level decision module in combination with results provided 
by other digit recognizers to produce a unique and reliable 
system response. The hypothesis-generating scheme can be 
very useful if a system employs more than one recognition 
algorithm - then this strategy typically reduces errors by al- 
lowing the overall classification process to combine results 
based on complementary feature sets. 

Five Fourier descriptor representations are described in 
the following, and each combined with the same classifica- 
tion process. Of these, one was proposed by Shridhar and 
Badreldin (1984), one by Ghorbel et al. (1988), and the other 
three have been defined by ourselves. Each representation is 
based on the external boundary curves of digits, but they 
have different boundary functions and different transforms 
from Fourier coefficients to Fourier descriptor vectors which 
result in different ambiguity class characteristics. The five 
Fourier descriptor representations are evaluated on the basis 
of experiments which use a common hypothesis-generating 
classifier. The five Fourier descriptor representations and the 
hypothesis-generating classifier were all implemented in the 
C programming language. For each of the five Fourier de- 
scriptor representations, the algorithm was trained on a set of 
5200 digits. The system results were produced from a test set 
of over 14 000 well-segmented digits. The digits used are bi- 
nary images of comparatively low resolution (212 pixels per 
inch). The digits were manually cropped from handwritten 
ZIP codes contained within address block images provided 
by the U.S. Postal Service. 

2 Fourier descriptor representations of handwritten 
digits 

Fourier descriptors can be used to represent either boundaries 
or skeletons of digits (Crimmins 1982; Impedovo et al. 1978; 
Lin and Chellappa 1987). Figure 1 illustrates the boundary 
and skeleton of a digit. In this paper we confine ourselves to 
Fourier descriptors that represent digit boundaries. Figure 2 
shows the different processing steps involved in obtaining a 
Fourier descriptor vector from a digit. In the discrete case, 

the boundary function of a digit can be written as F(m), 
where m represents the ruth point on the boundary. The 
Fourier series of F(m) is defined as 

F(m) = ~ a(n)e 2j~'~/L , and 
1 ~ = - -  o G  

1 ~ F(m)e_2jTrmn/L a(n) = 
m =  l 

where L is the length of the boundary. A Fourier descriptor 
vector _FD = (ul, u2, . . . ,  up) can be obtained through a set 
of transform functions Ti such that 

Yi = Ti(a(0), a(+l) ,  a(+2), . . . ,  a (+k) ) ,  i = 1, . . .  , p ,  

when 2k + 1 initial Fourier coefficients are utilized. 
Ideally, digits of the same class should correspond to 

similar Fourier descriptor vectors and digits of different 
classes should correspond to dissimilar Fourier descriptor 
vectors. Handwritten digits, however, are extremely diverse. 
Digits belonging to the same class can be very different 
from each other, while on the other hand, digits belonging 
to different classes can be very similar. Figure 3 shows some 
examples. The open four in Fig. 3a and the closed four in 
Fig. 3b are very different from each other, but the open four 
is similar to an open nine and the closed four is similar to a 
closed nine. This example shows that a digit class can have 
many subclasses, and the subclasses can be very different 
from each other. When the subclasses of each digit class 
are identified properly, the ambiguity between digit classes 
can be reduced. In addition to the ambiguous forms of dig- 
its, class confusion may result from the use of boundary 
features which are invariant under certain geometric trans- 
formations. Of particular interest in this regard are similarity 
transforms (euclidean transformations) and symmetric trans- 
forms (reflections). The following subsections will examine 
ambiguous digit classes related to Fourier descriptor features. 

2.1 Boundary features and functions 

Handwritten digits belonging to the same class can be parti- 
tioned into subclasses based on boundary features. However, 
boundary features are limited: digits of different classes can 
have similar boundary features, although their stroke or cav- 
ity features may be different. Classifications based on bound- 
ary features alone commonly result in misclassifications in 
digit-class pairs such as eight and zero, seven and nine, eight 
and nine and four and eight. Figure 4 shows examples. The 
boundary of the eight in Fig. 4a is similar to the boundary 
of a zero, the boundary of the digit nine is similar to the 
boundary of a seven, the boundary of the eight in Fig. 4c is 
similar to the boundary of a nine, the boundary of the eight 
in Fig. 4d is similar to the boundary of an open four, the 
boundary of the eight in Fig. 4e is similar to the boundary 
of a closed four, and the boundary of the eight in Fig. 4f is 
similar to the boundary of a one. These examples indicate 
that boundary features should be used in combination with 
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Fig. la-e.  An illustration of a a digit 6, b its boundary, and c the 
corresponding skeleton 
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Fig. 2. From a digit image to Fourier descriptors 

a b c 

Fig. 3a-c. The boundaries of a the open four and b the closed four 
are very different, e The closed four can be confused with a six if 
the features are invariant under a half-turn 

a EIGHTanditsbound~ -'bNINEsnditsboundetv C EIGHTanditsboundety 

d EIGHTand its boundary eEIGHT~nd its boundary f EIGHTand its boundary 

Fig.4a-f .  Digit confusion classes arising from exclusive use of 
boundary features 

other features that are sufficient to differentiate the above 
ambiguous digit pairs. 

Additionally, it is significant that many Fourier descrip- 
tor representations have been designed to be insensitive to 
changes in the starting point of  the boundary curve of a digit. 
This is important for on-line applications; for off-line appli- 
cations, it is always possible to normalize the starting point 
of  the boundary curve of a digit. 

2.2 Similarity transforms 

Many of the Fourier descriptor representations applied to 
recognition of handwritten digits were designed to be in- 

variant, or significantly insensitive, with respect to the com- 
monly encountered variations and distortions in digits of the 
same classes. Typically, Fourier descriptor representations 
have been formulated to be invariant under similarity trans- 
forms - translation, dilation and rotation. 

A translationally invariant Fourier descriptor representa- 
tion maps digits of  the same boundary shape, at either the 
same or different locations, to a unique Fourier descriptor 
vector. Translational invariance does not cause confusion be- 
tween different digit classes, and hence is a helpful property 
of  features. Translational invariance of a Fourier descriptor 
representation can be obtained either by using a translation- 
ally invariant function to represent the boundary features, or 
by applying a translationally invariant mapping from Fourier 
coefficients to Fourier descriptor vectors. 

I f  a Fourier descriptor representation is invariant under 
dilation, then digits having the same boundary shape that 
are of  the same or different size will correspond to the 
same Fourier descriptor vector. Dilational invariance does 
not cause confusion between different digit classes, and can 
normally be obtained through a dilationally invariant map- 
ping from Fourier coefficients to Fourier descriptor vectors. 

A rotationally invariant Fourier descriptor representation 
associates digits having the same boundary shape but dif- 
ferent orientation with the same Fourier descriptor vector. 
The rotational invariance of a Fourier descriptor represen- 
tation can be obtained through either a boundary function 
or a transform from Fourier coefficients to Fourier descrip- 
tor vectors. A rotationally invariant transform can generate 
ambiguous digit class pairs such as six and four, six and 
nine, two and seven, nine and three and five and nine. Fig- 
ure 3c shows an example of  a rotated four matching a six. 
The ambiguity caused by rotational invariance between digit 
classes six and nine is a serious problem. Almost all sixes 
can be identified as nines after rotation through 180 deg (see 
Fig. 5a), and all closed nines can be identified as sixes after 
rotation through 180 deg (see Fig. 5b). Figure 5c shows that 
a two can be identified as a seven after rotation by 180deg, 
while Fig. 5d shows that a five can be identified as a nine 
after rotation by 180deg, and Fig. 5e shows that a three can 
be identified as a nine after rotation by 180 deg. 

2.3 Symmetric transforms 

The symmetric transforms of interest operate about either the 
x-axis or the y-axis. Invariance of digit representations under 
symmetric transforms can cause ambiguity between different 
digit classes. Since no digits in the same class are symmetric 
maps of the others, symmetric invariance of Fourier descrip- 
tors is not desirable. 

I f  a Fourier descriptor representation is invariant under a 
symmetric transform about the x-axis, the Fourier descriptor 
vectors are identical for certain digits in the class pairs of  
two and five, zero and six, two and six, three and seven, 
and seven and five. I f  a Fourier descriptor representation 
is invariant under a symmetric transform about the y-axis, 
the Fourier descriptor vectors are identical for certain digits 
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in the class pairs of two and five, zero and nine, and two 
and nine. We use symmetric images of digits to illustrate 
these ambiguous digit classes. Figure 6a-e shows examples 
of ambiguous digit classes caused by a symmetric transform 
about the z-axis. A two becomes a five in Fig. 6a, a zero 
becomes a nine in Fig. 6b, a two becomes a nine in Fig. 6c, 
a three becomes a seven in Fig. 6d, and a seven becomes a 
five in Fig. 6e. Figure 6f-h shows examples of ambiguous 
digit classes caused by a symmetric transform about the y- 
axis. A two becomes a five in Fig. 6f, a zero becomes a six 
in Fig. 6g, and a two becomes a six in Fig. 6h. 

SIX rotated 180 degrees NINE rotated 180 degrees TWO rotated 180 degrees 

FIVE rotated 180 degrees NINE rotated 180 degrees 

Fig. 5a--e. Examples of ambiguous digit classes arising from rota- 
tional invariance of boundary descriptions 

SIX its boundary rotate 180 NINE its boundary rotate 180 
degrees degrees 

a b 

EIGHT boundary io~l;o 180 
degrees 

c 

rotate 90 degrees Y-symmetric transform 
d 

rotate go degrees Y-symmetric transform 
e 

Fig. 7a-e. Examples of ambiguous digit classes caused by the com- 
bination of boundary features and various transforms 

after symmetric ZERO after symmetric TWO aftersymm~tric 
TWO transform about transform about transform about 

a X axis b X axis c X axis 

after symmetric 
TFIREE after symmetric SEVEN transform about 

transform about X axis 
d X axis e 

Z - - S  r 
TWO after symmetric 

transform about ZERO 
after symmetric TWO after symmetric 
transform about transform about 

f Y axis g Y axis h Y axis 

Fig. 6a-h. Examples of ambiguous digit classes arising from sym- 
metric invariance of boundary descriptions 

2.4 Cataloging ambiguous digit classes 

As noted above, Fourier descriptor representations typically 
give rise to ambiguous digit-class pairs. It is possible to sys- 
tematically catalog the digit-class ambiguities of a particular 
application by enumerating the different input forms for the 
digits, and then systematically applying geometric transfor- 
mations (primitives and their composites) to the digit bound- 
aries. The transitive nature of geometric similarity may be 
used to abbreviate the cataloging process. 

Figure 7a-c shows ambiguity pairs that can arise from 
basic geometric transformations such as rotation. Figure 7d,e 

illustrates ambiguity pairs which could be identified through 
composition of transformations. These examples show seven 
and (a particular type of) four and (a different type of) four 
and two to be possible confusion pairs. Additional confu- 
sion pairs can be identified by relating such digit subclasses 
through transitivity. These examples also illustrate that the 
existence of ambiguity is dependent upon the form of the in- 
put data - different writers present different ambiguity pairs. 

2.5 Recommendations for the use of Fourier descriptors 

The invariant properties of a Fourier descriptor representa- 
tion should be carefully examined in relation to each appli- 
cation's particular requirements. The similarity transforms 
are important when the input digits to a Fourier descriptor 
representation are not normalized, or the Fourier descrip- 
tor representation is used for preprocessing. For this type of 
application, Fourier descriptors can be used to group digits 
into subclasses while other features of digits can be used 
to classify the ambiguous digit subclasses caused by simi- 
larity invariance. Fourier descriptor representations invariant 
under similarity transformations usually have fewer differ- 
ent feature vector components; hence, they require less stor- 
age space and computational time during classification. If a 
recognition system has a preprocess which normalizes digits 
in size, location and orientation (Casey 1970), then a Fourier 
descriptor representation that is sensitive to rotation should 
be considered in order to avoid ambiguity between the re- 
rationally invariant digit (sub)classes. The symmetrically in- 
variant transforms should be avoided whenever possible. 
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3 Classification algorithm based on Fourier descriptors 

Our discussion in the previous section suggests that Fourier 
descriptor features should be used in conjunction with other, 
complementary features. A handwritten digit classifier based 
on Fourier descriptor features alone will ~ generate a high er- 
ror rate if a unique response is required for every input. In 
the following sections we describe a hypothesis-generating 
strategy which is effective for use in recognition systems 
having multiple classifiers and for use with other classifiers 
that cannot uniquely identify all digit classes. 

3.1 Generating hypotheses for classifications 

This approach requires a digit classifier to generate a hypoth- 
esis list for each input digit. A hypothesis list is a list of digit 
classes which strongly match the unknown input. Addition- 
ally, each digit class on the list is associated with a numeric 
value indicating the confidence of the classification. Such a 
digit classifier can be evaluated according to two measures: 
reliability and efficiency. Reliability is the frequency with 
which the correct class is included in the hypothesis list. 
Efficiency is the average length of the hypothesis list. An 
effective classifier will produce short hypothesis lists which 
are correct. That is, good classifiers are efficient and reliable. 

A handwritten digit classifier should be able to capture 
the dissimilarity between digits of different classes and the 
similarity between digits of the same class, as well as de- 
scribe possible misclassifications and indicate "I don't know" 
for inputs for which it cannot find good classifications. The 
hypothesis-generating strategy provides these capabilities. It 
reduces erroneous responses by allowing a classifier to pro- 
duce multiple responses when a unique response cannot be 
determined. The confidence values permit identification of 
ambiguous digit classes and situations like "I don't know". 
If the difference between the highest and the second highest 
confidence value is large, it indicates that the class with the 
highest confidence value is almost certainly the true class of 
the input; if the first k (k > 1) classes on the hypothesis list 
have very close confidence values, it indicates that the input 
is ambiguous; if the highest confidence value on the hypoth- 
esis list is very low, it is an indication of "I don't know". 
Obviously, if it is desired, a unique response can be derived 
from a hypothesis list by applying a decision process to the 
hypothesized classes and their associated confidence values. 
In a system of multiple digit classifiers, it is possible either 
to pass a hypothesis list generated by a digit classifier on 
to other digit classifiers for further processing, or to apply 
a decision process to all the hypothesis lists generated by 
the classifiers in the sytem to achieve a reliable and unique 
classification. 

3.2 A classification algorithm based on Fourier descriptors 

The classification algorithm consists of the following pro- 
cesses: 
- Boundary delineation 

- Calculation of the Fourier descriptor vector from the 
boundary 

- Construction of the reference feature vector set 
- Generating hypotheses for the input digits 

In our implementation, we apply a border-following al- 
gorithm proposed by Rosenfeld and Kak (1976) to extract 
the external boundary points of a digit. The sequence of 
the boundary points is taken in counterclockwise order. The 
starting point is defined as the first boundary point encoun- 
tered as the boundary image is scanned from top to bottom, 
left to right. The Fourier descriptor vector of a digit is gen- 
erated by the formula provided by the corresponding Fourier 
descriptor representation. 

The feature vector set is generated by applying a hierar- 
chical clustering technique to the Fourier descriptor vectors 
of the digits in the training set. The clustering algorithm was 
adapted from Duran and Odell (1974). A number of clusters 
are generated for each digit class, and each cluster represents 
a subclass of the digit class. The mean vector of each cluster 
defines a Fourier descriptor (reference) feature vector, and 
the class of the majority of the digits contained in the cluster 
provides the truth class of the feature vector. 

The hypothesis list of an input digit is generated as fol- 
lows. For every input digit, its Fourier descriptor vector is 
matched with all vectors in the feature vector set. The feature 
vectors whose Euclidean distance to the Fourier descriptor 
vector of the input digit is less than a threshold are col- 
lected as the matched feature vectors. The confidence value 
of a matched feature vector is derived as the reciprocal of 
the distance measure between the input Fourier descriptor 
vector and the matched feature vector. The distinct classes 
associated with the matched feature vectors and their corre- 
sponding confidence values form the hypothesis list for the 
input digit. 

The algorithm was implemented and used to generate 
experimental results for the evaluation of the five Fourier 
descriptor representations introduced in the following sec- 
tion. 

4 Five Fourier descriptor representations and their 
performance 

In this section we examine five Fourier descriptor representa- 
tions; each descriptor title has been abbreviated in an evident 
fashion to indicate its origin: SB, GCT, ERIM1, ERIM2 and 
DFT, the classic discrete Fourier transform. Their individual 
definitions are provided below. All five Fourier descriptor 
representations use boundary features of digits, but differ ei- 
ther in digit boundary functions and/or the transform from 
Fourier coefficients to Fourier descriptor vectors. 

In order to convey the characteristics of the five Fourier 
descriptor representations, in addition to theoretical analyses, 
we implemented all five Fourier descriptor representations 
and computed the Fourier descriptor vectors of five images 
shown in Fig. 8. Figure 8a is the boundary image of a two, 
Fig. 8b is the same as Fig. 8a except that the starting point, 
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"TWO with a rotational symmelric symmelric 
dilferent Ira nstorm ol = Iransform ira nsl=orm 
s~arting point 90 degrees abOUt x-axis aboul:y-axis 

Fig. 8a-e. A set of test images 

marked as x, is different, Fig. 8c is obtained by rotating the 
digit in Fig. 8a through 90 deg and Fig. 8d,e by symmetrical 
transformation of Fig. 8a about the x-axis and the y-axis, 
respectively. For each of the five Fourier descriptor repre- 
sentations, the Fourier descriptor vectors of the five images 
are displayed in the graphs in Fig. 9. In each graph, The 
Fourier descriptor vectors of the five images in Fig. 8 are 
represented as Vectors 1 to 5. The horizontal axis represents 
the indices of the elements in the Fourier descriptor vectors, 
and the vertical axis indicates the values of the elements of 
the vectors. 

We also implemented the hypothesis-generating algo- 
rithm presented in the preceding section for each of the five 
Fourier descriptor representations. We will compare the five 
Fourier descriptor representations as an element of the clas- 
sifier, based on our experiment results. 

4.1 SB representation 

The SB representation was developed by Shridhar and 
Badreldin (1984). In this representation, the boundary func- 
tion is defined by the Cartesian coordinates {(x(m), y(ra)) 
m = 1 ,2 , . . . ,L} ,  where L is the length of the boundary 
curve of the digit. The Fourier series of x(m) and y(m) is 

x(m) = ~ a(n)e 2j~nm/L, and 

y(ra) = ~ b(n)e 2j~n'~/L 
n = - -  O 0  

where a(n) and b(n) are the Fourier coefficients: 

L 

a(n) = x ( m ) e - 2 j v : n m / L ,  and 
m=l 

L 

b(n) = Z Y(m)e-2j~nm/L " 
m=l 

The SB representation of a digit is a Fourier descriptor vec- 
tor. The elements of the vector are derived as 

r(n) 
S(n)  = 

r(1) ' 

where 

r(n) = ~la(n)l 2 + Ib(n)l 2 , n = 1 ,2 , . . .  

Based on an analysis of digits reconstructed from Fourier co- 
efficients, Shridhar and Badreldin suggest the use of Fourier 

descriptor vectors of dimension 10 to 15 for handwritten 
digit recognition. 

In this representation, both the boundary function and 
the Fourier coefficients contain the location, orientation, 
and scale information about the original digit. Shridhar and 
Badreldin showed that their Fourier descriptor vectors are in- 
variant to rotation, translation, and dilation. Figure 9a shows 
that the SB representations of all the images are identical. 
It illustrates that the SB representation is invariant to not 
only rotation, translation, and dilation but also the symmet- 
ric transforms and change of starting point. These properties 
of the SB representation can be derived, in the general case, 
from the mapping from Fourier coefficients to Fourier de- 
scriptor vector. The SB representation cannot discriminate 
any of the ambiguous digit-class pairs listed in Sect. 2. 

4.2 GCT representation 

The GCT representation was proposed by Ghorbel, Cazuguel 
and Tocnaye (1988). They used a radius function p(1) to 
represent a closed boundary curve, where ~(1) measures the 
length of the line connecting the boundary point I to the cen- 
troid of the boundary curve (see Fig. 10a). The GCT Fourier 
descriptor representation of a digit is a vector with elements 
r  

,/0 L r = ~ log Q(1)e-2jTrlk/Ldl, 

where L is the length of the curve, k = 1,2, . . . .  Because 
the mapping from the digit boundary to the boundary func- 
tion Q(1) is not one-to-one, the digit boundary cannot be re- 
constructed from the Fourier coefficients, although the GCT 
Fourier descriptor representation and the boundary function 
have a one-to-one relationship. The boundary function p(1) 
is invariant under symmetric, translational, and rotational 
transforms, but is sensitive to change in the size of the 
closed curve. Ghorbel et al. showed through an example 
that the GCT representation is slightly sensitive to dilation. 
Our experiments show (Fig. 9b) that the GCT representation 
is also slightly sensitive to symmetric transforms. Based on 
the above discussion, we conclude that the GCT represen- 
tation cannot discriminate the ambiguous digit-class pairs 
listed in Sect. 2. 

4.3 ERIM1 representation 

This Fourier descriptor representation is one of two used 
by ourselves. The motivation in using this descriptor is to 
recover orientation information from the SB representation. 
The ERIM1 representation is represented by a vector with 
elements derived as 

a(1) b(1) 0 
S ~  r ~  , and S o with S~=S(n) 

r(1) 

where a(1), b(1), S(n), n = 2, 3 , . . .  are the same as those 
defined in the SB representation. Our experiments (see the 
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Fig. 9a-e. Graphical illustration of the Fourier descriptor vectors 
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Fig. 10. a Boundary curve description; b developed digit contours 
[adapted from Ghorbel et el. (1988)] 

graph in Fig. 9c) show that the Fourier descriptor vectors in 
this representation are invariant under symmetric transforms 
and change of starting point, and only the first two elements 
of the Fourier descriptor vectors are sensitive to rotational 

transforms. This suggests that the ERIM1 Fourier descriptor 
representation may discriminate the digit-class pairs where 
ambiguity arises from rotational similarity. 

4.4 ERIM2 representation 

This Fourier descriptor representation was also used by our- 
selves. In the ERIM2 representation, the boundary function 
of a digit describes the orientation of the vector connecting 
a boundary point to the centroid of the boundary curve. Let 
a boundary curve be {(xi, Yi) ~ i = 0, 1 , . . . ,  L -  1}. Assume 
the xy  coordinates have their origin at the centroid of the 
boundary curve, (xo, Y0) is the starting point on the boundary 
curve, and the boundary points are continuous and taken in 
counterclockwise order. Mathematically, the boundary func- 
tion r is defined as 

r yi) = 

7r 
2 

arctan (v~) , 

7r + a r c t a n  z~ , 

7r - a r c t an (V~)  , 

when x~ = 0 

when x~ > 0 and Yi _> 0 

whenx~ < 0 a n d y ~ _ > 0  

w h e n x i < 0 a n d y ~ < 0  

when xi > 0 and Yi _< 0 

The Fourier expansion of r is 
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r  ym) = ~ a(n)e 2j~rnm/L, m = 0, 1 , . . .  , L  - 1, 

1~,=- -  OO 

and 

L 

a(n) = Z x(m)e--2jTrnm/L'  n = 0,-4-1, +2 , . . .  . 

m = l  

The Fourier descriptor vector for a digit is obtained by using 
the following formula proposed by Granlund (1972): 

a l + n a l - n  a21all a n d Q ~ - - -  f o r n = 2 , 3 , . . .  Q 1 -  a2 , a~ ' 

Granlund showed that Q,~, n > 1, is invariant under rota- 
tion, translation, dilation, and change of starting point on the 
boundary, while Q1 is invariant under translation and dila- 
tion but not rotation. Figure 9d shows the graphical display 
of this representation for the images in Fig. 8. Note the el- 
ements in a Fourier descriptor vector are complex numbers. 
Let RealQi and ImgQi represent the real and imaginary part 
of the ith element in a vector. Each vector in Fig. 9d has 
the following form: (RealQ1, ImgQ1, . . . ,  RealQ13, ImgQ13). 
The graph in Fig. 9d indicates that the ERIM2 representa- 
tion is sensitive to neither change in the boundary starting 
point nor symmetric transform about the x-axis, but ERIM2 
is sensitive to both rotation and symmetric transformation 
about the y-axis. 

4.5 DFT representation 

This representation is based on the classic discrete Fourier 
transform (Gonzalez and Wintz 1987). Our goal in using 
this representation has been to eliminate the ambiguous digit- 
class pairs caused by both rotational and symmetric invariant 
transforms. In this representation, we consider the boundary 
curve of a digit as being on the complex plane. The boundary 
function is defined as 

F(m)  = (x(m) - xc) + j (y(m) - Yc) 

where x(m) and y(m) are the Cartesian coordinates of the 
ruth point on the boundary curve, (xc, yr is the centroid 
of the digit boundary, and L is the length of the boundary 
curve. The Fourier series of F(m)  is 

F(m)  = ~ c(n)e  2j~nm/L 

n : - -  o o  

where e(n) are Fourier coefficients derived as 

L 

c(n) = ~ [(x(m) - Zc) + j ( y (m)  - Yc)] e 2 j ~ r n m / L  . 

m =  l 

The representation of a digit is a vector of Fourier coeffi- 
cients, c(n). Since both the mapping between the boundary 
and the boundary function F(m) and the mapping between 
the Fourier series and F(m) is one-to-one, this representa- 
tion does not lose or gain any boundary feature informa- 
tion. The graphs in Fig. 9 illustrate that this representation is 

sensitive to rotation transforms as well as symmetric trans- 
forms about the x-axis and the y-axis. Therefore it is capable 
of distinguishing all the ambiguous digit-class pairs arising 
from these invariances. However, the DFT is also very sen- 
sitive to variations of the boundaries of digits of the same 
classes. Consequently, this transform requires a particularly 
large number of reference vectors, or archetypes. 

4.6 Summary 

We have presented five different digit representation schemes 
based on Fourier descriptors. Since all five representations 
are based on boundary curves of digits, they all may give rise 
to ambiguous digit classes. The SB representation and GCT 
representation are invariant to rotation transforms, symmet- 
ric transforms, and change of the boundary starting point. 
Neither of these two representations can differentiate any 
of the ambiguous digit-class pairs presented in Sect. 2. The 
ERIM1 representation is sensitive to rotational transforms. 
Therefore, it eliminates the confused digit-class pairs which 
could arise from rotational invariance, and those ambigui- 
ties which could arise from a combination of rotational and 
y-axis symmetric invariance. However, digit-class confusion 
pairs can arise with this representation as a result of z-axis 
symmetric invariance. ERIM2 permits x-axis symmetric in- 
variance, as does ERIM1. But, because it is sensitive to both 
rotation and y-axis symmetric transformations, fewer confu- 
sion pairs may arise with ERIM2 than ERIM1. The classic 
DFT representation is sensitive to rotational and symmet- 
ric transforms. The digit-class confusion pairs arising under 
this representation are only those caused by the boundary 
features. The classic DFT representation gives good perfor- 
mance if the input digits are normalized in orientation and 
in size prior to subsequent processing. 

4.7 Performance of the five Fourier descriptor 
representations 

For each of the five Fourier descriptor representations, ref- 
erence feature vectors were developed from a training set 
containing 520 digits for each digit class. The test set con- 
tains more than 14 000 well-segmented digits. The digits in 
both the training and test sets were normalized in size, loca- 
tion, and orientation. The orientation normalization adjusts 
the digits skewed by less than • deg. 

The performance of the five Fourier descriptor repre- 
sentations is shown in Table 1. The dimension of Fourier 
descriptor vectors for SB and GCT was 14, and for ERIM1, 
ERIM2, and DFT it was 16, 26, and 28, respectively. The 
digit classifier based on the SB representation had the high- 
est percentage of correct hypothesis lists, the smallest set of 
reference feature vectors (that is, archetypes), but the longest 
hypothesis lists. It generated more than five classes, on av- 
erage, for each input. This experimental result is consistent 
with our previous discussion. Since the SB representation is 
invariant under translation, rotation, dilation, and symmetric 
transformation, and is also insensitive to any change in the 



boundary starting point, each feature vector is expected to 
match a variety of digit types. On the other hand, feature vec- 
tors derived from different digit classes can be close to each 
other under the euclidean metric. That is why the average 
number of matched classes, for each input, is large. Although 
the GCT representation has properties similar to the SB rep- 
resentation, the performance of the GCT representation was 
not as good. In our experiment, the GCT representation had 
a larger set of feature vectors and was significantly lower (in 
fact, the lowest of all the five representations) in number of 
correct hypothesis lists, although its average hypothesis list 
length was a little shorter (close to five classes for each input 
digit) than that of SB. The performance of the ERIM1 repre- 
sentation was encouraging. It generated significantly shorter 
hypothesis lists, and its percentage of correct hypothesis lists 
was close to the SB representation. We note that since only 
the first two elements of a vector in the ERIM1 representa- 
tion are sensitive to rotation, better performance should be 
achieved if two-stage matching is performed. In this case, in 
the first stage it would be possible to match the last 14 ele- 
ments of the vectors, and in the second stage, the first two el- 
ements. Since the ERIM2 representation is more sensitive to 
the variations of digits, it had fewer ambiguous digit classes, 
a larger set of feature vectors, and consequently it generated 
rather short hypothesis lists. Since the DFT representation 
is sensitive to rotation and symmetric transformation about 
both the x-axis and the y-axis, it had the fewest ambiguous 
digit classes, generated a high percentage of correct hypoth- 
esis lists and the shortest hypothesis lists. Since the DFT has 
a large set of feature vectors and the dimension of its Fourier 
descriptor vectors is high, it requires more computation. 

Table 1. Experimental results using each of the five Fourier de- 
scriptor representations 

Fourier Correct Incorrect Hypothesis Number 
descriptor hypothesis hypothesis list of 
representation lists lists mean length archetypes 

SB 99.8% 0.2% 5.6 418 
GCT 98.6% 1.4% 4.7 422 
ERIM1 99.2% 0.8% 3.3 650 
ERIM2 98.8% 1.2% 2.2 710 
DFT 99.5% 0.5% 1.5 1235 

5 Conclusion 

We have discussed the properties of Fourier descriptors and 
their application to handwritten digit recognition. We have 
illustrated possible ambiguous digit classes which arise from 
(1) reliance upon the boundary features of the digits and (2) 
invariance of the boundary features to similarity and sym- 
metric transformations. We observed that a Fourier descriptor 
representation should be sensitive to symmetric transforms. 
And, we concluded that it is not realistic to force a unique 
classification for every input from a Fourier descriptor-based 
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digit classifier. However, such a digit classifier can be used 
effectively to generate hypotheses for a digit recognition sys- 
tem. We presented a hypothesis-generating strategy to allow 
a classifier to produce more than one possible classification 
for each input. To permit an empirical test, we examined 
five different versions of Fourier descriptors, and compared 
their performance. Two of the five representations, the SB 
representation and the GCT representation, were invariant 
to rotation, translation, dilation, and symmetric transforma- 
tion, and were insensitive to changes of the boundary starting 
point. The other three representations, ERIM1, ERIM2 and 
DFT, were more sensitive to the variations of digits. Based 
on our study, we conclude that a Fourier descriptor-based 
classifier is a well-behaved classification approach (for dig- 
its whose boundaries are intact). By analyzing the digit fea- 
ture a Fourier descriptor represents, as well as the sensitivity 
of that representation to rotation and symmetric transforms, 
it is possible to identify the misclassifications that can be 
generated by the classifier. A Fourier descriptor-based digit 
classifier can either serve as a preclassifier in a digit recog- 
nition system, or it can be combined with other digit classi- 
fiers that are based on complementary digit features. In either 
case, the hypothesis-generating scheme described in this pa- 
per is effective. The choice among different types of Fourier 
descriptor representations is dependent upon the application. 
If the input digits to digit classifiers vary enormously in ori- 
entation and size, the SB representation is a good choice. 
However, it requires additional digit classifiers as part of a 
system to discriminate the digit-class pairs listed in Sect. 2. 
Shridhar and Badreldin (1984) obtained a good result by 
using the SB representation in a two-stage classification sys- 
tem. If the ERIM1 representation is used, the classifier can 
eliminate the ambiguous digit-class pairs arising from rota- 
tional invariance. If the input digits are normalized in size 
and orientation before the digit classification, the ERIM2 or 
the DFT representation is appropriate for use. Our experi- 
ments show that although a DFT-based representation has a 
large feature vector set (many archetypes) and long Fourier 
descriptor vectors, it is reliable and efficient. 

Acknowledgements. This work was supported by the Office of 
Advanced Technology, United States Postal Service, Contract no. 
104230-86-H-0042. We would like to thank Dr. Gary Herring and 
Mr. Carl O'Connor of the Office of Advanced Technology and 
Dr. John Tan of Arthur D. Little, Inc. for their support. We would 
also like to acknowledge the assistance of Dr. Brian Mitchell, with 
whom we had many fruitful discussions. 

References 

Arbter K, Snyder W (1990) Application of Affine-Invariant Fourier 
Descriptors to Recognition of 3-D Objects. IEEE Trans on Pat- 
tern Analysis and Machine Intelligence 12(7):640-647 

Ahrned P, Suen CY (1980) Computer Recognition of Totally Un- 
constrained Handwritten ZIP Codes. International Joint Confer- 
ence on Pattern Recognition and Artificial Inteligence, pp 1-15 

Ballard D, Brown C (1982) Computer Vision. Prentice-Hall, En- 
glewood Cliffs, New Jersey 



34 

Casey RG (1970) Moment Normalization of Handprinted Charac- 
ters. IBM Journal of Research and Development 14(5):548-557 

Crimmins T (1982) A Complete Set of Fourier Descriptors for Two- 
Dimensional Shapes. IEEE Transactions on Systems, Man and 
Cybernetics 2(6):848-855 

Duran BS, Odell P (1974) Cluster Analysis. Springer-Verlag, New 
York 

Fu KS (1980) Recent Developments in Pattern Recognition. IEEE 
Transactions on Computers 29(10):845-854 

Gader P, Forester B, Ganzberger M (1991) Recognition of Hand- 
written Digits Using Template and Model Matching. Pattern 
Recognition 24(5):421-432 

Ghorbel F, Cazuguel G, Tocnaye JLB (1988) Similarity-Invariant 
Analysis of Handwritten ZIP Codes Using Fourier Descriptors. 
International Journal of Reserach & Engineering in Postal Ap- 
plications 1(1): 1-5 

Gonzalez C, Wintz P (1987) Digital Image Processing. Second Edi- 
tion, Addison-Wesley Publishing Company, Reading, MA 

Granlund GH (1972) Fourier Preprocessing for Hand-Print Charac- 
ter Recognition. IEEE Transactions on Computers 21(2):195- 
201 

Impedovo S, Marangelli B, Fanelli A (1978) A Fourier Desm~ptor 
Set for Recognizing Nonstylized Numerals. IEEE Transactions 
on Systems, Man and Cybernetic 8(8):640-645 

Lal M, Suen C (1981) Automatic Recognition of Characters by 
Fourier Descriptors and Boundary Line Encodings. Pattern 
Recognition 14(6):383-393 

Le Cun Y, Boser B, Denker JS (1989) Backpropagation Applied 
to Handwritten Zip Code Recognition. Neural Computation 
1 (4):541-551 

Lin CC, Chellappa R (1987) Classification of Partial 2-D Shapes 
Using Fourier Descriptors. IEEE Transactions on Pattern Anal- 
ysis and Machine Intelligence 9(5):686-690 

Mitchell B, Gillies A (1989) A Model-Based Computer Vision Sys- 
tem for Recognizing Handwritten ZIP Codes. Machine Vision 
and Applications 2(4):231-243 

Persoon E, Fu KS (1977) Shape Discrimination Using Fourier De- 
scriptors. IEEE Transactions on Systems, Man and Cybernetics 
7(3): 170-179 

Rosenfeld A, Kak A (1976) Digital Picture Processing. Academic 
Press, New York 

Shridhar M, Badreldin A (1984) High-Accuracy Character Recog- 
nition Algorithm Using Fourier and Topological Descriptors. 
Pattern Recognition 17(5):515-524 

Schlosser S, Trenkle J, Vogt R (1991) Morphological Feature Set 
Optimization Using the Genetic Algorithm. In: SPIE Imag e 
Algebra and Morphological Image Processing II, San Diego, 
CA 

Wasserman PD (1989) Neural Computing: Theory and Practice. 
Van Nostrand-Reinhold, New York 

Zahn C, Roskies R (1972) Fourier Descriptors for Plane Closed 
Curves. IEEE Transactions on Computers 21(3):269-281 


