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NOMENCIATURE

English Letters:

E,F,C

R
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Constants associated with generalized Hooke's law, using properties
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t/tg Ratio of ply thicknesses

Elastic constants for orthotropic laminates with cords in tension.
Elastic constants for three ply orthotropic structure
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a

One-half the included angle between cords in adjoining plies in a
two-ply laminate.
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Poisson's ratio

Orthogonal co-ordinates aligned along and normal to the principal
axes of elasticity, or orthotropic axes, in an orthotropic laminate.
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Interply stress
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I. FOREWORD

Preliminary investigations carried out by the Tire and Suspension Systems
Research Grogp from 1960 through 1963 centered arqund the determination of plane
elastic characteristics of ortﬁotropic structures, and this information eventually
has become useful in the analysis of pneumatic tires. Most of the theoretical
and experimental work on these properties was restriqﬁed to two and four-ply.
bias angle structures. Recent commerical developments have prompted an interest
in the behavior of three-ply orthotropic strugtu;es, in which two plies are
arranged such that their cords form angles of + O w;th a vertical axis, while
the third ply is located such that its cords are perpendicular to this axis.

The general solution for plane elastic characteristics of orthotropic
structures presented in Ref. 1 is completely appligable to the three-ply
corthotropic structure. Thﬁsj interply stresses as well as elastic properties
can be investigated in the same light as previous discussions. In addition,

a special case of the three-ply structure can be analyzed where the third
ply is composed of a homogeneous, isotropic material. This can be used as
a special model for investigating the internal reaction of a two-ply structure
by treating the layer cf material between the layers of cords as the third ply.

-This results in a somewhat different view of interply stresses.



IT. SUMMARY

This report presents the expressions for the plane elastic characteristics
of three-ply crthotropic laminates. The laminated structures considered are
those consisting of two identical plies whose cords are separated by an included
angle of 20 and a single ply whose cords are perpendicular to the bisector of
the angle separating the plies.

In all cases the expression for an elastic stiffness of the total three-
ply structure is a linear combination of the same property of a two-ply structure,
equivalent to the two angular plies, and an elastic property of the‘third ply.
Thus, the elastic properties can be computed having only a knowledge of the
material and geometric properties of the individual plies.

Unlike the two-ply structure, whose elastic properties are described by
two independent parameters, the properties of the three-ply strncture are
described by five independent parameters. This indicates there are many possible
combinations of material and constructional properties for varying the elastic
behavior of a three-ply orthotropic structure. Graphical representation of
some of the more common combinations of the five parameters is included,
along with several examples of their use. In addition, a graphical comparison
ig included showing the effect on the elastic properties of the inclusion of
the third ply.

The behavior of interply shear stresses in the three-ply structure are

discussed in the same manner as previous discussions by this group Ref. 3.



The form of the expressions for these stresses is identical to that of two-ply
structures although the actual magnitudes can be different.

A special case of the three-ply structure, where the third ply is homo-
geneous and isotropic, is discussed in some detall; it provides a new means
for eXamining a two-ply structure since the isotropic ply can represent the
layer of material between the layers of cord. As a result of this investigation,
another view-point is provided from which to discuss the origin and nature of

interply stresses.



ITI. THEORETICAL DEVELOPMENT

In this section the plane elastic properties of a three-ply orthotropic
structure will be developed in a manner similar to that presented in Ref. 1.
Some of the material presented here is repeated merely for completeness and
continuity.

An orthotropic structure is one exhibiting three mutually orthogonal planes
of elastic symmetry. As has been pointed out in previous discussions, for
laminated cord=-rubber structures to exhibit othotropy there must be no elastic
coupling between ncrmal and shearing effects. This structure normally arises
when the cords in all plies of a symmetrical structure are either in tension
or in compression. Thus, in this development it will be assumed that the cords
in all plies are in tension.

The three-ply structure considered here is that in which two identical
plies are arranged so that their cords are separated angularly by an included
angle 20, while the third ply, not necessarily of the same construction, is
located such that its cords are perpendicular to the bisector of the angle between
the other two plies, as shown in Fig. 1. In that illustration, the heavy
diagonal lines representing typical cords of the two identical plies are shown
being bisected by coordinates & and 1, two arms of the orthogonal &, 7, €

system.
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Fig. 1. ©Schematic view of a small section of a three-ply laminate.

This report will be confined to those structures in which effects in the
{ direction are negligibly small compared eith those in the £ and 7 directions.
This assumption will generally be true since this report is limited to structures
which are large in the & and n directions compared to their thickness in the
{ direction.

If the three-ply structure is imagined to carry an applied load as shown

in Fig. 2, then a strength of materials approach can be used to find the plane
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Fig. 2. Schematic representation of load distribution
resulting from an applied load in the & direction.



elastic properties of the combined structure.

F=F +F + FR

However, plies 1 and 2 are identical and their cords are assumed to be

in tension:

F = 2F +Fp = 201t + Ogtpl
T 0.t + 0
0, - % _ (201t + ogtg)
(2t + tg)
where:
o, = E; (€l)§

op = E_ (ep)

R g

Referring to Ref. 1, it is noted that E; is simply the extension modulus
in the €-direction of a single ply of cord-rubber material while ER is the
extension modulus perpendicular to the cords in the third ply, denoted as

E, in previous discussions. Therefore:

y
E = E
* 3
_ R
ER = Ey

Also, from compatibility of strain:

(el)g = (eR)g = eg

Thus,
T
O fE.t +Et
g . £ __& yR (1)
: ez (2t + tg )

Carrying out similar arguments for the relationship between stress in the

n-direction and strain in the n-direction, stress in the € -direction and strain
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in the n~direction or stress in the n-direction and strain in the £-direction,

and shear stress and shear strain, the following expressions are obtained for

T ’F‘T . (ﬂI‘ e 1 °
Eny Feyo and Sen? respectively:

R
T BByt + Byt (2)
n ot 4 £
(2t + tg)
T R
T Fepb Tty
Fey = : (3)
(2t + tp)
T, . R
En (2t + tg)

T
In Egs. (1) - (4), EE, Eg, an and ng refer to the elastic properties
of the total three-ply structure. It is emphasized that Eg, En, an and

GEW are exactly the same elastic constants cbtained in Ref. 1 and, thus, are

R FR

R
yr Fxy and ny are the elastic

caleulated as before. On the other hand, Ei, E
constants associated with a single ply in the directions along‘and perpendicular
to the cords and thus are identical to those discussed in Ref. 5. As a result
of these relations, it 1s clear that in all cases the elastic property of the
three-ply structufe is a iiﬁear combination of the same elastic property of
the two identical plies and an elastic property of the third ply.

For computational convenience Eqs}‘(l) - (4) are made dimensionless by

dividing by ny, the shear modulus in the x-y plane of a single sheet of the

material from which the two identical plies are constructed.

Gxy
(2t + tg)

: R
‘_EE _ 2(?;% ()=
G..

xy

T



R
E E
T 2(L> N (ﬁ_
B \ag/° Gy’

Cxy (2t + tg)
7 FET}) ng)
an _ 2 (a;; t + (G;; tr (5)
Gy (2t + tg)
¢! GR
T 2 __E_I]. t + ﬂ t
Gh]= (ny) (ny) R
Gyy (2t + tg)

References 2 and 4 discuss the origin of the following ratios which will

be used in the remainder of this report:

The numerical values of these ratios of elastic constants are based on some
experimentally substantiated assumptions concerning the elastic behavior of
individual sheets of ordinary ply stock. For instance, it is assumed that

the extension in the direction perpendicular to the cords and the shearing
deformation in the x-y plane take place primarily in the rubber between the
cords. In effect this is implying that the cords are indefinitely rigid in
comparison with the rubber. It is also assumed that the rubber used is nearly
incompressible and thus exhibits a Poisson's ratio of approximately 0.5.

From these values the following expressions can be deduced:

R R
E
E&=2__X__05.f’£z=og5
> R~ Y*7° ER )
Cxy . ny y



Also let:

G
N* _ _%l ; - XY , T = t/t
Ex ny R
Then:
by m Sy 2
¥R = 2 ER T L
Xy y

Using these values and expressions, Egs. (5) become:

T %
E 2 (—-) T + Lix*
g T My

G (o7 + 1)

Xy

E.

© ) (3)
En ) 2 ny) T N
Gxy (er + 1)

Cxy (2T +1)
Gt
G
Gen _ 2 \Oxy
ny (2T + 1)

Again referring to Ref. 2, it is seen that the first bracketed expression
in the numerator of each property in Eqs. (6) depends on two independent parameters,
the cord half angle o and the ratio N. Thus the plane elastic properties of
the three-ply orthotropic structure depend on five independent parameters,
a, N, N¥, N*¥* gand T.

Many different combinations of the parameters can be used in computing the
properties given by Eqs. (6). It is noted that the ratios (Eg/GXy): (En/ny)p

(Féq/ﬁxy) and (ng/axy) required in these computations can be obtained directly



from the tables of Ref. 2. As has been mentioned before, this is completely
acceptable since these expressions, as used in Egs. (6), are identical to those
described in Ref. 2.

The results of specific combinations of the independent parameters are
illustrated graphically in Figs. 4, 6, and 7. Figure 4 shows the behavior of
the overall elastic properties of the three-ply structure for the special case
of all plies being identical construction. Even in this simplified structure
it is interesting to note the variety of changes that can be obtained in the
elastic properties by varying different parameters. Consider for example, a

three-ply, thin-walled cylindrical tube such as shown in Fig. 3. Assume that

...—.T]

|
l
I

Fig. 3. Three-ply cylindrical tube.

all of its plies are of the same construction, and the angular lay up is
+Q, -, r. Although this is not a pneumatic tire, the general effects
experienced by this tube will be similar to those experienced by a tire.
Thus, to make this example somewhat more realistic a cord half-angle of 10°

is chosen to simulate the approximate angle used for the breaker plies in many
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radial ply tires. In addition, it will be assumed that the tube has a textile-
rubber combination such that N = lO_5 (a reasonable combination for certain
carcass combinations). The numerical values of the elastic properties can be
obtained from Fig. 4. Suppose, however, that the real interest is not in the
actual values but in what will happen to these properties as certain parameters
are changed. For example, what will happen if the cord half-angle is increased
from 10° to 20°? From Fig. L4 it is seen that (EE/GXy), a measure of resistance
to deformation in the E-direction (circumferential direction in the tire),

decreases by a factor of approximately 5;_(ng/ny), a measure of shear resistance
in the £-n plane, increases by a factor of approximately 3.5; while (E%/ny),
resistance to deformation in n-direction (radial direction in the tire) remains
constant and (an/ny)’ a measure of the Poisson ratio effect, decreases only
about 10%.

In another case, suppose the angle is to remain a constant but a stiffer
cord is contemplated, a cord such that N = lO'h (a reasonable value for certain
wire cord-rubber combinations). What effect will this change have on the elastic
properties? Again from Fig. L4, it is seen that (EE/ny) increases by a factor
of approximately 3.5; (ng/ny) increases by a factor of approximately 10;
(Eﬁ/ny) increases by a factor of approximately 10; and (an/GXy) increases by
a factor of approximately 10.

Other combinations and variations could be included here if space and time
were available. However, it is clear from this simple illustration that large

variations in elastic properties of three-ply structures of the kind described

above can be accomplished with relatively simple changes in the parameters.

11
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Fig. 4. Plane elastic properties of a three-ply orthotropic structure
N =Nx, N¥* =1, T = 1.

with all plies of the same material.
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For the case under consideration, namely all plies being of the same con-
struction, it 1s interesting to note the effect which the inclusion of the third
ply has had on the overall properties of the structure. Figure 5 is a graphical
comparison of the plane elastic properties of a two-ply structure and a three-
ply structure in which all plies have been obtained from the same ply stock.

As can be seen (E?/ny) and(Eg/GXy) are very nearly the same except at very small
cord angles, (Eﬁ/ny) and (EH/GXY) are very different except at very large

cord angles, (an/ny) and (an/ny) are very different except at very small
cord angles and very large cord angles, (ng/ny) and (ng/ka) are very nearly
the same except when the cord half-angle is approximately 45°. The result of
this seems to be that,in general, the inclusion of the third ply (when all plies
are of the same construction) slightly decreases the resistance to deformation
in the §-direction, slightly decreases the resistance to shear in the €-n plane,
greatly increases the resistance to deformation in the n-direction and greatly
increases the resistance due to lateral contraction effects. These comparisons
illustrate some of the advantages and disadvantages that can be encountered in
using two and three-ply orthotropic structures.

Another construction worth observing is that illustrated in Fig. 6 in which
the third ply, or radial ply‘in a tiqe, is of weaker construction than the two
symmetrical plies. This simnlates the usual construction encountered in a
radial ply tire in which the radial ply is constructed with textile cords and
the breaker plies are reinforced with steel wire cords.

Again consider the tube illustrated in Fig. 3, choosing a cord half-angle

of 10°. It will be assumed that the third ply is reinforced with a relatively

13
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third ply of different construction. Case 1: N¥* =1, T = 2.

15



weak cord such that N¥ = lO-2 and the symmetrical plies are such that N = 10_5‘
Also assume that the ratio of the ply thicknesses, T, becomes 2. The numerical
values of the elastic properties can be obtained from Fig. 6. However, again
it 1s assumed that the real interest is in what will happen to the properties
cf this tube as one varies different parameters.

First, what effects are observed if only the cord half-angle is changed
from 10° to 20°? It is seen from Fig. 6 that (Eg/ny) decreases by a factor
of approximately 5; (Eﬁ/GXy) remains cqnstant; (FEH/ny) decreases approximately
20%; and (ng/ny) decreases by a factor of approximately 2.

Second, what effects are observablerif only the cords in the symmetrical
plies are replaced byvstiffer cords such that N = lO—u? Again from Fig. 6,
(EE/ny> increases by a factor of aéproiimately 3.5; (EE/ny) remains constant;

T T
(Féq/ny> remains nearly constant; and (ng/ny) increases by a factor of ap-
proximately 10.

Third, what effects are observed if both the cords in the symmetrical plies
and the cords in the third or radial ply are stiffened such that N = lO_h and
N = 10707 Again from Fig. 6, (Eg/ny) increases by a factor of approximately

T T
3.5; (En/ka) increases by a factor of approximately 9; (Féﬂ/ny) increases by
a factor of approximately L; and (ng/ny) increases by a factor of approximately
10. As before, many other combinations and variations can be examined with
similar ease.

In Fig. 7 another group of combinations is illustrated in which the radial
ply is thicker than the symmetrical plies. These examples by no means cover

all the possible three-ply structures. However, they give an indication of

16
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the numerous pcssibilities for elastic properties changes due to the inclusion

of a third ply.
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IV. INTERPLY STRESSES

In this section an investigation will be made of the interply stresses
exigsting in three-ply orthotropic structures of the kind described in the
previous section. Also, the ideas developed for this structure will be used
to analyze a two-ply structure in which the isotropic layer of material between
the cords will be considered as the third ply.

In Ref. 1, interply stresses were intrcduced as those stress components
arising from the elastic interply connection. They can have shearing (distortion-
causing) or normal (extension-causing) effects on the plies. It was discovered
that for structures whose cords are all in tension, applied normal stresses
generate only the distortion-causing interply stresses, which can be calculated
from knowledge of the structural properties of the individual plies and the
magnitude of the applied stress. Also, it was noted that the application of
shear stresses produce only the extension-causing interply stresses, which also
can be calculated by knowing only the structural properties of the individual
plies and the magnitude of the applied load.

Since Ref. 1 and other related discussions have dealt only with ortotropic
structures composed of an even number of plies, it will be the purpose of this
section to investigate the behavior of interply stresses for a three-ply
orthotropic structure.

Returning to the construction of Fig. 1, and imagining that the load
distribution is as shown in Fig. 8, it is possible to write the generalized

Hooke's law about each of the plies. All symmetry properties of the two angular

19
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plies discussed in Ref. 1 are utilized here.

Ply 1 :
e§ =
€1
€§n
Ply 2 ¢
eg =
1
Egn =
Ply 3
€§ =
€ﬂ =
€§ﬂ

Equaticns linking the

R R R ,
aii O¢ + aiz on T ajg Ot

R R R
ag1 og + agp Oﬂ + asa Ot ¢

R R R
= as1 ot * as2 I + aga Tty

three plies'z

Qa
1]

Q
It

+

R

R

R

R

R

R

R
(2tgy + tpo) /(26 + )

; + Ry/ P )
(2ton tRon)/(zt + tg)

' R
(ztogn + tRogn)/(Qt + ¢

21

R

R

R

%)

ais (qu+0§ﬁ)

t agg (Ugn ""057’])

az3 (ng +0§ﬁ>

ais (O’én“O'g’;])
azs (ogn~ogﬁ)

ass (ng“dgg)

(9)

(10)



It is noted there that these equations have this form only if it is assumed

that the interply stresses exist as shown in Fig. 8. This implies the existence
of interply stresses only between plies 1 and 2. This is not at all in disagre-
ement with the concept of interply stresses as discussed in Ref. 1 and other
reports, for interply stresses are only necessary to oppose the anisotropic
nature of an individual ply when it is loaded in a direction other than per-
pendicular to the cords or parallel to the cords. The third ply of othotropic
structure discussed here is always loaded so that it does not require the "extra"
stresses for distortionless extensions and extensionless distortions.

In Eqgs. (7)-(10) the unknowns may be considered to be €y € 0 €

En’ %
a g UR O'R OR g!
J gn.’ g) T‘l) En) g,

U%, and O§ﬁ’ assuming that the averaged external

are given. All the aij’ t, and t_ are known. Thus,

T T T
stresses O, On, and O R

&n
as. (7)-(10) are determinate as they stand since twelve unknowns are present
in twelve equations.

The strains of the three plies must be identical since the plies are assumed
to deform as a unit. Hence, they can be equated, provided it is understood that
the strains in question here are averaged over several times the cord spacing.
Setting the first of Egs. (7) equal to the first of Egs. (8), the second equal
to the second and the third equal to the third, one obtains three equations
for the interply stress components 0, , Uﬁ and 0,

én:

o' = (212813 - 811823)
(211822 - a¥e)

Uﬁﬂ

Qa
U -
|

2
azix 311822 - 312) a1l

[(312 _alz_m-_amza)_ :' en (11)
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As would be expected, Egs. (11) are exactly the same in form as those of
Egs. (20) in Ref. 1. However, there is a major difference in that the expressions
in Eqs. (11) are not self-contained as they are in Ref. 1. This is brought about
by the fact that in Egs. (11) Ot 5 Oﬂ’ and Uéﬂ are not the applied stresses but
those absorbed by the two angular plies. Therefore, in order to numerically
compute the actual values of the interply stress, one must first determine

T T T

O Gﬂ’ and 0, in terms of the known applied loads Gg’ Gq , and Oéﬂ This

En

illustrates the fact that a two-ply structure will generate an interply stress

greater or less than a three-ply depending on the relative magnitudes of

T 1 T
O'g, G'ﬂ’ Oén and Ge, On, Ugn.

R R R
The external stress taken by each ply; O On5 ngy Ot Gn and Gén, are
determined by making use of Egs. (9) and (10). Egquation (9) can be simplified

by recalling the nature of the third ply:

aR = a 1 a 0
= —_— 2 = - =
11 ZR: & R 13
J Xy
R 1 R 1 R
agy = - ;R— » 82 = pR o, 823 = Y
“ Xy X
R R ' 7
dg1 = 0, aszz= 0, 323 = ;%*
by
Thus, Eqs. (9) become:
R
O oR
€ = TR -
Ey ny
R
%o (9a)
- - _n a
€n ER— + ER
Xy X



R
The stresses in the third ply, Ug, Uﬂ’ and 0, are found in terms of ©

En £’

0. and O

N gq from Egs. (10) and substituted into Egs. (9a). The resulting

equations are then combined with Egs. (7) and (11) to obtain %, 9 and %n in

T
terms of the applied stresses UE B Oﬂ and 55 Omitting the intermediate

n

algebra, the resulting expressions are:

2T+1
e

1]

g - ger+1) T
n R
: (oT + Eﬂ) a

ng

Recalling that Og: Oﬂ and OEW are the stresses acting on the two angular plies
due to external loads, Equation (12) clearly illustrates the fact that for usual
carcass constructions the two angular plies absorb most of the loading effects in
the £-direction while the third ply absorbs most of the loading effects in the 7-
direction. Also these equations show that the applied shear load is absorbed more
by the two angular plies than the third ply. The basis for this reasoning lies in
the fact that for most combinations of cord and rubber (E?/Eg) is less than one,
(EE/En) is greater than one and (Ggy/ng) is less than one. Thus, in the first

of Egs. (12) the coefficient of OE is greater than one and hence Gg is greater

2k



than 0 , indicating that the load is not divided uniformly between the plies

but being absorbed more by the two angular plies than by the third ply. In

the second of Eqs. (12) the coefficient is less than one and hence Gﬂ is less
T

than 5% , and in the third equaticn the ccefficient of Oéﬂ is greater than one

and hence ¢ reater than GT

- : en & e

T T
It is of interest to note that the general expressions for Eg’ Eﬁ, an and

T .
GEn obtained from the strength of materials approach in the previous section
can acutally be obtained from the general development presented in this secticn.

’ T
For example, to determine GE cne applies a OEn and finds the ratio between

EN
T e . . .
Oéﬂ and Eﬁq' In so doing it is postulated that the shearing distortion takes

place without extension and that the only components of interply stresses generated

are Of and 0. If this is done, Egs. (7)-(10) reduce to:

(a) 0 = ai of + aip oﬁ + ais cgn
(b) 0 = a2 0f + az2 0% t 823 O, (13)
(c) €§n = a1z Oé + ag3 Uﬁ t asg Ggﬂ
R
= 0 R
(d) €y gq/ny
T . R
(e) ng\ = (2t Gﬁﬂ * by OEU)/(Bt + tg)
R
Solving Eq. (1%e) for o, and substituting into Eq. (13d) gives an expression
En

.. . 1 ] . .
for ng in terms of Ug and €§ﬂ°

I T P R (11)
%n T op |70 T W% 7 R G xy:' :



Thus, substituting Eqs. (11) and (1L) into Eq. (13c) and solving for the ratio

T T
Oén/eén gives ngo Again omitting the intermediate algebra:

T R
ng = (eegnT + ny)/(em + 1)

This agrees with the result previously obtained in Eq. (6).

In a similar manner the other elastic properties can be checked.

An additional cbservation can be made about interply stresses by extending
the present analysis to a three-ply structure of such a construction that it
has two identical plies arranged at angles of plus and minus @, separated by
a third ply of homogeneous isotropic material. This in essence is a two-ply
structure since the third ply can represent the rubber layer separating the
layers of cord. The analysis of the two-ply structure in this context is
identical to that carried out in this section and the previous section except
the properties of the third ply are different. However, the interply stresses
between the two angular plies must now be transmitted through the third ply.
This offers some interesting models as sources for the generation of interply
stresses. First, from this approach it seems plausible that the layer between
the cords might behave as an isotropic sheet which has been loaded by surface

1
shear tractions of two types, extensional types represented by 0¢ and o! and

il
shearing type represented by Géﬁu Thus, to actually analyze the effects of

the interply stresses in the isotropic layer between the cords, as visualized
by this mechanism, requires the analysis of a thin plate loaded by surface shear

forces as well as in-plane shear forces (See Fig. 9(a)).

This three-ply approach also lends support to the previously conceived
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(a) Increment of isotropic layer loaded by interply stresses.

(b) Finite section of isotropic layer with small “torsion bars"
loaded at cord cross-over points.

Fig. 9. Models for interply stress generation.

T



idea of interply stress generation through small "torsion bars" located at the
cross-over points between layers of cord. For, if the interply stress is generated
only in the vicinity of the cross-over points, it can be thought of as the result
of many small torsion bars, each loaded with two types of stresses, the twisting

' (see Fig. 9(b)).

1
type represented by Oﬁﬁ and those represented by O¢ and Gn

Although this analysis does not solve the problem of the nature of interply
stresses, it presentes an alternate view point from which to discuss the ever

vexing problem of these "extra" stresses.
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V. EXAMPIE PROBLEMS

Example problems are given below to illustrate possible uses of the
information of Figs. 4-7.

1. Given: A three-ply othotropic pressure vesseliconstructed from three
plies of the same ply stock (see Fig. 10). The original material and construction
is such that N = N* = 10-5, M** =1, o =20° and T = 1. The tube is equipped
with end plugs to allow an internal pressure of 5 psi. In addition an external
torque of 25 in.-lb. is carried by the tube. The tube has been sufficiently

preloaded so that all cords will remain in a state of tension.

Fig. 10. Three-ply cylindrical tube.

To Find:
(a) Original strain state in the tube if ny = 100 psi.
(b) Strain state if cords are stiffened such that N = N* = lO_u. A1l
other ratios and dimensions remain as in (a). |
(c) Strain state if cord half-angle is reduced to 10°. All other ratios
and dimensions remain as in (a).

(d) Strain state if the plies are changed such that N¥ = 10—5, N = lO'u

29



and T = 2,

All other ratios and dimensions as in (a).

This change implies

that the circumferential ply has cords of lower modulus than the other two

plies. Also, the thickness of the circumferential ply is now .02 while the

other two are .Ok.
Solution: The external stresses are calculated

expressions:

from simple pressure vessel

T _ 5(2.5) .
0, = = 62.5 psi
£ (2)(.)
GT = 5(2.5) = 125 psi
n
o1
To_ o _25(25) . og -
or = = 6.38 psi
E1 x(2.5)3(.1)
(a) The original strain is:
T _ 1/Gxy T [ Gyy
Oy €& = %(gr) "% (;f‘)
3 e
s I . L %.z) . 9‘3&)
LA n E;D] 3 an
T T G
G, €, = 0 XY
Xy ¢ € <T >
! T\
From Fig. k4,
GXy 1 GXy 1 ka = GXy 1
T 105 ° 4T 0" © 6807 ¢ 0
Eg 5 Eﬂ 53 an an 1
Therefore:
6 e = 6.5 1 | 0.41
xy & 105 680
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B Lo % T

P
Wl

Oy G

S
Eiy =

135 |

330

- ,0029

N OOl_Ll

60 T

Seag (LY - S
6.38 (70 T);_p,OQ;. .

0.00091

(b) ‘For this case one refers again to Fig. 4.

Nt

s
L

B

.
om
[
=
[

(c) Again referilng to Fig.

[62.5 _ lgii]‘h; 0.0046

130 6700

_ = 0.000
| 3300 6700 ‘29

690

e

é—-ze-] = 0.000091 -

| 500 " 740

| 330 ﬁ;’jho
g
0321 = 0.0031

205

Fig. 6:

[?g;ik-’EEZ]' = 0:90098

158 & 420

L '[122 - QE:QJ = 0.0048

200 k420
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—

S R [6.28 | ISP

L €g B e = 0.0000
"8 100830 -0t

- For easy compa#;sgg,é@nqgtg§n1§q@offthese‘differgnt cases are included in

~ the following table:

Case| /e{ . 5%. ¥ ?,: efn . Nature of Change

a . 0041 ] .0029 | .00Q91 - Original Tube

I T - Cord tensile strength

b | .00u6 .00029 | * .000091 increased by factor of]
: . . - 10 SRR
Cord half-angle :de-
creased by 10°

: o v o Circumferential ply
o d .00098 - | : 008 | .000077 | . weaker than two longi-
' - : ] : tudinal plies '

¢ | -.o00uk | .0030 .|  .0031

As can be seen from these :esults, 6fémgtic‘changes'ih the strain state of a

. three-ply orthotropic structuré;céh‘be»accomplished with felatively few changes s

in construétional properties.
2. Given: Same cylindrical tube as in problem 1 except N = N* = 10'&.

" The tube is .also loaded ég’;n problem 1. . vg“

To Find: The ihterpi& §£ress components of the three-ply tube as vell as

for the same tube with the circumferential ply removed.
Solution: The external stresa-cdmbonents are again calculated from
- pressure vessel expressions. . For the three-ply fube the componehts are the
same as in ﬁfobiem'l:_.
¥ - Gespet, o = 1mper, o = 6.6 pet

. For the same‘tﬁbe"with the circumferential ply removed:




1

dT = 62, (____
€ 2 'L067

= 93, T _ 1y 2187, oo =6.38 (L) = o. -
) = 93.75, o 125(_067> 187.5 psi, O, 638(.067) 9.57 psi

From Egs. (11), the interply stress components are:

On = Kl ng

ol = Ko 0O

: 2 Ten

oén = Kg Gg + Ky 2

where K;, Ko, K3 and K, are constants throughout the problem since they are
properties of the two angular plies only.

For the three-ply tube the stresses carried by the two angular plies,
Ot On and ng are found from Egs. (12). Before working out these values, it
is noted that these expressions require the quantities (E?/Eg), (Ei/En) and

R .
(ny/ng)o These ratios can be obtained from Fig. 5 if it is noted that
R _ R

R
Ey = Ey, By =E, and G§y = Gyy- Also recall E§ = L*G, , By = Gy /%,
and Ggy = GXyN**o Therefore
R
E G g G G G
y J.
= = L% * (EEX) , X ﬁ%.(ﬁﬁl , aﬁl = ** (Géy)
£ g | n 3 En
R
E
A 1
= =) = .020
By (1) (195)
§§ L (-———) = 281
En 10-% \3.55 7
R
G
Xy (_;L_)
o 1 (758 ,00097
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And from Egs. (12), the stresses on the two angular plies of the three-ply

tube are:

[ 2(1)+1 ]
[2(1)+.020]

(62.5) 92.82 psi

_ [2(1)+1]
T [2(1)+2817] (125)

1}

0.13%3%0 psi

s = [2(1)+1] (6.38) = 9.56 psi
En [2(1)+.00097]

And from Eqs. (11), the interply stress components are:

UT] = 9°56 K,
o, = 9.56 Kz
Gén = 92,82 Ky + 0.1%3 K,
And for the two-ply tube:
Gﬁ = 9.57 Ky
o = 9.57TK
%en = 93.75 Kz + 187.5 K,

As can be seen, the only significant change occurs in the shearing component,

gl .
En
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