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Topology optimization of planar cross-sections 
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A b s t r a c t  Topology optimization provides a rigorous method 
for the conceptual design of structural components. In this note, 
a practical approach for solving topology optimization problems 
of planar cross-sections is discussed. A problem formulation in- 
volving the use of continuous design variables is presented, and 
a standard nonlinear programming algorithm is used to solve the 
optimization problem. Results of the technique for two examples 
are presented and compared to similar results in the literature. 

1 I n t r o d u c t i o n  

Historically, structural component design has been a complex 
blend of experience, intuition, and heuristics. The advent 
of computers has fostered the widespread use ofmore  rigor- 
ous optimization techniques for both conceptual and detailed 
phases of design. Structural  optimization efforts generally are 
classified in thr~e categories: (1) size optimization, which al- 
lows variations in the dimensions of a parameterized design, 
(2) shape optimization, which allows variations in the bound- 
aries of a part while the overall layout remains unchanged, 
and (3) topology optimization where the layout, i.e. the con- 
nectivity of members, locations of holes, etc. are allowed to 
vary. Suzuki and Kikuchi (1991) provide a more complete 
overview of generalized shape and topology optimization. 

This note aims to develop a procedure for determining 
optimal layouts for cross-sections. The motivation for de- 
signing optimal cross-sections is widespread. However, the 
automotive industry has considerable interest, particularly 
in the area of joint design. Constraints on geometry, section 
properties and manufacturing with minimum weight usually 
as a driving factor require extensive efforts to determine a 
suitable, if not optimal, cross-section. 

In the past two decades, several researchers have studied 
shape optimization methods that  deal specifically with struc- 
tural cross-section design. Hou and Chen (1985) presented a 
method to find optimal cross-sectional shapes of elastic hol- 
low bars. Schramm and Pilkey (1993) illustrate a B-spline 
representation of the cross-section to optimize a bar in tor- 
sion. 

Recently, the use of discrete optimization techniques to 
solve topology optimization problems was proposed. Chap- 
man el al. (1993) used a genetic algorithm to develop two- 
dimensional configurations. Sandgren el al. (1990) also ap- 
plied a genetic optimization algorithm to determine topolo- 
gies for three-dimensional shell components. Another ap- 

proach taken by Anagnostou el al. (1992) employs simulated 
annealing to solve topology optimization problems both in 
structural design and heat transfer. 

In the general area of topology optimization, Suzuki and 
Kikuchi (1991) applied the homogenization method to solve 
generalized layout problems for two- and three-dimensional 
components. The resulting designs have minimum compli- 
ance for a specified constraint on material  volume. Similar 
solutions have been obtained by Rozvany el aI. (1992) using 
the solid isotropic microstrueture with the penalty (SIMP) 
method. 

The remainder of this note is organized as follows. In 
Section 2, the problem formulation used to solve topology 
optimization problems of cross-sections is described. In Sec- 
tion 3, two examples of cross-section optimization using this 
approach are presented, followed by conclusions and future 
work in Section 4. 

2 F o r m u l a t i o n  

In order to numerically solve a topology optimization prob- 
lem, commonly the design space or domain is discretized into 
finite elements. The formulation used here for the cross- 
section problem does not differ in this regard. In genetic 
algorithms and simulated annealing methods, a binary rep- 
resentation for each element is used. Every element either 
contains solid material or is completely void. 

However, the approach taken here allows material accu- 
mulation in each element to continuously vary from void to 
solid. As shown in Fig. 1, each element contains a rectangu- 
lar hole of arbitrary size at the centroid of the element. The 
sizes of the hole (denoted by a and b) serve as design variables 
in the formulation of the optimization problem. Without  loss 
of generality, the elements may be considered to be of unit 
height and width. 

For all of the applications presented in this note, the hole 
is assumed to be square, i.e. a = b, although the method 
is applicable for the general variable definition. Given these 
assumptions, the following element properties can be defined 
in terms of a and b: cross-sectional area, moment of inertia 
about the z-axis, and moment of inertia about the y-axis. 
An area moment of inertia may be calculated with respect to 
a global coordinate system using the Parallel Axis Theorem. 
The contributions of each element can be summed to obtain 
the overall moment of inertia. 
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Fig. :t. An arbitrary design domain discretized into elements with 
rectangular holes 

Additional section properties such as centroid location, 
shear centre location, etc. can be analytically expressed with 
respect to this model if desired. Packaging limitations on the 
cross-sectional geometry are intrinsically implemented when 
creating the finite-element model. Generally, in cross-section 
design the goal is to maximize a section property or min- 
imize weight. The examples that  follow are weight (area) 
minimization problems with constraints on particular perfor- 
mance criteria, such as the ones mentioned above. 

The formulation as presented does not ensure symmetric 
designs. Forcing symmetry through variable linking can be 
implemented easily and is often avoided by using appropriate 
modelling techniques. However, a more critical issue is to 
ensure that  the layout is connected. Currently, there is no 
provision for avoiding unconnected designs; this limitation 
remains an open issue. One advantage of using a genetic 
algorithm, or other discrete optimization methods, is that 
unconnected designs can be discarded. 

3 E x a m p l e s  

One of the more common cross-sections used in structures is 
t he / -beam,  which has good bending stiffness characteristics. 
A reasonable problem formulation for the design of a n / - b e a m  
would be: 

m i n A  s.t. i x - I x < _ 0 ,  (1) 

where A and Ix are the area and the area moment of inertia 
of the cross-section, respectively, and Iz is an active lower 
bound on the latter. 

We applied the method described above to solve this par- 
ticular problem. The model consisted of 100 square elements 
of unit area, with one design variable per element. Several 
nonlinear programming codes such as GRG2 (Lasdon eL al. 
1978), VMCON (Crane eL al. 1980), and NLPQL (Schitt- 
kowski 1984) were used to solve the optimization problem. 
The same solution was found with these codes as shown in 
Fig. 2. 
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Fig. 2. Initial design with even distribution of material and final 
distribution of material 

Note that  the results strongly indicate a cross-section de- 
sign consisting of two wide flanges farthest from the neutral 
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axis. Since the problem formulation does not prohibit un- 
connected designs, the result does not exhibit the centre web 
typical o f / -beams.  

A similar problem was investigated by Chapman eL al. 
(1993) using a genetic algorithm. The problem was formu- 
lated to maximize the strength to weight ratio of a cross- 
section in a rectangular domain subject to no constraints. 
Using this ratio as an objective function and utilizing a con- 
tinuous variable approach, we found the results to indicate a 
thin flange design as in Fig. 2. However, additional optimiza- 
tion using a finer mesh shows that  the solution is dependent 
on the mesh discretization. Analytically, it can be proven 
that the fitness function attains its maximum at the limit as 
the flange thickness goes to zero. 

A more complicated example involves placing a second 
constraint on the area moment of inertia about the y-axis; a 
similar problem has been solved by Anagnostou eL al. (1992). 
The goal in this example is to design a cross-section similar 
to the square box beam shown below. The values of the mo- 
ments of inertia about the z- and y-axis of the box beam are 
used as constraints in the optimization. Only one quarter 
of the section is analysed due to the symmetry of the prob- 
lem. The model consists of 900 elements and the solution 
shown in Fig. 3 was obtained with the sequential quadratic 
programming-based codes mentioned previously (VMCON 
and NLPQL). GRG2 was not able to robustly find the op- 
timum. NLPQL was the most efficient algorithm and con- 
verged to the same solution from several different starting 
points. The area of the optimized cross-section is34.5 versus 
36.0 for the box beam section. 

Y 

Fig. 3. Concept box beam and optimized cross-section (1/4 
model) 

The results suggest that  a cross-section with a circular 
hole in the centre is lighter than a cross-section of equivalent 
moment of inertia properties with a square hole. Analytically, 
it can be proven that  the cross-sectional area is minimized 
when the number of sides of a regular n-sided polygon inside 
the square cross-section reaches infinity, i.e. the hole becomes 
circular, see the Appendix for an explicit proof. 

4 Conc lus ions  

A continuous variable formulation and standard nonlinear 
programming algorithms are presented as a viable approach 
for solving general topology optimization problems o f  pla- 
nar cross-sections. However, one limitation of the proposed 
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approach is the potential for unconnected designs. In this 
note, weight minimization problems with constraints on sec- 
tion properties are solved. For this case, NLPQL was found 
to be the most efficient and robust algorithm that  can han- 
dle a large number of design variables in real time. The next 
immediate extension of this study is to apply the approach 
to torsional rigidity problems. 

R e f e r e n c e s  

Anagnostou, G.; Ronquist, E.M.; Patera, A.T. 1992: A computa- 
tional procedure for part design. Comp. Meth. Appl. Mech. Eng. 
97, 33-48 

Chapman, D.; Saitou, K.; :/akiela, M 1993: Genetic algorithms 
as an approach to configuration and topology design. Proc. 1993 
ASME Design Automation Conf. pp. 1-14 

Crane, R.L.; Hillstrom, K.E.; Minkoff, M. 1980: Solution of the 
general nonlinear programming problem with subroutine VM- 
CON. Report ANL-80-6$, Argonne National Laboratory, Illinois 

Hou, J.W.; Chen, J.L. 1985: Shape optimization of elastic hollow 
bars. Trans. ACM 107, 100-105 

Lasdon, L.S.; Warren, A.D.; Jain, A.; Rather, M. 1978: Design 
and testing of a generalized reduced gradient code for nonlinear 
programming. A CM Trans. Mathematical Software, pp. 35-50 

Rozvany, G.I.N.; Zhou, M.; Birker, T. 1992: Generalized shape 
optimization withotit homogenization. Struct. Optim. 4, 250-252 

Sandgren, E.; :lensen, E.; Welton, J. 1990: Topological design 
of structural components using genetic optimization methods. 
In: Sensitivity analysis and optimization with numerical methods, 
115, pp. 31-43. ASME 

Schittkowski, K. 1984: Design, implementation, and test of a non- 
linear programming algorithm. Report, Institut fiJr Informatik, 
Stuttgart University 

Schramm, U.; Pilkey, W.D. 1992: Structural shape optimization 
for the torsion problem using direct integration and B-splines. 
Comp. Meth. Appl. Mech. Eng. 107, 251-268 

Suzuki, K.; Kikuchi, N. 1991: A homogenization method for s]aape 
and topology optimization. Comp. Meth. Appl. Eng. 93,291-318 

A p p e n d i x  

The problem of area minimization of a square cross-section 
(of size a) with a hole that  is a regular n-sided polygon (n = 
27r/¢) can be formulated as follows: 

min a 2 - 27rR2tan(¢)~, 
¢ 

7r 4 [6 -5 4sin2(¢).] 
subject to I_< 1 - ~ R l t a n ( ¢ )  [ cos2(5 ) j , 

where R 1 is the radius of the inscribing circle of the polygon 
and I is a lower bound on the area moment of inertia of the 
cross-section. The same problem can be formulated as the 
following unconstrained problem: 

27r ~ 12¢Icos2 (¢) 
max -~-tan(¢) 7rtan(¢)[6 - 4sin2(¢)] ' 

which has its solution at ¢ = 0 or as the number of sides of the 
polygon goes to infinity. The first, second and third deriva- 
tives of the unconstrained function vanish, and the fourth 
derivative is negative (equals - 1 1 - ~ )  indicating a local 
maximum. 
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