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A b s t r a c t  Several approaches for determining the optimal ori- 
entation in the topological optimization process are discussed in 
this paper. It is shown that the use of a strain based method may 
give an even worse result than the case in which the discrete ori- 
entational variables are fixed in the optimization process, because 
strong couplings exist among the orientationM variables when the 
strain field is used. The stress field is less sensitive than the strain 
field with respect to the variations of the orientational variables. 
Therefore, the coupling between the orientational variables is rel- 
atively weak when the stress field is used. This explains why the 
stress based approaches (e.g. Suzuki and Kikuchi 1991; Dfaz and 
Bendsoe 1992) are more efficient than the strain based method. 
This kind of approach will be generalized to deal with more general 
optimization problems. It will be shown that the new approach 
can not only obtain the best result for the problem as compared 
to the other methods, but also has the generality for various opti- 
mization problems. Several examples will be presented to support 
the above statements. 

1 I n t r o d u c t i o n  

The optimal topology design of structures has become a sub- 
ject that  calls for more and more attention of researchers 
and engineers in the f ie ldof  structural optimization recently. 
Bends¢e and Kikuchi (1988) introduced a Homogenization 
Based Optimization (HBO) method for finding optimal struc- 
tures without the requirement of conjecturing the initial 
topologies. This method transforms the topological optimiza- 
tion problem into an Optimal Material Distribution (OMD) 
problem, where the composite material with many micro- 
scopical voids is introduced into the design problem (Fig. 
1) so as to relax the original problem which was restricted 
to the use of an isotropic solid material. As was pointed 
out by Kohn (1986), the relaxed formulation has the advan- 
tage of obtaining fewer local minima, thus the global minima 
can be reached relatively easily. Such an idea is employed 
by Bends0e and Kikuchi (1988), who employed a microstruc- 
ture model for relaxing the problem as shown in Fig. 2, where 
three design variables, the sizes a, b of the rectangular cav- 
ity and the orientation 0 of the microstructure, are employed 
for a plane stress problem. Then the stiffness coefficients as 
well as the mass density of the structure are evaluated as the 
functions of these three design variables using the homoge- 
nization method. The optimization process is then used to 
obtain the OMD, which gives the optimal structure with the 
optimal topology. 

There may exist a question: how important  is the use 
of an orientational design variable for relaxing the problem? 

Also, one might ask how a microstructure that  forms an or- 
thotropie material can be optimally oriented by a mathemat-  
ical or physical consideration. This kind of problem can be 
generalized as an optimal orientation problem of orthotropic 
material, and was first discussed by Pedersen (1988). How- 
ever, the discussion by Pedersen (1988) is limited to a unit 
cell case, in which the orientational variable is separated from 
the whole design domain to obtain the extreme strain en- 
ergy density. This consideration is not sufficient for the real 
design problem, in which the orientational variable is a dis- 
tributed parameter in the design domain, and the coupling 
exists among the orientational variables in two different spa- 
tial points of the design domain. Alternatively, Suzuki and 
Kikuchi (1991) indicated that  the optimal orientation of the 
microstructure can be determined by the principal stress di- 
rections of the structure. This idea has been implemented 
in the HBO algorithm for solving the layout optimization 
problem. Later, Dfaz and Bendsee (1992) presented another 
approach dealing with the layout optimization problem under 
multi-loading. This approach is similar to that  of Pedersen 
(1988), but instead of using the strain energy density, it em- 
ploys the stress based formulation to calculate the optimal 
orientation. Apparently, the stress based approach can pro- 
vide much better results than the strain based approach (see 
also Olhoff e~ al. 1992). Hence, it is very interesting to study 
the distinctions between these different approaches, essen- 
tially between the stress based and strain based approaches, 
and their rationalism, in determining the optimal orientation. 

The goals of this paper are not only to clarify the ques- 
tionable points stated above, but also to derive a general 
approach for determining the optimal orientation in dealing 
with various optimization problems. It will be shown that  
the stress field is less sensitive than the strain field with re- 
spect to the variation of the orientational variable. Therefore, 
the coupling between the discrete orientational variables is 
relatively weak when the stress field is used. This explains 
why the stress based approach, as employed by Suzuki and 
Kikuchi (1991) and Diaz and Bendsee (1992), is more efficient 
than the strain based method. This kind of approach will be 
generalized in this paper to deal with more general optimiza- 
tion problems. A typical eigenvalue optimization problem is 
Considered, but the approach can be applied to other opti- 
mization problems. It will be shown that  the new approach 
is also more accurate and efficient in determining the optimal 
orientation than the previous methods. To substantiate the 
issues discussed herein, the results obtained by the new ap- 
proach will be compared with those of the previous methods, 
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i.e. the strain based method, the principal stress direction 
method, and the mathematical  programming method. 

2 T h e  h o m o g e n i z e d  p r o p e r t i e s  o f  t h e  compos i te  ma- 
terial 

Bendsce and Kikuchi (1988) introduced composite material 
to structural optimization problems by using a variable mi- 
crostructure as shown in Fig. 1, in which 12 (/2 C R 3) stands 
for the structural domain, F t the traction boundary and F d 
the displacement boundary. For a plane stress problem, the 
microstructure is considered as a unit cell with a rectangular 
cavity inside the cell as shown in Fig. 2, where the parameters 
a, b characterize the dimensions of the cavity and 0 stands for 
the orientation of the microstructure. The solid part of the 
microstructure is formed by isotropic material with the elas- 
tic coefficient EOik t and mass density P0, which are constant 

in the solid part  of the microscopic domain Y. 

Full Material Zone 

Porus Media Zone 

\ 
\ 

T.one 

Fig. 1. Microstructures in a design domain 

~ 0 

lsotropic Material 

½ 
Fig. 2. A microstructure with design variables a, b, # 

The linearly elastic problem for a dynamic system can be 
generally formulated using the weak form as 

i ~  Ou~0% 02u ~" "~ijkg~-~z~ dr2 + i P~ ~ v i  dn = 
12 12 

f~vzdY2+ tividF , for Vv E V,  (1) 

t~ r t  

stands for the displacement that  yields equilibrium, where u i 
v i the virtual displacement (v = {Vl, v2, v 3 }T), f~ the body 

force, t i the boundary traction, and V = {viv C Hl(~2) ,v  = 

0 on Fd} stands for the space of kinematically admissible 
displacement fields, where H 1 (/2) is the Sobolev space. For 
the problem with the microstructure defined in Fig. 2, if we 
assume the orientation 0 = 0 (i.e. the microstructure is not 
rotated), we have 

{ EOjk l insol id  ,pe~_{ PO insol id  
E~jke = 0 in cavity 0 in cavity (2) 

Using the homogenization method (e.g. Lions 1981; 
Guedes 1990; Bendsce and Kikuchi 1988), (1) can be ho- 
mogenized as 

h OuOOvk " O2u° 
Ei jk£~-~z  d$2 d- j ph ~ v i d l 2  = 

t2 I2 

f ' v i d S 2 + / t i v i d F ,  for Yv E V,  (3) 

t~ 5 

where, u 0 stands for the average displacements in the mi- 

crostructural domain Y, Eh.kl , ph and fh  are the homog- 

enized elastic coefficients, mass density, and body force, re- 
spectively, 

1 si pq ) dy, (4) 

1/ ph = ~ pedy ' (5) 

Y 

' /  fh = ~ fS dy ' (6) 

Y 
where IYI stands for the volume (area) of Y, and Xp kl is the 
solution of the microscopic problem that  characterizes the 
micromechanical behaviour of a specific microstructure, i.e. 

Y Ei~.ke-E~jpq~yq ) ~yjdy=O, for V v E V y ,  (7) 

where the space Vy = {vlv E H I ( y )  and v is Y-periodic} is 
defined on the microstructural domain Y. 

When the rotation of the microstructure is also considered 
as shown in Fig. 2, the rotated homogenized coefficients EHke 
and pH for the plane stress problem can be obtained as 

2 2 2 2 
H h %k, E E E E = CiqCjpCksClrEqpsr, 

q=l p=l  s=l r= l  

and pH = ph, (8) 

where 

Cll = c22 = cos0 and c21 = -c12 = s in0.  (9) 

Finally, the weak form for the rotated system can be ob- 
tained as 

t H OuO Ovk " 02uO" 
pH ~ v  i dO = ] Eijke~-ff'~xe dI2 q- J 0t- 

12 I2 

/fihvid.-J-/tividF, for Vv E V. (i0) 

~7 r~ 
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Here, it is obvious that  the homogenized elastic coefficient 
EHkl is a function of the design variables a, b and 0, and 

the homogenized mass density pH is a function of the design 
variables a and b, i.e. 

H H pH Eijk~ = Eijke(a,b,O ) and = pg(a,b). (11) 

Note that the homogenized mass density is not a function of 
the orientational variable in this problem. 

Using a matrix expression for the rotated elastic coeffi- 
cient, we can define 

D H  = /E1H122 E2H2222 E g l 2  [ ' (12) 

L ~ N ~  E g l 2  Eh212J 
Then the rotated elastic matrix is obtained as 

D H = D O ÷ D 1sin20 ÷ D 2 cos 20 + 

D 3 sin 20 cos 20 - D 4 sin 2 20, (13) 

where matrices Di(i = 0, 1 . . . .  ,4) are independent of the 
orientational variable 0, and 

[(~fil, ~z~,,,)/2 Eft,, 0 ° ] 
D O =  [ E1022 (E1hl11 + E2h222)/2 , 

0 Eh212 

(14a) 

°°i] D l = d l  0 0 , 
1 1 1o ] 

D 2 = 2d 1 0 - 1  , 

0 0 

"0 0 1 ]  
D 3 = d 2 0 0 1 , 

1 - 1  ; 

l -10] D 4 = d 2 - 1  1 0 , 
0 0 - 1  

and 
1 h E h 

dl = ~ ( E l l l l -  2222), 

1 h h 
d 2 = ~ ( E l l l l  ÷ E2222 - 2Eh122 - 4Elh212). 

(14b) 

(14c) 

(14d) 

(14e) 

(15a)  

(15b) 

3 Sens i t iv i ty  ana lys i s  

First, we consider a static problem which minimizes the mean 
compliance of the structure. Thus the objective function is 
defined as 

f ,~ 0 au0 H = ~.1t. ou'~ ou~ dl2. (16) 
~3k~ Ozj Oz l 

£2 
Operating a partial derivative with respect to the orien- 

tational variable 0 on the objective func t ion / /g ives  

Ol, [ o.Z , ,, o ( o :  l o-~ = f L oo o,---j o,---~ ÷ 2E~m-~ k o,~ ] o,~ j dn. 
1-2 

(17) 

Operating a partial derivative on the weak form (10) with 
respect to the orientational variable 0 for the case pH = O, 
we have 

Therefore, 

z y ~  i d ~ .  

,r2 

(19) 

Substituting (19) into (17), we calI finally obtain the sensitiv- 
ity of the mean-compliance with respect to the Orientational 
variable 0 as follows: 

O--O- = - J  O0 Ozj Oz l d/2. (20) 
£2 

It should be noted that if we assume the displacement 
field, i.e. u~ is constant with respect to the orientational vari- 
able 0, then from (17) we have 

f O E'H',~ Ou 0 Ou~ 
O// = ,J,* i d~2 (for fixed u~). (21) 
O0 OO Oz i Oz l 

~2 
This result has an opposite sign to the result obtained in 
(20), and it was used by some researchers. However, (21) is 
incorrect when the displacement field is not fixed as in the 
usual structural design case. 

For an eigenvalue problem, the weak form can be written 
as 

12 £t 

for Vv e V, (22) 

where A i stands for the i-th eigenvalue, and ¢i the corre- 
sponding eigenvector. Operating a partial derivative on (22) 
gives 

r oo, ,, o ov. 
f[ N o~,o ,~+E' , ,Nko~, ]o ,q  

0¢~I 00~:~5~-~,/--~v,-jd~=O, forVv~V. (23) 
If Vr = ¢i and we assume 

fpM¢~¢~ = 1, (24) dO 

I2 
from (23), we have 

O),i [[oEH, qa¢~a¢~ 
o o - ~ L--~- o% o% + 

Substituting Vr = 0¢ i /00  into (22), we have 
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a Erspq  - -grjd =0 (26) 
Therefore, finally the sensitivity of an arbitrary eigenvalue 
with respect to the orientational variable is 

O0 - J ~ COXs OXq dr2. (27) 
f2 

4 P rev ious  m e t h o d s  for  de t e rm i n i ng  the  op t ima l  
o r i en ta t ion  

The current problem is how to determine the orientational 
design variable 0 for maximizing (or minimizing) the objec- 
tive function when the sizing design variables a and b have 
been determined in the optimization process. The optimality 
criteria for the orientational variable can. be written as 
0 / /  

- o .  ( 2 8 )  
00 

Several methods to solve the problem have been discussed, 
i.e. Pedersen's method (Pedersen 1988), the principal stress 
direction method (Suzuki and Kikuchi 1991), and a stress 
based method for the multi-loading case by Diaz and Bendsee 
(1992). 

4.1 Pedersen's method 

Pedersen (1988) discussed this kind of problem using a fixed 
material and a rotating strain field. Pedersen (1988) con- 
sidered the strain energy density, which is one half of the 
mean-compliance in a unit area. As a result, the sensitivity 
of the strain energy density with respect to the orientational 
variable obtained by Pedersen (1988) is 
au 

- 2 ( e i  - v i i  ) sin 20[dl(V I + v i i  ) + d2(e I - e i I  ) cos 20], (29) 

where u stands for the strain energy density (/7 = 2 ff2 u dg2), 
and, e I and Vli(e I > v i i  ) are the principal strains. Solving 
Ou/O0 = 0 by the use of (29), we have 

sin 2 0 = 0  or cos 2 0 -  d 2 ( e I -  e l I )  (30) 
dl(vI + v i i )  

Several solutions can be obtained from solving (30). Here 
one needs to determine an optimal one for the problem. A 
detailed discussion about this determination can be found in 
the paper by Pedersen (1988). 

Pedersen's results are limited in that the optimal orien- 
tation 0 is determined for the extreme strain energy density 
at a special point of the design domain only. Also, it is as- 
sumed that the principal strains, el and el l ,  as well as the 
principal strain directions, are constant with respect to the 
orientational variable. Indeed, as we have mentioned before, 
the principal strains are an implicit function of the orienta- 
tional variable 0. The principal strains, as well as the princi- 
pal strain directions, can be changed when the orientational 
variable 0 is varied. These changes (in the principal strains 
and their directions) can be caused not only by the varia- 
tion of the orientational variable 0 at the considered point, 
but also the variations at other spatial points of the design 
domain. Strictly speaking, the equation Ou/O0 = 0 corre- 
sponding to (29) cannot be solved only at a separated special 

point of the design domain, if the problem is to obtain the 
extreme strain energy corresponding to the whole design do- 
main (not only the extreme strain energy density at a special 
point). Especially when one uses a discretization technique, 
e.g. the finite element method, for solving the problem, the 
coupling will exist among the discrete orientational variables 
that correspond to the various finite elements. Futhermore, 
due to the aforementioned limitation, Pedersen's method also 
needs to be extended to deal with more general optimization 
problems in which the objective functions are not as simple 
as the strain energy density. 

4.2 Principal stress direction method 

Suzuki and Kikuchi (1991) considered the use of the princi- 
pal stress direction as the optimal orientation for the OMD 
problem. This consideration has a straightforward physical 
meaning and it is relatively simple in calculation. It is easy to 
understand that if the stress field is constant with respect to 
the orientational variable, the principal material axis should 
be oriented to be colinear with the principal stress direction 
for obtaining the stiffest structure. This method is highly 
efficient for the problem since the principal stresses can he 
easily determined. However, the method cannot be extended 
to solve a multicriteria optimization problem, such as the 
multi-loading problem discussed by Diaz and Bendsee (1992) 
and also lacks a mathematical basis. 

4.3 Stress based method for the multi-loading case 

Diaz and Bendsee (1992) extended the principal stress di- 
rection method for determining the optimal orientation in a 
static stiffness optimization problem corresponding to multi- 
ple loads. In this approach, first the principal stress direc- 
tions are determined with respect to all loading cases, then 
a combined equation using these principal stress directions is 
solved to determine the optimal orientation. The basic equa- 
tion obtained by Dfaz and Bendsoe (1992) for the optimal 
orientation is 

P 
Z wi[A~ sin 2(0e - ~ )  + B / sin 4(0e - ~ ) ]  = 0, (31) 
i=l 

where 0e stands for the discretized orientational variable with 
respect to the element e, ~e' the angle between the principal 
stress direction and the fixed reference frame for the i-th load 
case with respect to the element e, w i the given weighting 
function, Ae' and B e' the coefficients calculated by the mate- 
rial constants and known stresses, and p the total number of 
loading cases. Apparently, this approach works well for the 
problem discussed by D/az and Bendsee (1992). However, it 
has not been explained why it  is necessary to use a stress 
based approach for the problem, or how this approach can 
be extended to general optimization problems, such as the 
multi-eigenvalue optimization problems discussed by Ma et 
al. (1992)• In this paper, we shall propose a more general ap- 
proach, in which a general stress tensor is used instead of the 
principal stress and it will be shown how this approach can 
be applied to solve the optimization problem corresponding 
to a dynamic system• 



105 

5 A genera l  a p p r o a c h  for  de t e rm i n i ng  t he  o p t i m a l  

o r i e n t a t i o n  

5.1 Approach for the static problem 

First, we consider the static problem discussed previously. 
Using the matrix expression, the objective function mean- 
compliance defined in (16) can be rewritten as 

1I = / e T D H e d I 2 ,  (32) 

£2 
where e stands for the strain vector, i.e. 

e = {ell,e22,e12) T and eij = -~ OuO (33) 

Substituting (13) into ('32) gives 

1I = / ( a  0 + a 1 sin 20 + a 2 cos 20 + a 3 sin 20 cos 20 - 
d 

12 

a 4 sin 2 20) dO,  (34) 

where, 

h 2 + e 2) a 0 = eTDOe = (Elhlll + E2222)(ell + 

2E1h122elle22 h 2 (35a) + E1212e12, 

a I = eTDle  = 2dl(e11 + e22)e12, (35b) 

a 2 = eTD2e = 2d1(e211 - e22), (35c) 

a 3 = eTD3e = 2d2(e11 - e22)e12, (35d) 

a 4 = eTD4e = d2[(ell - e22) 2 - e22]. (35e) 

It should be noted that the coefficients ai(i = 0 ,1 , . . . , 4 )  
are an implicit function of the orientational variable because 
ai(i = 0 ,1 , . . . ,  4) are functions of the strain field which, in 
general, is a function of the orientational variable. 

Using (20), the sensitivity of the mean-compliance can be 
rewritten as 

OH f TOD H 
dl2 (36) - j e  

00 

From (13), we have 

0D H _ 2 (D 1 cos 2 0 -  D 2 sin 20 + D 3 cos 4 0 -  D 4 sin 40). (37) 
00 

Substituting (37) into (36) gives 
011 

- 2  f ( a  1 cos 20 - a 2 sin 20 + a 3 cos 40 - a 4 sin 40) dS2. (38) 
a /  

12 
If the principal strain is considered for the problem, then 

replacing the strain field by ell  = ~I, e22 = e I I  and el2 = 0, 
where e I and e i i (e  I > e l i  ) are the principal strain, (38) is 
simplified to 

011 f O0 - [4dl(e~-e~i)  sin 2 0 + 2 d 2 ( e i - e i i )  2 sin 40] d~  = 

/ ( e  I - e l i )  sin 20[dl(e I + e l I  ) ~ 4 + 

D 

d 2 (e I - e l i  ) cos 20] dO. (39) 

This is the same result as that obtained by Pedersen (1988), 
i.e. (29), when the strain energy density is considered in the 
problem where 11 = 2 fE2 u dE2. 

In order to solve (28) corresponding to (38) or (39), the 
finite element method can be employed to discretize the prob- 
lem. Defining 0e as a discretized orientational design variable 
corresponding to the finite element E2e, the optimality criteria 
for 0e can be obtained as 

a~ cos 20e - a~ sin 20e + a~ cos 40e - a~ sin 40e = 0 

(e = 1 , 2 , . . . , n e e ) ,  (40) 

where, nee is the total number of the finite elements in the 
structure, 

2d I / ( C l l  + e22)e12 dO, (41a) a~ 
. /  

t2~ 

f ( e ~ l  - e~2 ) dl2, (41b) a~ 2d 1 

12e 

a~ = 2d 2 / ( e l l  -- e22)e12 dO, (41c) 

De 

a~ = d 2 / [ ( e l l  - e 2 2 )  2 - e122] dO. (41d) 

I2e 
It should be noted that (40) must be solved for all el- 

ements ~e(e = 1,2 , . . . ,ne l ) .  Basically the coupling ef- 
fects may exist among these equations because coefficients 
ae(i = 1,2,3,4; e = 1,2, . . .  ,nee ) in (41), in general, are im- 
plicit functions of the discrete orientational variables 0e (e = 
1,2 , . . . ,  nel ). Therefore, a solver for these coupled nonlinear 
equations may be needed for the problem. 

5.2 Extension for the eigenfrequency optimization problem 

The above approach can be extended to deal with more gen- 
eral optimization problems. Here we consider the multi- 
eigenvalue optimization problem discussed by Ma et al. 
(1992a) as a practice of the new approach. Obviously, this 
approach can be applied to the other problems, e.g. the fre- 
quency response optimization problems discussed by Ma et 
al. (1992b). 

The objective function proposed by Ma et al. (1992a) for 
the multi-eigenvalue optimization problem is 

1 

= + - n wi (n # 0 ) ,  (42) 
I.i=1 

where A* is called the mean-eigenvalue, and ~ni (i = 1, 2,...~ 
m) stand for the chosen eigenvalues that satisfy the eigen- 
value problem (22). 

The sensitivity of the mean-eigenvalue with respect to the 
orientational variable 0 is obtained as 

m wi  O,~n i 
0~* _ ()~* ~_~0) 1-n E (~ni -- ~0i) 1-n 00 (n ~ 0). 
00 ~ w i i=1 

i=1 
(43) 

Using (25), the strain field and the finite element dis- 
cretization, (43) can be discretized as 
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OA* 

OOe 

( ~ * m ~ 0 ) l - n  ~-~ wi S nT ODH n. - -  e , - - e  zdf2 (44) 
(~ni -- A o i ) l - n a e  (90e ' E Wi i=1 

i=1 
ni equivalent where e n' = {e~'i,e22,eT<~} T is the strain vector 

corresponding to the ni- th eigenvector, i.e. 

n, 1 ¢0¢  ni o c n ' ~  (45) 

Substituting (37) into (44) obtains 

0h* _ 2(ae 1 cos 20e - a 2 sin 20e q- ae 3 cos 40e - a 4 sin 40e) (46) 
OOe 
where (~* 

wi f enffDkeni dO - : m)~O)l-n ~ ()~ni --fro , 1 -n  a k 

w i i -1  -- oil Y2e d 

i=1 

(k = 1,2, 3, 4). (47) 

Then the optimality criteria with respect to a discretized 
orientation design variable 0e become, 

a I cos 20e - ae 2 sin 20e + a 3 cos40e - a 4 sin40e = 0, (48) 

where -~r/2 _< Oe _< 7r/2. 

5.3 Using the stress field for lhe approach 

It will be discussed in the examples that  the stress based 
formulation provides better solutions than the strain based 
approach for the optimal orientation problem if (46) is solved 
separately with respect to each individual orientational vari- 
able. Hence, instead of the equivalent strain, the equivalent 
stress will be considered for the problem. Using the consti- 
tutive law 

e = c H ~ ,  (49) 

where ~r stands for the equivalent stress vector and C H = 
(DH) -1 ,  (44) can be rewritten using the equivalent stress as 

00e" = 

m wi / a nT o c H  a ni dO (A* 
~ ? ° ) 1 - "  - -  (~ . ;  - ~ o , ) ~ - -  o0o ' 

w i i=1 F2e 
i=1 

(50) 

The rotated homogenized compliance matrix C H can be 
written as 

C H = T ( -Oe)GhTT( -Oe) ,  

where T stands for the rotation matrix: 
cos 20e sin 2 0e cos 0e sin 0e 

T = sin 2 0e cos 2 0e - cos 0e sin 0e 
- 2  cos 0e sin 0e 2 cos 0e sin 0e cos 2 0e - sin 2 0e 

and 

r  1 111 °0] Cl122 
C h -- C 22 C2222 

0 ch2 2 

(51) 

], 
(52) 

(53) 

Substituting (52) and (53)into (51), yields 

C H = C O + C 1 sin 20e q- C2 cos 20e T 

C 3 sin 20e cos 20e - C 4 sin 2 20e , (54) 

where Ck(k = 0 , 1 , . . . , 4 )  are independent of the orienta- 
tional variable 0e, 
G O = 

(Chill-Fh ch222)/2 

C1~22 

0 0 1] 
C 1 = c  I 0 0 1 

1 1 0 

"1 0 
C 2 -- c I O - 1  

0 0 

"0 0 
C 3 = 2c 2 0 0 

1 - 1  

1 - 1  
C 4 = c 2 - 1  1 

0 0 

j Cl122 0 
0 (c~m + ch2222)12 h 

0 C1212 

, (55a) 

(55b) 

where 

g ~ =  wi (A* .~m._~0)l-n ,~  ('~ni- A0i) 1-n / ~nT Gkcrnid~ 
w i i=1 [2e 

i=1 

(for k = 1,2, 3, 4).  (50) 
Hence, the optimality criteria for the optimal orientations Oe 
can be obtained as 

gl cos 20e - g2 sin 20e + g3 cos 40e - g4 sin 40e = 0, (60) 

where -7r /2 _< 0e _< ~r/2 and e = 1, 2 , . . . ,  nel. 
If the coefficients gke(k = 1 ,2 , . . .  ,4) are assumed to be 

constant, or they are not sensitive to the change of the 
discretized orientational variable, then (60) can be approx- 
imately solved separately for each individual orientational 
variable. Assuming z = tan 0e, (60) can be transformed into 
the 4th-order polynomial equation as follows: 

and c 1 and c 2 are the invariant material parameters 

1 h Cl = 7(c l111  - c2h~22), (56a) 

1 h h 
c 2 = ~(61111 -F C~222 -- 2Clh122 - Clh212) • (56b) 

Thus, the sensitivity of the compliance matr ix C H with re- 
spect to 0e is 

OC H 

OOe 

2(C 1 cos 20e - C 2 sin 20e + C 3 cos 40e - C4 sin 40e). (57) 

Then the sensitivity of the objective function for the eigen- 
value optimization problem can be obtained as 

0)~* = 2(g~ cos 20e - ge 2 sin 20e + ge 3 cos40e - g4 sin40e) 
OOe 

(58) 

] , (55c) 

1] 
- 1  , (55d) 
0 



f4 z4 + f3 z3 q- f2 z2 "{- f l  z + fo = 0, (61) 

where 
1 + 3 (62a) f4 = -ge ge , 

h = -2g~ + 4g~, (62b) 

f2 = - 6 g  3 , (62c) 

f l  = --2g 2 - 4g 4 , (62d) 

f0 ---- gl  -t- ge 3 , (62e) 

Solving (61), we may obtain several solutions which are 
real numbers. In order to determine a unique solution which 
is optimum for the problem, we can define an evaluation func- 
tion 

Ce (Oe) = gl  sin 20e + g 2 cos 20e + 

g3 sin 20e cos 20e - g4 sin 2 20e. (63) 

By comparing the values of the evaluation function with re- 
spect to all solutions of (60) and 0e = + r / 2 ,  respectively, 
we can determine a unique solution which gives the largest 
value (for the maximization problem, otherwise the smallest 
value for the minimization problem) of the evaluation func- 
tion ee (Oe) for the problem. If there is no real solution for 
(61), then one just  needs to compare the values of the evalu- 
ation function at 0e = -~r /2  and 0e = ~r/2 and choose longer 
one as the optimal solution. 

6 N u m e r i c a l  e x a m p l e s  

Several examples are presented in this section to verify the 
previous discussion and substantiate the new approach pre- 
sented in this paper. First,  in order to compare the results 
obtained by the different methods, two eigenvalue optimiza- 
tion problems, a single eigenvalue optimization problem and 
a multi-eigenvalue optimization problem, are calculated for 
a beam-like structure. Second, the coupling effects between 
the discrete orientational variables are investigated using the 
"Von Mises strain" and Von Mises stress. Finally, two more 
complicated plane stress problems are calculated using vari- 
ous methods, i.e. the strain based method, the principal stress 
direction method, the stress based method suggested in this 
paper, a mathematical  programming method (the conjugate 
gradient method with a line search technique), as well as the 
fixed orientation method, in order to demonstrate the advan- 
tages of the method suggested. Note that  in the strain based 
method and the stress based method, (48) and (60) are ass- 
sumed to be solved separately for an individual discretized 
orientational variable. 

6.1 Example 1. Optimal orientation 

This example is to show the results obtained by differ- 
ent methods, i.e. the principal strain direction method, the 
general strain based method, the principal stress direction 
method and the general stress based method suggested in 
this paper. The strain based method is identified as Ped- 
ersen's method in case 1 of this example. As shown in 
Fig. 3, a beam-like design domain is clamped at two ends 
with a concentrated mass (5.0E-06) acting at the centre of 
the design domain. The design domain is discretized into 
2×10 finite elements. Twenty discrete orientational variables 
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0e(e = 1 ,2 , . . .  ,20) are then defined for the 20 elements re- 
spectively, while the initial values of these orientational vari- 
ables are assumed to be zero. The total  volume constraint 
of the material is given as 3.0. Two eigenfrequency opti- 
mization problems, a single eigenvalue optimization problem 
(SEO) and a multi-eigenvalue optimization problem (MEO), 
are considered. 

1 

\ 
' Clamped ~ Non-structural Concentrated 

Mass 5.0E-06 

Fig. 3. Design domain for a beam-like structure 

The sizing variables a and b, which stand for the dimen- 
sions of the inside cavity of the microstructure, are assumed 
to be constant, 0.13 and 0.33 respectively. Then the orien- 
tational variables Oe(e = 1,2 . . . . .  20) are updated using the 
methods discussed in this paper. Note that  just  one step of 
the update is considered here. 

6.1.1 Results in single eigenvalue optimization (SEO) 
This SEO problem is to maximize the first eigenvalue of the 
structure. Figure 4 shows the one-step updated orientations 
obtained by using the following different methods, i.e. the 
principal strain direction method, the strain based method, 
the principal stress direction method, and the stress based 
method suggested in this paper. It is shown that,  for the 
single eigenvalue optimization case, the result obtained by 
the strain based method is identical to that  of the princi- 
pal strain direction method, while the result obtained by 
the stress based method is identical to that  of the principal 
stress direction method. However, the result obtained by the 
strain based method (including the principal strain direction 
method) is very different from that  of the stress based method 
(including the principal stress direction method). The objec- 
tive functions obtained by the aforementioned methods are 
A* = 77.2, 77.2, 101.8, and 101.8 respectively, while the ini- 
tial value of the objective function is 39.5. It is seen that  the 
stress based approach can provide much better  results for 
the problem in comparison with the use of the strain based 
approach. 

Figure 5 shows the convergence histories of the objective 
functions using the different methods as the optimization pro- 
cess is kept going until the 31st step. It is also shown that  
the result obtained by the strain based method is identical to 
that  of the principal strain direction method, and the result 
obtained by the stress based method is identical to that  of 
the principal stress direction method. Furthermore, the stress 
based approach can provide much better  results in compari- 
son with the strain based approach. 

6.1.2 Results in multi-eigenvalue optimization (MEO) 
Three eigenvalues, the second, third and fourth eigenval- 
ues, are considered for the objective function defined in (42), 
where the weighting functions corresponding to these eigen- 
values are assumed to be the same, i.e. 1.0 and power n is 
assumed to be -1. The initial values of the sizing variables 
a and b are assumed to be 0.33 while the initial values of 
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2 '  f a" *', 

(a) Using the principal strain direction method. 

(k*=77.2) 

(b) Using the strain based method. 

(k*=77.2) 

(c) Using the principal stress direction method. 

(~.*=101.8) 

(d) Using the stress based method. 

(k'=i01.8) 
Fig. 4. The optimal orientations by using the different methods 
for the SEO problem: (a) using the principal strain direction 
method (A* = 77.2), (b) using the strain based method (A* = 
77.2), (c) using the principM stress direction method (A* = 101.8), 
(d) using the stress based method (A* = 101.8) 

the orientational variables are assumed to be zero. Figure 
6 shows the final results (after 30 iterations) of the opti- 
mal orientations obtained by using different methods, where 
for the principal stress direction method, the principal direc- 
tion is approximately determined by the second eigenmode. 
Since the second eigenfrequency dominates the optimization 
process. The objective functions obtained by the aforemen- 
tioned methods, i.e. the strain based method, the principal 
stress direction method and the stress based method, are 
323.0, 358.6 and 387.7 in comparison with the initial value of 
271.3. It is shown that  the use of the stress based method, 
which is suggested in this paper, can give much better results 
than the other methods. As shown in Table 1, the second 
eigenfrequency obtained by using the principal stress direc- 
tion method has the highest value in comparison with that 
of using the other methods. The reason is that  the principal 
stress directions are determined by the second eigenmode. 
Also, it is seen that  using an approximated principal stress 
direction method can result in quite good objective functions 

118 - 

9 8 .  

=~ 

7 8 -  

58 

~ t ~ - ~  . . . . .  ~ ~ ~,-~ ~ ~l t~  ~ ~ ~ ' ~  I~I 

/ 

Principal  St rmn Method  

Principal  Stress  Method  

Strain Based Method 

- Stress Based Method 

38 J n u i n i 

0 5 1 0  1 5  2 0  2 5  3 0  

I t e r a t i o n  N u m b e r s  

Fig. 5. The convergence history of the 1st eigenfrequeney 

in this problem because the second eigenmode dominates the 
whole process in this optimization. However, in a general 
multi-eigenvalue optimization problem, it is possible that  no 
eigenmode can dominate the optimization process. In that  
case, the use of the principal stress direction method may 
result in a bad solution. 

(a) Using the strain based method. 

(b) Using the principal stress direction method. 

(c) Using the stress based method. 

Fig. 6. Optimal orientations by using different methods for the 
MEO problem: (a) the strain based method, (b) the principal 
stress direction method, (c) the stress based method 

Figure 7 shows the convergence histories obtained by the 
aforementioned methods. It is shown that  large oscillations 
occur in the optimization process when the principal stress 
direction method is used and a relatively serious oscillation 
occurs when the strain based method is used. However, the 
use of the stress based method presented in this paper makes 
it possible to obtain much better results in addition with very 
smooth convergence history. 
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method 

Principal stress 
direction method 

New method 

400 

2nd 3rd 4th Objective 
frequency frequency frequency 

240.2 375.1 481.6 323.0 
(Hz) (Hz) (Hz) (Hz) 
295.2 391.7 432.9 358.6 
(Hz) (Hz) (Hz) (Hz) 
278.1 521.7 545.6 387.7 
(Hz) (Hz) (Hz) (Hz) 

300 

Formulation Method 

200 
0.4 

-1 .0  -0 .6  -0 .2  0.2 

Table 1. The final eigenfrequencies and objectives for the MEO 
)roblem 

* Principal Stress Method 
I Current Method 

100 
o 2'o 

I t e r a t i o n  N u m b e r s  

Fig. 7. Convergence history of the objective function 

6.2 Example 2. Coupling effects in discrete orientational 
variables 

This example is to show why the stress based method can give 
better results than the strain based method. For this pur- 
pose, the coupling effects among the discrete orientational 
variables are investigated corresponding to the strain field 
and the stress field. Two kinds of problem, (i) a statically de- 
termined problem and (ii) a statically undetermined problem, 
will be considered in this example. Figure 8 shows the design 
domain for the statically determined structure with simply- 
supported boundaries and an external force (P  = 5.0) acting 
at the centre of the design domain. Figure 9 shows the de- 
sign domain for the statically undetermined structure, which 
is almost the same as in Fig. 8, except that  it is clamped at 
one side and roller-supported at the other side. 

2 4 6 8 I0  I 12 14 16 18 20 

I 1 3 5 7 9 11 13 1S 17 19 

"4 ~" ~ ? P=5.0 

I_ s J 
i ~  -v I 

Fig. 8. Design domain of the statically determined structure 

The Von Mises stress and the "Von Mises strain" are con- 
sidered for the stress and strain fields respectively, where 

stress:  ~* = ~/a21 + o'22 - Crll o'22 + 3~r122, Von Mises 

/ ^ 
Von Mises s t ra in :  g* 

= _ _  + -  1.22 + 
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=r 

2 4 6 8 10 12 14 16 18 20 

1 3 5 7 9 11 13 15 17 19 

r P:5.o 
Fig. 9, Design domain of the statically undetermined structure 

0.7 

i 
.~ 0.6 ¸ 

i 

=: 0.5' 

0 .6  1.0 1.4 1.8 2 .2  

Von Mises Stress/26.687 
* Von Mises Strain 

A0~ 

Fig. 10. Sensitivities of the von Mises stress and strain for a 
statically determined structure 

I ~ Von Mises Stress/14.238 
= Von Mises Swam 

0.57 

o.4g] 

0"45 t 

0.41 / ' i • i • t i • i • i • i • | 

-1.0 -0.6 -0 .2  0.2 0.6 1.0 1.4 1.8 2.2 

Fig. 11. Sensitivities of the von Mises stress and strain for a 
statically undetermined structure 

In order to investigate the coupling among various ele- 
ments, the orientational variable 020 in the 20-th element 
is perturbed from -0.8 to 2.2, while the other orientational 
variables are fixed. The Von Mises stress and the "von Mises 
strain" in the 13-th element, which are caused by the per- 
turbation A020 , are typically considered. Figures 10 and 11 
show the sensitivities of the Von Mises stress and the "Von 
Mises strain" with respect to the orientational variable. Fig- 
ure 10 shows the results obtained for the statically deter- 
mined structure, and Fig. 11 shows the result obtained for 
the statically undetermined structure, where the "Von Mises 
strain" is scaled to be the same dimension as the "Von Mises 
stress" by a constant ratio. It is shown that  the strain re- 
sponse is much more sensitive than the stress response for 
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both the statically determined and undetermined structures. 
It implies that much stronger coupling exists among the ori- 
entational variables when the strain field is used in compar- 
ison with the stress field. If the coupling is considerably 
strong, the separability of the orientational variables will no 
longer hold in solving the problem, i.e. (48) or (60). This ex- 
plains why the stress based methods can give better results 
than the strain based method, which is shown in Example 1. 

6.3 Example 3. Application in topological optimization 
problems 

This is to show more complicated examples for the topo- 
logical optimization problem. Two problems are considered 
here. Figure 12 shows the first problem, which is a plane 
structure with two clamped boundaries at the ends of the 
design domain and a concentrated mass at the centre of the 
design domain. For the second problem, as shown in Fig. 13, 
the design domain is clamped at the left end and simply sup- 
ported at the y direction of the right end, and a concentrated 
mass at the centre of the right end. In both problems, the fi- 
nite element mesh is 20× 140 with a total of 2,961 nodes. The 
volume constraint is given as 9.0. Three eigenmodes, the sec- 
ond, third, and fourth eigenmodes, with same weights (i.e., 
w 2 - w 3 = w 4 = 1.0) are considered for the multi-eigenvalue 
optimization problem. 

a mathematical programming method, the conjugate gradi- 
ent method with a line search technique, is also employed for 
the problem. The final structures of the optimal topology 
designs of structures obtained by using the aforementioned 
methods are shown in Fig. 14 for the first problem and in 
Fig. 15 for the second problem. Also, the final values of 
both the eigenfrequencies and objective functions are listed 
in Table 2 for the first problem and in Table 3 for the second 
problem. 

a) Fixed orientation 

b) Using the strain based method 

Fig. 12. Design domain for the first problem 

c) Using the principal stress direction method 

Roller r ~1 
X Non-Structural / .~ 

Mass 1.OE-06 \ I-- ; ~ Central Line 
. . . .  _ .  

) 
• ~ . -  Clamped Non-Structural Mass 

6.0E-06 ~ 

Fig. 13. Design domain for the second problem 

In solving the optimal orientation problem, various meth- 
ods are also employed in order to compare results. First, a 
special case in which the orientationa] variables are fixed dur- 
ing the optimization process is considered. Then the strain 
based method, the principal stress direction method and the 
stress based method are applied to solve the problem. Finally 

d) Using the stress based method 

e) Using the Conjugate Gradient method 

Fig. 14. The final structures for the first problem: (a) fixed orien- 
tation, (b) using the strain based method, (c) using the principal 
stress direction method, (d) using the stress based method, (e) 
using the conjugate gradient method 

As shown in Fig. 14, the external shapes of the final de- 
signs internal obtained by different methods are quite similar, 
but the layouts are very different. The final design obtained 
by using the fixed orientation is not quite symmetric, and it 
gives a relatively lower objective function than those of the 
other methods except of the strain based method as shown in 
Table 2. The strain based method gives the worst structure 
and the worst objective function which even worse than that 
of the fixed orientation case. Although the principal stress 
direction method gives the maximal value of the second eigen- 
frequency, the suggested method provides the best objective 



function. Furthermore, the principal stress direction method 
may result in an unstable convergence history of the objective 
function as discussed in Example 1. The result obtained by 
the conjugate gradient method is quite similar to that  of the 
suggested method. However, the conjugate gradient method 
needs a huge number of calculations to evaluate the objective 
function in each iteration step, which causes an unacceptable 
computational cost for the practical design problems. It is 
seen that  the suggested method provides the best structure 
and the best objective function, and is also very efficient in 
calculation (similar to the principal stress direction method). 

a) Fixed orientation 

b) Using the strain based method 

c) Using the principal stress direction method 

d) Using the stress based method 

e) Using the Conjugate Gradient method 

Fig. 15. The final structures for the second problem: (a) fixed 
orientation, (b) by the strain based method, (c) by the principal 
stress direction method, (d) by the stress based method, (e) by 
the conjugate gradient method 

A similar tendency to the first problem is shown in Fig. 
15 and Table 3 for the second problem. It is shown that  
the conjugate gradient method may give worse results than 
the other methods except of the strain based method. This 
implies that  the result is dropped into lower local minima. 
The use of the stress based method suggested in this paper 
can provide the best results especially for t h e  multimodal 
optimization problem. 
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Table 2. The final eigenfrequencies and objective Iunctions for 
the first problem 

Fixed 
orientation 

2nd 173.3 
eigenfrequency (Hz) 

3rd 213.7 
eigenfrequency (Hz) 

4th 229.4 
e!genfrequency (Hz) 

Objective 
function 

201.1 
(Hz) 

Strain Principal Stress Conjugate 
based stress based gradient 

method method method method 
161.6 1 8 0 . 1  171.9 172.5 
(Hz) (Hz) (Hz) (Hz) 
206.3 2 2 7 . 7  241.2 243.4 
(Hz) (Hz) (Hz) (Hz) 
221.0 235.7 259.0 246.5 
(Hz) (Hz) (Hz) (Hz) 
191.0 2 0 9 . 9  2 1 3 . 3  211.7 
(Hz) (Hz) (Hz) (Hz) 

Table 3. The final eigenfrequencies 
the second problem 

2nd 
eigenfrequency 

3rd 
~igenfrequency 

and objective functions for 

4th 
eigenfrequency 

Objective 
function 

Fixed Strain Principal Stress Conjugate 
orientation based stress based gradient 

method method method method 
98.04 8 2 . 1 3  9 7 . 3 9  9 6 . 0 6  88.08 
(Hz) (Hz) (Hz) (Hz) (Hz) 

143.09 165.96 161.43 169.59 170.16 
(Hz) (Hi) (Hz) (Hz) (Hz) 

179.20 192.11 194.20 199.64 217.32 
(Hz) (Hz) (Hz) (Hz) (Hz) 
127.68 119.06 132.72 133.53 127.48 
(Hz) (Hz) (Hz) (Hz) (Hz) 

7 C o n c l u s i o n  

Several approaches for determining the optimal orientation of 
an orthotropic material used in the topology optimization are 
discussed in this paper. It is shown that  the use of the strain 
based method may obtain even worse results than the case in 
which the orientations are fixed because strong coupling ex- 
ists among the design variables when the strain field is used. 
An approximated principal stress direction method can pro- 
vide quite good results for some problems, but it may cause 
an oscillatory convergence history of the objective function, 
and more importantly, it is less general. The mathematical  
programming method is not suggested due to its expensive 
calculation cost and sometime cannot give the best result for 
the problem. Therefore, the stress based approach is pre- 
ferred for the current optimization problem. This approach 
not only gives the best result for the problem, but also has 
the generality for various optimization problems. Moreover, 
it is a quite efficient method. Several examples have been 
presented to support the issues mentioned above. 
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