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A b s t r a c t  This paper treats the problem of the combined de- 
sign of structure/control systems for achieving optimal maneuver- 
ability. A maneuverability index which directly reflects the time 
required to perform a given maneuver or set of maneuvers is intro- 
duced. By designing the flexible appendages of a spacecraft, its 
maneuverability is optimized under the constraints of structural 
properties, and of the postmaneuver spill-over being within a spec- 
ified bound. The spillover reduction is achieved by making use of 
an appropriate control design model. The distributed parame- 
ter design problem is approached using assumed shape functions 
and finite element analysis with dynamic reduction. Character- 
istics of the problem and problem solving procedures have been 
investigated. Adaptive approximate design methods have been de- 
veloped to overcome computational difficulties. It is shown that 
the global optimal design may be obtained by tuning the natural 
frequencies of the spacecraft to satisfy specific constraints. We 
quantify the difference between a lower bound to the objective 
function associated with the original problem and the estimate 
obtained from the modified problem as the index for the adaptive 
refinement procedure. Numerical examples show that the results 
of the optimal design can provide substantial improvement. 

1 I n t r o d u c t i o n  

Large space structures such as antennas or space stations will 
be very flexible, not only because of the high cost of trans- 
portation of structures from earth to space, but  also because 
they will be constructed or deployed in orbit and will not 
need to withstand large launching and gravity loads. How- 
ever, when a space structure is very flexible, its active control 
system can excite and otherwise significantly interact with its 
flexible modes. Thus, the idea arises of achieving simultane- 
ous vibration mode suppression with at t i tude maneuver of 
flexible spacecraft. The control design for rotational maneu- 
vers and vibration mode suppression of flexible spacecraft 
has received extensive attention (e.g. Breakwell 1981; Van 
der Velde and He 1983; Turner and Chun 1984; Hale and 
Lisowski 1985; Vadali 1986; Fujii and Ishijima 1989; Ben- 
Asher et al. 1987; Barbieri and Ozguner 1988; Thompson et 
al. 1989, 1990; Singh et al. 1989). For certain applications, 
it will be desirable that  such a spacecraft slew as rapidly as 
possible, within the operating limits of the control actuators. 
Flexible spacecraft are modelled with a finite number of vi- 
bration modes, and optimal control theory is then applied to 
obtain the time optimal control history for quiescent terminal 
conditions of the vibration modes  (see, for example, Barbi- 
eri and Ozguner 1988; Thompson el al. 1989, 1990; Singh 

et al. 1989). Singh et al. (1989) observe quantitatively that 
the difference between the minimum time for a rigid body 
and the actual time required for a flexible spacecraft is small 
for large-angle maneuvers of systems of low flexibility and 
low authority control torques. However, all of these authors 
only consider control design based on a specific structure. It 
is expected that  by adjusting the design parameters of the 
spacecraft itself we may obtain even bet ter  results, especially 
for large flexible structures. As a consequence, structural op- 
timization is considered so as to further minimize the maneu- 
ver time and achieve vibration mode suppression. The design 
process is thus a combined design of controllers/structures 
applied to spacecraft. This paper is concerned with devel- 
oping a theoretical and practical framework for solving this 
problem. 

Traditionally, the overall design for actively controlled 
space structures is t reated via an iterative two-part scheme. 
The redesign of the structure including sensor and actuator 
placement is performed in one stage, and then the control law 
is modified for the resulting system to complete an iteration 
cycle. Generally different design objectives apply in the sep- 
arate steps. More recently, the need to integrate the design 
of a structure and its control system has been recognized. An 
integrated approach is justified simply on the basis that  struc- 
tural and control purposes are substantially coupled. Bodden 
and Junkins (1985) presented a method for eigenvalue opti- 
mization with sequential or simultaneous design of structure 
and control. Khot el al. (1985a, b) and Khot el al. (1988) con- 
sidered structural optimization, including constraints on con- 
trol gain norm and transient behaviour of the control system, 
based on a linear-quadratic model of the controller. Hale and 
Lisowski (1983) and Hale c t a l .  (1984) treated the problem 
o~simultaneous structure and control design for a maneuver- 
ing spacecraft which resulted in a linear-quadratic optimiza- 
tion problem. Bends¢e et al. (1987) presented an algorithm 
for integrated design of the structure and its control system 
which includes a constraint to limit the controller spillover 
from the unmodelled modes. Lust and Schmit (1988) pre- 
sented a control-augmented structural  synthesis methodol- 
ogy in which the structural member sizes and active control 
system feedback gains are treated simultaneously as indepen- 
dent design variables. Onoda and Haftka (1987) and ttaftka 
el al. (1985) considered the optimization of the total  cost 
of the structure and control system subject to constraints 
on the magnitude of the response to a given disturbance in- 
volving both rigid-body and elastic modes. Lim and Junkins 
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(1989) presented an idea for optimizing the robustness of the 
controlled structures, using homotopy and sequential linear 
programming algorithms. Khot (1988) presented algorithms 
for the design of minimum weight structures with the goal of 
improving system dynamics by use of a closed-loop control 
system. 

Most of the developments on simultaneous design of struc- 
tures and controllers reported in the literature use simple 
linear feedback control laws and quadratic performance in- 
dices. Practical constraints such as limitation on the am- 
plitude of the control effort are, in general, not taken into 
account. The use of such relatively narrow forms of prob- 
lem statements may have serious implications in terms of 
the usefulness of the results. It is understood, for exam- 
ple, that the use of performance indices expressed as lin- 
ear/quadratic functionals is generally inappropriate unless 
loop transfer recovery techniques (see, for example, Safonov 
and Athans 1977; Lehtomaki et al. 1981; Doyle 1987; Doyle 
and Stein 1979) are incorporated into the formulation. Fur- 
thermore, in the literature, the constraints usually used are 
on the closed-loop eigenvalue distribution and structural fre- 
quencies. These constraints are not as direct to the applica- 
tion problem as constraints on rise time, maximal displace- 
ment, or maximal stress. The consideration of performance 
degradation of the optimal system coming from the control 
and observer spillover is also generally not included. 

In the present work, the problem of fully coupled design 
for a spacecraft and its associated control is examined. The 
design of the structural system and control is to be integrated 
so as to optimize with respect to a single cost function. The 
objective is chosen to reflect the maneuverability of this struc- 
ture/control system, i.e. the time required to perform a given 
maneuver or set of maneuvers. Various forms of mission spec- 
ification can be reflected in the definition of the maneuver- 
ability index. It includes criteria related to sets of maneuvers 
with specified probability of occurence. This maneuverabil- 
ity index is generally more meaningful than the usual LQG 
index with minimum weight. The 'minimum time' objective 
is appropriate for application in slewing or other retarget- 
ing maneuvers. Furthermore, the problem is formulated in a 
way to accommodate in explicit form various practical con- 
straints, such as limits on control action and performance 
error (control spillover). Also, the formulation is consistent 
with a nonlinear bang-bang form of optimal control design. 

The spacecraft is modelled as a linear, elastic, undamped, 
nongyroscopic system. The control design is based on a re- 
duced order model which is appropriately chosen with con- 
trol spillover taken into account. The dynamic properties 
of the reduced order model are obtained by the finite ele- 
ment and dynamic reduction methods. The necessary-and- 
sufficient conditions for the time-optimal rest-to-rest control 
problem, obtained by Singh et al. (1989), are considered as 
a mapping from the structural dynamic properties to the op- 
timal maneuver time. For the design of the spacecraft we 
assume that the maneuverability index is optimized so as to 
reflect the optimal maneuver time of a given maneuver or 
set of maneuvers. The maneuverability index is optimized 
by updating structural design parameters. Characteristics of 
the problem and problem solving procedures have been inves- 
tigated. Approximate design methods have been developed 

to overcome computational difficulties. Numerical examples 
are presented to demonstrate the capability of this approach. 

2 C o m b i n e d  des ign o f  s t r u c t u r e s / c o n t r o l l e r s  - 
p rob l em s ta tement  

Flexible spacecraft are usually modelled as systems of inter- 
connected rigid bodies and flexible appendages. Consider the 
linearized rotational dynamics of a flexible spacecraft where 
control inputs are used to actively control the rigid body 
mode and flexible modes. The spacecraft consists of a cylin- 
drical symmetric rigid central body, as shown in Fig. 1, to 
which N ( N  >_ 2) identical flexible appendages are attached 
with uniform spacing between them. Along the appendages, 
there may be distributed or concentrated payload masses, 
and the spacecraft may be very large and flexible. It is to be 
controlled by a single torque actuator located on the central 
body and m torquers located at identical locations on each 
of the N appendages. The amplitude of the torque applied 
by each torquer is limited. The extension of the problem for- 
mulation to a system controlled by force actuators or a com- 
bination of torquer and force actuators is straight-forward 
and yields similar dynamical equations. In the subsequent 
analysis, large rotations of the rigid centrM body are consid- 
ered and the specific vehicle geometry and actuator locations 
assure that the translational motion of the vehicle centre of 
mass and the rotational motion of the vehicle are decoupled. 
A more general vehicle geometry, where N ( N  >_ 2) flexible 
appendages, not necessarily identical, are arbitrarily attached 
to the rigid central body, can be considered if the analysis is 
restricted to cases where translation and rotation of the rigid 
central body are "small", reflecting small structural defor- 
mations. Situations where only one appendage is attached 
to the rigid central body can also be considered provided the 
rigid central body is constrained against translation. 

~ 0 e n 0 a g e  

Design of the N identical 
appencmges 

Fig. 1. The generic flexible spacecraft model 

The following assumptions are made to obtain a mathe- 
matical model of the system: 

1. the appendage displacements and slopes are small rela- 
tive to their undeformed shapes; 

2. the appendage shear deformations are negligible com- 
pared to the bending deformations; 
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3. the appendages are inextensible; 

4. appendage displacements are restricted to a plane or- 
thogonal to the central body's axis of rotation; 

5. no structural damping is present; 

6. the deformation of the appendages relative to their un- 
deformed shapes are identical and antisymmetric; 

7. the rigid central body rotation rate remains small at all 
times; 

8. the spacecraft centre of mass coincides with that of the 
rigid central body; 

9. the spacecraft centre of mass does not translate in iner- 
tial space. 

The design parameters of the appendages can be cross- 
section, stiffness or density of the material, layout of the 
composite material or the location of torque actuators alon~ 
the appendage. Let the design parameter vector be ~ E R Iv , 
implying that the structural dynamic properties are implicit 
functions of ~. 

2.1 Maneuverability index 
The maneuverability index reflects the time required to per- 
form a given maneuver or set of maneuvers. The mission 
profile is specified by giving the probability density function 
p(O) of the required maneuver amplitude 0. For the design 
of the spacecraft we assume that the maneuverability index 
is optimized so as to reflect the optimal maneuver time of a 
given maneuver or set of maneuvers. Let t*f(O) be the opti- 
mal maneuver time for a rest-to-rest maneuver of angles 0, 
so that t*f(O) is an implicit function of the structural design 

parameter vector ~. Therefore, the maneuverability index is 
also a function of ~, defined as 

+c~ 

= J p(O).t}(o) g*(~) dO. (1) 

For example, let p(O) = 6(0 - O*) then /**({) = t}(O*), an 

other words, the maneuverability index represents the ex- 
pected value of the optimal maneuver time for a given mission 
profile. The structural design problem is then to optimize 
#*(~) with respect to ~. 

2.2 Optimal design problems 
Assume that the structural design parameter vector ~ is re- 
stricted to belong to a compact set ~, which represents fea- 
sible designs. Assume that the design of the appendages will 
not change the characteristics of the torquers along the ap- 
pendages. In other words, the amplitude limits of the tor- 
quers remain the same for all values of the design param- 
eters. Therefore, we can formulate the optimal combined 
structure/control design problem as 

#=min /~*(~) ,  ~ E ,  

where ~, is the space of structural design variables, subject 
to two sets of constraints: 

I a material resource constraint; 

b geometric configuration constraints: such as max 
and min thickness limits of cross~section; 

c dynamic response constraints: such as max stress 
and displacement limits; 

and 

II the postmaneuver control spillover is within a specified 
bound. (2) 

Constraint II takes into account the perfomance degradation 
associated with the unmodelled dynamics. 

We approach the distributed parameter design of the 
cross-section of the appendage using assumed shape func- 
tions. More specifically, let the design parameter of the 
cross-section he the thickness distribution. We assume that 
the thickness function, h(x) (x is the location along the ap- 
pendage), is a linear combination of known shape functions, 
where the coefficients are design variables to be optimized. 
This approach uses the same idea as design variable linkage 
(e.g. Fetterman and Noor 1987). 

3 Fo rmu la t i on  and  charac te r i s t i cs  o f  t he  op t ima l  de- 
sign p r o b l e m  

3.1 Equations of motion 
Let O(t) be the angular displacement of the rigid central body, 
and y(x,t) be the lateral displacement of the flexible ap- 
pendages at z, the distance along the appendage measured 
from the appendage root, 0 < x < L; where L is the overall 
length of an appendage. Let Q0 and Qy be the generalized 
forces associated with 0(t) and y, respectively. Let J* be the 
total rotational inertia of the undeformed vehicle about the 
axis of rotation. Let the central body be cylindrical with ra- 
dius R and total mass too, EI(x) be the appendage material 
stiffness, p(x) be the mass distribution of the appendage per 
unit length (including the payload mass). Here boldface type 
is used to denote matrices and vectors; {}x, {}xx denote first 
and second partial derivatives, respectively, and [it denotes 
transpose. 

The application of Hamilton's principle results in the fol- 
lowing coupled linear partial and ordinary differential equa- 
tions and associated boundary conditions: 

L 

= 1/2mo R2 + N / p ( x ) .  (R+ x) 2 dx, J* 
0 

and 

L 

J*O + N / p(x)(R + x)Ytt dx = Qo(t), 
0 

N[{EI(x)y(x, t)zz}zz + p(x){y(x, t)t t + (R + z)}0] = 

= Qy(t, ~), 

[{ EI(::)Yxx }xSY][x=L] - [{ EI(x)Yxx }~SY][x=o] = O, 



where Qy and Qo are the generalized forces. 
The "exact" solution of this system generally consists of 

infinite sets of eigenfunctions and associated eigenvalues (e.g. 
Meirovitch 1976). It can be approximated with the assumed 
mode method, i.e. y(z , t )  can be expressed as 

CO 

y(z, t) = Z ¢i" qi, (4) 
i=1 

where ¢i(x) and qi(t) are complete assumed mode shapes and 
the corresponding generalized coordinates, respectively. 

We use the finite element method, whereby appendages 
of the spacecraft are discretized into a finite number of beam 
elements. Therefore, the number of terms in (4) is finite and 
¢i(x) are the elemental rlermite cubics and qi(t) are the nodal 
degrees of freedom. 

We use two mathematical models for design and analysis, 
the control design model and the control evaluation model. 
The number of modes in the control evaluation model is the 
number of degrees of freedom in the finite element analysis 
(let it be n herein). Assuming this model to represent the 
exact dynamic system, we evaluate the performance of the 
controller on it. The control design is the model from which 
we obtain the time-optimal maneuver law. We assume there 
are r(r << n) vibrational modes retained in this model. In 
other words the (r + 1)-th to n-th modes are uncontrolled. 

With the finite element method, (3) results in the follow- 
ing coupled linear ordinary differential equations: 

J * # +  mt~i = Q0, Mii + K q  + m# = [qy( t ) ] ,  (5) 

where the elements of the n x n matrices M, K and the n x 1 
vector m are 

L 
mi - N f p (z ) (R  + z ) ¢ i d z ,  

0 
L 

Mij = _ Y f p ( x ) ¢ i ¢  i d x ,  
0 
L 

Kij  = g f {¢ i}[EI(z ){¢ j} , zx] , z~  d~ = 
0 L 

= N f E I ( z ) {C i } , z x { f j } , z z  dx ,  
0 

(6) 

where 
i = 1 , 2 , . . . , n ,  j = l , 2 , . . . , n ,  a n d  

q = [ql(t), q2(t), q3(t), -.. , qn(t)] t • 

Let uo(t ) be the torque applied by the torquer located 
on the rigid central body and uj(t),  j = 1,2 , . . .  ,m, be the 
total torque, applied by the N torquers located at z = Lj  
along each appendage (see Fig. 1). It is easily shown that 
the generalized forces are 

m 

Q# = uo(t) + N E uj(t)  , 
1 
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m 

[Qy(t)] i = N ~[{¢ i ( z ) }~][z=Lj]n j ( t ) .  (7) 
j = l  

We eliminate the first equation of (5) and introduce a coordi- 
nate transformation q = Vr/, where V is a normalized modal 
matrix such that 

V t [ M  - ( 1 / J * ) m m t ] V  = I and V t K V  = £12 , (8) 

where I is a unit matrix and 1-/2 = diag (w2), 
i =  1 , 2 , 3 , . . . , n .  

Then (5) is transformed into 

/ / +  ~ 2 r / =  v t{ [Qy( t ) ]  - Q o ( t ) / J * m } .  (9) 

3.2 Results on linear time-optimal control problems 

Results presented in this section were reported in a recent 
paper by Singh et al. (1989). The optimal control character- 
ized here is based on a control design model. Assume that 
there are r flexible modes in the control design model. They 
are the first r flexible modes of the n modes of (9). 

Define the state vector as X = (X 1 , x 2 , x  I , x l , . . . , x ~ ,  

zr4) t and the control vector as u = (u0, ul  , . . . ,  urn) t, where 

x I --= 0 -1- ( 1 / J * ) m t q ,  z 2 = Xl, x~ = rli , 

xS4=ili/wi,  i = 1 , 2 , 3  . . . .  , r ,  j = l , 2 , . . . , m .  (10) 

Define the modal control influence parameters 

#g=i/J*, 

#~ =-(1/J*)/~i{v}~m, 

fli : N/wi ( {v}:[{¢i(x) }x][x=L,] - ( I / J * ) { v } ~ m )  , 

i =  1 , 2 , . . . , r ;  j =  1 , 2 , . . . , m ,  (11) 

where w i is the i-th natural frequency and {v}i is the eigen- 
vector corresponding to w i. In the finite element analysis, 
we discretize the appendage in such a way that there is 
always a node at the location of each actuator, z -- Lj.  
Then [{¢i}x][x=Lj] of (7) is equal to one. The natural 

frequencies and eigenvectors of the first r modes are ob- 
tained from the full matrices of (8) with the dynamic re- 
duction method (see, e.g. Fetterman and Noor 1987). All 
f l ~ , # i , i  = 1 , 2 , . . . , r ; j  = 1 , 2 , . . . , m ,  are then obtained 
from the r eigenvectors. 

Let subscript c indicate that a quantity is obtained based 
on the control design model. The problem of time-optimal 
rest-to-rest slewing maneuver can be formulated as follows. 

Problem M(0)C: 

rain t1(e)C, (12) 
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subject to 

*=Ax(t)+Bu(t), lui(t)l<U j, j = 0 , X , . . . , m ,  

where Uj , j = O, 1 , . . . ,  m are the corresponding amplitude 
limits of uj, 

x ( 0 ) = ( 0 , 0 , . . . , 0 )  t ,  x(t l )  = ( 0 , 0 , . . . , 0 )  t ,  

A = Block diag [Ai], B = Block col [B/l, where 

A i -- 

[00,01 ,=0 

[ 0_wi O i]  , i = l , 2 , . . . , r  

where w i is the natural frequency, 

[o o o] ,=o1  , B i =  ~ ~I .. .  ~ , 

Let the solution for the problem M(O)c be Q(O). 
Theorem 3.2.1. For all 0, the problem M(0)C has a unique 
solution Q.  

Theorem 3.2.2. For a given t7, the optimal control law of the 
problem M(O)C is of bang-bang type and is anti-symmetric 
around t}12, i.e. u(t}12-t)* = - u ( t } / 2 + t ) * ,  o <_ t <_ t}12 

Singh et al. (1989) treat the general multiple control case 
where there are m + 1 control inputs. However, for simplic- 
ity, herein we assume that only one control input is used to 
control the maneuver, that is, the scalar control case. This 
assumption means that  the m torque actuators on the ap- 
pendages and the actuator on the rigid central body taken to- 
gether represent one control input. Herein, consider a space- 
craft controlled by only one torquer located on the rigid cen- 
tral body as a special scalar control case. 

Theorem 3•2•3. Assume there are k switching times be- 
tween 0 and t*_f/2, and let them be ti, i = 1 ,2 , . . . , k .  
Let J* be the total rotational moment of the spacecraft, 
and (p0,0 ,p01 , 0 , . . .  ,p~ ,O)be  the costate variable at mid- 
maneuver time. Then the optimal maneuver time and the 
switching times satisfy, as necessary and sufficient conditions, 
the following system of nonlinear algebraic equations: 

(Q/2)  2 - 2(tk) 2 + 2(tk_l)  2 - . . .  + 2 ( -1 )k ( t l )  2 = 

oa*/Uo, 

cos(~iQ/2) - 2 cos(~itD + 2 cos(witk_l) - . . .  + 

+2(--1) k cos(witl) + (--1) k+l  = 0, 

(14) 

i = 1 , 2 , . . . , r ,  (15) 

I 2t*fl2 2sin(wiQI2 ) ... 2sin(wrt*fl2) ] 
-4:t k -4s in !wl tk )  . . .  --4sinlwrtk) I"  

4(--1)ktl 4(--1) ks'in(wltl) . . .  4(--1) k sin(wrtl)J  

1 1 0 
~0P0 

i 0 
r I- t / 7 o p  o o 

(16) 

and two inequality equations 

Q / 2 > t  k > t k _ i  > •.. > t2  > t l  > 0 ,  (17a) 

T 

p0°t + E ~ } v ~  sin(~i0 # 0, 
i=l  

where 

O < t < Q / 2 ,  t~£t i, i = l , 2 , . . . , k .  (17b) 

Corollary 3.2.4. Let there be k switching times between 0 
and t'f~2 of the optimal control history for the control design 
model with r flexible modes. Let the switching times be t j ,  
j = 1 , 2 , . . .  k, and the optimal maneuver time be Q.  Sup- 
pose that k = r. Then the optimal maneuver time and the 
switching times satisfy as necessary and sufficient conditions 

(i) (14), (15) admit a solution for {tj ,j = 1 ,2 , . . . ,  k and 
Q} which is regular; 

(ii) {tj, j = 1 , 2 , . . .  and Q} satisfy (16) and the inequalties 

(17). 

Proof. The proof of sufficiency can be found in a paper by 
Singh el al. (1989) and that of necessity in the Appendix. 

To solve for the optimal control history, we first need 
to assume the number of switching times, say k, then try 

to find solutions { t j , j  = 1 , 2 , . . . , k }  and { ~  = 0 , i  = 
0 , 1 , 2 , . . . ,  r} for (14)-(16)• If (14)-(16) do admit solutions 
and they satisfy (17) as well, by the uniqueness of the so- 
lution of the" optimal control problem, we have the unique 
solution• We use the homotopy method to solve the system 
of nonlinear equations (see, e.g. Garcia and Zangwill 1981)• 
We have found that, in general, k is always equal to r. Only 
when {wi, i = ! ,  2 , . . . ,  r} satisfy some special conditions is 
k less than r. For the generic case where k is equal to r, we 
can use Corollary 3.3.1 to simplify the solving procedure. We 
only need to solve for {tj, j = 1 , 2 , . . . ,  k and Q}  from (14) 
and (15), a small set of the nonlinear equations, and then 
check the solution with respect to the condition (ii) of Corol- 
lary 3.3.1. However the Jacobian of (14) and (15) tends to be 
singular when two switching times are almost identical or one 
tends to zero, which implies the number of switches, k, is to 
be decreased and k will be less than r. The homotopy method 
fails to find the solution we want in such ill-conditioned situ- 
ations. The following is an important corollary, which sheds 
light on the degenerate case, k < r. 
Corollary 3•2.5. Consider a control design model with r flex- 
ible modes• Suppose that  the number of switching times of 
the optimal control history between 0 and t'y~2 is k, where 
r > k. Then a set of sufficient conditions for optimality are 
as follows: 



(i) (14) and the first k equations of (15) admit a solution 
{tj , j  = 1 ,2 , . . . ,  k and t~}, which is regular; 

(ii) c o s ( ~ i t * s l 2 )  - 2cos(witk)  + 2 c o s ( ~ i t k . 1 )  - . . .  + 

2(-1)  k cos(witl) + ( -1 )  k+l = 0, where i = k + 1, k + 
2 , . . . , r ;  

(iii) {tj , j  = 1 , 2 , . . . ,  k and t~) satisfy (16) and inequalties 

(17), with {p~ = 0 , i  = k +  1 , k +  2 , . . . , r ) .  

Proof. See Appendix. 
We can explain the result of Corollary 3.3.2 as the optimal 

control for a control design model with k(k < r) flexible 
modes, where, as usual, there are k switches of the control 
history within (0, t~/2);  however, it happens that the k + 
1-th to r-th flexible modes of the spacecraft are also dead 
beat with this control. This is an exceptional case and from 
numerical study we observe that the design of spacecraft for 
which the optimal control with k < r is an isolated point 
in the design variable space. Later we will use the result of 
Corollary 3.2.5 to derive a useful algorithm to solve the time 
optimal control problem. 

3.3 The control design model 
We now consider how many flexible modes should be retained 
in the control design model. The question is answered by 
analysing the degradation in the performance of the con- 
troller on the control evaluation model. This performance 
degradation is associated with the "unmodelled dynamics" 
of the uncontrolled residual modes in the control evaluation 
model (from order r + 1 to order n). These unmodelled dy- 
namics result in postmaneuver free vibration of the system, 
due to control spillover. We need to make sure these vibra- 
tions have amplitudes within a specified performance error 
bound during the optimization. 

There are two ways to quantify the performance degra- 
dation: (i) the residual or spillover energy £r, and (ii) the 
pointing error of the rigid central body after completion of 
the maneuver Oe(t) (where t >_ t'f~2). According to a re- 

cent investigation of these (Singh et al. 1989), the latter is 
the better one because the maximum pointing error contin- 
ues to decrease as we suppress additional modes at the final 
time, while the spillover energy does not necessarily decrease. 
Moreover, Singh et al. (1989) give three closed form expres- 
sions for an upper bound [Oe(t)[, based on the control evalu- 
ation model. Among them, the most useful according to our 
experience is 

10e(t)l _< 2{(2 + 2k)u0}  
n 

2, t >_ t*s/2. (18) 
i = r + l  

We use this upper bound to determine the size of the control 
design model in order to obtain a prespecified post-maneuver 
pointing accuracy of the rigid central body. As shown in Ta- 
ble 1, the upper bound generally decreases dramatically fast 
as we suppress additional modes. In practical examples with 
realistic scale and material, one is likely to obtain acceptable 
control spillover by only suppressing very few modes. 
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Table 1. Spfllover vs. the number of flexible modes in the control 
design model for a design of spacecraft 

Number of modes Max. angle deviation 
retained in the post maneuver (deg.) 

model 
1.495 
0.082 

0.0133 
2.6e-3 
8.3e-4 
3.2e-4 
1.5e-4 
7.1e-5 

3.4 Characteristics of the optimal design problem 
Theorem 3.4.1. Suppose the number of flexible modes re- 
tained in the model is fixed. The optimal maneuver time 
solved from (14)-(17) is a continuous function of the struc- 
tural design variable vector ~. 

Proof. See Appendix. 

Corollary 3.4.2. The objective function, #(~), is a continuous 
function of ~. 

Corollary 3.4.3. There exists a solution to the optimal design 
problem (2). 

Theorem 3.4.4. Consider the general design cases such that 
the structural properties are analytical functions of the design 
parameters. Suppose the number of flexible modes retained 
in the model is fixed, say r. Assume that in a closed region 
of the feasible design variable space, the number of switching 
times, say k, follows the generic rule, where k = r. Then the 
optimal maneuver time t~ is an analytical function of the 

structural design variables, ~, in this region. 

Proof. See Appendix. 
We have observed that the objective function is always 

a differentiable function of the structural design variables, 
~, even when some switches of the control history tend to 
zero. Consider the generic case where k is equal to r. The 
optimal maneuver time can be obtained from (14) and (15) 
only (Corollary 3.2.4). Actually (14) and (15) represent a 
system of implicit equations of the form 

F ( t ~ , t i , w  ,J*) = 0, (19) 

where t i = It 1 , t 2 , . . . ,  t~] t is the vector of switching times, 
and w = [w 1 ,w2, . .  , wr]r is the vector of natural frequencies. 

The gradient of the optimal maneuver time with respect 
to structural parameters can be obtained using the implicit 
function theorem as follows: let x = (t~, ti) and y = (w, J*). 

Theorem 3.4.5 (Implicit function theorem) (Hartman 1982). 
Let x ~ R  n , y ~ R  m and F : R n+m ---* R n : ( x ,  y)  ~ F ( x ,  y).  
Suppose (xo, YO) is such that F(x0 ,  Y0) = 0 and F(x0,  
y0)cC k, and the Jacobian matrix [OF/0x] is nonsingular 
(regular) at (x0 ,Y0). Then there exists a neighbourhood 
of y0, say N(y0), and a mapping G : N(y0)  --~ R n such that 
x 0 = G(Y0) and G(y0)cC k and F[G((y)  y)] = 0 on N(y).  
Moreover, we have 
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[0G/0y]tly0 = - [ O F / O x ] - t l x o [ O F I O Y ] t l x o , y o  . (20) 

The derivatives of the few lowest natural frequencies with 
respect to the structural design parameters can be obtained 
based on the reduced set of eigenvalues and eigenvectors ob- 
tained from the dynamic reduction method (see Fetterman 
and Noor 1987). In other words, we do not need to solve 
for all eigenvalues and eigenvectors to obtain the derivatives• 
Finally, by the chain rule, we can obtain the gradient of the 
objective function with respect to the structural design pa- 
rameters. 

A candidate optimal design for a smooth problem must 
satisfy the Kurash-Knhn-Tueker necessary conditions (see 
Haftka and Kamat 1985; Luenberger 1984). Theorem 3.4.4 
implies smoothness of the problem for general values of the 
structural design parameters, where k = r in the control 
history. Herein we assume that this property holds for all 
values of the structural design parameters. This assumption 
is compatible with our experience in numerical studies. We 
use mathematical programming to find candidate optimal de- 
signs. 
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 
Natural Preq. of 1st Mode (rad/sec) 

(Tf)r is the maneuver time of an equivalent rigid spacecraft 

Fig. 2. OptimaJ maneuver time for the control design model with 
one flexible mode 

Prom (14)-(15), t~ is an implicit function of (w, J*) for 

the generic case where k is equal to r. We show the be- 
haviour of t'f (w, l*) for the simplest case where there is 

only one flexible mode in Figs. 2 and 3. Let ( t f)r  repre- 
sent the maneuver time of an equivalent rigid spacecraft, thus 
( t f ) r  = 20X~-~/Uo. In Fig. 2, for each curve ( t l ) r  is fixed 
anu:Jt.hle natural frequency of the flexible mode varies from 
zero to a large value. In Fig. 3, for each curve the natural 
frequency of the flexible mode is fixed and ( t f ) r  varies from 
zero to a large value. We note that there exist several lo- 
cal optima along each curve in Fig. 2 and that each curve is 
smooth. 

Furthermore we have obtained the following results. As- 
sume a spacecraft has only one flexible mode. 

L. 
OJ 
> 

(0 

0 

30.0 
REFERENCE WI-.I,~ 

, / /  
J r )  z 

10.0 • 

.,5.0 ~ , -  

0 ,0  . . . .  I . . . .  I . . . .  t . . . .  I . . . .  I , , i ~ 

0•0 5.0 10.0 15.0 20.0 25.0 30.0 
~)r (see) 

(Tf)r is the maneuver time of an. equivalent rigid spacecraft 
Reference is the curve : Tf = crf)r 

Fig. 3. Optimal maneuver time for the control design model with 
one flexible mode 

(i) For a spacecraft with very large w 1 (as shown in Fig. 
2, greater than 2.0 rad/sec), which implies a very rigid 
spacecraft, t )  is almost the same as (tf)r for all the 
curves in Fig. 2. 

(ii) For a very flexible spacecraft, with the natural frequency 
of the first flexible mode tending to be zero, the maneu- 
ver time always tends to increase substantially• 

(iii) For a spacecraft with very large ( t f ) r  (as shown in Fig. 
3, greater than 24.0 see), which implies the torquer limit 
is very small or the maneuver angle is very large, t )  is 

almost the same as ( t f ) r  for all the values of w 1. 

Of course, a typical spacecraft has more than one flexible 
mode, and we cannot say much about it. However, Figs. 2 
and 3 provide important information. If the spacecraft is very 
flexible or the torquer limit is very large (usually this implies 
a very large maneuver speed), the result of the optimal design 
can provide substantial improvement. 

3.5 Problem solving algorithm 
The size of the control design model is chosen according to the 
analysis of the control spillover. In order to take advantage 
of Theorem 3.4.1, we assume that the control design model is 
fixed during the optimization and formulate the optimization 
procedure as follows. 

P I :  
Begin with a reasonable baseline design of the spacecraft• 

Step 0. Set up the reduced model by (18) (set the value 
of r). 

Step 1. Initialize the design variables• 
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Step 2. Obtain the appendages for the current value of 
the design variables. 

Step 3. Finite element analysis. " 

Step 4. Calculate the natural frequencies of the modes 
in the reduced model by the dynamic reduction 
method. 

Step 5. Solve the time-optimal control problem to obtain 
the optimal maneuver time. 

Step 6. Find the next values of the design variables by 
nonlinear programming, using the gradient com- 
puted by Theorem 3.4.5 and the chain rule. 

Step 7. If  the result is convergent, Step 8; otherwise go to 
Step 2. 

Step S. If  the spillover constraint [ii of (2)] is satisfied, 
then stop; otherwise Step 0. 

Although the algorithm 7)1 is able to solve the optimal 
structural design problem (2), unfortunately, in our experi- 
ence, there exist a lot of numerical difficulties associated with 
it, i.e. 

(i) to solve the time-optimal control problem, we need to 
know the number of switching times; 

(ii) actually the set of nonlinear equations (14)-(16) admit 
many solutions, of which only one satisfies the inequality 
conditions (17). Thus, even though we have a good non- 
linear equation solver, it would not be able to guarantee 
to find the solution we want; 

(iii) the optimal design is likely to be such that the set of 
nonlinear equations tend to be singular; 

(iv) solving nonlinear equations is time-consuming, and the 
solution is always approximate; 

(v) many local solutions to the optimal design problem are 
likely to exist. 

Considering all the above difficulties, it seems a 
formidable task to solve the optimal design problem by 7)1 
without any simplification, especially if one expects to find 
the global optimal design. Therefore, we introduce approxi- 
mate design methods as described in the next section. 

4 Approximate design methods 

The fundamental idea of this solution procedure is to formu- 
late an approximate design problem without violating any 
constraint of the original problem. The solution of the ap- 
proximate design problem is a 'near-optimal design' in the 
sense that  there is little difference of objective function be- 
tween the two solutions. We need to quantify the difference 
without solving the original problem and make it as small as 
possible. However, there is a trade-off between accuracy and 
effort for solving problems. Thus an important capability of 
the approximation algorithm is that  we can adaptively up- 
grade the approximation procedure to obtain a reasonable re- 
sult. according to the specific application requirement. Since 

design models cannot exactly represent the real system, it is 
unreasonable to concern oneself so much about a relatively 
small improvement of accuracy of the solution based on a 
design model. In this section we introduce two approximate 
design methods: the adaptive frequency tuning method and 
the minorant method. The former is suitable for the single 
maneuver case; the latter requires more computation work, 
but is suitable for the multi-maneuver case. 

4.1 Frequency tuning approach 
Here we make two basic assumptions. 

Assumption 4.1.1. The natural  frequencies of the modes re- 
tained in the reduced order model can be freely assigned by 
adjusting the values of the design variables. 
Assumption 4.1.2. During the design iteration, the mass dis- 
tribution of the appendage is independent of the stiffness dis- 
tribution, i.e. the total rotational moment of the spacecraft, 
J*, does not change when the stiffness distribution is modi- 
fied. 

Assumption 4.1.1 is usually valid in that  there is a suf- 
ficient number of structural design parameters and most of 
them have global influence on the spacecraft property. In 
general, we must have more design parameters than flexible 
modes retained in the control design model to obtain a global 
optimal design. Assumption 4.1.2 is usually appropriate for 
some applications such as when the appendages are made of 
/-beams, with truss structures, or the payload mass, com- 
pared with the structural mass, is dominant. 

For the single maneuver case, consider (14) and (15), if 
for a spacecraft the natural frequencies of all modes in the 
reduced order model happen to satisfy 

~i*t*f=ji*4r,  i = l , 2 , . . . , r ,  (21) 

where t / i s  the maneuver time and Ji is some integer multi- 
plier. Then the solution in terms of switching times and the 
optimal maneuver time satisfies 

k = 0 and t~ = 2 0V/~ /V0  . (22) 

It also satisfies the inequality condition (17). Thus we solve 
the time-optimal control problem for {wi, i = 1,2 . . . . .  r} 
satisfying (21). Moreover, (22) implies that  there is no switch 
of the control history between 0 and t'f~2, and only one switch 

at the mid-maneuver. This means that  all flexible modes in 
the reduced model are dead beat at the end of the maneuver 
by the same control which maneuvers a rigid body of the 
same value of total rotational moment J*.  We now have the 
new optimization problem 

7)5 m nt} = 2 (23) 

subject to the constraints I and I I  of (2) and (21). 
Proposition 4.1.3. Under Assumptions 4.1.1 and 4.1.2 above, 
the solution of 7)2 solves the original problem (2), and is a 
global optimum. 

Proof. Since 0 and U 0 are fixed constants during the opti- 
mization, 7)2, Assumption 4.1.2 implies that  the minimiza- 
tion of t~ = 2 ~  will not be influenced by the con- 
straint (21). Thus the solution of P2 is the same as that of 
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791, the original problem. Assumption 4.1.1 further implies 
that we can obtain the solutions of 792 as 20x/eOff-/UO, where 
J* is the global minimum of the rotation moment of all fea- 
sible designs [subject to the constraints (2)]. Therefore this 
is the result of the global optimum. 

The rigid-body control strategy is the simplest to imple- 
ment and we do not need to solve any nonlinear equations 
(14)-(16). Furthermore, the optimal design of the appendage 
which satisfies (21) may be very flexible (in the sense that 
natural frequencies of the first few flexible modes are very 
small) and very light (in the sense that J* is small). This 
idea for design appears to be original. 

~.2 Adaptive upgrade algorithm 

Unfortunately, Assumption 4.1.2 is not always satisfied in 
general applications. For example, in designing an appendage 
of rectangular cross-section with high density material, the 
stiffness is highly coupled with the design of the mass distri- 
bution. Actually, 792 implicitly assumes that the global opti- 
mal design of the appendages is such that the time-optimal 
control is the same as the rigid-body control strategy. We re- 
strict ourselves to solving the original problem in a subspace 
of the feasible design variable space. Therefore, the result of 
792, in general, does not apply and needs to be modified or 
upgraded. 

We first quantify the index of approximation, associated 
with an approximation design problem, as the difference of 
objective function between the exact optimal design (the so- 
lution of the original problem) and the solution of the ap- 
proximate design problem. Let t f  be the maneuver time of 
the exact optimal design, which is equal to the minimum of 
t~ over the entire feasible design space. Also we note that ~t 

is equal to f p(Oi) • t f (ei)  de i. 
Let t f  a, I~ a indicate the approximated solution of t f  and 

#, respectively. Then we introduce the following: 

index of approxirrmtion : C 0 = Itf a - t f l  or I~ a - /~ l .  (24) 

An approximate solution is better if its index of approxi- 
mation is smaller. However, this does not mean that the 
approximate and exact designs are close to each other. For 
example, they may be substantially different in shape. In 
order to avoid difficulties in computing t f ,  we modify (24) 

C 1 -~ [if a --ZEb(tf)] or I/~ a --Z:b(/~)l, (25) 

where f.b(.) is a lower bound of • and is very easy to compute. 
Also we clearly have 

t £b (p) = j p(Oi)£b [tf(Oi)] dOi . (26) 

There are two ways to define such a lower bound. 

1. The maneuver time for a rigid spacecraft with the least 
feasible total rotational moment _J* 

c (tf) = (27) 

2. 

It is usually unreasonable to define the lower bound in 
this way because (27) is very conservative. The ap- 
pendage with the least total rotational moment is usu- 
ally too slender, too flexible and is likely to require a 
long maneuver time. 

The optimal maneuver time of the optimal design which 
is based on a reduced model with only one flexible mode. 
Let the superscript 1 of t f  indicate that the value is 
based on a reduced model with only one flexible mode. 
Thus, 

£b2(tf ) = t f  1 = minimum of t} 1 over the entire 

feasible design space. (28) 

Since we need more maneuver time for a control design 
model with more than one .flexible mode, we know t f  1 
is a lower bound of the maneuver time for the design 
problem of any reduced order model. We need some 
computation effort to calculate t f l ;  however, the calcu- 
lation is not very difficult. It is more reasonable to define 
the lower bound of the maneuver time to be t f  1. 

We propose the modified approximate problem P3 accord- 
ing to the following facts. 

Fact ~.2.1. For a specified reduced order model with r flex- 
ible modes, the whole feasible design space consists of the 
following sets: 

:D O : {~: the time-optimal control history of this design 
has only switch at mid-maneuver, without any switch 
between 0 and t}/2}; 

:D1 : {~: the time-optimal control history of this design 
has one switch at mid-maneuver and at most one switch 
between 0 and t~/2}; 

:/)2 : {~: the time-optimal control history of this de- 
sign has one switch at mid-maneuver and at most two 
switches between 0 and t*f/2}; 

we have set the relationship and 

:D0 C :D1 C_ 7:)2 C_ :D3 C_ . . .  (29) 

Fact 4.2.2. From Fact 4.2.1, we know min {tt*(~) or t~(~) of 

problem (2)} over the subspaee V i > min {#*(f) of problem 
(2)} over the subspace :Di+I • (30) 

Fact 4.2.3. The exact solution of problem (2) is min {#*(~) 
or t~(f) of problem (2)} over the subspace :Dr for some r > 0. 

(31) 
Actually, the solution of P2 is nothing but min{t}(~) of 

problem (2)} over the subspace :D0. Similarly, 793 is the 
problem of solving for min{t}( ) of problem (2)} over the 
subspace :D i , i > 0, with adaptively upgrading by increasing 
i, and with a stopping criterion based on sufficiently small 
change of improvement of the index of approximation (24). 
We eventually obtain the exact optimal design if the upgrade 



continues. However, we have restricted ourselves to solving 
for i _ 2, to avoid difficulty in computation. 

P3: 

Step 1. Let k = 0, and solve ~2- 

Step 2. If the solution is not acceptable, Step 3; otherwise 
stop. 

Step 3. Let k = k + 1. 

Step 4. Solve min t~ subject to the constraints I and 
E 

II of (2), and the number of switching times is 
k [in other words, for the specified value of k in 
(14)-(17), we obtain a solution]. 

Step 5. Obtain the index of approximation £. If there 
is no relative improvement of it, stop; otherwise 
Step 3. 

However, it is difficult to obtain the subset ~i ,  for some i > 0, 
of the whole feasible design space. To solve the problem 
efficiently, we need explicit numerical expressions to obtain 
:D i. From Corollary 3.2.5, we have the following proposition. 

Proposition ~.2.~. Step 4 of P3 can be replaced with the 
following problem: 

P~ min t*fk 
E 

subject to the constraints I and II of (2), and 

cos(wit*f/2 ) - 2 cos(witk ) + 2 cos(witk_ l ) - . . .  + 

+2( -1 )  k cos(witl) + ( -1 )  k+l  = O, 

i = k +  l , k + 2 , . . . , r ,  

where the superscript k indicates that there are k flexible 
modes in the control design model. 

Proof. Since there are generally k switching times for t'f k, it 

is evident that 7~ is from the results of Corollary 3.2.5. 
The most important advantage o f ~  3 is that we only need 

to solve a small set of nonlinear equations. The difficulty to 
solve nonlinear equations increases very dramatically as the 
number of nonlinear equations increases. Another advantage 
is that we tend to avoid the singular cases, where the Jacobian 
of (14) and (15) is singular, such as where two switching times 
tend to each other or one tends to zero, because we solve for 
the optimal design from a subset :Di, where i begins from the 
lowest possible number of switching times. 

~.3 The minorant design problem 

P2 and P3 are not suitable for the general multiple maneu- 
ver case because it is difficult to find w i , i = 1,2 , . . . ,  r which 
satisfy (21) for many different maneuvers, {Oi}. In this sec- 
tion we discuss an algorithm, the minorant method, which is 
more difficult to implement, but is suitable for the multiple 
maneuver case. While solving the time optimal control prob- 
lem, we find that for any design of spacecraft, t*f r+l > t ' f ;  
however, the difference becomes smaller as r increases. From 
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our numerical studies, it is observed that the maneverability 
is most influenced by the total rotational moment J*, and 
then by the first few flexible modes. An appendage with 
smaller total rotational moment or with more rigidity, in the 
sense that the natural frequencies of the lowest few flexible 
modes are large, tends to be very maneuverable. 

P4 is based on the following assumption and fact. 

Assumption .f.3.1. For any feasible design of the spacecraft 
~ceZ, we have It~(~) i+2 - t:,(~)i+a I _< It~(~) i+1 - t~(~) i l ,  i _> 
0, where the superscript i indicates that the quantity is ob- 
tained based on a reduced model with i flexible modes. 

Fact ,~.3.L ]tf  i+2 - t f i + l  I < ]tf  i+l  - t f i l ,  i > O, and 
]t f i - t f  r ] --~ 0 as r and i are sufficiently large. Furthermore, 
ipi+2 _ pi+l]  < ipi+l _ pil, i > O, and I# i - pr[ ..., 0 as r 
and i are sufficiently large. 

~D4: 

Step 1. 

Step 2. 

Let i = 0, and solve pi by P l .  

Obtain the index of improvement £. If there is 
only a small improvement, stop; otherwise i = 
i +  1. Go to Step 1. 

The exact optimal design can be obtained for i = r. However, 
we do not go beyond i > 2. The capability of P4 will be 
investigated later with numerical examples. 

5 N u m e r i c a l  examples  

In our example, we design appendages by adjusting their 
cross-section. We use practical examples with realistic scale 
and material. Furthermore, we try to investigate the design 
of large flexible space structures, such as large antenna or 
space stations. 

Central 

appenaage 

A 

I-B~m C m u  ~ l o n  

Fig. 4. Design of the cross-section of appendages 

In the following, we perform the modal analysis with the 
finite element method and model the flexible spacecraft with 
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one rigid body mode and 60 flexible modes (each appendage % 
- 4 . 0  

is discretized into 30 uniform beam elements). There are r * 
flexible modes, obtained by the dynamic reduction method, 
retained in the reduced order model for control design. The 
reduced order model is specified according to the postma- 
neuver spillover constraint. In the examples, we specify the 2 . 0  
maximum angular deviation of the central rigid body postma- 
neuver as 0.05 deg. The appendages a r e / - b e a m s  (as shown = 
in Fig. 4). Our goal is to obtain the optimal flange depth z 

~9 distribution of the appendages, and we assume the width of = 
the web, and thickness of the web and flange to be constant. ~ 0 . 0  
The flange depth is symmetric about a central line passing 
through the cross-section. We use two spline polynomials as ~ I 
the assumed shape functions to describe the half flange depth 

h l (x  ) = Cl -t- e2(z /L  ) d- c3(x/L) 2 + c4(x/L) 3 , - 2 . 0  

for 0 < • < L/2, ! 

E 
h2(~)  = h ~ ( L / 2 )  + h ' l (L /2 ) (~  - L / 2 )  + ~5(~ - L / 2 ) 2 / L 2 +  - 4 . 0  I , 

0.0 
+ c 6 ( x - L / 2 ) 3 / L  3 for L/2 < x < L ,  (32) 

where ci, i = 1 ,2  , . . . ,  6 are design variables. 
All design variables c i , i = 1 , 2 , . . . ,  6 are scaled to the 

same order of magnitude (independent of L) in order to ob- 
tain proper search directions in nonlinear programming. For 
practical reasons it is reasonable that  h(x) and dh(x) /dz  be 
continuous at ~: = L/2. Each domain of the polynomial is 
discretized into 15 elements in the finite element analysis. 

We consider a spacecraft with two identical flexible ap- 
pendages. The constraints considered in this problem are 
the resource constraint, minimal and maximal depth of the 
flange, and the postmaneuver control spillover constraint. ~Q- 4 . 0  
For simplicity, we assume the appendages are made of a single " 
uniform material. 

We begin solving the problem by finding a reasonable 
number of modes in the reduced order model. We use a rea- 
sonable baseline design with uniform flange depth equal to 2 . 0  
4.00 cm. As shown in Table 1, we note that  it  is appropriate 
to retain three flexible modes for a postmaneuver maximum 
angular deviation to be guaranteed less than 0.05 deg. 

Spacecraft data 

appendage material  density, p 
appendage material elasticity, E 
radius of the rigid central body, g 
mass of the rigid central body 
length of one appendage, L 
maximum torque available, U 0 
width of the web, b 
thickness of the web, t l  
thickness of the flange, t2 
distributed pay load mass, dm 
concentrated pay load mass (at x = L), M 

Design constraints 
the resource constraint of two appendages 
the minimal flange depth 

* [TO represents the torquer on the rigid central body 

1880.00 kg /m 3 
2.76Ell  N / m  2 

12.00 m 
4500.00 kg 

50.00 m 
3.0E4 N-m* 

5.00 cm 
1.75 cm 
0.75 cm 

9.00 kg /m  
none 

450.0 kg 
2.00 cm 

J , I ~ , ~ ! , i T , I ~ , ~ i I t , , , 

5.0 i0.0 15.0 20.0 25.0 
Time (see) 

The spacecraf t  is the Result  (b) of Case 1 
The maneuve r  t ime is 22.4146 (sec) 

Fig. 5. Time optimal control history for the design model with 
three flexible modes 

the maximal flange depth 12.00 cm 

Case 5.1. Single maneuver case 
Command slew angle, 0 

I 

# o . o  

- 2 . 0  

90.00 deg. 

--4..0 . . . .  I . . . .  1 , , , I , , ~ B I i , i 
0.0 5.0 10.0 15.0 20.0 25.0 

Time (sec) 
The spacecraf t  is the  Result (c) of Case 1 
The maneuve r  t ime  is 22.3218 (see) 

Fig. 6. Time optimal control history for the design model with 
three flexible modes 
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:9 

r~ 

r. 

8.0  

6.0 

4.0 

2.0 

0.0 I . . . .  I ~ , , ~ I , , , . I , , , , I . . . .  

0.0 i0.0 L~O.O 30.0 40.0 50.0 

Position Along the Appendage (m) 
The objective function is 22.3218 (sec) 
The max. half depth : 6.0 cm, mira_ half depth : 1.0 cm 

Fig. 7. Optima] design of the spacecraft for Case 5.1. Flange 
depth distribution of the flexible appendages 

Thus the exact solution is t f ,  which is equal to t} 3 over the 

entire feasible design space. 

Results 

£~(tf) = 2 ~  = 21.9814 see, but t} 3 of this de- 

sign is 24.6213 see. 

£b(tf) = t f  I = 22.3126 see and t} 3 of this design i s  

22.41457 see. The switching times between 0 and t} 3 of 

the t ime-optimal control history are 1.5547E-8, 0.21945, 
0.48124 see (one switching time is almost zero). The 
control t ime history is shown in Fig. 5. 

From •2: t f  over the domain :D O is 22.3218 see. The 
control time history is shown in Fig. 6. Let it be t f  a, 
then [tf a-£b2(tf)l = 9.2E-3.  We can accept this design 
as the solution (as shown in Fig. 7). The time histories 
of the at t i tude and at t i tude rate of the rigid central body 
for the spacecraft are shown in Figs. 8 and 9. 

The properties of this optimal design of Case 5.1 are as 
follows. 

1 0 . 0  

~ 5 .o  

e 0 .0  

< 

--5.0 , , J ~ i , , , , { . . . .  i . . . .  i , , , 

0.0 5.0 I0.0 15.0 20.0 
Time (see) 

The optimal maneuver time is 2~3218 (see) 
The max. attitude rate is 8.1178 (Deg/sec) 

Fig. 8. Time history of the rigid central body attitude rate for 
the optimal design of Case 5.1 

Structural  mass of two appendages 379.687 kg. 
Total pay load mass along the appendages 900.00 kg. 
Total mass of the spacecraft 5779.687 kg. 
(For the appendage: payload mass/structural  mass = 
237.02%, and for the spacecraft: appendage mass/spacecraft  
mass = 22.14%). 

100.0 r 

50.0 

0 0 
0.0 5,0 10.0 15.0 20.0 

Time (see) 
The optimal maneuver time is 22..q218 (see) 
The maneuver angle of the rigid central body is 90 (Deg) • 
The max. post-maneuver attitude error is less than 0.05 (Deg) 

Fig. 9. Time history of the rigid central body attitude for the 
optimal design of Case 5.1 

Total rotational moment 2375330.68 kg-m 2. 
Natural frequency w i , i  = 1 , 2 , . . . , 4 , 0 . 5 6 4 2 ,  1.6942, 
4.4738, 8.9745 (tad/see).  
The maximum postmaneuver angle deviation of the central 
rigid body due to the uncontrolled modes is 0.00908 deg. 
Number of switches between 0 and t*_f/2 of the time-optimal 

control history: none. 

Case 5.2. General multiple maneuvers. The set of maneu- 
vers is {Oi} = { 9 , 1 5 , 3 0 , 4 5 , 6 0 , 9 0  (deg)}, and it is assumed 
that  they occur at the same frequency. Thus the objective 
function (maneuverability index) is 

6 
1 

p(~) = ~ ~_t}(Oi). (33) 
i=1 

~" 8.0 

~. 6 . 0  

& 4.0 

Y" 2.0 

0.0 . . . .  r . . . .  1 . . . .  I . . . .  I . . . .  

0.0 10.0 20.0 30.0 40.0 50.0 
Position Along the Appendage (m) 

The objective function is 14.9633 (see) 
The max. half depth : 6.0 cm, rain. half depth : 1.0 cm 

Fig. 10. Optimal design of the spacecraft for Case 5.2. Flange 
depth distribution of the flexible appendages 

The solution p equals p .3  
space. 

Results 

over the entire feasible design 

£~(p) = 2 ~  = 13.1753 sec. 

• £2b(p) = p l  = 15.0436 sec, and p.3  for this design is 
15.30617 see. As P4: if we let pa=15.30617, we have 
Ip a -  Zb2(p)l-- - 0.26257, as 1.7454%. 
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t p2 is 14.8580 sec, and p.3 for this design is 14.96326 sec. 
As P4: if we let pa=  14.96326, we have Ip a - /:b2(p)l= 
0.06526, as 0.4392%. We accept it as the solution (as 
shown in Fig. 10). 

• We investigate the exact solution by 7~1 and obtain p3 
is 14.9455 sec. 

The properties of this optimal design of Case 2 are as 
follows. 
Stuctural mass of two appendages 425.075 kg. 
Total pay load mass along the appendages 900.00 kg. 
Total mass of the spacecraft 5825.075 kg. 
(For the appendage: payload mass/structural mass = 
211.72%, and for the spacecraft: appendage mass/spacecraft 
mass = 22.75%). 
Total rotational moment 2379168.55 kg-m 2. 
Natural frequency w i , i = 1 , 2 , . . .  ,4,0.8460, 2.0276, 5.5051, 
10.6193 (rad/sec). 
The maximum postmaneuver angle deviation of the central 
rigid body due to the uncontrolled modes is 0.02436 deg. 
Number of switches between 0 and t'f~2 of the time optimal 

control history: three. 
The postmaneuver control spillover of both cases are less 

than the specified tolerance, 0.05 deg. The results of this 
example show that we can find an optimal design for a struc- 
ture which is very flexible (the first natural frequency of the 
spacecraft of Case 5.1 is 0.5642 rad/sec and that of Case 5.2 
is 0.8460 rad/sec). The material resource constraint is not 
important (inactive in both cases). The approximate meth- 
ods can efficiently find the solution and avoid computational 
difficulties. The indices of approximation of both cases are 
well accept able. 

6 C o n c l u s i o n s  a n d  f u t u r e  work  

The combined design of structure and control for optimal 
maneuverability with application to flexible spacecraft has 
been considered. The spacecraft is modelled as a linear, elas- 
tic, undamped, nongyroscopic system. We have developed a 
theoretical and practical framework for solving this problem. 
The main features of the present work are as follows. 

(i) The problem formulation is consistent with bang-bang 
forms of time-optimal controls. 

(ii) The performance degradation constraint is considered in 
the design problem. 

(iii) The optimal design problem has been shown to be well 
defined. There always exists a solution. 

(iv) The structural optimization is done by finite element 
analysis and mathematical programming. 

(v) The gradient of the objective function is computed using 
the implicit function theorem. 

(vi) Efficient and practical approximate methods have been 
developed. 

The use of time optimal control of bang-bang type for flex- 
ible spacecraft maneuvers has been criticized, e.g. by Thomp- 
son et al. (1990): "near bang-bang controls offer the shortest 
maneuver time; however, control spillover into the flexible 
modes will introduce structural vibrations, perhaps to an un- 
acceptable degree". However, as the result of our examples 
suggest, with the present optimal structural design formula- 
tion we obtain a design which satisfies the control spillover 
constraint even while the system is subject to a bang-bang 
type optimal control. Furthermore, the maneuver time is 
very close to its lower bound. Also, we have found that if 
the spacecraft is very large and flexible, the maneuver time 
is substantially larger than that of an equivalent rigid space- 
craft. For example, as shown in result (a) of Case 5.1, the 
optimal maneuver time for the flexible spacecraft is larger 
than the equivalent rigid spacecraft by an amount over 12%. 
Thus the idea that the "the minimum time solution for a rigid 
spacecraft can serve as an initial approximation to the near- 
minimum time solution for a flexible structure" (Thompson 
el al. 1990), might not be applicable in some cases. The 
combined optimal design formulation for spacecraft of this 
kind may provide significant benefit. 

The problem solving procedure developed herein can be 
applied to the general design of spacecraft possessing ap- 
pendages made of longeron (truss structures) or composite 
material. The finite element analysis can be efficiently used 
for modelling. Our experience with various numerical exam- 
ples leads to the following general conclusions. 

(i) The best structural designs are often those for which 
the designs of mass distribution and stiffness distribution 
have very little coupling. 

(ii) The benefit of multiple controls is not apparent since we 
can use scalar control to achieve good results. 

The spacecraft structure has been modelled to be lin- 
ear, with small displacement and inextensible deformation. 
However, as the results of numerical examples show, we may 
obtain an optimal design which is very flexible. This perfor- 
mance for a realistic system which violates these assumptions 
is worth investigating. The constraint of structural dynamic 
response, such as maximal displacement and stress, should 
also be considered in the example. Those topics are indi- 
cated for future study. 
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A p p e n d i x  

Corollary A1. Let there be k switching times between 0 
and t'f~2 of the optimal control history for control design 

model with r flexible modes. Let the switching times be 
t j ,  j = 1 , 2 , . . . ,  k ,  and the optimal maneuver time be t}. 

Suppose that  k - r. Then the optimal maneuver time and 
the switching times satisfy as necessary and sufficient condi- 
tions 

(i) (14) and (15) admit  a solution for {t j ,  j = 1 , 2 , . . . ,  k 
and t}} which is regular; 

(ii) { t j ,  j = 1 , 2 , . . . ,  k and t}} satisfy (16) and inequalities 

(17). 

Proof. The sufficiency is shown in a paper by Singh et al. 
(1989). 
Necessity: condition (ii) is evident. We only show condition 
(i). Since there are k + 1 unknowns, {t i ,  j = 1, 2 , . . . ,  k and 
t~}, and k + 1 equations {(14), (15)) , {(14), (15)) should 

admit a solution for {t j ,  j = 1 , 2 , . . . , k  and t~}. Further- 

more, the coefficient matr ix  in (16) is exactly the transpose 
of the Jacobian of { (14), (15)}. If  for the solution {(14), 
(15)} is not regular, which implies that  the coefficient matrix 
in (16) is singular, this implies that  there exists an infinite 
number of solutions for {p~, i = 1, 2 , . . . ,  r}. This contra- 
dicts the uniqueness of the solution for the costates of the 
time optimal control problem. Thus {(14), (15)} is regular. 

Theorem A1. For our t ime-optimal control problem, the so- 
lution" of the costate vector is unique. 
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Proof. The proof primarily follows the heuristic proof of the 
minimum principle (see Athanas and Falb 1966, Sections 5- 
16, pp. 308-340), which makes use of geometric ideas. 

Consider the time optimal control problem 

min J = tf(O), 

subject to 
z ~ = A x ( t ) + B u ( t ) ,  ]uj(t)l < Uj; j = O , 1 , . . . , m ,  

R(2r+2)+l .  

Let ~b 0 be [70 7t] t. We find the new trajectory is 

y*(t) + ¢~b(t), (A3) 

where ~b(t) is described by a homogeneous linear system 

~(t)  = A ¢ ( t )  and ~b(0) = ¢0" (A4) 

x(O) = (o, o , . . . ,  o) t , x(t s) = (o, o , . . . ,  o) t . (h i )  

Introduce an auxilary variable x0 = t, which is the cost of 
this problem. Thus 

~0 = 1 and z0(0 ) = 0. We have J = z0(tf) .  

L e t y = [ x  0xt]  t ,  ~ = [ l u t ]  t ,  

I o o I I l O l  
X---I  I a n d B =  I I. 

I 0 A I I 0 B I 

We can replace the original problem with an equivalent prob- 
lem in R( 2r+2)+1, 

rain J = x0( t f ) ,  

subject to 

:~ = A y  + B--~, y(0) = ( 0 , 0 , 0 , . . . , 0 )  t ,  

y ( t f )  = ( x 0 , 0 , 0 , . . . , 0 )  t .  (A2) 

×! 
Boundary of reachable set 

\ 

Line S' ~ Reachable Set ~S) 

/ X 0 = t 

Optimal Augumented Trajectory 

Fig. 11. Illustration of the augmented space 

As shown in Fig. 11, the optimal trajectory of (A2) is the 
curve[(x0(t), x(t)] within the reachable set which starts from 
[0 x0] ~ and intersects the line S I with minimal z 0. (The idea 
of the reachable set will be introduced in detail later in the 
proof of Theorem 2). 

Let us make a small change in the inital condition, [0 x~] t, 
with optimal control ~*(t) fixed, and see how this change 
"propagates" along the optimal trajectory y*(t). Assume 
the initial point is perturbed as 

[0 x~] t + el70 7t] t, where e << 1 and [3'0 7] is a vector in 

Define the Hamiltonian function of the problem (A2) as: 
7~(y, ~ ,  ~) = ~t{Xy( t )  + B~(t)},  where ~ = [P0 pt]t is a 
costate vector of Lagrangian multipliers which satisfies the 
adjoiut differential equation 

d~( t ) /d t  = - 0 7 / t ( y ,  ~ , ~ ) / 0 y  = _-~t~,  (AS) 

where p is the costate vector of the original problem (A1) 
and dp0/dt  = 0. 

From (A4) and (An) we find that d{~(t)t~b(t)}/dt = O. 
Thus 

{~(t)t¢(t)} = constant for the solution of (A4) 

with any ¢0. (A6) 
Now if we let P0 be a hyperplane passing through Y0 = [0 x0] 
with the equation 

It0 7r]t[Y - Y0] = 0. (A7) 

Let y - Y0 = ¢(0) be any vector in R 2( r+ l )+ l ,  and choose 
P0 = lr0 and p(0) = r .  We have 

It0 P(t)]t[y(t)-y*(t)] = O. 

Thus we can define a hyperplane Pt with the equation 

[r0 P(t)]t[Y - y * ( t ) ]  = 0, (AS) 

which passes through y*(t). It  is geometrically as a hyper- 
plane moving along the optimal trajectory (as shown in Fig. 
12), and we see that  our costate will be the normal vector to 
this particular hyperplane moving along the optimal trajec- 
tory. 

i ° 

Fig. 12. Illustration of the moving hyperplane Pt 

Finally, since the system (A2) is linear and without state 
space constraints, we know the optimal control, u*(t), should 
be piecewise continuous and of bang-bang type. Thus the op- 
timal trajectory y*(t) is smooth almost everywhere, except 



at the points where there are discontinuities of control func- 
tions. Therefore, the normal vector to the hyperplane mov- 
ing along the optimal trajectory is unique almost everywhere. 
Moreover, (An) is a linear system. We can solve for ~(t) ana- 
lytically in terms of transfer matrix and ~(0). If the solution 
of costates is unique in a finite interval, we can conclude that 
the costate vector is unique everywhere. 

Corollary 3.2.5. Consider a control design model with r flex- 
ible modes. Suppose that the number of switching times of 
the optimal control history between 0 and t*f/2 is k, where 
r > k. Then a set of sufficient conditions for optimality are 

(i) (14) and the first k equations of (15) admit a solution 
{t j ,  j = 1 , 2 , . . . ,  k and t~}, which is regular; 

(ii) cos(wit*f~2 ) - 2 cos(witk) + 2 cos(witk_l) - . . .  + 

+2( -1 )  k cos(witl) + ( -1 )  k+l = 0, where i = k +  1 ,k + 
2 , . . . , r ;  

(iii) { t j ,  j = 1 , 2 , . . . ,  k and t~} satisfy (16) and inequalities 

(17), with {p~ = 0, i = k + 1 ,k  + 2 , . . . , r } .  

Proof. It is seen that the first k + 1 columns of the matrix in 
(16) form a (k + 1) × (k + 1) square matrix which is exactly 
the transpose of the Jacobian of (14) and the first k equations 
of (13). Regularity in condition (i) implies that this square 
coefficient matrix is nonsingular, which implies existence and 
uniqueness of the solution {p~, i = 1 , 2 , . . . ,  k} in (16). Since 

we have {p~ = 0, i = k + 1, k + 2 . . . .  , r} from (iii), it is not 
difficult to check that conditions (i), (ii) and (iii) indeed solve 
(14)-(17). Thus the number of switching time of the optimal 
control history between 0 and t'f~2 is k, k < r. 

Theorem A2. Suppose the number of flexible modes retained 
in the control design model is fixed. The optimal maneuver 
time solved from (14)-(17) is a continuous function of the 
structural design variables, ~. 

Proof. We have the preliminary result that, in general, the 
mass and stiffness distribution of a spacecraft is a continu- 
ous function of structural design parameters. Assume that 
all eigenvalues derived from (6) and (8) are distinct. Then, 
the natural frequencies and normalized natural modes of a 
structure are continuous functions of the structural design 
parameters. For a time-optimal control problem with a fixed 
number of flexible modes in the control design model, rep- 
resented in (12), the configuration of the system equations, 
all elements in matrices A and B, which are derived from 
(11) and (13), are continuous functions of structural design 
parameters. We represent the matrices as A(~) and B(~) to 
indicate that they are functions of structural design parame- 
ters. Let A i = A(~i) and B i = B(~i). Thus 

Ve > 0,3di > 0, such that V~I , ~2 ]~1 - ~2 ] < di implies 

max {IA1 - A21}i j < e and max {IB1 - B21}i j  < e. (A9) 

Let Si: {Ai,  B i ,U}, where U is the feasible control space 
which is fixed for any ~, represent a system. 
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Herein, we only need to prove that if: the optimal ma- 
neuver time of (A1) is a continuous function of the elements 
in the matrix A and B of the system. Let t*fi be the solution 

of (A1) for a system S i. 
We are going to prove ~ by making use of the idea of 

reachable space. Let us first introduce this idea. For a time- 
optimal control problem (A1), for a system S, we define the 
set of reachable states at a time t 

u ( s ,  t ) =  

= {x(t)~R r ; x = Ax  + B u ,  u 6 U , x ( 0 )  = 0}, (A10) 

and the reachable space 

n ( s )  = fix(t),t] R r+l ; x n(s, t)}. (All) 

We claim that the reachable space, n (S) ,  and the reachable 
states at time t, ~ ( S ,  t), have the following important prop- 
erties which will be used to complete the proof. 

(i) For any finite time t, n ( S ,  t) is a closed set. 

Proof. It can be shown that V finite time t, V a converg- 
ing sequence {x i} such that Vi, x ic~(S ,  t l )  and with 
the limit ~, then ~¢n(S,  tl) .  

(ii) For any finite time t, n ( S ,  t) possesses a boundary. Let 
diE(S, t) be the boundary of n ( S ,  t). 

Proof. For a finite time t, 7~(S,t) is a compact set and 
every compact subset of R r+ l  has a boundary. 

(iii) For any finite time t, n ( s ,  t) is a convex set. 

Proof. For any time t, Vx 1 , x 2 ¢ n ( S  , t) and driven by 
the control u 1 , u2, respectively, we have 

x 3 = ~ x  l + ( 1 - ~ ) x 2 ,  0 < ~ < 1 ,  

(iv) 

can also be reached at time t. 

For any finite time t, n ( S , t )  is nondecreasing in the 
sense that 

(v) 

Vt 1 and t 2 if t 1 < t2, then n ( S ,  t l )  C 7~(8,t2). (A12) 

Proof. Consider (A3). We know that VXlen(S , t l )  , x 1 
can also be reached at time t 2 with the control u = 0 
for t < t 2 - t l  and u = u l [ t -  ( t 2 - t l ) ]  otherwise, where 
is u 1 the same control driving the system to x 1. 

From Fig. 13, it is clear that  the optimal maneuver 
time is the time when the final state first penetrates the 
boundary of the reachable space. Thus 

t )  = n~in{xf e n ( S ,  t)} = mtin{x f e diE(S, t)}. (A13) 
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X~ 

2 
Fig. 13. The reachable space R(S) and the set of reachable states 
at a specific time h, R(S, t,) 

Now we prove G by contradiction. 
Suppose 3 ~ > 0, such that  

V6 > 0 ,3A1 ,  A 2 , B 1 , and B 2 satisfying 

max {IA1 - A2I]'ij < 5, and 

max (IB1 - B21}i j < 6, and where It) l  - t)2 [ > ¢. (A14) 

Since It~l - t~21 > e, without loss of generality, suppose 

t)2 > t ) l .  (A15) 
From (A6), we have at time t~x , x f  E ~R(S2, t), but 

x f  ¢ ~R(S2, t). This is because if x f  E ~R(S2, t), we 
have t)2 < t)x 

Thus we have: 

min II x -  xf  I1_ p, p > 0,  x f  ~ ~ ( $ 2 ,  t ) .  (A16) 

Let X be the point which is nearest to xf  and belong to 
~(32 ,  t). Suppose that for the system S1, x f  is driven by 
the control Ul(r ) ,  0 < r < t~l .  Suppose that  for the system 
32, Y is the state driven by u 1. 

Therefore we have 

II x - x f  I1___11 Y - x f  II • (A17) 

However, we know x(t) = f~ eA(t-r)Bu(r)dr .  For 
fixed u and t , x(t) is a C 1 function of A and B. Thus, 
Ve I > 0, 35 > 0, such that when max {[A 1 - A21)i j < 6, 

and max {[B 1 - B2[}i j < 6, we have II Y - x f  I1< e I. (A18) 
Now, let e I -- e/2, and from (A17) and (A18) we have 

_11 x - x f  I1___11 Y - x f  II- ~/2,  c > O. (A19) 

This contradiction completes the proof of statement ~. 

Theorem A3. Consider the general design case where the 
structural properties are analytical functions of the design 
parameters. Suppose the number of flexible modes retained 
in the model is fixed, say r. Assume that  in a closed region 
of the feasible design variable space, the number of switching 
times, say k, follows the generic rule, where k = r. Then the • 

optimal maneuver time t )  is an analytical function of the 
structural design variables ~, in this region. 

Proof. First, it is not difficult to see that the k + 1 (equal 
to r + 1 by assumption) equations of (14) and (15) together 
admit many solutions {tj  , j  = 1,2 . . . .  k and t)},  which are 
also regular. We only concern ourselves with the solution 
manifolds of (14) and (15) which are regular. Since the so- 
lution of the time optimal control problem is unique, only 
one of them will satisfy all necessary conditions of Corollary 
3.2.4. We rewrite (16) and (17) 

[ i ] { p }  = { ¢ ) ,  (16) 

where [~], (p},  {c} are defined in Section 3. 

t* f /2>t  k > t k _  1 > . . .  > t  2 > t  1 > 0 ,  (17a) 

pOt + Z/~j.pio sin(wit ) ¢ O, 
i--1 

w h e r e O < t < t * f / 2 ,  t # t i ,  i = 1 ,  2 , . . . , k .  (17b) 

The solutions of (14) and (15) are regular, and the coeffi- 
cient matrix [~] in (16) is the transpose of the Jacobian of 
(14) and (15), which implies [~] is nonsingular, which im- 
plies we can solve for a unique {p} ,  hence (16) can be sat- 
isfied. Here, we only need to show that  the solution set of 
{tj , j  = 1 , 2 , . . .  k and t~} which further satisfy (17a) and 

(17b), will not jump along the solution branches of (14) and 
(15) when we perturb the design variables; then, from the im- 
plicit function theorem (see, e.g. Har tman 1982), t~ is an an- 

alytical function. Since (14) and (15) are regular, solutions of 
{t j ,  j = 1 , 2 , . . .  k and t~)  are analytical functions of the de- 

sign parameters. It is evident that  {t j ,  j = 1 , 2 , . . .  k and t~} 

will still satisfy (17a) when we perturb design parameters. 
Since when we differentiate both sides of (16) with respect to 
a design parameter ~, we have 

{ 0 [ i ] / 0 ~ } { p } +  [ i ]{0p/0~} = {0c/0~},  

{0p/0~} = [ i ] - l [ {0c /0~}  - {0[~]/0~}{p}], 

where 0[@]/0~ represents {O¢ij/O~, i = 1, 2, . . . ,  k + l  (r is 
equal to k), ¢ij are the entries of [~]}, {0p/0~} represents 
{Opi/O~ , i = 1, 2 , . . . , r  + 1, Pi are the entries of p}, and 
{0c/0~} represents {Oci/O~ , i = 1, 2 , . . .  ,r + 1, c i are the 
entries of c}. 

Because [~] is nonsingular and analytical and {0c/0~} 
is analytical, we know {0p/0~} exist, which implies {p} is 
a continuous function of ~, hence all parameters in (17b) 
are continuous functions of ~. Thus { t j , j  = 1 , 2 , . . . k  
and t~} will satisfy (17b) when we perturb the design pa- 
rameters. 
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